1
|
Delgado S, Fernandez-Trujillo MA, Houée G, Silvent J, Liu X, Corre E, Sire JY. Expression of 20 SCPP genes during tooth and bone mineralization in Senegal bichir. Dev Genes Evol 2023; 233:91-106. [PMID: 37410100 DOI: 10.1007/s00427-023-00706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
The African bichir (Polypterus senegalus) is a living representative of Polypteriformes. P. senegalus possesses teeth composed of dentin covered by an enameloid cap and a layer of collar enamel on the tooth shaft, as in lepisosteids. A thin layer of enamel matrix can also be found covering the cap enameloid after its maturation and during the collar enamel formation. Teleosts fish do not possess enamel; teeth are protected by cap and collar enameloid, and inversely in sarcopterygians, where teeth are only covered by enamel, with the exception of the cap enameloid in teeth of larval urodeles. The presence of enameloid and enamel in the teeth of the same organism is an opportunity to solve the evolutionary history of the presence of enamel/enameloid in basal actinopterygians. In silico analyses of the jaw transcriptome of a juvenile bichir provided twenty SCPP transcripts. They included enamel, dentin, and bone-specific SCPPs known in sarcopterygians and several actinopterygian-specific SCPPs. The expression of these 20 genes was investigated by in situ hybridizations on jaw sections during tooth and dentary bone formation. A spatiotemporal expression patterns were established and compared with previous studies of SCPP gene expression during enamel/enameloid and bone formation. Similarities and differences were highlighted, and several SCPP transcripts were found specifically expressed during tooth or bone formation suggesting either conserved or new functions of these SCPPs.
Collapse
Affiliation(s)
- S Delgado
- Sorbonne Université, MNHN, CNRS, EPHE, Institut Systématique Évolution Biodiversité, ISYEB, Equipe Homologies, 75005, Paris, France.
| | - M A Fernandez-Trujillo
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7138, Equipe Evolution et Développement du Squelette, 75005, Paris, France
| | - G Houée
- Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, CR2P (Centre de Recherche en Paléontologie - Paris), UMR 7207, Equipe Formes, Structures et Fonctions, 43 rue Buffon, 75005, Paris, France
| | - J Silvent
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7138, Equipe Evolution et Développement du Squelette, 75005, Paris, France
| | - X Liu
- Sorbonne Université - CNRS, FR2424, Station Biologique de Roscoff, Plateforme ABiMS (Analysis and Bioinformatics for Marine Science), 29680, Roscoff, France
| | - E Corre
- Sorbonne Université - CNRS, FR2424, Station Biologique de Roscoff, Plateforme ABiMS (Analysis and Bioinformatics for Marine Science), 29680, Roscoff, France
| | - J Y Sire
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7138, Equipe Evolution et Développement du Squelette, 75005, Paris, France
| |
Collapse
|
2
|
Hermans F, Hemeryck L, Bueds C, Torres Pereiro M, Hasevoets S, Kobayashi H, Lambrechts D, Lambrichts I, Bronckaers A, Vankelecom H. Organoids from mouse molar and incisor as new tools to study tooth-specific biology and development. Stem Cell Reports 2023; 18:1166-1181. [PMID: 37084723 DOI: 10.1016/j.stemcr.2023.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/23/2023] Open
Abstract
Organoid models provide powerful tools to study tissue biology and development in a dish. Presently, organoids have not yet been developed from mouse tooth. Here, we established tooth organoids (TOs) from early-postnatal mouse molar and incisor, which are long-term expandable, express dental epithelium stem cell (DESC) markers, and recapitulate key properties of the dental epithelium in a tooth-type-specific manner. TOs display in vitro differentiation capacity toward ameloblast-resembling cells, even more pronounced in assembloids in which dental mesenchymal (pulp) stem cells are combined with the organoid DESCs. Single-cell transcriptomics supports this developmental potential and reveals co-differentiation into junctional epithelium- and odontoblast-/cementoblast-like cells in the assembloids. Finally, TOs survive and show ameloblast-resembling differentiation also in vivo. The developed organoid models provide new tools to study mouse tooth-type-specific biology and development and gain deeper molecular and functional insights that may eventually help to achieve future human biological tooth repair and replacement.
Collapse
Affiliation(s)
- Florian Hermans
- Department of Morphology, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium; Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Lara Hemeryck
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Celine Bueds
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Marc Torres Pereiro
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), 3000 Leuven, Belgium
| | - Steffie Hasevoets
- Department of Morphology, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Hiroto Kobayashi
- Department of Anatomy and Structural Science, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Diether Lambrechts
- Center for Cancer Biology, VIB, 3000 Leuven, Belgium; Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Ivo Lambrichts
- Department of Morphology, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium
| | - Annelies Bronckaers
- Department of Morphology, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, 3590 Diepenbeek, Belgium.
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven (University of Leuven), 3000 Leuven, Belgium.
| |
Collapse
|
3
|
Zhu S, Xiang C, Charlesworth O, Bennett S, Zhang S, Zhou M, Kujan O, Xu J. The versatile roles of odontogenic ameloblast-associated protein in odontogenesis, junctional epithelium regeneration and periodontal disease. Front Physiol 2022; 13:1003931. [PMID: 36117697 PMCID: PMC9478555 DOI: 10.3389/fphys.2022.1003931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Junctional epithelium (JE) is a vital epithelial component which forms an attachment to the tooth surface at the gingival sulcus by the adhesion of protein complexes from its basal layer. Disruption of the JE is associated with the development of gingivitis, periodontal disease, and alveolar bone loss. Odontogenic ameloblast-associated (ODAM) is comprised of a signal peptide and an ODAM protein with 12 putative glycosylation sites. It is expressed during odontogenesis by maturation stage ameloblasts and is incorporated into the enamel matrix during the formation of outer and surface layer enamel. ODAM, as a secreted protein which is accumulated at the interface between basal lamina and enamel, mediates the adhesion of the JE to the tooth surface; and is involved with extracellular signalling of WNT and ARHGEF5-RhoA, as well as intracellular signalling of BMP-2-BMPR-IB-ODAM. ODAM is also found to be highly expressed in salivary glands and appears to have implications for the regulation of formation, repair, and regeneration of the JE. Bioinformatics and research data have identified the anti-cancer properties of ODAM, indicating its potential both as a prognostic biomarker and therapeutic target. Understanding the biology of ODAM will help to design therapeutic strategies for periodontal and dental disorders.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Molecular Lab, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
- *Correspondence: Sipin Zhu, ; Jiake Xu,
| | - Chuan Xiang
- Molecular Lab, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
- Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Oscar Charlesworth
- Molecular Lab, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Samuel Bennett
- Molecular Lab, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Sijuan Zhang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Maio Zhou
- Department of Stomatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Science, Guangzhou, China
| | - Omar Kujan
- UWA Dental School, The University of Western Australia, Perth, Western Australia, Australia
| | - Jiake Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Molecular Lab, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
- *Correspondence: Sipin Zhu, ; Jiake Xu,
| |
Collapse
|
4
|
Nouri S, Holcroft J, Caruso LL, Vuong TV, Simmons CA, Master ER, Ganss B. An SCPPPQ1/LAM332 protein complex enhances the adhesion and migration of oral epithelial cells: Implications for dentogingival regeneration. Acta Biomater 2022; 147:209-220. [PMID: 35643199 DOI: 10.1016/j.actbio.2022.05.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/16/2022] [Accepted: 05/19/2022] [Indexed: 12/11/2022]
Abstract
Common periodontal disease treatment procedures often fail to restore the structural integrity of the junctional epithelium (JE), the epithelial attachment of the gum to the tooth, leaving the tooth-gum interface prone to bacterial colonization. To address this issue, we introduced a novel bio-inspired protein complex comprised of a proline-rich enamel protein, SCPPPQ1, and laminin 332 (LAM332) to enhance the JE attachment. Using quartz crystal microbalance with dissipation monitoring (QCM-D), we showed that SCPPPQ1 and LAM332 interacted and assembled into a protein complex with high-affinity adsorption of 5.9e-8 [M] for hydroxyapatite (HA), the main component of the mineralized tooth surfaces. We then designed a unique shear device to study the adhesion strength of the oral epithelial cells to HA. The SCPPPQ1/LAM332 complex resulted in a twofold enhancement in adhesion strength of the cells to HA compared to LAM332 (from 31 dyn/cm2 to 63 dyn/cm2). In addition, using a modified wound-healing assay, we showed that gingival epithelial cells demonstrated a significantly high migration rate of 2.7 ± 0.24 µm/min over SCPPPQ1/LAM332-coated surfaces. Our collective data show that this protein complex has the potential to be further developed in designing a bioadhesive to enhance the JE attachment and protect the underlying connective tissue from bacterial invasion. However, its efficacy for wound healing requires further testing in vivo. STATEMENT OF SIGNIFICANCE: This work is the first functional study towards understanding the combined role of the enamel protein SCPPPQ1 and laminin 332 (LAM332) in the epithelial attachment of the gum, the junctional epithelium (JE), to the tooth hydroxyapatite surfaces. Such studies are essential for developing therapeutic approaches to restore the integrity of the JE in the destructive form of gum infection. We have developed a model system that provided the first evidence of the strong interaction between SCPPPQ1 and LAM332 on hydroxyapatite surfaces that favored protein adsorption and subsequently oral epithelial cell attachment and migration. Our collective data strongly suggested using the SCPPPQ1/LAM332 complex to accelerate the reestablishment of the JE after surgical gum removal to facilitate gum regeneration.
Collapse
|
5
|
Fischer NG, Kobe AC, Dai J, He J, Wang H, Pizarek JA, De Jong DA, Ye Z, Huang S, Aparicio C. Tapping basement membrane motifs: Oral junctional epithelium for surface-mediated soft tissue attachment to prevent failure of percutaneous devices. Acta Biomater 2022; 141:70-88. [PMID: 34971784 PMCID: PMC8898307 DOI: 10.1016/j.actbio.2021.12.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 01/08/2023]
Abstract
Teeth, long-lasting percutaneous organs, feature soft tissue attachment through adhesive structures, hemidesmosomes, in the junctional epithelium basement membrane adjacent to teeth. This soft tissue attachment prevents bacterial infection of the tooth despite the rich - and harsh - microbial composition of the oral cavity. Conversely, millions of percutaneous devices (catheters, dental, and orthopedic implants) fail from infection yearly. Standard of care antibiotic usage fuels antimicrobial resistance and is frequently ineffective. Infection prevention strategies, like for dental implants, have failed in generating durable soft tissue adhesion - like that seen with the tooth - to prevent bacterial colonization at the tissue-device interface. Here, inspired by the impervious natural attachment of the junctional epithelium to teeth, we synthesized four cell adhesion peptide (CAPs) nanocoatings, derived from basement membranes, to promote percutaneous device soft tissue attachment. The two leading nanocoatings upregulated integrin-mediated hemidesmosomes, selectively increased keratinocyte proliferation compared to fibroblasts, which cannot form hemidesmosomes, and expression of junctional epithelium adhesive markers. CAP nanocoatings displayed marked durability under simulated clinical conditions and the top performer CAP nanocoating was validated in a percutaneous implant murine model. Basement membrane CAP nanocoatings, inspired by the tooth and junctional epithelium, may provide an alternative anti-infective strategy for percutaneous devices to mitigate the worldwide threat of antimicrobial resistance. STATEMENT OF SIGNIFICANCE: Prevention and management of medical device infection is a significant healthcare challenge. Overzealous antibiotic use has motivated alternative material innovations to prevent infection. Here, we report implant cell adhesion peptide nanocoatings that mimic a long-lasting, natural "medical device," the tooth, through formation of cell adhesive structures called hemidesmosomes. Such nanocoatings sidestep the use of antimicrobial or antibiotic elements to form a soft-tissue seal around implants. The top performing nanocoatings prompted expression of hemidesmosomes and defensive factors to mimic the tooth and was validated in an animal model. Application of cell adhesion peptide nanocoatings may provide an alternative to preventing, rather that necessarily treating, medical device infection across a range of device indications, like dental implants.
Collapse
Affiliation(s)
- Nicholas G Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States
| | - Alexandra C Kobe
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States
| | - Jinhong Dai
- Institute of Stomatology, School and Hospital of Stomatology, Department of Prosthodontics, Wenzhou Medical University, 373 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Jiahe He
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States
| | - Hongning Wang
- Institute of Stomatology, School and Hospital of Stomatology, Department of Prosthodontics, Wenzhou Medical University, 373 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - John A Pizarek
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States; United States Navy Dental Corps, Naval Medical Leader and Professional Development Command, 8955 Wood Road Bethesda, MD 20889, United States
| | - David A De Jong
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States
| | - Zhou Ye
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States
| | - Shengbin Huang
- Institute of Stomatology, School and Hospital of Stomatology, Department of Prosthodontics, Wenzhou Medical University, 373 Xueyuan Xi Road, Wenzhou, Zhejiang 325027, China
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, United States.
| |
Collapse
|
6
|
Convergent losses of SCPP genes and ganoid scales among non-teleost actinopterygians. Gene 2022; 811:146091. [PMID: 34864098 DOI: 10.1016/j.gene.2021.146091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/25/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022]
Abstract
Various secretory calcium-binding phosphoprotein (SCPP) genes are expressed in the skin and jaw during the formation of bone, teeth, and scales in osteichthyans (bony vertebrates). Among these mineralized skeletal units is the ganoid scale, found in many fossil actinopterygians (ray-finned fish) but confirmed only in Polypteriformes (bichirs, reedfish) and Lepisosteiformes (gars) among extant clades. Here, we examined SCPP genes in the genome of seven non-teleost actinopterygian species that possess or do not possess ganoid scales. As a result, 39-43 SCPP genes were identified in Polypteriformes and Lepisosteiformes, whereas 22-24 SCPP genes were found in Acipenseriformes (sturgeons, paddlefish) and Amiiformes (bowfin). Most of these genes form two clusters in the genome of Polypteriformes, Lepisosteiformes, and Amiiformes, and these two clusters are duplicated in Acipenseriformes. Despite their distant phylogenetic relationship, Polypteriformes and Lepisosteiformes retain many orthologous SCPP genes. These results imply that common ancestors of extant actinopterygians possessed a large repertoire of SCPP genes, and that many SCPP genes were lost independently in Acipenseriformes and Amiiformes. Notably, most SCPP genes originally located in one of the two SCPP gene clusters are retained in Polypteriformes and Lepisosteiformes but were secondarily lost in Acipenseriformes and Amiiformes. In Lepisosteiformes, orthologs of these lost genes show high or detectable expression levels in the skin but not in the jaw. We thus hypothesize that many SCPP genes located in this cluster are involved in the formation of ganoid scales in Polypteriformes and Lepisosteiformes, and that their orthologs and ganoid scales were convergently lost in Acipenseriformes and Amiiformes.
Collapse
|
7
|
The synergistic effects of TGF-β1 and RUNX2 on enamel mineralization through regulating ODAPH expression during the maturation stage. J Mol Histol 2022; 53:483-492. [PMID: 35165792 DOI: 10.1007/s10735-022-10060-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
Abstract
Transforming growth factor β1 (TGF-β1) and Runt-related transcription factor 2 (RUNX2) are critical factors promoting enamel development and maturation. Our previous studies reported that absence of TGF-β1 or RUNX2 resulted in abnormal secretion and absorption of enamel matrix proteins. However, the mechanism remained enigmatic. In this study, TGF-β1-/-Runx2-/- and TGF-β1+/-Runx2+/- mice were successfully generated to clarify the relationship between TGF-β1 and RUNX2 during amelogenesis. Lower mineralization was observed in TGF-β1-/-Runx2-/- and TGF-β1+/-Runx2+/- mice than single gene deficient mice. Micro-computed tomography (μCT) revealed a lower ratio of enamel to dentin density in TGF-β1-/-Runx2-/- mice. Although μCT elucidated a relatively constant enamel thickness, variation was identified by scanning electron microscopy, which revealed that TGF-β1-/-Runx2-/- mice were more vulnerable to acid etching with lower degree of enamel mineralization. Furthermore, the double gene knock-out mice exhibited more serious enamel dysplasia than the single gene deficient mice. Hematoxylin-eosin staining revealed abnormalities in ameloblast morphology and arrangement in TGF-β1-/-Runx2-/- mice, which was accompanied by the absence of atypical basal lamina (BL) and the ectopic of enamel matrix. Odontogenesis-associated phosphoprotein (ODAPH) has been identified as a component of an atypical BL. The protein and mRNA expression of ODAPH were down-regulated. In summary, TGF-β1 and RUNX2 might synergistically regulate enamel mineralization through the downstream target gene Odaph. However, the specific mechanism by which TGF-β1 and RUNX2 promote mineralization remains to be further studied.
Collapse
|
8
|
Mary C, Fouillen A, Moffatt P, Guadarrama Bello D, Wazen RM, Grenier D, Nanci A. Effect of human secretory calcium-binding phosphoprotein proline-glutamine rich 1 protein on Porphyromonas gingivalis and identification of its active portions. Sci Rep 2021; 11:23724. [PMID: 34887426 PMCID: PMC8660882 DOI: 10.1038/s41598-021-02661-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 11/10/2021] [Indexed: 12/19/2022] Open
Abstract
The mouth environment comprises the second most significant microbiome in the body, and its equilibrium is critical in oral health. Secretory calcium-binding phosphoprotein proline-glutamine rich 1 (SCPPPQ1), a protein normally produced by the gingival epithelium to mediate its attachment to teeth, was suggested to be bactericidal. Our aim was to further explore the antibacterial potential of human SCPPPQ1 by characterizing its mode of action and identifying its active portions. In silico analysis showed that it has molecular parallels with antimicrobial peptides. Incubation of Porphyromonasgingivalis, a major periodontopathogen, with the full-length protein resulted in decrease in bacterial number, formation of aggregates and membrane disruptions. Analysis of SCPPPQ1-derived peptides indicated that these effects are sustained by specific regions of the molecule. Altogether, these data suggest that human SCPPPQ1 exhibits antibacterial capacity and provide new insight into its mechanism of action.
Collapse
Affiliation(s)
- Charline Mary
- Laboratory for the Study of Calcified Tissues and Biomaterials, Faculty of Dental Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Aurélien Fouillen
- Laboratory for the Study of Calcified Tissues and Biomaterials, Faculty of Dental Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Pierre Moffatt
- Department of Human Genetics, McGill University, Montreal, Québec, H3A 0G4, Canada.,Shriners Hospitals for Children-Canada, Montreal, Québec, H4A 0A9, Canada
| | - Dainelys Guadarrama Bello
- Laboratory for the Study of Calcified Tissues and Biomaterials, Faculty of Dental Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Rima M Wazen
- Laboratory for the Study of Calcified Tissues and Biomaterials, Faculty of Dental Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Daniel Grenier
- Oral Ecology Research Group, Faculty of Dental Medicine, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Antonio Nanci
- Laboratory for the Study of Calcified Tissues and Biomaterials, Faculty of Dental Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada. .,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada.
| |
Collapse
|
9
|
Li C, Gao Y, Xu Z, Tian Y, Mu H, Yu C, Gao Y, Zhang L. Expression and localization of amelotin, laminin γ2 and odontogenesis-associated phosphoprotein (ODAPH) on the basal lamina and junctional epithelium. J Mol Histol 2021; 53:111-118. [PMID: 34709488 DOI: 10.1007/s10735-021-10026-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022]
Abstract
At maturation stage of enamel development, a specialized basal lamina (sBL) was built between ameloblasts and enamel. After the teeth eruption, the ameloblasts transform into the inner cell layer of junctional epithelium. The inner cell layer forms the internal basal lamina of junctional epithelium. However, the composition of the sBL and internal basal lamina was not clarified. The objective of our study was to make a description of the localization of amelotin (AMTN), laminin γ2 (LAMC2) and Odontogenesis-associated phosphoprotein (ODAPH) on the sBL and internal basal lamina. In immunohistochemical study, AMTN, LAMC2 and ODAPH were detected on the sBL at maturation stage. AMTN was also detected in ameloblasts at maturation stage. The expression of AMTN decreased from early-to-late maturation stage. In contrast, the expression of LAMC2 and ODAPH was stable. Immunofluorescence double-staining showed the localization of AMTN was close to enamel surface. However, the localization of ODAPH was close to ameloblasts. LAMC2 and ODAPH were observed on internal basal lamina of junctional epithelium. In contrast, no expression of AMTN was detected on internal basal lamina of junctional epithelium. Our results suggested that ODAPH might participate in enamel maturation and periodontal health, which might provide a better understanding of enamel defects and periodontal disease in clinic.
Collapse
Affiliation(s)
- Cong Li
- Institute of Stomatology, Binzhou Medical University, No. 346 Guanhai Street, Yantai, 264003, Shandong, China.,Department of Pediatrics and Preventive Dentistry, Hospital Affiliated to Binzhou Medical University, Binzhou, 256600, Shandong, China
| | - Yan Gao
- Department of Pediatrics and Preventive Dentistry, Hospital Affiliated to Binzhou Medical University, Binzhou, 256600, Shandong, China
| | - Zhenzhen Xu
- Department of Pediatrics and Preventive Dentistry, Hospital Affiliated to Binzhou Medical University, Binzhou, 256600, Shandong, China
| | - Yuan Tian
- Institute of Stomatology, Binzhou Medical University, No. 346 Guanhai Street, Yantai, 264003, Shandong, China.,Department of Pediatrics and Preventive Dentistry, Hospital Affiliated to Binzhou Medical University, Binzhou, 256600, Shandong, China
| | - Haiyu Mu
- Institute of Stomatology, Binzhou Medical University, No. 346 Guanhai Street, Yantai, 264003, Shandong, China.,Department of Pediatrics and Preventive Dentistry, Hospital Affiliated to Binzhou Medical University, Binzhou, 256600, Shandong, China
| | - Cuicui Yu
- Institute of Stomatology, Binzhou Medical University, No. 346 Guanhai Street, Yantai, 264003, Shandong, China.,Department of Pediatrics and Preventive Dentistry, Hospital Affiliated to Binzhou Medical University, Binzhou, 256600, Shandong, China
| | - Yuguang Gao
- Institute of Stomatology, Binzhou Medical University, No. 346 Guanhai Street, Yantai, 264003, Shandong, China. .,Department of Pediatrics and Preventive Dentistry, Hospital Affiliated to Binzhou Medical University, Binzhou, 256600, Shandong, China.
| | - Li Zhang
- Institute of Stomatology, Binzhou Medical University, No. 346 Guanhai Street, Yantai, 264003, Shandong, China. .,Department of Stomatology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Yantai, 264100, Shandong, China.
| |
Collapse
|
10
|
Koutlas IG, Ponce KJ, Wazen RM, Nanci A. An Unusual Maxillary Tumor with Tubuloductal Epithelial Structures, Solid Epithelial Nests and Stromal Odontogenic Ameloblast-Associated Protein Deposits. Tubuloductal/Syringoid Variant of Central Odontogenic Fibroma with Amyloid? Head Neck Pathol 2021; 16:587-595. [PMID: 34341903 PMCID: PMC9187786 DOI: 10.1007/s12105-021-01369-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/25/2021] [Indexed: 12/18/2022]
Abstract
Glandular tumors of jaw bones present, most often, histopathologic features of salivary gland and, rarely, of cutaneous glandular neoplasms. They are thought to originate from odontogenic epithelium. An unusual maxillary tumor presenting as a radiolucency in the periapical area of the right permanent lateral incisor of a 74-year-old male is presented causing root resorption. Preparations revealed occasionally branching tubular cords and ductal structures characterized, mostly, by a bilayer composed of luminal cuboidal to low columnar cytokeratin (CK) 7, Ber-EP4 and occasionally CK8/18 positive cells, and abluminal, CK5/6 positive, basal/basaloid cells revealing nuclear reactivity for p63/p40. Smooth muscle actin and calponin were negative, save for a single focus of calponin positive cells, confirming absence of myoepithelial support or epithelial mesenchymal transition. CK19 exhibited staining of both layers, the luminal being more intense. Eosinophilic secretory material and, occasionally, a luminal pellicle were decorated with CK8/18 and polyclonal carcinoembryonic antigen (CEA). CD1a identified only rare Langerhans' cells and Ki67 decorated 1-2% of abluminal cell nuclei. Small solid nests of epithelial cells were also present. Infrequently, an apparent transition of a nest into a tubular structure was appreciated. The partially inflamed stroma featured multiple hyalinized acellular deposits consistent with amyloid, as confirmed by bright orange Congo red reactivity with apple-green birefringence, which reacted with odontogenic ameloblast-associated (ODAM) protein antibody but not with antibodies for amelotin and secretory calcium-binding phosphoprotein proline-glutamine rich 1. Based on the above, the diagnosis of tubuloductal/syringoid variant of central odontogenic fibroma with ODAM amyloid is favored.
Collapse
Affiliation(s)
- Ioannis G. Koutlas
- Division of Oral and Maxillofacial Pathology, School of Dentistry, University of Minnesota, 515 Delaware Street SE, 16-116B, Minneapolis, MN 55455 USA
| | - Katia Julissa Ponce
- Faculty of Dental Medicine, Université de Montréal, Montréal, Québec H3T 1J4 Canada
| | - Rima-Marie Wazen
- Faculty of Dental Medicine, Université de Montréal, Montréal, Québec H3T 1J4 Canada
| | - Antonio Nanci
- Faculty of Dental Medicine, Université de Montréal, Montréal, Québec H3T 1J4 Canada ,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec H3T 1J4 Canada
| |
Collapse
|
11
|
Ji Y, Li C, Tian Y, Gao Y, Dong Z, Xiang L, Xu Z, Gao Y, Zhang L. Maturation stage enamel defects in Odontogenesis-associated phosphoprotein (Odaph) deficient mice. Dev Dyn 2021; 250:1505-1517. [PMID: 33772937 DOI: 10.1002/dvdy.336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/28/2021] [Accepted: 03/22/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Mutation in Odontogenesis-associated phosphoprotein (ODAPH) has been reported to cause recessive hypomineralized amelogenesis imperfecta (AI) in human. However, the exact role of ODAPH in amelogenesis is still unknown. RESULTS ODAPH was identified as a novel constituent of the atypical basal lamina located at the interface between maturation ameloblasts and the enamel by dual immunofluorescence staining of ODAPH and LAMC2. Odaph knockout mice were generated to explore the function of ODAPH in amelogenesis. Odaph-/- mice teeth showed severely attrition and reduced enamel mineralization. Histological analysis showed from transition or early-maturation stage, ameloblasts were rapidly shortened, lost cell polarity, and exhibited cell pathology. Abundant enamel matrix marked by amelogenin was retained. Temporary cyst-like structures were formed between flattened epithelial cells and the enamel from maturation stage to eruption. The integrity of the atypical basal lamina was impaired indicated by the reduced diffuse expression of LAMC2 and AMTN. The expression of maturation stage related genes of Amtn, Klk4, Integrinβ6 and Slc24a4 were significantly decreased. CONCLUSIONS Our results suggested Odaph played vital roles during amelogenesis by maintaining the integrity of the atypical basal lamina in maturation stage, which may contribute to a better understanding of the pathophysiology of human AI.
Collapse
Affiliation(s)
- Yikang Ji
- Department of Stomatology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Cong Li
- Department of Pediatrics and Preventive Dentistry, Hospital Affiliated to Binzhou Medical University, Binzhou, Shandong, China
| | - Yuan Tian
- Department of Pediatrics and Preventive Dentistry, Hospital Affiliated to Binzhou Medical University, Binzhou, Shandong, China
| | - Yan Gao
- Department of Pediatrics and Preventive Dentistry, Hospital Affiliated to Binzhou Medical University, Binzhou, Shandong, China
| | - Zhiheng Dong
- Department of Pediatrics and Preventive Dentistry, Hospital Affiliated to Binzhou Medical University, Binzhou, Shandong, China
| | - Lili Xiang
- Department of Pediatrics and Preventive Dentistry, Hospital Affiliated to Binzhou Medical University, Binzhou, Shandong, China
| | - Zhenzhen Xu
- Department of Pediatrics and Preventive Dentistry, Hospital Affiliated to Binzhou Medical University, Binzhou, Shandong, China
| | - Yuguang Gao
- Department of Pediatrics and Preventive Dentistry, Hospital Affiliated to Binzhou Medical University, Binzhou, Shandong, China.,Institute of Stomatology, Binzhou Medical University, Yantai, Shandong, China
| | - Li Zhang
- Department of Stomatology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China.,Institute of Stomatology, Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
12
|
Fouillen A, Mary C, Ponce KJ, Moffatt P, Nanci A. A proline rich protein from the gingival seal around teeth exhibits antimicrobial properties against Porphyromonas gingivalis. Sci Rep 2021; 11:2353. [PMID: 33504866 PMCID: PMC7840901 DOI: 10.1038/s41598-021-81791-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/08/2021] [Indexed: 12/22/2022] Open
Abstract
The gingival seal around teeth prevents bacteria from destroying the tooth-supporting tissues and disseminating throughout the body. Porphyromonas gingivalis, a major periodontopathogen, degrades components of the specialized extracellular matrix that mediates attachment of the gingiva to the tooth. Of these, secretory calcium-binding phosphoprotein proline-glutamine rich 1 (SCPPPQ1) protein has a distinctive resistance to degradation, suggesting that it may offer resistance to bacterial attack. In silico analysis of its amino acid sequence was used to explore its molecular characteristics and to predict its two- and three-dimensional structure. SCPPPQ1 exhibits similarities with both proline-rich and cationic antimicrobial proteins, suggesting a putative antimicrobial potential. A combination of imaging approaches showed that incubation with 20 μM of purified SCPPPQ1 decrease bacterial number (p < 0.01). Fluorescence intensity decreased by 70% following a 2 h incubation of Porphyromonas gingivalis with the protein. Electron microscopy analyses revealed that SCPPPQ1 induced bacterial membrane disruption and breaches. While SCPPPQ1 has no effect on mammalian cells, our results suggest that it is bactericidal to Porphyromonas gingivalis, and that this protein, normally present in the gingival seal, may be exploited to maintain a healthy seal and prevent systemic dissemination of bacteria.
Collapse
Affiliation(s)
- Aurélien Fouillen
- Laboratory for the Study of Calcified Tissues and Biomaterials, Faculty of Dental Medicine, Université de Montréal, Montreal, QC, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Charline Mary
- Laboratory for the Study of Calcified Tissues and Biomaterials, Faculty of Dental Medicine, Université de Montréal, Montreal, QC, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Katia Julissa Ponce
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Pierre Moffatt
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,Shriners Hospitals for Children - Canada, Montreal, QC, Canada
| | - Antonio Nanci
- Laboratory for the Study of Calcified Tissues and Biomaterials, Faculty of Dental Medicine, Université de Montréal, Montreal, QC, Canada. .,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
13
|
Ohki R, Matsuki-Fukushima M, Fujikawa K, Mayahara M, Matsuyama K, Nakamura M. In the absence of a basal lamina, ameloblasts absorb enamel in a serumless and chemically defined organ culture system. J Oral Biosci 2021; 63:66-73. [PMID: 33493674 DOI: 10.1016/j.job.2020.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/23/2020] [Accepted: 12/17/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Tooth organ development was examined in a serumless, chemically defined organ culture system to determine whether morphological and functional development was identical to that in in vivo and serum-supplemented organ cultures. METHODS Mouse mandibular first molar tooth organs at 16 days of gestation were cultured for up to 28 days in a Tronwell culture system using a serum-supplemented or serumless, chemically defined medium. After culture, specimens were processed for assessing tooth development using ultrastructural, immunohistochemical, and mRNA expression analyses. RESULTS In serum-supplemented conditions, inner enamel epithelial cells differentiated into secretory-stage ameloblasts, which formed enamel and reached the maturation stage after 14 and 21 days of culture, respectively. Ameloblasts deposited a basal lamina on immature enamel. Conversely, in serumless conditions, ameloblasts formed enamel on mineralized dentin after 21 days. Moreover, maturation-stage ameloblasts did not form basal lamina and directly absorbed mineralized enamel after 28 days of culture. RT-PCR analysis indicated that tooth organs, cultured in serumless conditions for 28 days, had significantly reduced expression levels of ODAM, amelotin, and laminin-322. CONCLUSIONS These results indicate that several differences were detected compared to the development in serum-supplemented conditions, such as delayed enamel and dentin formation and the failure of maturation-stage ameloblasts to form basal laminae. Therefore, our results suggest that some factors might be required for the steady formation of mineralized dentin, enamel, and a basal lamina. Additionally, our results indicate that a basal lamina is necessary for enamel maturation.
Collapse
Affiliation(s)
- Retsu Ohki
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 4142-8555, Japan
| | - M Matsuki-Fukushima
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 4142-8555, Japan
| | - K Fujikawa
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 4142-8555, Japan
| | - Mitsuori Mayahara
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 4142-8555, Japan
| | - Kayo Matsuyama
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 4142-8555, Japan
| | - Masanori Nakamura
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 4142-8555, Japan.
| |
Collapse
|
14
|
Liang T, Hu Y, Kawasaki K, Zhang H, Zhang C, Saunders TL, Simmer JP, Hu JCC. Odontogenesis-associated phosphoprotein truncation blocks ameloblast transition into maturation in Odaph C41*/C41* mice. Sci Rep 2021; 11:1132. [PMID: 33441959 PMCID: PMC7807025 DOI: 10.1038/s41598-020-80912-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/21/2020] [Indexed: 01/29/2023] Open
Abstract
Mutations of Odontogenesis-Associated Phosphoprotein (ODAPH, OMIM *614829) cause autosomal recessive amelogenesis imperfecta, however, the function of ODAPH during amelogenesis is unknown. Here we characterized normal Odaph expression by in situ hybridization, generated Odaph truncation mice using CRISPR/Cas9 to replace the TGC codon encoding Cys41 into a TGA translation termination codon, and characterized and compared molar and incisor tooth formation in Odaph+/+, Odaph+/C41*, and OdaphC41*/C41* mice. We also searched genomes to determine when Odaph first appeared phylogenetically. We determined that tooth development in Odaph+/+ and Odaph+/C41* mice was indistinguishable in all respects, so the condition in mice is inherited in a recessive pattern, as it is in humans. Odaph is specifically expressed by ameloblasts starting with the onset of post-secretory transition and continues until mid-maturation. Based upon histological and ultrastructural analyses, we determined that the secretory stage of amelogenesis is not affected in OdaphC41*/C41* mice. The enamel layer achieves a normal shape and contour, normal thickness, and normal rod decussation. The fundamental problem in OdaphC41*/C41* mice starts during post-secretory transition, which fails to generate maturation stage ameloblasts. At the onset of what should be enamel maturation, a cyst forms that separates flattened ameloblasts from the enamel surface. The maturation stage fails completely.
Collapse
Affiliation(s)
- Tian Liang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Place, Ann Arbor, MI, 48108, USA
| | - Yuanyuan Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Place, Ann Arbor, MI, 48108, USA
| | - Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Hong Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Place, Ann Arbor, MI, 48108, USA
| | - Chuhua Zhang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Place, Ann Arbor, MI, 48108, USA
| | - Thomas L Saunders
- Department of Internal Medicine, Division of Molecular, Medicine and Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - James P Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Place, Ann Arbor, MI, 48108, USA.
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Place, Ann Arbor, MI, 48108, USA
| |
Collapse
|
15
|
Xu C, Wang A, Zhang L, Yang C, Gao Y, Dong Z, Tian Y, Li C, Gao Y. Epithelium-Specific Runx2 knockout mice display junctional epithelium and alveolar bone defects. Oral Dis 2020; 27:1292-1299. [PMID: 32946165 DOI: 10.1111/odi.13647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/31/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The aim of this investigation was to study the effects of Runt-related transcription factor 2 (Runx2) on the junctional epithelium and alveolar bone. METHODS The attachment level of the junctional epithelium and the resorption of alveolar bone were analyzed by histology and scanning electron microscopy. The expression of amelotin was determined by immunohistochemistry, Western blot, and real-time PCR. The ultrastructure of the dentogingival interface was observed by transmission electron microscopy. RESULTS The cKO mice demonstrated remarkable attachment loss, epithelial hyperplasia, and alveolar bone loss. The relative protein and mRNA expression of amelotin was increased in the junctional epithelium of the cKO mice. The attachment apparatus of the cKO mice showed ultrastructural deficiency. CONCLUSIONS Loss of Runx2 led to the junctional epithelium and alveolar bone defects in mice. Runx2 may play a crucial role in maintaining the integrity of the dentogingival junction and the normal structure of alveolar bone.
Collapse
Affiliation(s)
- Chang Xu
- Department of Pediatric Dentistry, Binzhou Medical University Hospital, Binzhou, China
| | - Aiqin Wang
- Department of Periodontics, Binzhou Medical University Hospital, Binzhou, China
| | - Li Zhang
- Institute of Stomatology, Binzhou Medical University, Yantai, China
| | - Chunyan Yang
- Institute of Stomatology, Binzhou Medical University, Yantai, China
| | - Yan Gao
- Department of Pediatric Dentistry, Binzhou Medical University Hospital, Binzhou, China
| | - Zhiheng Dong
- Department of Pediatric Dentistry, Binzhou Medical University Hospital, Binzhou, China
| | - Yuan Tian
- Institute of Stomatology, Binzhou Medical University, Yantai, China
| | - Cong Li
- Institute of Stomatology, Binzhou Medical University, Yantai, China
| | - Yuguang Gao
- Department of Pediatric Dentistry, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
16
|
Krivanek J, Soldatov RA, Kastriti ME, Chontorotzea T, Herdina AN, Petersen J, Szarowska B, Landova M, Matejova VK, Holla LI, Kuchler U, Zdrilic IV, Vijaykumar A, Balic A, Marangoni P, Klein OD, Neves VCM, Yianni V, Sharpe PT, Harkany T, Metscher BD, Bajénoff M, Mina M, Fried K, Kharchenko PV, Adameyko I. Dental cell type atlas reveals stem and differentiated cell types in mouse and human teeth. Nat Commun 2020; 11:4816. [PMID: 32968047 PMCID: PMC7511944 DOI: 10.1038/s41467-020-18512-7] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/24/2020] [Indexed: 01/09/2023] Open
Abstract
Understanding cell types and mechanisms of dental growth is essential for reconstruction and engineering of teeth. Therefore, we investigated cellular composition of growing and non-growing mouse and human teeth. As a result, we report an unappreciated cellular complexity of the continuously-growing mouse incisor, which suggests a coherent model of cell dynamics enabling unarrested growth. This model relies on spatially-restricted stem, progenitor and differentiated populations in the epithelial and mesenchymal compartments underlying the coordinated expansion of two major branches of pulpal cells and diverse epithelial subtypes. Further comparisons of human and mouse teeth yield both parallelisms and differences in tissue heterogeneity and highlight the specifics behind growing and non-growing modes. Despite being similar at a coarse level, mouse and human teeth reveal molecular differences and species-specific cell subtypes suggesting possible evolutionary divergence. Overall, here we provide an atlas of human and mouse teeth with a focus on growth and differentiation.
Collapse
Affiliation(s)
- Jan Krivanek
- Department of Molecular Neuroscience, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ruslan A Soldatov
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Maria Eleni Kastriti
- Department of Molecular Neuroscience, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Tatiana Chontorotzea
- Department of Molecular Neuroscience, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Anna Nele Herdina
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Julian Petersen
- Department of Molecular Neuroscience, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Bara Szarowska
- Department of Molecular Neuroscience, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Marie Landova
- Institute of Animal Physiology and Genetics, CAS, Brno, Czech Republic
| | - Veronika Kovar Matejova
- Clinic of Stomatology, Institution Shared with St. Anne's Faculty Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lydie Izakovicova Holla
- Clinic of Stomatology, Institution Shared with St. Anne's Faculty Hospital, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ulrike Kuchler
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria
- Department of Oral Surgery, Medical University of Vienna, Vienna, Austria
| | - Ivana Vidovic Zdrilic
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Anushree Vijaykumar
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Anamaria Balic
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Pauline Marangoni
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, USA
- Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Vitor C M Neves
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences. King's College London, London, UK
| | - Val Yianni
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences. King's College London, London, UK
| | - Paul T Sharpe
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences. King's College London, London, UK
| | - Tibor Harkany
- Department of Molecular Neuroscience, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Brian D Metscher
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Marc Bajénoff
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, INSERM, CNRS UMR, Marseille, France
| | - Mina Mina
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Igor Adameyko
- Department of Molecular Neuroscience, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
17
|
Biochemical characteristics of the chondrocyte-enriched SNORC protein and its transcriptional regulation by SOX9. Sci Rep 2020; 10:7790. [PMID: 32385306 PMCID: PMC7210984 DOI: 10.1038/s41598-020-64640-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/16/2020] [Indexed: 11/08/2022] Open
Abstract
Snorc (Small NOvel Rich in Cartilage) has been identified as a chondrocyte-specific gene in the mouse. Yet little is known about the SNORC protein biochemical properties, and mechanistically how the gene is regulated transcriptionally in a tissue-specific manner. The goals of the present study were to shed light on those important aspects. The chondrocyte nature of Snorc expression was confirmed in mouse and rat tissues, in differentiated (day 7) ATDC5, and in RCS cells where it was constitutive. Topological mapping and biochemical analysis brought experimental evidences that SNORC is a type I protein carrying a chondroitin sulfate (CS) attached to serine 44. The anomalous migration of SNORC on SDS-PAGE was due to its primary polypeptide features, suggesting no additional post-translational modifications apart from the CS glycosaminoglycan. A highly conserved SOX9-binding enhancer located in intron 1 was necessary to drive transcription of Snorc in the mouse, rat, and human. The enhancer was active independently of orientation and whether located in a heterologous promoter or intron. Crispr-mediated inactivation of the enhancer in RCS cells caused reduction of Snorc. Transgenic mice carrying the intronic multimerized enhancer drove high expression of a βGeo reporter in chondrocytes, but not in the hypertrophic zone. Altogether these data confirmed the chondrocyte-specific nature of Snorc and revealed dependency on the intronic enhancer binding of SOX9 for transcription.
Collapse
|
18
|
Fouillen A, Grenier D, Barbeau J, Baron C, Moffatt P, Nanci A. Selective bacterial degradation of the extracellular matrix attaching the gingiva to the tooth. Eur J Oral Sci 2019; 127:313-322. [PMID: 31230388 PMCID: PMC6771947 DOI: 10.1111/eos.12623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2019] [Indexed: 12/17/2022]
Abstract
The junctional epithelium (JE) is a specialized portion of the gingiva that seals off the tooth‐supporting tissues from the oral environment. This relationship is achieved via a unique adhesive extracellular matrix that is, in fact, a specialized basal lamina (sBL). Three unique proteins – amelotin (AMTN), odontogenic ameloblast‐associated (ODAM), and secretory calcium‐binding phosphoprotein proline‐glutamine rich 1 (SCPPPQ1) – together with laminin‐332 structure the supramolecular organization of this sBL and determine its adhesive capacity. Despite the constant challenge of the JE by the oral microbiome, little is known of the susceptibility of the sBL to bacterial degradation. Assays with trypsin‐like proteases, as well as incubation with Porphyromonas gingivalis, Prevotella intermedia, and Treponema denticola, revealed that all constituents, except SCPPPQ1, were rapidly degraded. Porphyromonas gingivalis was also shown to alter the supramolecular network of reconstituted and native sBLs. These results provide evidence that proteolytic enzymes and selected gram‐negative periodontopathogenic bacteria can attack this adhesive extracellular matrix, intimating that its degradation could contribute to progression of periodontal diseases.
Collapse
Affiliation(s)
- Aurélien Fouillen
- Laboratory for the Study of Calcified Tissues and Biomaterials, Université de Montréal, Montréal, QC, Canada.,Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, QC, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Daniel Grenier
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
| | - Jean Barbeau
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, QC, Canada
| | - Christian Baron
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | | | - Antonio Nanci
- Laboratory for the Study of Calcified Tissues and Biomaterials, Université de Montréal, Montréal, QC, Canada.,Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, QC, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
19
|
Enault S, Muñoz D, Simion P, Ventéo S, Sire JY, Marcellini S, Debiais-Thibaud M. Evolution of dental tissue mineralization: an analysis of the jawed vertebrate SPARC and SPARC-L families. BMC Evol Biol 2018; 18:127. [PMID: 30165817 PMCID: PMC6117938 DOI: 10.1186/s12862-018-1241-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/15/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The molecular bases explaining the diversity of dental tissue mineralization across gnathostomes are still poorly understood. Odontodes, such as teeth and body denticles, are serial structures that develop through deployment of a gene regulatory network shared between all gnathostomes. Dentin, the inner odontode mineralized tissue, is produced by odontoblasts and appears well-conserved through evolution. In contrast, the odontode hypermineralized external layer (enamel or enameloid) produced by ameloblasts of epithelial origin, shows extensive structural variations. As EMP (Enamel Matrix Protein) genes are as yet only found in osteichthyans where they play a major role in the mineralization of teeth and others skeletal organs, our understanding of the molecular mechanisms leading to the mineralized odontode matrices in chondrichthyans remains virtually unknown. RESULTS We undertook a phylogenetic analysis of the SPARC/SPARC-L gene family, from which the EMPs are supposed to have arisen, and examined the expression patterns of its members and of major fibrillar collagens in the spotted catshark Scyliorhinus canicula, the thornback ray Raja clavata, and the clawed frog Xenopus tropicalis. Our phylogenetic analyses reveal that the single chondrichthyan SPARC-L gene is co-orthologous to the osteichthyan SPARC-L1 and SPARC-L2 paralogues. In all three species, odontoblasts co-express SPARC and collagens. In contrast, ameloblasts do not strongly express collagen genes but exhibit strikingly similar SPARC-L and EMP expression patterns at their maturation stage, in the examined chondrichthyan and osteichthyan species, respectively. CONCLUSIONS A well-conserved odontoblastic collagen/SPARC module across gnathostomes further confirms dentin homology. Members of the SPARC-L clade evolved faster than their SPARC paralogues, both in terms of protein sequence and gene duplication. We uncover an osteichthyan-specific duplication that produced SPARC-L1 (subsequently lost in pipidae frogs) and SPARC-L2 (independently lost in teleosts and tetrapods).Our results suggest the ameloblastic expression of the single chondrichthyan SPARC-L gene at the maturation stage reflects the ancestral gnathostome situation, and provide new evidence in favor of the homology of enamel and enameloids in all gnathostomes.
Collapse
Affiliation(s)
- Sébastien Enault
- Institut des Sciences de l’Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Université Montpellier, UMR5554 Montpellier, France
| | - David Muñoz
- Laboratory of Development and Evolution, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Paul Simion
- Institut des Sciences de l’Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Université Montpellier, UMR5554 Montpellier, France
| | - Stéphanie Ventéo
- Institute for Neurosciences of Montpellier, Institut National de la Santé et de la Recherche Médicale, U1051 Montpellier, France
| | - Jean-Yves Sire
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, UMR7138 Evolution Paris-Seine, Paris, France
| | - Sylvain Marcellini
- Laboratory of Development and Evolution, Department of Cell Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Mélanie Debiais-Thibaud
- Institut des Sciences de l’Evolution de Montpellier, ISEM, Univ Montpellier, CNRS, IRD, EPHE, Université Montpellier, UMR5554 Montpellier, France
| |
Collapse
|
20
|
Malyshev IY, Runova GS, Poduraev YV, Mironov VA. [Natural amelogenesis and rationale for enamel regeneration by means of robotic bioprinting of tissues in situ]. STOMATOLOGII︠A︡ 2018; 97:58-64. [PMID: 29795109 DOI: 10.17116/stomat201897258-64] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- I Yu Malyshev
- Moscow State University of Medicine and Dentistry named after A.I. Evdokimov, Moscow, Russia, 127473
| | - G S Runova
- Moscow State University of Medicine and Dentistry named after A.I. Evdokimov, Moscow, Russia, 127473
| | - Yu V Poduraev
- Moscow State Technological University STANKIN, Moscow, Russia, 127055
| | - V A Mironov
- Biotechnology Research Laboratory '3D Bioprinting Solutions', Moscow, Russia, 115409
| |
Collapse
|
21
|
Smith CEL, Poulter JA, Antanaviciute A, Kirkham J, Brookes SJ, Inglehearn CF, Mighell AJ. Amelogenesis Imperfecta; Genes, Proteins, and Pathways. Front Physiol 2017; 8:435. [PMID: 28694781 PMCID: PMC5483479 DOI: 10.3389/fphys.2017.00435] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/08/2017] [Indexed: 01/11/2023] Open
Abstract
Amelogenesis imperfecta (AI) is the name given to a heterogeneous group of conditions characterized by inherited developmental enamel defects. AI enamel is abnormally thin, soft, fragile, pitted and/or badly discolored, with poor function and aesthetics, causing patients problems such as early tooth loss, severe embarrassment, eating difficulties, and pain. It was first described separately from diseases of dentine nearly 80 years ago, but the underlying genetic and mechanistic basis of the condition is only now coming to light. Mutations in the gene AMELX, encoding an extracellular matrix protein secreted by ameloblasts during enamel formation, were first identified as a cause of AI in 1991. Since then, mutations in at least eighteen genes have been shown to cause AI presenting in isolation of other health problems, with many more implicated in syndromic AI. Some of the encoded proteins have well documented roles in amelogenesis, acting as enamel matrix proteins or the proteases that degrade them, cell adhesion molecules or regulators of calcium homeostasis. However, for others, function is less clear and further research is needed to understand the pathways and processes essential for the development of healthy enamel. Here, we review the genes and mutations underlying AI presenting in isolation of other health problems, the proteins they encode and knowledge of their roles in amelogenesis, combining evidence from human phenotypes, inheritance patterns, mouse models, and in vitro studies. An LOVD resource (http://dna2.leeds.ac.uk/LOVD/) containing all published gene mutations for AI presenting in isolation of other health problems is described. We use this resource to identify trends in the genes and mutations reported to cause AI in the 270 families for which molecular diagnoses have been reported by 23rd May 2017. Finally we discuss the potential value of the translation of AI genetics to clinical care with improved patient pathways and speculate on the possibility of novel treatments and prevention strategies for AI.
Collapse
Affiliation(s)
- Claire E L Smith
- Division of Oral Biology, School of Dentistry, St. James's University Hospital, University of LeedsLeeds, United Kingdom.,Section of Ophthalmology and Neuroscience, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - James A Poulter
- Section of Ophthalmology and Neuroscience, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Agne Antanaviciute
- Section of Genetics, School of Medicine, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Jennifer Kirkham
- Division of Oral Biology, School of Dentistry, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Steven J Brookes
- Division of Oral Biology, School of Dentistry, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Chris F Inglehearn
- Section of Ophthalmology and Neuroscience, St. James's University Hospital, University of LeedsLeeds, United Kingdom
| | - Alan J Mighell
- Section of Ophthalmology and Neuroscience, St. James's University Hospital, University of LeedsLeeds, United Kingdom.,Oral Medicine, School of Dentistry, University of LeedsLeeds, United Kingdom
| |
Collapse
|
22
|
Kawasaki K, Mikami M, Nakatomi M, Braasch I, Batzel P, H Postlethwait J, Sato A, Sasagawa I, Ishiyama M. SCPP Genes and Their Relatives in Gar: Rapid Expansion of Mineralization Genes in Osteichthyans. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017. [PMID: 28643450 DOI: 10.1002/jez.b.22755] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gar is an actinopterygian that has bone, dentin, enameloid, and ganoin (enamel) in teeth and/or scales. Mineralization of these tissues involves genes encoding various secretory calcium-binding phosphoproteins (SCPPs) in osteichthyans, but no SCPP genes have been identified in chondrichthyans to date. In the gar genome, we identified 38 SCPP genes, seven of which encode "acidic-residue-rich" proteins and 31 encode "Pro/Gln (P/Q) rich" proteins. These gar SCPP genes constitute the largest known repertoire, including many newly identified P/Q-rich genes expressed in teeth and/or scales. Among gar SCPP genes, six acidic and three P/Q-rich genes were identified as orthologs of sarcopterygian genes. The sarcopterygian orthologs of most of these acidic genes are involved in bone and/or dentin formation, and sarcopterygian orthologs of all three P/Q-rich genes participate in enamel formation. The finding of these genes in gar suggests that an elaborate SCPP gene-based genetic system for tissue mineralization was already present in stem osteichthyans. While SCPP genes have been thought to originate from ancient SPARCL1, SPARCL1L1 appears to be more closely related to these genes, because it established a structure similar to acidic SCPP genes probably in stem gnathostomes, perhaps at about the same time with the origin of tissue mineralization. Assuming enamel evolved in stem osteichthyans, all P/Q-rich SCPP genes likely arose within the osteichthyan lineage. Furthermore, the absence of acidic SCPP genes in chondrichthyans might be explained by the secondary loss of earliest acidic genes. It appears that many SCPP genes expanded rapidly in stem osteichthyans and in basal actinopterygians.
Collapse
Affiliation(s)
- Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Masato Mikami
- Department of Microbiology, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata, Japan
| | | | - Ingo Braasch
- Department of Integrative Biology and Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, Michigan
| | - Peter Batzel
- Institute of Neuroscience, University of Oregon, Eugene, Oregon
| | | | - Akie Sato
- Department of Anatomy and Histology, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Ichiro Sasagawa
- Advanced Research Center, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata, Japan
| | - Mikio Ishiyama
- Department of Histology, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata, Japan
| |
Collapse
|
23
|
Fouillen A, Dos Santos Neves J, Mary C, Castonguay JD, Moffatt P, Baron C, Nanci A. Interactions of AMTN, ODAM and SCPPPQ1 proteins of a specialized basal lamina that attaches epithelial cells to tooth mineral. Sci Rep 2017; 7:46683. [PMID: 28436474 PMCID: PMC5402393 DOI: 10.1038/srep46683] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/24/2017] [Indexed: 12/25/2022] Open
Abstract
A specialized basal lamina (sBL) mediates adhesion of certain epithelial cells to the tooth. It is distinct because it does not contain collagens type IV and VII, is enriched in laminin-332, and includes three novel constituents called amelotin (AMTN), odontogenic ameloblast-associated (ODAM), and secretory calcium-binding phosphoprotein proline-glutamine rich 1 (SCPPPQ1). The objective of this study was to clarify the structural organization of the sBL. Fluorescence and immunogold labeling showed that the three proteins co-localize. Quantitative analysis of the relative position of gold particles on the sBL demonstrates that the distribution of ODAM is skewed towards the cell while that of AMTN and SCPPPQ1 tends towards the tooth surface. Bacterial two-hybrid analysis and co-immunoprecipitation, gel filtration of purified proteins and transmission electron and atomic force microscopies highlight the propensity of AMTN, ODAM, and SCPPPQ1 to interact with and among themselves and form supramolecular aggregates. These data suggest that AMTN, ODAM and SCPPPQ1 participate in structuring an extracellular matrix with the distinctive capacity of attaching epithelial cells to mineralized surfaces. This unique feature is particularly relevant for the adhesion of gingival epithelial cells to the tooth surface, which forms a protective seal that is the first line of defense against bacterial invasion.
Collapse
Affiliation(s)
- Aurélien Fouillen
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dental medicine Université de Montréal, Montréal, Québec, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Juliana Dos Santos Neves
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dental medicine Université de Montréal, Montréal, Québec, Canada
| | - Charline Mary
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Jean-Daniel Castonguay
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dental medicine Université de Montréal, Montréal, Québec, Canada
| | - Pierre Moffatt
- Shriners Hospital for Children, Montréal, Québec, Canada
| | - Christian Baron
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec, Canada
| | - Antonio Nanci
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dental medicine Université de Montréal, Montréal, Québec, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Québec, Canada
| |
Collapse
|
24
|
Muñiz-Lino MA, Rodríguez-Vázquez M, Chávez-Munguía B, Ortiz-García JZ, González-López L, Hernández-Hernández FC, Licéaga-Escalera C, García-Muñoz A, Rodríguez MA. Establishment and characterization of a cell population derived from a dentigerous cyst. J Oral Pathol Med 2016; 46:603-610. [PMID: 27882603 DOI: 10.1111/jop.12528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND Dentigerous cyst (DC) occurs in approximately 20% of jaw cysts, being the second major common odontogenic cyst, after radicular cyst. This oral lesion has the ability to destroy maxillary bones and could be the origin of several odontogenic tumors. However, molecules implicated in its pathogenesis as well as those involved in its neoplastic transformation remain unknown. Here, we established a cell population derived from a DC as an in vitro model for the study of this oral lesion. METHODS Cell culture was performed from a DC from a 44-year-old male. Cells were cultured at 37°C in DMEM/F12 medium containing 10% fetal bovine serum. Expression of epithelial markers was analyzed by Western blot and immunofluorescence. Ultrastructural characterization was carried out by transmission electron microscopy. Conditioned media were obtained and characterized by zymography and Western blot. RESULTS Cells showed spindle-shaped morphology, but they express epithelial markers, such as cytokeratins and the odontogenic ameloblast-associated protein. The ultrastructural analysis showed well-formed desmosomes present in adhering contiguous cells, confirming the epithelial lineage of this cell population. Cells also contain several vesicles adjacent to plasma membrane, suggesting an active secretion. Indeed, the analysis of the conditioned medium revealed the presence of several secreted proteins, among them the matrix metalloproteinase-2. CONCLUSIONS Our work provides a useful model to identify the molecular mechanisms involved in the pathogenesis of DC.
Collapse
Affiliation(s)
- Marcos A Muñiz-Lino
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Mariana Rodríguez-Vázquez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Josué Z Ortiz-García
- Sección de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Lorena González-López
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Fidel C Hernández-Hernández
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Alejandro García-Muñoz
- Laboratorio de Investigación en Odontología, ALMARAZ/UBIMED, FES Iztacala, UNAM, State of Mexico, Mexico
| | - Mario A Rodríguez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
25
|
Núñez SM, Chun YHP, Ganss B, Hu Y, Richardson AS, Schmitz JE, Fajardo R, Yang J, Hu JCC, Simmer JP. Maturation stage enamel malformations in Amtn and Klk4 null mice. Matrix Biol 2016; 52-54:219-233. [PMID: 26620968 PMCID: PMC4875837 DOI: 10.1016/j.matbio.2015.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 12/14/2022]
Abstract
Amelotin (AMTN) and kallikrein-4 (KLK4) are secreted proteins specialized for enamel biomineralization. We characterized enamel from wild-type, Amtn(-/-), Klk4(-/-), Amtn(+/-)Klk4(+/-) and Amtn(-/-)Klk4(-/-) mice to gain insights into AMTN and KLK4 functions during amelogenesis. All of the null mice were healthy and fertile. The mandibular incisors in Amtn(-/-), Klk4(-/-) and Amtn(-/-)Klk4(-/-) mice were chalky-white and chipped. No abnormalities except in enamel were observed, and no significant differences were detected in enamel thickness or volume, or in rod decussation. Micro-computed tomography (μCT) maximum intensity projections localized the onset of enamel maturation in wild-type incisors distal to the first molar, but mesial to this position in Amtn(-/-), Klk4(-/-) and Amtn(-/-)Klk4(-/-) mice, demonstrating a delay in enamel maturation in Amtn(-/-) incisors. Micro-CT detected significantly reduced enamel mineral density (2.5 and 2.4gHA/cm(3)) in the Klk4(-/-) and Amtn(-/-)Klk4(-/-) mice respectively, compared with wild-type enamel (3.1gHA/cm(3)). Backscatter scanning electron microscopy showed that mineral density progressively diminished with enamel depth in the Klk4(-/-) and Amtn(-/-)Klk4(-/-) mice. The Knoop hardness of the Amtn(-/-) outer enamel was significantly reduced relative to the wild-type and was not as hard as the middle or inner enamel. Klk4(-/-) enamel hardness was significantly reduced at all levels, but the outer enamel was significantly harder than the inner and middle enamel. Thus the hardness patterns of the Amtn(-/-) and Klk4(-/-) mice were distinctly different, while the Amtn(-/-)Klk4(-/-) outer enamel was not as hard as in the Amtn(-/-) and Klk4(-/-) mice. We conclude that AMTN and KLK4 function independently, but are both necessary for proper enamel maturation.
Collapse
Affiliation(s)
- Stephanie M Núñez
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Pl., Ann Arbor, MI, USA 48108.
| | - Yong-Hee P Chun
- Department of Periodontics, School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78240, USA.
| | - Bernhard Ganss
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, 150 College Street, Fitzgerald Building, Toronto, ON M5S 3E2, Canada.
| | - Yuanyuan Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Pl., Ann Arbor, MI, USA 48108.
| | - Amelia S Richardson
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Pl., Ann Arbor, MI, USA 48108.
| | - James E Schmitz
- Department of Orthopaedics, RAYO, Carlisle Center for Bone and Mineral Imaging, School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, USA.
| | - Roberto Fajardo
- Department of Orthopaedics, RAYO, Carlisle Center for Bone and Mineral Imaging, School of Medicine, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, USA.
| | - Jie Yang
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Pl., Ann Arbor, MI, USA 48108; Department of Pediatric Dentistry, School and Hospital of Stomatology, Peking University, 22 South Avenue, Zhongguancun Haidian District, Beijing 100081, PR China.
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Pl., Ann Arbor, MI, USA 48108.
| | - James P Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, 1210 Eisenhower Pl., Ann Arbor, MI, USA 48108.
| |
Collapse
|
26
|
Wazen RM, Viegas-Costa LC, Fouillen A, Moffatt P, Adair-Kirk TL, Senior RM, Nanci A. Laminin γ2 knockout mice rescued with the human protein exhibit enamel maturation defects. Matrix Biol 2016; 52-54:207-218. [PMID: 26956061 DOI: 10.1016/j.matbio.2016.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/03/2016] [Accepted: 03/03/2016] [Indexed: 01/13/2023]
Abstract
The epithelial ameloblasts are separated from the maturing enamel by an atypical basement membrane (BM) that is enriched in laminin 332 (LM-332). This heterotrimeric protein (α3, ß3 and γ2 chains) provides structural integrity to BMs and influences various epithelial cell processes including cell adhesion and differentiation. Mouse models that lack expression of individual LM-332 chains die shortly after birth. The lethal phenotype of laminin γ2 knockout mice can be rescued by human laminin γ2 (LAMC2) expressed using a doxycycline-inducible (Tet-on) cytokeratin 14 promoter-rtTA. These otherwise normal-looking rescued mice exhibit white spot lesions on incisors. We therefore investigated the effect of rescue with human LAMC2 on enamel maturation and structuring of the atypical BM. The maturation stage enamel organ in transgenic mice was severely altered as compared to wild type controls, a structured BM was no longer discernible, dystrophic matrix appeared in the maturing enamel layer, and there was residual enamel matrix late into the maturation stage. Microtomographic scans revealed excessive wear of occlusal surfaces on molars, chipping of enamel on incisor tips, and hypomineralization of the enamel layer. No structural alterations were observed at other epithelial sites, such as skin, palate and tongue. These results indicate that while this humanized mouse model is capable of rescue in various epithelial tissues, it is unable to sustain structuring of a proper BM at the interface between ameloblasts and maturing enamel. This failure may be related to the atypical composition of the BM in the maturation stage and reaffirms that the atypical BM is essential for enamel maturation.
Collapse
Affiliation(s)
- Rima M Wazen
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec, Canada
| | - Luiz C Viegas-Costa
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec, Canada
| | - Aurélien Fouillen
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Pierre Moffatt
- Shriners Hospital for Children, Montréal, Montréal, Québec, Canada
| | - Tracy L Adair-Kirk
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Robert M Senior
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Antonio Nanci
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
27
|
Gasse B, Sire JY. Comparative expression of the four enamel matrix protein genes, amelogenin, ameloblastin, enamelin and amelotin during amelogenesis in the lizard Anolis carolinensis. EvoDevo 2015; 6:29. [PMID: 26421144 PMCID: PMC4587831 DOI: 10.1186/s13227-015-0024-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/15/2015] [Indexed: 12/23/2022] Open
Abstract
Background In a recent study, we have demonstrated that amelotin (AMTN) gene structure and its expression during amelogenesis have changed during tetrapod evolution. Indeed, this gene is expressed throughout enamel matrix deposition and maturation in non-mammalian tetrapods, while in mammals its expression is restricted to the transition and maturation stages of amelogenesis. Previous studies of amelogenin (AMEL) gene expression in a lizard and a salamander have shown similar expression pattern to that in mammals, but to our knowledge there are no data regarding ameloblastin (AMBN) and enamelin (ENAM) expression in non-mammalian tetrapods. The present study aims to look at, and compare, the structure and expression of four enamel matrix protein genes, AMEL, AMBN, ENAM and AMTN during amelogenesis in the lizard Anolis carolinensis. Results We provide the full-length cDNA sequence of A. carolinensisAMEL and AMBN, and show for the first time the expression of ENAM and AMBN in a non-mammalian species. During amelogenesis in A. carolinensis, AMEL, AMBN and ENAM expression in ameloblasts is similar to that described in mammals. It is noteworthy that AMEL and AMBN expression is also found in odontoblasts. Conclusions Our findings indicate that AMTN is the only enamel matrix protein gene that is differentially expressed in ameloblasts between mammals and sauropsids. Changes in AMTN structure and expression could be the key to explain the structural differences between mammalian and reptilian enamel, i.e. prismatic versus non-prismatic.
Collapse
Affiliation(s)
- Barbara Gasse
- UMR7138, Institut de Biologie Paris-Seine (IBPS), UPMC Univ Paris 06, Sorbonne Universités, 75005 Paris, France
| | | |
Collapse
|
28
|
New genomic and fossil data illuminate the origin of enamel. Nature 2015; 526:108-11. [PMID: 26416752 DOI: 10.1038/nature15259] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/28/2015] [Indexed: 12/20/2022]
Abstract
Enamel, the hardest vertebrate tissue, covers the teeth of almost all sarcopterygians (lobe-finned bony fishes and tetrapods) as well as the scales and dermal bones of many fossil lobe-fins. Enamel deposition requires an organic matrix containing the unique enamel matrix proteins (EMPs) amelogenin (AMEL), enamelin (ENAM) and ameloblastin (AMBN). Chondrichthyans (cartilaginous fishes) lack both enamel and EMP genes. Many fossil and a few living non-teleost actinopterygians (ray-finned bony fishes) such as the gar, Lepisosteus, have scales and dermal bones covered with a proposed enamel homologue called ganoine. However, no gene or transcript data for EMPs have been described from actinopterygians. Here we show that Psarolepis romeri, a bony fish from the the Early Devonian period, combines enamel-covered dermal odontodes on scales and skull bones with teeth of naked dentine, and that Lepisosteus oculatus (the spotted gar) has enam and ambn genes that are expressed in the skin, probably associated with ganoine formation. The genetic evidence strengthens the hypothesis that ganoine is homologous with enamel. The fossil evidence, further supported by the Silurian bony fish Andreolepis, which has enamel-covered scales but teeth and odontodes on its dermal bones made of naked dentine, indicates that this tissue originated on the dermal skeleton, probably on the scales. It subsequently underwent heterotopic expansion across two highly conserved patterning boundaries (scales/head-shoulder and dermal/oral) within the odontode skeleton.
Collapse
|
29
|
Sawada T. Ultrastructural and immunocytochemical characterization of ameloblast-enamel adhesion at maturation stage in amelogenesis in Macaca fuscata tooth germ. Histochem Cell Biol 2015; 144:587-96. [PMID: 26357954 DOI: 10.1007/s00418-015-1362-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2015] [Indexed: 11/29/2022]
Abstract
Maturation-stage ameloblasts are firmly bound to the tooth enamel by a basal lamina-like structure. The mechanism underlying this adhesion, however, remains to be fully clarified. The goal of this study was to investigate the mechanism underlying adhesion between the basal lamina-like structure and the enamel in monkey tooth germ. High-resolution immunogold labeling was performed to localize amelotin and laminin 332 at the interface between ameloblasts and tooth enamel. Minute, electron-dense strands were observed on the enamel side of the lamina densa, extending into the degrading enamel matrix to produce a well-developed fibrous layer (lamina fibroreticularis). In un-demineralized tissue sections, mineral crystals smaller than those in the bulk of the enamel were observed adhering to these strands where they protruded into the surface enamel. Immunogold particles reactive for amelotin were preferentially localized on these strands in the fibrous layer. On the other hand, those for laminin 332 were localized solely in the lamina densa; none were observed in the fibrous layer. These results suggest that the fibrous layer of the basal lamina-like structure is partly composed of amelotin molecules, and that these molecules facilitate ameloblast-enamel adhesion by promoting mineralization of the fibrous layer during the maturation stage of amelogenesis.
Collapse
Affiliation(s)
- Takashi Sawada
- Department of Histology and Developmental Biology, Tokyo Dental College, Misaki-cho 2-9-18, Chiyoda-ku, Tokyo, 101-0061, Japan.
| |
Collapse
|
30
|
Gasse B, Chiari Y, Silvent J, Davit-Béal T, Sire JY. Amelotin: an enamel matrix protein that experienced distinct evolutionary histories in amphibians, sauropsids and mammals. BMC Evol Biol 2015; 15:47. [PMID: 25884299 PMCID: PMC4373244 DOI: 10.1186/s12862-015-0329-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/24/2015] [Indexed: 01/21/2023] Open
Abstract
Background Amelotin (AMTN) is an ameloblast-secreted protein that belongs to the secretory calcium-binding phosphoprotein (SCPP) family, which originated in early vertebrates. In rodents, AMTN is expressed during the maturation stage of amelogenesis only. This expression pattern strongly differs from the spatiotemporal expression of other ameloblast-secreted SCPPs, such as the enamel matrix proteins (EMPs). Furthermore, AMTN was characterized in rodents only. In this study, we applied various approaches, including in silico screening of databases, PCRs and transcriptome sequencing to characterize AMTN sequences in sauropsids and amphibians, and compared them to available mammalian and coelacanth sequences. Results We showed that (i) AMTN is tooth (enamel) specific and underwent pseudogenization in toothless turtles and birds, and (ii) the AMTN structure changed during tetrapod evolution. To infer AMTN function, we studied spatiotemporal expression of AMTN during amelogenesis in a salamander and a lizard, and compared the results with available expression data from mouse. We found that AMTN is expressed throughout amelogenesis in non-mammalian tetrapods, in contrast to its expression limited to enamel maturation in rodents. Conclusions Taken together our findings suggest that AMTN was primarily an EMP. Its functions were conserved in amphibians and sauropsids while a change occurred early in the mammalian lineage, modifying its expression pattern during amelogenesis and its gene structure. These changes likely led to a partial loss of AMTN function and could have a link with the emergence of prismatic enamel in mammals. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0329-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Barbara Gasse
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Evolution Paris-Seine, Paris, UMR7138, France.
| | - Ylenia Chiari
- Department of Biology, University of South Alabama, Mobile, AL, 36688, USA.
| | - Jérémie Silvent
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Evolution Paris-Seine, Paris, UMR7138, France. .,Department of Structural Biology, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Tiphaine Davit-Béal
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Evolution Paris-Seine, Paris, UMR7138, France.
| | - Jean-Yves Sire
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Evolution Paris-Seine, Paris, UMR7138, France.
| |
Collapse
|
31
|
Affiliation(s)
- J D Bartlett
- Department of Mineralized Tissue Biology, The Forsyth Institute, Cambridge, MA, USA
| | - J P Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|