1
|
Feng Z, Liu S, Su M, Song C, Lin C, Zhao F, Li Y, Zeng X, Zhu Y, Hou Y, Ren C, Zhang H, Yi P, Ji Y, Wang C, Li H, Ma M, Luo L, Li L. TANGO6 regulates cell proliferation via COPI vesicle-mediated RPB2 nuclear entry. Nat Commun 2024; 15:2371. [PMID: 38490996 PMCID: PMC10943085 DOI: 10.1038/s41467-024-46720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
Coat protein complex I (COPI) vesicles mediate the retrograde transfer of cargo between Golgi cisternae and from the Golgi to the endoplasmic reticulum (ER). However, their roles in the cell cycle and proliferation are unclear. This study shows that TANGO6 associates with COPI vesicles via two transmembrane domains. The TANGO6 N- and C-terminal cytoplasmic fragments capture RNA polymerase II subunit B (RPB) 2 in the cis-Golgi during the G1 phase. COPI-docked TANGO6 carries RPB2 to the ER and then to the nucleus. Functional disruption of TANGO6 hinders the nuclear entry of RPB2, which accumulates in the cytoplasm, causing cell cycle arrest in the G1 phase. The conditional depletion or overexpression of TANGO6 in mouse hematopoietic stem cells results in compromised or expanded hematopoiesis. Our study results demonstrate that COPI vesicle-associated TANGO6 plays a role in the regulation of cell cycle progression by directing the nuclear transfer of RPB2, making it a potential target for promoting or arresting cell expansion.
Collapse
Affiliation(s)
- Zhi Feng
- Research center of Stem cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China
| | - Shengnan Liu
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, PR China
| | - Ming Su
- Research center of Stem cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China
| | - Chunyu Song
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, PR China
| | - Chenyu Lin
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, PR China
| | - Fangying Zhao
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, PR China
| | - Yang Li
- Research center of Stem cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China
| | - Xianyan Zeng
- Institute of Life Sciences, Laboratory of Developmental Biology, Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yong Zhu
- Institute of Life Sciences, Laboratory of Developmental Biology, Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, 400016, PR China
| | - Yu Hou
- Institute of Life Sciences, Laboratory of Developmental Biology, Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, 400016, PR China
| | - Chunguang Ren
- Institute of Life Sciences, Laboratory of Developmental Biology, Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, 400016, PR China
| | - Huan Zhang
- Institute of Life Sciences, Laboratory of Developmental Biology, Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, 400016, PR China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, PR China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine; Key Laboratory of Targeted Intervention of Cardiovascular Disease; Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 211166, PR China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin, 150076, Heilongjiang, PR China
| | - Chao Wang
- MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, PR China
| | - Hongtao Li
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, PR China
| | - Ming Ma
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, PR China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University, Chongqing, 400715, PR China.
| | - Li Li
- Research center of Stem cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China.
| |
Collapse
|
2
|
Zhang W, Yang F, Yan Q, Li J, Zhang X, Jiang Y, Dai J. Hypoxia inducible factor-1α related mechanism and TCM intervention in process of early fracture healing. CHINESE HERBAL MEDICINES 2024; 16:56-69. [PMID: 38375046 PMCID: PMC10874770 DOI: 10.1016/j.chmed.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 02/21/2024] Open
Abstract
As a common clinical disease, fracture is often accompanied by pain, swelling, bleeding as well as other symptoms and has a high disability rate, even threatening life, seriously endangering patients' physical and psychological health and quality of life. Medical practitioners take many strategies for the treatment of fracture healing, including Traditional Chinese Medicine (TCM). In the early stage of fracture healing, the local fracture is often in a state of hypoxia, accompanied by the expression of hypoxia inducible factor-1α (HIF-1α), which is beneficial to wound healing. Through literature mining, we thought that hypoxia, HIF-1α and downstream factors affected the mechanism of fracture healing, as well as dominated this process. Therefore, we reviewed the local characteristics and related signaling pathways involved in the fracture healing process and summarized the intervention of TCM on these mechanisms, in order to inspirit the new strategy for fracture healing, as well as elaborate on the possible principles of TCM in treating fractures based on the HIF molecular mechanism.
Collapse
Affiliation(s)
- Wenxian Zhang
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Fusen Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Qikai Yan
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
- Xi'an Hospital of Traditional Chinese Medicine, Xi'an 710021, China
| | - Jiahui Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiaogang Zhang
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Yiwei Jiang
- Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Jianye Dai
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Citro V, Clerici M, Boccaccini AR, Della Porta G, Maffulli N, Forsyth NR. Tendon tissue engineering: An overview of biologics to promote tendon healing and repair. J Tissue Eng 2023; 14:20417314231196275. [PMID: 37719308 PMCID: PMC10501083 DOI: 10.1177/20417314231196275] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/06/2023] [Indexed: 09/19/2023] Open
Abstract
Tendons are dense connective tissues with a hierarchical polarized structure that respond to and adapt to the transmission of muscle contraction forces to the skeleton, enabling motion and maintaining posture. Tendon injuries, also known as tendinopathies, are becoming more common as populations age and participation in sports/leisure activities increases. The tendon has a poor ability to self-heal and regenerate given its intrinsic, constrained vascular supply and exposure to frequent, severe loading. There is a lack of understanding of the underlying pathophysiology, and it is not surprising that disorder-targeted medicines have only been partially effective at best. Recent tissue engineering approaches have emerged as a potential tool to drive tendon regeneration and healing. In this review, we investigated the physiochemical factors involved in tendon ontogeny and discussed their potential application in vitro to reproduce functional and self-renewing tendon tissue. We sought to understand whether stem cells are capable of forming tendons, how they can be directed towards the tenogenic lineage, and how their growth is regulated and monitored during the entire differentiation path. Finally, we showed recent developments in tendon tissue engineering, specifically the use of mesenchymal stem cells (MSCs), which can differentiate into tendon cells, as well as the potential role of extracellular vesicles (EVs) in tendon regeneration and their potential for use in accelerating the healing response after injury.
Collapse
Affiliation(s)
- Vera Citro
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Materials Science and Engineering, Institute of Biomaterials University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, Germany
| | - Marta Clerici
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, Germany
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
- Interdepartmental Centre BIONAM, University of Salerno, via Giovanni Paolo I, Fisciano, Salerno, Italy
| | - Nicola Maffulli
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
- Department of Trauma and Orthopaedic Surgery, University Hospital ‘San Giovanni di Dio e Ruggi D’Aragona’, Salerno, Italy
| | - Nicholas R. Forsyth
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Vice Principals’ Office, University of Aberdeen, Kings College, Aberdeen, UK
| |
Collapse
|
4
|
Samal JRK, Rangasami VK, Samanta S, Varghese OP, Oommen OP. Discrepancies on the Role of Oxygen Gradient and Culture Condition on Mesenchymal Stem Cell Fate. Adv Healthc Mater 2021; 10:e2002058. [PMID: 33533187 PMCID: PMC11469238 DOI: 10.1002/adhm.202002058] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/19/2021] [Indexed: 12/11/2022]
Abstract
Over the past few years, mesenchymal stem (or stromal) cells (MSCs) have garnered enormous interest due to their therapeutic value especially for their multilineage differentiation potential leading to regenerative medicine applications. MSCs undergo physiological changes upon in vitro expansion resulting in expression of different receptors, thereby inducing high variabilities in therapeutic efficacy. Therefore, understanding the biochemical cues that influence the native local signals on differentiation or proliferation of these cells is very important. There have been several reports that in vitro culture of MSCs in low oxygen gradient (or hypoxic conditions) upregulates the stemness markers and promotes cell proliferation in an undifferentiated state, as hypoxia mimics the conditions the progenitor cells experience within the tissue. However, different studies report different oxygen gradients and culture conditions causing ambiguity in their interpretation of the results. In this progress report, it is aimed to summarize recent studies in the field with specific focus on conflicting results reported during the application of hypoxic conditions for improving the proliferation or differentiation of MSCs. Further, it is tried to decipher the factors that can affect characteristics of MSC under hypoxia and suggest a few techniques that could be combined with hypoxic cell culture to better recapitulate the MSC tissue niche.
Collapse
Affiliation(s)
- Jay R. K. Samal
- Department of Instructive Biomaterial EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Vignesh K. Rangasami
- Bioengineering and Nanomedicine GroupFaculty of Medicine and Health TechnologiesTampere UniversityTampere33720Finland
| | - Sumanta Samanta
- Bioengineering and Nanomedicine GroupFaculty of Medicine and Health TechnologiesTampere UniversityTampere33720Finland
| | - Oommen P. Varghese
- Translational Chemical Biology LaboratoryDepartment of Chemistry, Polymer ChemistryÅngström LaboratoryUppsala UniversityUppsala751 21Sweden
| | - Oommen P. Oommen
- Bioengineering and Nanomedicine GroupFaculty of Medicine and Health TechnologiesTampere UniversityTampere33720Finland
| |
Collapse
|
5
|
Wright A, Arthaud-Day ML, Weiss ML. Therapeutic Use of Mesenchymal Stromal Cells: The Need for Inclusive Characterization Guidelines to Accommodate All Tissue Sources and Species. Front Cell Dev Biol 2021; 9:632717. [PMID: 33665190 PMCID: PMC7921162 DOI: 10.3389/fcell.2021.632717] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Following their discovery over 50 years ago, mesenchymal stromal cells (MSCs) have become one of the most studied cellular therapeutic products by both academia and industry due to their regenerative potential and immunomodulatory properties. The promise of MSCs as a therapeutic modality has been demonstrated by preclinical data yet has not translated to consistent, successful clinical trial results in humans. Despite the disparities across the field, MSC shareholders are unified under one common goal-to use MSCs as a therapeutic modality to improve the quality of life for those suffering from a malady in which the standard of care is suboptimal or no longer effective. Currently, there is no Food and Drug Administration (FDA)-approved MSC therapy on the market in the United States although several MSC products have been granted regulatory approval in other countries. In this review, we intend to identify hurdles that are impeding therapeutic progress and discuss strategies that may aid in accomplishing this universal goal of widespread therapeutic use.
Collapse
Affiliation(s)
- Adrienne Wright
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States
| | - Marne L Arthaud-Day
- Department of Management, Kansas State University, Manhattan, KS, United States
| | - Mark L Weiss
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States.,Midwest Institute of Comparative Stem Cell Biotechnology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
6
|
Bahir B, S. Choudhery M, Hussain I. Hypoxic Preconditioning as a Strategy to Maintain the Regenerative Potential of Mesenchymal Stem Cells. Regen Med 2020. [DOI: 10.5772/intechopen.93217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
7
|
Zhou S, Chen S, Jiang Q, Pei M. Determinants of stem cell lineage differentiation toward chondrogenesis versus adipogenesis. Cell Mol Life Sci 2019; 76:1653-1680. [PMID: 30689010 PMCID: PMC6456412 DOI: 10.1007/s00018-019-03017-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/10/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022]
Abstract
Adult stem cells, also termed as somatic stem cells, are undifferentiated cells, detected among differentiated cells in a tissue or an organ. Adult stem cells can differentiate toward lineage specific cell types of the tissue or organ in which they reside. They also have the ability to differentiate into mature cells of mesenchymal tissues, such as cartilage, fat and bone. Despite the fact that the balance has been comprehensively scrutinized between adipogenesis and osteogenesis and between chondrogenesis and osteogenesis, few reviews discuss the relationship between chondrogenesis and adipogenesis. In this review, the developmental and transcriptional crosstalk of chondrogenic and adipogenic lineages are briefly explored, followed by elucidation of signaling pathways and external factors guiding lineage determination between chondrogenic and adipogenic differentiation. An in-depth understanding of overlap and discrepancy between these two mesenchymal tissues in lineage differentiation would benefit regeneration of high-quality cartilage tissues and adipose tissues for clinical applications.
Collapse
Affiliation(s)
- Sheng Zhou
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
- Department of Sports Medicine and Adult Reconstructive Surgery, School of Medicine, Drum Tower Hospital, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Song Chen
- Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, 610083, Sichuan, People's Republic of China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, School of Medicine, Drum Tower Hospital, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA.
- Robert C. Byrd Health Sciences Center, WVU Cancer Institute, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
8
|
Fani N, Farokhi M, Azami M, Kamali A, Bakhshaiesh NL, Ebrahimi-Barough S, Ai J, Eslaminejad MB. Endothelial and Osteoblast Differentiation of Adipose-Derived Mesenchymal Stem Cells Using a Cobalt-Doped CaP/Silk Fibroin Scaffold. ACS Biomater Sci Eng 2019; 5:2134-2146. [DOI: 10.1021/acsbiomaterials.8b01372] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nesa Fani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, 1417755469 Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, 1665659911, ACECR, Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, 1316943551 Tehran, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, 1417755469 Tehran, Iran
| | - Amir Kamali
- Department of Pathology, School of Veterinary Medicine, Shiraz University, 7194684471 Shiraz, Iran
| | - Nasrin Lotfi Bakhshaiesh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, 1417755469 Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, 1417755469 Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, 1417755469 Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, 1665659911, ACECR, Tehran, Iran
| |
Collapse
|
9
|
Takahashi M, Hori M, Ishigamori R, Mutoh M, Imai T, Nakagama H. Fatty pancreas: A possible risk factor for pancreatic cancer in animals and humans. Cancer Sci 2018; 109:3013-3023. [PMID: 30099827 PMCID: PMC6172058 DOI: 10.1111/cas.13766] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/01/2018] [Accepted: 08/04/2018] [Indexed: 02/06/2023] Open
Abstract
Obesity, type 2 diabetes mellitus (T2DM) and aging are associated with pancreatic cancer risk, but the mechanisms of pancreatic cancer development caused by these factors are not clearly understood. Syrian golden hamsters are susceptible to N‐nitrosobis(2‐oxopropyl)amine (BOP)‐induced pancreatic carcinogenesis. Aging, BOP treatment and/or a high‐fat diet cause severe and scattered fatty infiltration (FI) of the pancreas with abnormal adipokine production and promote pancreatic ductal adenocarcinoma (PDAC) development. The KK‐Ay mouse, a T2DM model, also develops severe and scattered FI of the pancreas. Treatment with BOP induced significantly higher cell proliferation in the pancreatic ducts of KK‐Ay mice, but not in those of ICR and C57BL/6J mice, both of which are characterized by an absence of scattered FI. Thus, we hypothesized that severely scattered FI may be involved in the susceptibility to PDAC development. Indeed, severe pancreatic FI, or fatty pancreas, is observed in humans and is associated with age, body mass index (BMI) and DM, which are risk factors for pancreatic cancer. We analyzed the degree of FI in the non‐cancerous parts of PDAC and non‐PDAC patients who had undergone pancreatoduodenectomy by histopathology and demonstrated that the degree of pancreatic FI in PDAC cases is significantly higher than that in non‐PDAC controls. Moreover, the association with PDAC is positive, even after adjusting for BMI and the prevalence of DM. Accumulating evidence suggests that pancreatic FI is involved in PDAC development in animals and humans, and further investigations to clarify the genetic and environmental factors that cause pancreatic FI are warranted.
Collapse
Affiliation(s)
- Mami Takahashi
- Central Animal Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Mika Hori
- Department of Molecular Innovation in Lipidology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Rikako Ishigamori
- Central Animal Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Michihiro Mutoh
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan
| | - Toshio Imai
- Central Animal Division, National Cancer Center Research Institute, Tokyo, Japan
| | | |
Collapse
|
10
|
Comparative Study on In Vitro Culture of Mouse Bone Marrow Mesenchymal Stem Cells. Stem Cells Int 2018; 2018:6704583. [PMID: 29760732 PMCID: PMC5924976 DOI: 10.1155/2018/6704583] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 02/08/2018] [Accepted: 02/25/2018] [Indexed: 12/11/2022] Open
Abstract
In vitro culture of mesenchymal stem cells (MSCs) from mouse bone marrow (BM) has been hampered because of the low yield of MSCs during isolation and the contamination of hematopoietic cells during expansion. The lack of specific mouse BM-MSC markers increases the difficulty. Several techniques have been reported to improve the purity and in vitro growth of mouse BM-MSCs. However, systematic report on comparison of characteristics in primary BM-MSCs between different culture conditions is rare. Here, we studied the effects of oxygen concentrations and initial medium replacement intervals, along with cell passages, on mouse BM-MSCs isolated with differential adhesion method. BM-MSCs exhibited elevated proliferative and clonogenic abilities in 5% oxygen compared with 10% and 21% oxygen, as well as a better expression of the MSC marker Sca-1. Adipogenic and osteogenetic differentiation of BM-MSCs can be observed in both 21% and 5% oxygen. Adipogenic differentiation appeared stronger under normoxia conditions. BM-MSCs showed increased proliferative capacity and adipogenic/osteogenetic differentiation potential when initial medium replacement interval was 4 days compared with 1 day. As passage number increased, cells were more MSC-like in morphology and in expression of surface markers (positive for CD29, CD44, and Sca-1 and negative for CD11b, CD19, and CD45). These data provide new insight into optimizing the culture method and understanding the biological characteristics of mouse BM-MSCs during in vitro expansion.
Collapse
|
11
|
Schoettl T, Fischer IP, Ussar S. Heterogeneity of adipose tissue in development and metabolic function. ACTA ACUST UNITED AC 2018. [PMID: 29514879 DOI: 10.1242/jeb.162958] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adipose tissue is a central metabolic organ. Unlike other organs, adipose tissue is compartmentalized into individual depots and distributed throughout the body. These different adipose depots show major functional differences and risk associations for developing metabolic syndrome. Recent advances in lineage tracing demonstrate that individual adipose depots are composed of adipocytes that are derived from distinct precursor populations, giving rise to different populations of energy-storing white adipocytes. Moreover, distinct lineages of energy-dissipating brown and beige adipocytes exist in discrete depots or within white adipose tissue depots. In this Review, we discuss developmental and functional heterogeneity, as well as sexual dimorphism, between and within individual adipose tissue depots. We highlight current data relating to the differences between subcutaneous and visceral white adipose tissue in the development of metabolic dysfunction, with special emphasis on adipose tissue expansion and remodeling of the extracellular matrix. Moreover, we provide a detailed overview of adipose tissue development as well as the consensus and controversies relating to adult adipocyte precursor populations.
Collapse
Affiliation(s)
- Theresa Schoettl
- JRG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, 85748 Garching, Germany.,German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Ingrid P Fischer
- JRG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, 85748 Garching, Germany.,German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.,Division of Metabolic Diseases, Department of Medicine, Technische Universität München, 80333 Munich, Germany
| | - Siegfried Ussar
- JRG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, 85748 Garching, Germany .,German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| |
Collapse
|
12
|
Pereira JA, Law S. Microenvironmental Scenario of the Bone Marrow of Inorganic Arsenic-Exposed Experimental Mice. Biol Trace Elem Res 2018; 181:304-313. [PMID: 28516389 DOI: 10.1007/s12011-017-1022-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/11/2017] [Indexed: 01/31/2023]
Abstract
Exposure to arsenic on a regular basis, mainly through drinking water, agricultural pesticide, and sometimes therapeutic dose, results in various diseases of different tissues including the bone marrow hematopoietic system. Hematopoiesis is a dynamic process by which bone marrow (BM) hematopoietic stem/progenitor cells (HSPCs) generate a relatively constant pool of functionally mature blood cells by the support of microenvironmental components. The present study has been aimed to understand stem cell microenvironmental status during arsenic toxicity and the consequent reflection of dysregulation involving the hematopoietic machinery in experimental mice. Swiss albino mice were experimentally exposed to 10 μg arsenic trioxide/g body weight through oral gavage and 5 μg arsenic trioxide/g body weight intraperitoneally for a period of 30 days. Altered hemogram values in peripheral blood reflected the impaired hematopoiesis which was further validated by the reduced BM cellularity along with the deviated BM cell morphology as observed by scanning electron microscopy post arsenic exposure. The stromal cells were unable to establish a healthy matrix and the sustainability of hematopoietic progenitors was drastically affected in arsenic-exposed mouse groups, as observed in in vitro explant culture. The inability of stromal cells to establish supportive matrix was also explained by the decreased adherent colony formation in treated animals. Furthermore, the flow cytometric characterization of CXCR4+ and Sca-1+ CD44+ receptor expressions confirmed the dysregulation in the hematopoietic microenvironment. Thus, considering the importance of microenvironment in the maintenance of HSPC, it can be concluded that arsenic toxicity causes microenvironmental damage, leading to niche derangement and impaired hematopoiesis.
Collapse
Affiliation(s)
- Jacintha Archana Pereira
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata, 700073, India
| | - Sujata Law
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata, 700073, India.
| |
Collapse
|
13
|
Bobyleva PI, Andreeva ER, Gornostaeva AN, Buravkova LB. Tissue-Related Hypoxia Attenuates Proinflammatory Effects of Allogeneic PBMCs on Adipose-Derived Stromal Cells In Vitro. Stem Cells Int 2016; 2016:4726267. [PMID: 26880965 PMCID: PMC4736565 DOI: 10.1155/2016/4726267] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 12/03/2015] [Indexed: 01/11/2023] Open
Abstract
Human adipose tissue-stromal derived cells (ASCs) are considered a perspective tool for regenerative medicine. Depending on the application mode ASC/allogeneic immune cell interaction can occur in the systemic circulation under plenty high concentrations of O2 and in target tissues at lower O2 levels. Here we examined the effects of allogeneic PHA-stimulated peripheral blood mononuclear cells (PBMCs) on ASCs under ambient (20%) oxygen and "physiological" hypoxia (5% O2). As revealed with microarray analysis ASCs under 20% O2 were more affected by activated PBMCs, which was manifested in differential expression of more than 300 genes, whereas under 5% O2 only 140 genes were changed. Altered gene pattern was only partly overlapped at different O2 conditions. Under O2 ASCs retained their proliferative and differentiative capacities, mesenchymal phenotype, and intracellular organelle' state. ASCs were proinflammatory activated on transcription level that was confirmed by their ability to suppress activation and proliferation of mitogen-stimulated PBMCs. ASC/PBMCs interaction resulted in anti-inflammatory shift of paracrine mediators in conditioning medium with significant increase of immunosuppressive LIF level. Our data indicated that under both ambient and tissue-related O2 ASCs possessed immunosuppressive potential and maintained functional activity. Under "physiological" hypoxia ASCs were less susceptible to "priming" by allogeneic mitogen-activated PBMCs.
Collapse
Affiliation(s)
- Polina I. Bobyleva
- Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse 76a, Moscow 123007, Russia
| | - Elena R. Andreeva
- Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse 76a, Moscow 123007, Russia
| | - Aleksandra N. Gornostaeva
- Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse 76a, Moscow 123007, Russia
| | - Ludmila B. Buravkova
- Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse 76a, Moscow 123007, Russia
| |
Collapse
|
14
|
Yoo HI, Moon YH, Kim MS. Effects of CoCl2 on multi-lineage differentiation of C3H/10T1/2 mesenchymal stem cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 20:53-62. [PMID: 26807023 PMCID: PMC4722191 DOI: 10.4196/kjpp.2016.20.1.53] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/10/2015] [Accepted: 08/20/2015] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cells (MSCs) in the bone marrow and other somatic tissues reside in an environment with relative low oxygen tension. Cobalt chloride (CoCl2) can mimic hypoxic conditions through transcriptional changes of some genes including hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF). This study evaluated the potential role of CoCl2 preconditioning on multi-lineage differentiation of C3H/10T1/2, a murine MSC line to understand its possible molecular mechanisms in vitro. CoCl2 treatment of MSCs markedly increased HIF-1α and VEGF mRNA, and protein expression of HIF-1α. Temporary preconditioning of MSCs with CoCl2 induced up-regulation of osteogenic markers including alkaline phosphatase, osteocalcin, and type I collagen during osteogenic differentiation, followed by enhanced mineralization. CoCl2 also increased chondrogenic markers including aggrecan, sox9, and type II collagen, and promoted chondrocyte differentiation. CoCl2 suppressed the expression of adipogenic markers including PPARγ, aP2, and C/EBPα, and inhibited adipogenesis. Temporary preconditioning with CoCl2 could affect the multi-lineage differentiation of MSCs.
Collapse
Affiliation(s)
- Hong Il Yoo
- Department of Oral Anatomy, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| | - Yeon Hee Moon
- Department of Dental Hygiene, Chodang University, Muan 58530, Korea
| | - Min Seok Kim
- Department of Oral Anatomy, School of Dentistry, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
15
|
Choi JR, Pingguan-Murphy B, Wan Abas WAB, Yong KW, Poon CT, Noor Azmi MA, Omar SZ, Chua KH, Xu F, Wan Safwani WKZ. In situ normoxia enhances survival and proliferation rate of human adipose tissue-derived stromal cells without increasing the risk of tumourigenesis. PLoS One 2015; 10:e0115034. [PMID: 25615717 PMCID: PMC4304807 DOI: 10.1371/journal.pone.0115034] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 11/18/2014] [Indexed: 12/25/2022] Open
Abstract
Adipose tissue-derived stromal cells (ASCs) natively reside in a relatively low-oxygen tension (i.e., hypoxic) microenvironment in human body. Low oxygen tension (i.e., in situ normoxia), has been known to enhance the growth and survival rate of ASCs, which, however, may lead to the risk of tumourigenesis. Here, we investigated the tumourigenic potential of ASCs under their physiological condition to ensure their safe use in regenerative therapy. Human ASCs isolated from subcutaneous fat were cultured in atmospheric O2 concentration (21% O2) or in situ normoxia (2% O2). We found that ASCs retained their surface markers, tri-lineage differentiation potential, and self-renewal properties under in situ normoxia without altering their morphology. In situ normoxia displayed a higher proliferation and viability of ASCs with less DNA damage as compared to atmospheric O2 concentration. Moreover, low oxygen tension significantly up-regulated VEGF and bFGF mRNA expression and protein secretion while reducing the expression level of tumour suppressor genes p16, p21, p53, and pRb. However, there were no significant differences in ASCs telomere length and their relative telomerase activity when cultured at different oxygen concentrations. Collectively, even with high proliferation and survival rate, ASCs have a low tendency of developing tumour under in situ normoxia. These results suggest 2% O2 as an ideal culture condition for expanding ASCs efficiently while maintaining their characteristics.
Collapse
Affiliation(s)
- Jane Ru Choi
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Belinda Pingguan-Murphy
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Wan Abu Bakar Wan Abas
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Kar Wey Yong
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Chi Tat Poon
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Mat Adenan Noor Azmi
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Siti Zawiah Omar
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Kien Hui Chua
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Feng Xu
- The Key Library of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Wan Kamarul Zaman Wan Safwani
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Jones E, Schäfer R. Biological differences between native and cultured mesenchymal stem cells: implications for therapies. Methods Mol Biol 2015; 1235:105-120. [PMID: 25388390 DOI: 10.1007/978-1-4939-1785-3_10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We describe the current knowledge of the surface marker phenotype of native bone marrow mesenchymal stem/stromal cells (MSCs) in humans and in mouse models, highlighting similarities in the MSC marker "signature" between the two species. The chapter proceeds to discuss the published literature pertaining to native MSC topography and their interactions with hematopoietic stem cells and their progeny, as well as with blood vessels and nerve endings. Additionally, the chapter describes phenotypic and functional "drifts" that occur in MSC preparations as they are taken out of their native bone marrow microenvironment and induced to proliferate in vitro (in the presence of animal or human serum). We propose that the understanding of the biology of MSCs in their native niches in the bone marrow could lead to future developments in the treatment of hematological diseases such as multiple myeloma. Additionally, this knowledge would assist in the development of more "natural" MSC culture conditions, best preserving MSC functionality including their homing potential in order to optimize MSC transplantation in the context of graft-versus-host and other diseases.
Collapse
Affiliation(s)
- Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds University, Room 5.24 Clinical Sciences Building, Leeds, LS9 7TF, UK,
| | | |
Collapse
|
17
|
Liu Y, Ma T. Metabolic regulation of mesenchymal stem cell in expansion and therapeutic application. Biotechnol Prog 2014; 31:468-81. [PMID: 25504836 DOI: 10.1002/btpr.2034] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/28/2014] [Indexed: 12/13/2022]
Abstract
Human mesenchymal or stromal cells (hMSCs) isolated from various adult tissues are primary candidates in cell therapy and tissue regeneration. Despite promising results in preclinical studies, robust therapeutic responses to MSC treatment have not been reproducibly demonstrated in clinical trials. In the translation of MSC-based therapy to clinical application, studies of MSC metabolism have significant implication in optimizing bioprocessing conditions to obtain therapeutically competent hMSC population for clinical application. In addition, understanding the contribution of metabolic cues in directing hMSC fate also provides avenues to potentiate their therapeutic effects by modulating their metabolic properties. This review focuses on MSC metabolism and discusses their unique metabolic features in the context of common metabolic properties shared by stem cells. Recent advances in the fundamental understanding of MSC metabolic characteristics in relation to their in vivo origin and metabolic regulation during proliferation, lineage-specific differentiation, and exposure to in vivo ischemic conditions are summarized. Metabolic strategies in directing MSC fate to enhance their therapeutic potential in tissue engineering and regenerative medicine are discussed.
Collapse
Affiliation(s)
- Yijun Liu
- Dept. of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL, 32310
| | | |
Collapse
|
18
|
Kadivar M, Alijani N, Farahmandfar M, Rahmati S, Ghahhari NM, Mahdian R. Effect of acute hypoxia on CXCR4 gene expression in C57BL/6 mouse bone marrow-derived mesenchymal stem cells. Adv Biomed Res 2014; 3:222. [PMID: 25538908 PMCID: PMC4260281 DOI: 10.4103/2277-9175.145682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 04/24/2014] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND One of the most important stimuli in stem cell biology is oxygen. Chemokine receptor 4 (CXCR4) plays a crucial role in the migration and homing of stem cells. In this study, mesenchymal stem cells (MSCs) were exposed to 1% oxygen to investigate the effect of acute hypoxia on CXCR4 gene expression. MATERIALS AND METHODS MSCs were isolated from C57BL/6 mouse bone marrow and were identified and expanded in normoxic culture. Cells were incubated at 37°C under 1% hypoxic conditions for periods of 4, 8, 16, 24, and 48 h. After hypoxia preconditioning, the cells were placed in normoxic condition for 8 h to achieve cellular hypoxia-reoxygenation. To assess the level of CXCR4 gene expression, real-time quantitative reverse transcription-polymerase chain reaction was carried out for each group. RESULTS Data from statistical analysis illustrated that exposure of MSCs to acute hypoxic condition down-regulates CXCR4 expression with the maximum under-expression observed in 4 h (0.91 ± 0.107) and 8 h (50 ± 2.98) groups. Moreover, the relative gene expression of CXCR4 was decreased after hypoxia-reoxygenation by more than 80% in 4 h (0.136 ± 0.018) and 24 h (12.77 ± 0.707) groups. CONCLUSION The results suggest that CXCR4 expression in MSCs decreases upon acute hypoxic stress. Furthermore, hypoxia-reoxygenated MSCs showed decreased expression of CXCR4, compared to cells subjected to acute hypoxia. This difference could have resulted from the cells being compatible with low oxygen metabolism. In summary, before the therapeutic application of MSCs, it should be regarded as a necessity to optimize the oxygen concentration in these cells, as it is a critical factor in modulating CXCR4 expression.
Collapse
Affiliation(s)
- Mehdi Kadivar
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Najva Alijani
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Farahmandfar
- Department of Neuroscience, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Rahmati
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | | | - Reza Mahdian
- Department of Molecular Medicine, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
19
|
Scuteri A, Donzelli E, Foudah D, Caldara C, Redondo J, D’Amico G, Tredici G, Miloso M. Mesengenic differentiation: comparison of human and rat bone marrow mesenchymal stem cells. Int J Stem Cells 2014; 7:127-134. [PMID: 25473450 PMCID: PMC4249895 DOI: 10.15283/ijsc.2014.7.2.127] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Cellular therapies using Mesenchymal Stem Cells (MSCs) represent a promising approach for the treatment of degenerative diseases, in particular for mesengenic tissue regeneration. However, before the approval of clinical trials in humans, in vitro studies must be performed aimed at investigating MSCs' biology and the mechanisms regulating their proliferation and differentiation abilities. Besides studies on human MSCs (hMSCs), MSCs derived from rodents have been the most used cellular type for in vitro studies. Nevertheless, the transfer of the results obtained using animal MSCs to hMSCs has been hindered by the limited knowledge regarding the similarities existing between cells of different origins. Aim of this paper is to highlight similarities and differences and to clarify the sometimes reported different results obtained using these cells. METHODS AND RESULTS We compare the differentiation ability into mesengenic lineages of rat and human MSCs cultured in their standard conditions. Our results describe in which way the source from which MSCs are derived affects their differentiation potential, depending on the mesengenic lineage considered. For osteogenic and chondrogenic lineages, the main difference between human and rat MSCs is represented by differentiation time, while for adipogenesis hMSCs have a greater differentiation potential. CONCLUSIONS These results on the one hand suggest to carefully evaluate the transfer of results obtained with animal MSCs, on the other hand they offer a clue to better apply MSCs into clinical practice.
Collapse
Affiliation(s)
- Arianna Scuteri
- Dipartimento di Chirurgia e Medicina Traslazionale, Università Milano-Bicocca, via Cadore
- NeuroMi, Milan Center for Neurosciences, Milano, Italy
| | - Elisabetta Donzelli
- Dipartimento di Chirurgia e Medicina Traslazionale, Università Milano-Bicocca, via Cadore
- NeuroMi, Milan Center for Neurosciences, Milano, Italy
| | - Dana Foudah
- Dipartimento di Chirurgia e Medicina Traslazionale, Università Milano-Bicocca, via Cadore
| | - Cristina Caldara
- Dipartimento di Chirurgia e Medicina Traslazionale, Università Milano-Bicocca, via Cadore
| | - Juliana Redondo
- Dipartimento di Chirurgia e Medicina Traslazionale, Università Milano-Bicocca, via Cadore
| | - Giovanna D’Amico
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università Milano-Bicocca, Monza
| | - Giovanni Tredici
- Dipartimento di Chirurgia e Medicina Traslazionale, Università Milano-Bicocca, via Cadore
- NeuroMi, Milan Center for Neurosciences, Milano, Italy
| | - Mariarosaria Miloso
- Dipartimento di Chirurgia e Medicina Traslazionale, Università Milano-Bicocca, via Cadore
- NeuroMi, Milan Center for Neurosciences, Milano, Italy
| |
Collapse
|
20
|
Buravkova LB, Andreeva ER, Gogvadze V, Zhivotovsky B. Mesenchymal stem cells and hypoxia: where are we? Mitochondrion 2014; 19 Pt A:105-12. [PMID: 25034305 DOI: 10.1016/j.mito.2014.07.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/09/2014] [Indexed: 12/23/2022]
Abstract
Multipotent mesenchymal stromal cells (MSCs) are involved in the organization and maintenance of tissue integrity. MSCs have also attracted attention as a promising tool for cell therapy and regenerative medicine. However, their usage is limited due to cell impairment induced by an extremely harsh microenvironment during transplantation ex vivo. The microenvironment of MSCs in tissue depots is characterized by rather low oxygen consumption, demonstrating that MSCs might be quite resistant to oxygen limitation. However, accumulated data revealed that the response of MSCs to hypoxic conditions is rather controversial, demonstrating both damaging and ameliorating effects. Here, we make an attempt to summarize recent knowledge on the survival of MSCs under low oxygen conditions of varying duration and severity and to elucidate the mechanisms of MSC resistance/sensitivity to hypoxic impact.
Collapse
Affiliation(s)
- L B Buravkova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia; Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - E R Andreeva
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - V Gogvadze
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177 Stockholm, Sweden
| | - B Zhivotovsky
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177 Stockholm, Sweden.
| |
Collapse
|
21
|
Choi JR, Pingguan-Murphy B, Wan Abas WAB, Noor Azmi MA, Omar SZ, Chua KH, Wan Safwani WKZ. Impact of low oxygen tension on stemness, proliferation and differentiation potential of human adipose-derived stem cells. Biochem Biophys Res Commun 2014; 448:218-224. [PMID: 24785372 DOI: 10.1016/j.bbrc.2014.04.096] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 04/20/2014] [Indexed: 01/09/2023]
Abstract
Adipose-derived stem cells (ASCs) have been found adapted to a specific niche with low oxygen tension (hypoxia) in the body. As an important component of this niche, oxygen tension has been known to play a critical role in the maintenance of stem cell characteristics. However, the effect of O2 tension on their functional properties has not been well determined. In this study, we investigated the effects of O2 tension on ASCs stemness, differentiation and proliferation ability. Human ASCs were cultured under normoxia (21% O2) and hypoxia (2% O2). We found that hypoxia increased ASC stemness marker expression and proliferation rate without altering their morphology and surface markers. Low oxygen tension further enhances the chondrogenic differentiation ability, but reduces both adipogenic and osteogenic differentiation potential. These results might be correlated with the increased expression of HIF-1α under hypoxia. Taken together, we suggest that growing ASCs under 2% O2 tension may be important in expanding ASCs effectively while maintaining their functional properties for clinical therapy, particularly for the treatment of cartilage defects.
Collapse
Affiliation(s)
- Jane Ru Choi
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Belinda Pingguan-Murphy
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Wan Abu Bakar Wan Abas
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Mat Adenan Noor Azmi
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Siti Zawiah Omar
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Kien Hui Chua
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Wan Kamarul Zaman Wan Safwani
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
22
|
Boyette LB, Creasey OA, Guzik L, Lozito T, Tuan RS. Human bone marrow-derived mesenchymal stem cells display enhanced clonogenicity but impaired differentiation with hypoxic preconditioning. Stem Cells Transl Med 2014; 3:241-54. [PMID: 24436440 DOI: 10.5966/sctm.2013-0079] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stem cells are promising candidate cells for regenerative applications because they possess high proliferative capacity and the potential to differentiate into other cell types. Mesenchymal stem cells (MSCs) are easily sourced but do not retain their proliferative and multilineage differentiative capabilities after prolonged ex vivo propagation. We investigated the use of hypoxia as a preconditioning agent and in differentiating cultures to enhance MSC function. Culture in 5% ambient O(2) consistently enhanced clonogenic potential of primary MSCs from all donors tested. We determined that enhanced clonogenicity was attributable to increased proliferation, increased vascular endothelial growth factor secretion, and increased matrix turnover. Hypoxia did not impact the incidence of cell death. Application of hypoxia to osteogenic cultures resulted in enhanced total mineral deposition, although this effect was detected only in MSCs preconditioned in normoxic conditions. Osteogenesis-associated genes were upregulated in hypoxia, and alkaline phosphatase activity was enhanced. Adipogenic differentiation was inhibited by exposure to hypoxia during differentiation. Chondrogenesis in three-dimensional pellet cultures was inhibited by preconditioning with hypoxia. However, in cultures expanded under normoxia, hypoxia applied during subsequent pellet culture enhanced chondrogenesis. Whereas hypoxic preconditioning appears to be an excellent way to expand a highly clonogenic progenitor pool, our findings suggest that it may blunt the differentiation potential of MSCs, compromising their utility for regenerative tissue engineering. Exposure to hypoxia during differentiation (post-normoxic expansion), however, appears to result in a greater quantity of functional osteoblasts and chondrocytes and ultimately a larger quantity of high-quality differentiated tissue.
Collapse
Affiliation(s)
- Lisa B Boyette
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA; Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, McGowan Institute for Regenerative Medicine, and Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
23
|
Napoli N, Strollo R, Paladini A, Briganti SI, Pozzilli P, Epstein S. The alliance of mesenchymal stem cells, bone, and diabetes. Int J Endocrinol 2014; 2014:690783. [PMID: 25140176 PMCID: PMC4124651 DOI: 10.1155/2014/690783] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 06/11/2014] [Indexed: 12/15/2022] Open
Abstract
Bone fragility has emerged as a new complication of diabetes. Several mechanisms in diabetes may influence bone homeostasis by impairing the action between osteoblasts, osteoclasts, and osteocytes and/or changing the structural properties of the bone tissue. Some of these mechanisms can potentially alter the fate of mesenchymal stem cells, the initial precursor of the osteoblast. In this review, we describe the main factors that impair bone health in diabetic patients and their clinical impact.
Collapse
Affiliation(s)
- Nicola Napoli
- Division of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
- Division of Bone and Mineral Diseases, Washington University in St Louis, St Louis, MO, USA
- *Nicola Napoli:
| | - Rocky Strollo
- Division of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Angela Paladini
- Division of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Silvia I. Briganti
- Division of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Paolo Pozzilli
- Division of Endocrinology and Diabetes, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
- Centre for Diabetes, The Blizard Building, Barts and The London School of Medicine, Queen Mary, University of London, London, UK
| | - Sol Epstein
- Division of Endocrinology, Mount Sinai School of Medicine, New York, USA
| |
Collapse
|
24
|
Effects of severe hypoxia on bone marrow mesenchymal stem cells differentiation potential. Stem Cells Int 2013; 2013:232896. [PMID: 24082888 PMCID: PMC3777136 DOI: 10.1155/2013/232896] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 06/27/2013] [Accepted: 06/30/2013] [Indexed: 02/06/2023] Open
Abstract
Background. The interests in mesenchymal stem cells (MSCs) and their application in cell therapy have resulted in a better understanding of the basic biology of these cells. Recently hypoxia has been indicated as crucial for complete chondrogenesis. We aimed at analyzing bone marrow MSCs (BM-MSCs) differentiation capacity under normoxic and severe hypoxic culture conditions. Methods. MSCs were characterized by flow cytometry and differentiated towards adipocytes, osteoblasts, and chondrocytes under normoxic or severe hypoxic conditions. The differentiations were confirmed comparing each treated point with a control point made of cells grown in DMEM and fetal bovine serum (FBS). Results. BM-MSCs from the donors displayed only few phenotypical differences in surface antigens expressions. Analyzing marker genes expression levels of the treated cells compared to their control point for each lineage showed a good differentiation in normoxic conditions and the absence of this differentiation capacity in severe hypoxic cultures. Conclusions. In our experimental conditions, severe hypoxia affects the in vitro differentiation potential of BM-MSCs. Adipogenic, osteogenic, and chondrogenic differentiations are absent in severe hypoxic conditions. Our work underlines that severe hypoxia slows cell differentiation by means of molecular mechanisms since a decrease in the expression of adipocyte-, osteoblast-, and chondrocyte-specific genes was observed.
Collapse
|
25
|
Andreeva ER, Buravkova LB. Paracrine activity of multipotent mesenchymal stromal cells and its modulation in hypoxia. ACTA ACUST UNITED AC 2013. [DOI: 10.1134/s0362119713030043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Buravkova LB, Rylova YV, Andreeva ER, Kulikov AV, Pogodina MV, Zhivotovsky B, Gogvadze V. Low ATP level is sufficient to maintain the uncommitted state of multipotent mesenchymal stem cells. Biochim Biophys Acta Gen Subj 2013; 1830:4418-25. [PMID: 23742825 DOI: 10.1016/j.bbagen.2013.05.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/02/2013] [Accepted: 05/20/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND Multipotent mesenchymal stromal cells (MMSCs) are minimally differentiated precursors with great potential to transdifferentiate. These cells are quite resistant to oxygen limitation, suggesting that a hypoxic milieu can be physiological for MMSCs. METHODS Human MMSCs isolated from adipose tissue were grown at various oxygen concentrations. Alteration in cell immunophenotype was determined by flow cytometry after staining with specific antibodies. Concentrations of glucose and lactate were determined using the Biocon colorimetric test. Cellular respiration was assessed using oxygen electrode. The modes of cell death were analyzed by flow cytometry after staining with Annexin V and propidium iodide. RESULTS We found that permanent oxygen deprivation attenuated cellular ATP levels in these cells, diminishing mitochondrial ATP production but stimulating glycolytic ATP production. At the same time, permanent hypoxia did not affect MMSCs' viability, stimulated their proliferation and reduced their capacity to differentiate. Further, permanent hypoxia decreased spontaneous cell death by MMSCs. CONCLUSIONS Under hypoxic conditions glycolysis provides sufficient energy to maintain MMSCs in an uncommitted state. GENERAL SIGNIFICANCE These findings are of interest not only for scientific reasons, but also in practical terms. Oxygen concentration makes an essential contribution to MMSC physiology and should be taken into account in the setting of protocols for cellular therapy.
Collapse
Affiliation(s)
- L B Buravkova
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
27
|
Gornostaeva AN, Andreeva ER, Buravkova LB. Human MMSC immunosuppressive activity at low oxygen tension: Direct cell-to-cell contacts and paracrine regulation. ACTA ACUST UNITED AC 2013. [DOI: 10.1134/s0362119713020059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
28
|
Shell K, Raabe O, Freitag C, Ohrndorf A, Christ HJ, Wenisch S, Arnhold S. Comparison of Equine Adipose Tissue-Derived Stem Cell Behavior and Differentiation Potential Under the Influence of 3% and 21% Oxygen Tension. J Equine Vet Sci 2013. [DOI: 10.1016/j.jevs.2012.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Berniakovich I, Giorgio M. Low oxygen tension maintains multipotency, whereas normoxia increases differentiation of mouse bone marrow stromal cells. Int J Mol Sci 2013; 14:2119-34. [PMID: 23340651 PMCID: PMC3565369 DOI: 10.3390/ijms14012119] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/04/2013] [Accepted: 01/05/2013] [Indexed: 12/28/2022] Open
Abstract
Optimization of mesenchymal stem cells (MSC) culture conditions is of great importance for their more successful application in regenerative medicine. O2 regulates various aspects of cellular biology and, in vivo, MSC are exposed to different O2 concentrations spanning from very low tension in the bone marrow niche, to higher amounts in wounds. In our present work, we isolated mouse bone marrow stromal cells (BMSC) and showed that they contained a population meeting requirements for MSC definition. In order to establish the effect of low O2 on cellular properties, we examined BSMC cultured under hypoxic (3% O2) conditions. Our results demonstrate that 3% O2 augmented proliferation of BMSC, as well as the formation of colonies in the colony-forming unit assay (CFU-A), the percentage of quiescent cells, and the expression of stemness markers Rex-1 and Oct-4, thereby suggesting an increase in the stemness of culture when exposed to hypoxia. In contrast, intrinsic differentiation processes were inhibited by 3% O2. Overall yield of differentiation was dependent on the adjustment of O2 tension to the specific stage of BMSC culture. Thus, we established a strategy for efficient BMSC in vitro differentiation using an initial phase of cell propagation at 3% O2, followed by differentiation stage at 21% O2. We also demonstrated that 3% O2 affected BMSC differentiation in p53 and reactive oxygen species (ROS) independent pathways. Our findings can significantly contribute to the obtaining of high-quality MSC for effective cell therapy.
Collapse
Affiliation(s)
- Ina Berniakovich
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello16, 20139 Milan, Italy.
| | | |
Collapse
|
30
|
Takubo K. Mesenchymal stem cells as an essential hematopoietic stem cell niche component. Inflamm Regen 2013. [DOI: 10.2492/inflammregen.33.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
31
|
Goossens GH, Blaak EE. Adipose tissue oxygen tension: implications for chronic metabolic and inflammatory diseases. Curr Opin Clin Nutr Metab Care 2012; 15:539-46. [PMID: 23037900 DOI: 10.1097/mco.0b013e328358fa87] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW The present review aims to address the role of adipose tissue oxygen partial pressure (PO2) in the metabolic and endocrine derangements in conditions characterized by insulin resistance. RECENT FINDINGS The balance between adipose tissue oxygen supply and its metabolic rate seems to determine adipose tissue PO2. Studies in ob/ob and dietary-induced obese mice have provided evidence for adipose tissue hypoxia in obesity, which has been explained by insufficient adipose tissue angiogenesis during the massive and rapid weight gain in these animals. However, conflicting data have been reported in humans, showing both increased and decreased adipose tissue PO2 in obese compared with lean individuals. Both low and high adipose tissue PO2 may induce a proinflammatory phenotype in (pre)adipocytes, but most studies have been performed under rather extreme PO2 levels, not reflecting human adipose tissue physiology. Furthermore, adipose tissue PO2 may affect glucose and lipid metabolism as well as adipogenic differentiation, but many issues still need to be addressed. SUMMARY Adipose tissue hypoxia has been demonstrated in animal models of obesity, but findings in humans are controversial and require further investigation. Although adipose tissue PO2 seems to be involved in metabolic and endocrine derangements in human adipose tissue, future studies should investigate how low and high adipose tissue PO2 within the human physiological range (3-11% O2) relates to adipose tissue blood flow and oxygen consumption, cellular metabolic responses, and the inflammatory phenotype.
Collapse
Affiliation(s)
- Gijs H Goossens
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | | |
Collapse
|
32
|
Buravkova LB, Andreeva ER, Grigoriev AI. The impact of oxygen in physiological regulation of human multipotent mesenchymal cell functions. ACTA ACUST UNITED AC 2012. [DOI: 10.1134/s0362119712040032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Oct4 and Nanog directly regulate Dnmt1 to maintain self-renewal and undifferentiated state in mesenchymal stem cells. Mol Cell 2012; 47:169-82. [PMID: 22795133 DOI: 10.1016/j.molcel.2012.06.020] [Citation(s) in RCA: 276] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 03/21/2012] [Accepted: 05/14/2012] [Indexed: 12/16/2022]
Abstract
The roles of Oct4 and Nanog in maintaining self-renewal and undifferentiated status of adult stem cells are unclear. Here, increase in Oct4 and Nanog expression along with increased proliferation and differentiation potential but decreased spontaneous differentiation were observed in early-passage (E), hypoxic culture (H), and p21 knockdown (p21KD) mesenchymal stem cells (MSCs) compared to late-passage (L), normoxic culture (N), and scrambled shRNA-overexpressed (Scr) MSCs. Knockdown of Oct4 and Nanog in E, H, and p21KD MSCs decreased proliferation and differentiation potential and enhanced spontaneous differentiation, whereas overexpression of Oct4 and Nanog in L, N, and Scr MSCs increased proliferation and differentiation potential and suppressed spontaneous differentiation. Oct4 and Nanog upregulate Dnmt1 through direct binding to its promoter, thereby leading to the repressed expression of p16 and p21 and genes associated with development and lineage differentiation. These data demonstrate the important roles of Oct4 and Nanog in maintaining MSC properties.
Collapse
|
34
|
Valorani MG, Montelatici E, Germani A, Biddle A, D'Alessandro D, Strollo R, Patrizi MP, Lazzari L, Nye E, Otto WR, Pozzilli P, Alison MR. Pre-culturing human adipose tissue mesenchymal stem cells under hypoxia increases their adipogenic and osteogenic differentiation potentials. Cell Prolif 2012; 45:225-38. [PMID: 22507457 DOI: 10.1111/j.1365-2184.2012.00817.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Hypoxia is an important factor in many aspects of stem-cell biology including their viability, proliferation, differentiation and migration. We evaluated whether low oxygen level (2%) affected human adipose tissue mesenchymal stem-cell (hAT-MSC) phenotype, population growth, viability, apoptosis, necrosis and their adipogenic and osteogenic differentiation potential. MATERIALS AND METHODS hAT-MSCs from four human donors were cultured in growth medium under either normoxic or hypoxic conditions for 7 days and were then transferred to normoxic conditions to study their differentiation potential. RESULTS Hypoxia enhanced hAT-MSC expansion and viability, whereas expression of mesenchymal markers such as CD90, CD73 and endothelial progenitor cell marker CD34, remained unchanged. We also found that pre-culturing hAT-MSCs under hypoxia resulted in their enhanced ability to differentiate into adipocytes and osteocytes. CONCLUSIONS This protocol could be useful for maximizing hAT-MSC potential to differentiate in vitro into the adipogenic and osteogenic lineages, for use in plastic and reconstructive surgery, and in tissue engineering strategies.
Collapse
Affiliation(s)
- M G Valorani
- Centre for Diabetes, Blizard Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Liang D, Ma Y, Liu J, Trope CG, Holm R, Nesland JM, Suo Z. The hypoxic microenvironment upgrades stem-like properties of ovarian cancer cells. BMC Cancer 2012; 12:201. [PMID: 22642602 PMCID: PMC3407800 DOI: 10.1186/1471-2407-12-201] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 05/29/2012] [Indexed: 12/26/2022] Open
Abstract
Background To study whether hypoxia influences the stem-like properties of ovarian cancer cells and their biological behavior under hypoxia. Method Ovarian cancer cell lines ES-2 and OVCAR-3 were cultivated in different oxygen tensions for proliferation, cell cycling and invasion analyses. The clonogenic potential of cells was examined by colony formation and sphere formation assays. Stem cell surface markers, SP and CD44bright and CD44dim cells were analyzed by flow cytometry. Protein expression of HIF-1α, HIF-2α, Ot3/4 and Sox2 were investigated by Western blotting. Results Both cell lines cultivated at hypoxic condition grew relatively slowly with extended G0/G1 phase. However, if the cells were pre-treated under 1% O2 for 48 hrs before brought back to normoxia, the cells showed significantly higher proliferation rate with higher infiltration capability, and significant more colonies and spheres, in comparison to the cells always cultivated under normoxia. CD44bright cells expressed significantly higher levels of Oct3/4 and Sox2 than the CD44dim cells and formed significantly more clones and spheres examined in vitro. Hypoxic treatment of the cells resulted in stronger CD44 expression in both cell lines, and stronger CD133 expression in the OVCAR-3 cell line. In parallel with these findings, significantly increased number of side population (SP) cells and up-regulated expression of Oct3/4 and Sox2 in both ES-2 and OVCAR-3 cell lines were observed. Conclusion We conclude that ovarian cancer cells survive hypoxia by upgrading their stem-like properties through up-regulation of stemness-related factors and behave more aggressively when brought back to higher oxygen environment.
Collapse
Affiliation(s)
- Dongming Liang
- Departments of Pathology, the Norwegian Radium Hospital, Oslo University Hospital, University of Oslo, Montebello, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
36
|
Zeng HL, Zhong Q, Qin YL, Bu QQ, Han XA, Jia HT, Liu HW. Hypoxia-mimetic agents inhibit proliferation and alter the morphology of human umbilical cord-derived mesenchymal stem cells. BMC Cell Biol 2011; 12:32. [PMID: 21827650 PMCID: PMC3166919 DOI: 10.1186/1471-2121-12-32] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 08/09/2011] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The therapeutic efficacy of human mesenchymal stem cells (hMSCs) for the treatment of hypoxic-ischemic diseases is closely related to level of hypoxia in the damaged tissues. To elucidate the potential therapeutic applications and limitations of hMSCs derived from human umbilical cords, the effects of hypoxia on the morphology and proliferation of hMSCs were analyzed. RESULTS After treatment with DFO and CoCl₂, hMSCs were elongated, and adjacent cells were no longer in close contact. In addition, vacuole-like structures were observed within the cytoplasm; the rough endoplasmic reticulum expanded, and expanded ridges were observed in mitochondria. In addition, DFO and CoCl₂ treatments for 48 h significantly inhibited hMSCs proliferation in a concentration-dependent manner (P < 0.05). This treatment also increased the number of cells in G0/G1 phase and decreased those in G2/S/M phase. CONCLUSIONS The hypoxia-mimetic agents, DFO and CoCl₂, alter umbilical cord-derived hMSCs morphology and inhibit their proliferation through influencing the cell cycle.
Collapse
Affiliation(s)
- Hui-Lan Zeng
- Department of Hematology, the First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Scott MA, Nguyen VT, Levi B, James AW. Current methods of adipogenic differentiation of mesenchymal stem cells. Stem Cells Dev 2011; 20:1793-804. [PMID: 21526925 DOI: 10.1089/scd.2011.0040] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
There has been a recent increase in our understanding in the isolation, culture, and differentiation of mesenchymal stem cells (MSCs). Concomitantly, the availability of MSCs has increased, with cells now commercially available, including human MSCs from adipose tissue and bone marrow. Despite an increased understanding of MSC biology and an increase in their availability, standardization of techniques for adipogenic differentiation of MSCs is lacking. The following review will explore the variability in adipogenic differentiation in vitro, specifically in 3T3-L1 and primary MSCs derived from both adipose tissue and bone marrow. A review of alternative methods of adipogenic induction is also presented, including the use of specific peroxisome proliferator-activated receptor-gamma agonists as well as bone morphogenetic proteins. Finally, we define a standard, commonly used adipogenic differentiation medium in the hopes that this will be adopted for the future standardization of laboratory techniques--however, we also highlight the essentially arbitrary nature of this decision. With the current, rapid pace of electronic publications, it becomes imperative for standardization of such basic techniques so that interlaboratory results may be easily compared and interpreted.
Collapse
Affiliation(s)
- Michelle A Scott
- Orthodontics and Dentofacial Orthopedics, College of Dental Medicine, University of Southern Nevada, Henderson, Nevada, USA
| | | | | | | |
Collapse
|
38
|
Yang HN, Park JS, Woo DG, Jeon SY, Do HJ, Lim HY, Kim JH, Park KH. C/EBP-α and C/EBP-β-mediated adipogenesis of human mesenchymal stem cells (hMSCs) using PLGA nanoparticles complexed with poly(ethyleneimmine). Biomaterials 2011; 32:5924-33. [PMID: 21600648 DOI: 10.1016/j.biomaterials.2011.04.072] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 04/24/2011] [Indexed: 11/29/2022]
Abstract
In this study, to drive efficient adipogenic differentiation, the adipogenic transcription factors C/EBP-α and C/EBP-β fused to green fluorescent protein (GFP) or red fluorescent protein (RFP) were complexed with poly-ethyleneimine (PEI) coupled with biodegradable PLGA nanospheres and delivered to human mesenchymal stem cell (hMSC). FACS analysis revealed that the transfection efficiency of C/EBP-α, C/EBP-β, or both genes complexed with PEI-coated PLGA nanospheres was 12.59%, 21.74%, and 28.96% of hMSCs. Expression and localization of C/EBP-α and C/EBP-β were confirmed by Western blotting and confocal laser microscopy. Overexpression of exogenous C/EBP-α and C/EBP-β significantly elevated adipogenic differentiation processes as indicated by RT-PCR, real-time PCR, Western blotting, histology, and immunofluorescence microscopy. During adipogenesis, PEI-coupled PLGA nanospheres complexed with C/EBP-α and C/EBP-β greatly increased the adipogenic capability of in vitro cultured cells, as well of in vivo transplanted cells. The expression of genes and proteins specific to adipogenic differentiation in hMSCs was significantly elevated compared to the controls.
Collapse
Affiliation(s)
- Han Na Yang
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Jürchott K, Guo KT, Catchpole G, Feher K, Willmitzer L, Schichor C, Selbig J. Comparison of metabolite profiles in U87 glioma cells and mesenchymal stem cells. Biosystems 2011; 105:130-9. [PMID: 21605622 DOI: 10.1016/j.biosystems.2011.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/04/2011] [Accepted: 05/07/2011] [Indexed: 10/18/2022]
Abstract
Gas chromatography-mass spectrometry (GC-MS) profiles were generated from U87 glioma cells and human mesenchymal stem cells (hMSC). 37 metabolites representing glycolysis intermediates, TCA cycle metabolites, amino acids and lipids were selected for a detailed analysis. The concentrations of these metabolites were compared and Pearson correlation coefficients were used to calculate the relationship between pairs of metabolites. Metabolite profiles and correlation patterns differ significantly between the two cell lines. These profiles can be considered as a signature of the underlying biochemical system and provide snap-shots of the metabolism in mesenchymal stem cells and tumor cells.
Collapse
Affiliation(s)
- Kathrin Jürchott
- AG Bioinformatics, Institute for Biochemistry and Biology, University of Potsdam, Germany.
| | | | | | | | | | | | | |
Collapse
|