1
|
Kersten S, Taschke H, Vorländer M. Influence of the cochlear partition's flexibility on the macro mechanisms in the inner ear. Hear Res 2024; 453:109127. [PMID: 39447318 DOI: 10.1016/j.heares.2024.109127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Recent studies have highlighted the anatomy of the cochlear partition (CP), revealing insights into the flexible nature of the osseous spiral lamina (OSL) and the existence of a flexible cochlear partition bridge (CPB) between the OSL and the basilar membrane (BM). However, most existing inner ear models treat the OSL as a rigid structure and ignore the CPB, neglecting their potential impact on intracochlear sound pressure and motion of the BM. In this paper, we investigate the effect of the CP's flexibility by including the OSL and CPB as either rigid or flexible structures in a numerical anatomical model of the human inner ear. Our findings demonstrate that the flexibility of the OSL and the presence of the CPB significantly affect cochlear macro mechanisms, including differential intracochlear sound pressure, resistive behavior in cochlear impedances, CP stiffness, and BM velocity. These results emphasize the importance of considering the flexibility of the entire CP to enhance our understanding of cochlear function and to accurately interpret experimental data on inner ear mechanics.
Collapse
Affiliation(s)
- Simon Kersten
- Institute for Hearing Technology and Acoustics, RWTH Aachen University, Aachen, Germany.
| | - Henning Taschke
- formerly at: Institute of Communication Acoustics, Ruhr University Bochum, Bochum, Germany
| | - Michael Vorländer
- Institute for Hearing Technology and Acoustics, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
2
|
Ding Y, Hou Z, Wang M, Xu L, Wang H. Mastoid approach for local drug delivery to the inner ear for treating hearing loss. J Control Release 2024; 376:488-501. [PMID: 39437965 DOI: 10.1016/j.jconrel.2024.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Hearing loss is a prevalent disability worldwide. Dexamethasone (Dex) is commonly used to treat hearing loss, administered either systemically or locally. However, targeted delivery of Dex to the inner ear remains challenging, which limits its therapeutic efficacy. This study aimed to develop new methods to improve Dex delivery to the inner ear and enhance its treatment effect. Mastoid, intraperitoneal, and intratympanic delivery routes for Dex were investigated in guinea pig cochlea. Liquid chromatography-mass spectrometry and immunohistochemistry were employed to compare the distribution of Dex in the perilymph and tissue uptake. Poly (lactic-co-glycolic acid) nanoparticles loaded with Dex (PLGA-NPs-Dex) were prepared, and their transport mechanism across the round window membrane (RWM) was explored. Among the three delivery routes, mastoid administration produced the highest Dex concentration in the perilymph. Compared to the control, PLGA-NPs-Dex provided significantly enhanced protection against lipopolysaccharide- and noise-induced hearing damage following mastoid administration. Mastoid delivery provides an accessible route for drug delivery to the inner ear and nanoparticle-based systems via this route represent a viable strategy for treating inner ear diseases. This approach caused less damage to the inner ear, making it a promising option for clinical use in treating hearing loss.
Collapse
Affiliation(s)
- Yanjiao Ding
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China; Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Zhiqiang Hou
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| | - Mingming Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China.
| | - Haibo Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
3
|
Giese D, Li H, Liu W, Staxäng K, Hodik M, Ladak HM, Agrawal S, Schrott‐Fischer A, Glueckert R, Rask‐Andersen H. Microanatomy of the human tunnel of Corti structures and cochlear partition-tonotopic variations and transcellular signaling. J Anat 2024; 245:271-288. [PMID: 38613211 PMCID: PMC11259753 DOI: 10.1111/joa.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Auditory sensitivity and frequency resolution depend on the optimal transfer of sound-induced vibrations from the basilar membrane (BM) to the inner hair cells (IHCs), the principal auditory receptors. There remains a paucity of information on how this is accomplished along the frequency range in the human cochlea. Most of the current knowledge is derived either from animal experiments or human tissue processed after death, offering limited structural preservation and optical resolution. In our study, we analyzed the cytoarchitecture of the human cochlear partition at different frequency locations using high-resolution microscopy of uniquely preserved normal human tissue. The results may have clinical implications and increase our understanding of how frequency-dependent acoustic vibrations are carried to human IHCs. A 1-micron-thick plastic-embedded section (mid-modiolar) from a normal human cochlea uniquely preserved at lateral skull base surgery was analyzed using light and transmission electron microscopy (LM, TEM). Frequency locations were estimated using synchrotron radiation phase-contrast imaging (SR-PCI). Archival human tissue prepared for scanning electron microscopy (SEM) and super-resolution structured illumination microscopy (SR-SIM) were also used and compared in this study. Microscopy demonstrated great variations in the dimension and architecture of the human cochlear partition along the frequency range. Pillar cell geometry was closely regulated and depended on the reticular lamina slope and tympanic lip angle. A type II collagen-expressing lamina extended medially from the tympanic lip under the inner sulcus, here named "accessory basilar membrane." It was linked to the tympanic lip and inner pillar foot, and it may contribute to the overall compliance of the cochlear partition. Based on the findings, we speculate on the remarkable microanatomic inflections and geometric relationships which relay different sound-induced vibrations to the IHCs, including their relevance for the evolution of human speech reception and electric stimulation with auditory implants. The inner pillar transcellular microtubule/actin system's role of directly converting vibration energy to the IHC cuticular plate and ciliary bundle is highlighted.
Collapse
Affiliation(s)
- Dina Giese
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck SurgeryUppsala UniversityUppsalaSweden
| | - Hao Li
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck SurgeryUppsala UniversityUppsalaSweden
| | - Wei Liu
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck SurgeryUppsala UniversityUppsalaSweden
| | - Karin Staxäng
- The Rudbeck TEM Laboratory, BioVis PlatformUppsala UniversityUppsalaSweden
| | - Monika Hodik
- The Rudbeck TEM Laboratory, BioVis PlatformUppsala UniversityUppsalaSweden
| | - Hanif M. Ladak
- Department of Medical BiophysicsWestern UniversityLondonOntarioCanada
- Department of Electrical and Computer EngineeringWestern UniversityLondonOntarioCanada
| | - Sumit Agrawal
- Department of Otolaryngology‐Head and Neck SurgeryWestern UniversityLondonOntarioCanada
| | | | - Rudolf Glueckert
- Inner Ear Laboratory, Department of OtorhinolaryngologyMedical University InnsbruckInnsbruckAustria
| | - Helge Rask‐Andersen
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck SurgeryUppsala UniversityUppsalaSweden
| |
Collapse
|
4
|
Jeon E, Lee U, Yoon S, Hur S, Choi H, Han C. Frequency-Selective, Multi-Channel, Self-Powered Artificial Basilar Membrane Sensor with a Spiral Shape and 24 Critical Bands Inspired by the Human Cochlea. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400955. [PMID: 38885422 PMCID: PMC11336941 DOI: 10.1002/advs.202400955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/11/2024] [Indexed: 06/20/2024]
Abstract
A spiral-artificial basilar membrane (S-ABM) sensor is reported that mimics the basilar membrane (BM) of the human cochlea and can detect sound by separating it into 24 sensing channels based on the frequency band. For this, an analytical function is proposed to design the width of the BM so that the frequency bands are linearly located along the length of the BM. To fabricate the S-ABM sensor, a spiral-shaped polyimide film is used as a vibrating membrane, with maximum displacement at locations corresponding to specific frequency bands of sound, and attach piezoelectric sensor modules made of poly(vinylidene fluoride-trifluoroethylene) film on top of the polyimide film to measure the vibration amplitude at each channel location. As the result, the S-ABM sensor implements a characteristic frequency band of 96-12,821 Hz and 24-independent critical bands. Using real-time signals from discriminate channels, it is demonstrated that the sensor can rapidly identify the operational noises from equipment processes as well as vehicle sounds from environmental noises on the road. The sensor can be used in a variety of applications, including speech recognition, dangerous situation recognition, hearing aids, and cochlear implants, and more.
Collapse
Affiliation(s)
- Eun‐Seok Jeon
- Department of Mechanical EngineeringKorea University145 Anam‐Ro, Seongbuk‐GuSeoul02841Republic of Korea
| | - Useung Lee
- Department of Mechanical EngineeringKorea University145 Anam‐Ro, Seongbuk‐GuSeoul02841Republic of Korea
| | - Seongho Yoon
- Department of Mechanical EngineeringKorea University145 Anam‐Ro, Seongbuk‐GuSeoul02841Republic of Korea
| | - Shin Hur
- Department of Bionic MachineryKorea Institute of Machinery and Materials (KIMM)156 Gajeongbuk‐ro, Yuseong‐guDaejeon304–343Republic of Korea
| | - Hongsoo Choi
- Department of Robotics and Mechatronics EngineeringDGIST‐ETH Microrobot Research CenterDaegu‐Gyeongbuk Institute of Science and Technology (DGIST)333, Techno jungang‐daero, Hyeonpung‐MyeonDalseong‐GunDaegu711–873Republic of Korea
| | - Chang‐Soo Han
- Department of Mechanical EngineeringKorea University145 Anam‐Ro, Seongbuk‐GuSeoul02841Republic of Korea
| |
Collapse
|
5
|
Ormundo DDS, Fávero ML, Lewis DR. Audiogram Estimation by Auditory Brainstem Response with NB CE-Chirp LS stimulus in Normal Hearing Infants. Int Arch Otorhinolaryngol 2024; 28:e294-e300. [PMID: 38618589 PMCID: PMC11008941 DOI: 10.1055/s-0043-1776727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/30/2023] [Indexed: 04/16/2024] Open
Abstract
Introduction NB CE-Chirp LS was developed to improve the audiogram estimation by auditory brainstem response (ABR) thresholds during audiological assessment of infants and difficult to test children. However, before we know how the stimulus behaves in several types of hearing loss, it is important we know how the stimulus behaves in normal hearing infants. Objective To describe ABR thresholds with NB CE-Chirp LS stimulus for 500, 1,000, 2,000, and 4,000 Hz, as well as the amplitude and absolute latency for ABR thresholds. Methods Auditory brainstem response thresholds were evaluated with the Eclipse EP25 system. NB CE-Chirp LS was presented using an ER-3A insert earphone. EEG filter was 30 Hz high-pass and 1,500 Hz low-pass. The ABR threshold was defined as the lowest intensity capable of clearly evoke wave V, accompanied by an absent response 5 dB below. Results Eighteen normal hearing infants were evaluated. The mean and standard deviation (SD) of the ABR threshold (dB nHL) were: 23.8 (±4.2); 14.4 (±5.7); 6.0 (±5.0); and 7.0 (±5.9). The mean and SD of the absolute latency (ms) were: 8.86 (±1.12); 9.21 (±0.95); 9.44 (±0.78); and 9.64 (±0.52). The mean amplitude (nV) and SD were: 0.123 (±0.035); 0.127 (±0.039); 0.141 (±0.052); and 0.105 (±0.028), respectively, for 500, 1,000, 2,000 and 4,000 Hz. Conclusion Auditory brainstem response threshold with NB CE-Chirp LS reaches low levels, in special for high frequencies. It provides absolute latencies similar between frequencies with robust amplitude. The results obtained brings to the examiner more confidence in the results registered.
Collapse
Affiliation(s)
- Diego da Silva Ormundo
- Human Communication and Health Graduate Program, Faculty of Humanities and Health Sciences, Pontifícia Universidade Católica de São Paulo, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Mariana Lopes Fávero
- Department of Otorhinolaryngology and Phoniatrics, Centro Audição na Criança, Pontifícia Universidade Católica de São Paulo, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Doris Ruthy Lewis
- Department of Theories and Methods of Speech Language Pathology and Audiology and Physiotherapy, Faculty of Humanities and Health Sciences, Pontifícia Universidade Católica de São Paulo, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
6
|
Jones SD, Stewart HJ, Westermann G. A maturational frequency discrimination deficit may explain developmental language disorder. Psychol Rev 2024; 131:695-715. [PMID: 37498700 PMCID: PMC11115354 DOI: 10.1037/rev0000436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 07/29/2023]
Abstract
Auditory perceptual deficits are widely observed among children with developmental language disorder (DLD). Yet, the nature of these deficits and the extent to which they explain speech and language problems remain controversial. In this study, we hypothesize that disruption to the maturation of the basilar membrane may impede the optimization of the auditory pathway from brainstem to cortex, curtailing high-resolution frequency sensitivity and the efficient spectral decomposition and encoding of natural speech. A series of computational simulations involving deep convolutional neural networks that were trained to encode, recognize, and retrieve naturalistic speech are presented to demonstrate the strength of this account. These neural networks were built on top of biologically truthful inner ear models developed to model human cochlea function, which-in the key innovation of the present study-were scheduled to mature at different rates over time. Delaying cochlea maturation qualitatively replicated the linguistic behavior and neurophysiology of individuals with language learning difficulties in a number of ways, resulting in (a) delayed language acquisition profiles, (b) lower spoken word recognition accuracy, (c) word finding and retrieval difficulties, (d) "fuzzy" and intersecting speech encodings and signatures of immature neural optimization, and (e) emergent working memory and attentional deficits. These simulations illustrate many negative cascading effects that a primary maturational frequency discrimination deficit may have on early language development and generate precise and testable hypotheses for future research into the nature and cost of auditory processing deficits in children with language learning difficulties. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
|
7
|
Wang SX, Streit A. Shared features in ear and kidney development - implications for oto-renal syndromes. Dis Model Mech 2024; 17:dmm050447. [PMID: 38353121 PMCID: PMC10886756 DOI: 10.1242/dmm.050447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
The association between ear and kidney anomalies has long been recognized. However, little is known about the underlying mechanisms. In the last two decades, embryonic development of the inner ear and kidney has been studied extensively. Here, we describe the developmental pathways shared between both organs with particular emphasis on the genes that regulate signalling cross talk and the specification of progenitor cells and specialised cell types. We relate this to the clinical features of oto-renal syndromes and explore links to developmental mechanisms.
Collapse
Affiliation(s)
- Scarlet Xiaoyan Wang
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Andrea Streit
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| |
Collapse
|
8
|
Pressé MT, Malgrange B, Delacroix L. The cochlear matrisome: Importance in hearing and deafness. Matrix Biol 2024; 125:40-58. [PMID: 38070832 DOI: 10.1016/j.matbio.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 02/12/2024]
Abstract
The extracellular matrix (ECM) consists in a complex meshwork of collagens, glycoproteins, and proteoglycans, which serves a scaffolding function and provides viscoelastic properties to the tissues. ECM acts as a biomechanical support, and actively participates in cell signaling to induce tissular changes in response to environmental forces and soluble cues. Given the remarkable complexity of the inner ear architecture, its exquisite structure-function relationship, and the importance of vibration-induced stimulation of its sensory cells, ECM is instrumental to hearing. Many factors of the matrisome are involved in cochlea development, function and maintenance, as evidenced by the variety of ECM proteins associated with hereditary deafness. This review describes the structural and functional ECM components in the auditory organ and how they are modulated over time and following injury.
Collapse
Affiliation(s)
- Mary T Pressé
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium
| | - Laurence Delacroix
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium.
| |
Collapse
|
9
|
Rose KP, Manilla G, Milon B, Zalzman O, Song Y, Coate TM, Hertzano R. Spatially distinct otic mesenchyme cells show molecular and functional heterogeneity patterns before hearing onset. iScience 2023; 26:107769. [PMID: 37720106 PMCID: PMC10502415 DOI: 10.1016/j.isci.2023.107769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/29/2023] [Accepted: 08/25/2023] [Indexed: 09/19/2023] Open
Abstract
The cochlea consists of diverse cellular populations working in harmony to convert mechanical stimuli into electrical signals for the perception of sound. Otic mesenchyme cells (OMCs), often considered a homogeneous cell type, are essential for normal cochlear development and hearing. Despite being the most numerous cell type in the developing cochlea, OMCs are poorly understood. OMCs are known to differentiate into spatially and functionally distinct cell types, including fibrocytes of the lateral wall and spiral limbus, modiolar osteoblasts, and specialized tympanic border cells of the basilar membrane. Here, we show that OMCs are transcriptionally and functionally heterogeneous and can be divided into four distinct populations that spatially correspond to OMC-derived cochlear structures. We also show that this heterogeneity and complexity of OMCs commences during early phases of cochlear development. Finally, we describe the cell-cell communication network of the developing cochlea, inferring a major role for OMC in outgoing signaling.
Collapse
Affiliation(s)
- Kevin P. Rose
- Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gabriella Manilla
- Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Beatrice Milon
- Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ori Zalzman
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thomas M. Coate
- Department of Biology, Georgetown University, Washington, DC 20007, USA
| | - Ronna Hertzano
- Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Otorhinolaryngology Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
10
|
Abstract
Orchestration of protein production and degradation and the regulation of protein lifetimes play a central role in many basic biological processes. Nearly all mammalian proteins are replenished by protein turnover in waves of synthesis and degradation. Protein lifetimes in vivo are typically measured in days, but a small number of extremely long-lived proteins (ELLPs) persist for months or even years. ELLPs are rare in all tissues but are enriched in tissues containing terminally differentiated post-mitotic cells and extracellular matrix. Consistently, emerging evidence suggests that the cochlea may be particularly enriched in ELLPs. Damage to ELLPs in specialized cell types, such as crystallin in the lens cells of the eye, causes organ failure such as cataracts. Similarly, damage to cochlear ELLPs is likely to occur with many insults, including acoustic overstimulation, drugs, anoxia, and antibiotics, and may play an underappreciated role in hearing loss. Furthermore, hampered protein degradation may contribute to acquired hearing loss. In this review, I highlight our knowledge of the lifetimes of cochlear proteins with an emphasis on ELLPs and the potential contribution that impaired cochlear protein degradation has on acquired hearing loss and the emerging relevance of ELLPs.
Collapse
Affiliation(s)
- Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
11
|
Hrncirik F, Roberts I, Sevgili I, Swords C, Bance M. Models of Cochlea Used in Cochlear Implant Research: A Review. Ann Biomed Eng 2023; 51:1390-1407. [PMID: 37087541 PMCID: PMC10264527 DOI: 10.1007/s10439-023-03192-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/20/2023] [Indexed: 04/24/2023]
Abstract
As the first clinically translated machine-neural interface, cochlear implants (CI) have demonstrated much success in providing hearing to those with severe to profound hearing loss. Despite their clinical effectiveness, key drawbacks such as hearing damage, partly from insertion forces that arise during implantation, and current spread, which limits focussing ability, prevent wider CI eligibility. In this review, we provide an overview of the anatomical and physical properties of the cochlea as a resource to aid the development of accurate models to improve future CI treatments. We highlight the advancements in the development of various physical, animal, tissue engineering, and computational models of the cochlea and the need for such models, challenges in their use, and a perspective on their future directions.
Collapse
Affiliation(s)
- Filip Hrncirik
- Cambridge Hearing Group, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Iwan Roberts
- Cambridge Hearing Group, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Ilkem Sevgili
- Cambridge Hearing Group, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Chloe Swords
- Cambridge Hearing Group, Cambridge, UK
- Department of Physiology, Development and Neurosciences, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Manohar Bance
- Cambridge Hearing Group, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
12
|
Bradshaw JJ, Brown MA, Jiang S, Gan RZ. 3D Finite Element Model of Human Ear with 3-Chamber Spiral Cochlea for Blast Wave Transmission from the Ear Canal to Cochlea. Ann Biomed Eng 2023; 51:1106-1118. [PMID: 37036617 DOI: 10.1007/s10439-023-03200-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/29/2023] [Indexed: 04/11/2023]
Abstract
Blast-induced auditory trauma is a common injury in military service members and veterans that leads to hearing loss. While the inner ear response to blast exposure is difficult to characterize experimentally, computational models have advanced to predict blast wave transmission from the ear canal to the cochlea; however, published models have either straight or spiral cochlea with fluid-filled two chambers. In this paper, we report the recently developed 3D finite element (FE) model of the human ear mimicking the anatomical structure of the 3-chambered cochlea. The model consists of the ear canal, middle ear, and two and a half turns of the cochlea with three chambers separated by the Reissner's membrane (RM) and the basilar membrane (BM). The blast overpressure measured from human temporal bone experiments was applied at the ear canal entrance and the Fluent/Mechanical coupled fluid-structure interaction analysis was conducted in ANSYS software. The FE model-derived results include the pressure in the canal near the tympanic membrane (TM) and the intracochlear pressure at scala vestibuli, the TM displacement, and the stapes footplate (SFP) displacement, which were compared with experimentally measured data in human temporal bones. The validated model was used to predict the biomechanical response of the ear to blast overpressure: distributions of the maximum strain and stress within the TM, the BM displacement variation from the base to apex, and the energy flux or total energy entering the cochlea. The comparison of intracochlear pressure and BM displacement with those from the FE model of 2-chambered cochlea indicated that the 3-chamber cochlea model with the RM and scala media chamber improved our understanding of cochlea mechanics. This most comprehensive FE model of the human ear has shown its capability to predict the middle ear and cochlea responses to blast overpressure which will advance our understanding of auditory blast injury.
Collapse
Affiliation(s)
- John J Bradshaw
- School of Biomedical Engineering, University of Oklahoma, 173 Felgar Street, Room 101, Norman, OK, 73019, USA
| | - Marcus A Brown
- School of Biomedical Engineering, University of Oklahoma, 173 Felgar Street, Room 101, Norman, OK, 73019, USA
| | - Shangyuan Jiang
- School of Aerospace and Mechanical Engineering, University of Oklahoma, 865 Asp Avenue, Room 200, Norman, OK, 73019, USA
| | - Rong Z Gan
- School of Biomedical Engineering, University of Oklahoma, 173 Felgar Street, Room 101, Norman, OK, 73019, USA.
- School of Aerospace and Mechanical Engineering, University of Oklahoma, 865 Asp Avenue, Room 200, Norman, OK, 73019, USA.
| |
Collapse
|
13
|
de Sousa Lobo Ferreira Querido R, Ji X, Lakha R, Goodyear RJ, Richardson GP, Vizcarra CL, Olson ES. Visualizing Collagen Fibrils in the Cochlea's Tectorial and Basilar Membranes Using a Fluorescently Labeled Collagen-Binding Protein Fragment. J Assoc Res Otolaryngol 2023; 24:147-157. [PMID: 36725777 PMCID: PMC10121988 DOI: 10.1007/s10162-023-00889-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/16/2023] [Indexed: 02/03/2023] Open
Abstract
PURPOSE A probe that binds to unfixed collagen fibrils was used to image the shapes and fibrous properties of the TM and BM. The probe (CNA35) is derived from the bacterial adhesion protein CNA. We present confocal images of hydrated gerbil TM, BM, and other cochlear structures stained with fluorescently labeled CNA35. A primary purpose of this article is to describe the use of the CNA35 collagen probe in the cochlea. METHODS Recombinant poly-histidine-tagged CNA35 was expressed in Escherichia coli, purified by cobalt-affinity chromatography, fluorescence labeled, and further purified by gel filtration chromatography. Cochleae from freshly harvested gerbil bullae were irrigated with and then incubated in CNA35 for periods ranging from 2 h - overnight. The cochleae were fixed, decalcified, and dissected. Isolated cochlear turns were imaged by confocal microscopy. RESULTS The CNA35 probe stained the BM and TM, and volumetric imaging revealed the shape of these structures and the collagen fibrils within them. The limbal zone of the TM stained intensely. In samples from the cochlear base, intense staining was detected on the side of the TM that faces hair cells. In the BM pectinate zone, staining was intense at the upper and lower boundaries. The BM arcuate zone was characterized by a prominent longitudinal collagenous structure. The spiral ligament, limbus and lamina stained for collagen, and within the spiral limbus the habenula perforata were outlined with intense staining. CONCLUSION The CNA35 probe provides a unique and useful view of collagenous structures in the cochlea.
Collapse
Affiliation(s)
| | - Xiang Ji
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Chemistry, Barnard College, New York, NY, USA
| | - Rabina Lakha
- Department of Chemistry, Barnard College, New York, NY, USA
| | - Richard J Goodyear
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | - Guy P Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, UK
| | | | - Elizabeth S Olson
- Department of Otolaryngology, Head and Neck Surgery, Columbia University, New York, NY, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
14
|
Abbott AC, García IE, Villanelo F, Flores-Muñoz C, Ceriani R, Maripillán J, Novoa-Molina J, Figueroa-Cares C, Pérez-Acle T, Sáez JC, Sánchez HA, Martínez AD. Expression of KID syndromic mutation Cx26S17F produces hyperactive hemichannels in supporting cells of the organ of Corti. Front Cell Dev Biol 2023; 10:1071202. [PMID: 36699003 PMCID: PMC9868548 DOI: 10.3389/fcell.2022.1071202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Some mutations in gap junction protein Connexin 26 (Cx26) lead to syndromic deafness, where hearing impairment is associated with skin disease, like in Keratitis Ichthyosis Deafness (KID) syndrome. This condition has been linked to hyperactivity of connexin hemichannels but this has never been demonstrated in cochlear tissue. Moreover, some KID mutants, like Cx26S17F, form hyperactive HCs only when co-expressed with other wild-type connexins. In this work, we evaluated the functional consequences of expressing a KID syndromic mutation, Cx26S17F, in the transgenic mouse cochlea and whether co-expression of Cx26S17F and Cx30 leads to the formation of hyperactive HCs. Indeed, we found that cochlear explants from a constitutive knock-in Cx26S17F mouse or conditional in vitro cochlear expression of Cx26S17F produces hyperactive HCs in supporting cells of the organ of Corti. These conditions also produce loss of hair cells stereocilia. In supporting cells, we found high co-localization between Cx26S17F and Cx30. The functional properties of HCs formed in cells co-expressing Cx26S17F and Cx30 were also studied in oocytes and HeLa cells. Under the recording conditions used in this study Cx26S17F did not form functional HCs and GJCs, but cells co-expressing Cx26S17F and Cx30 present hyperactive HCs insensitive to HCs blockers, Ca2+ and La3+, resulting in more Ca2+ influx and cellular damage. Molecular dynamic analysis of putative heteromeric HC formed by Cx26S17F and Cx30 presents alterations in extracellular Ca2+ binding sites. These results support that in KID syndrome, hyperactive HCs are formed by the interaction between Cx26S17F and Cx30 in supporting cells probably causing damage to hair cells associated to deafness.
Collapse
Affiliation(s)
- Ana C. Abbott
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile,Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Viña del Mar, Chile
| | - Isaac E. García
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile,Laboratorio de Fisiología Molecular y Biofísica, Facultad de Odontología, Universidad de Valparaíso, Valparaíso, Chile,Centro de Investigaciones en Ciencias Odontológicas y Médicas, CICOM, Universidad de Valparaíso, Valparaíso, Chile
| | - Felipe Villanelo
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile,Computational Biology Lab, Centro Basal Ciencia & Vida, Universidad San Sebastián, Santiago, Chile
| | - Carolina Flores-Muñoz
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ricardo Ceriani
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile,Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| | - Jaime Maripillán
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Joel Novoa-Molina
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Cindel Figueroa-Cares
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Tomas Pérez-Acle
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile,Computational Biology Lab, Centro Basal Ciencia & Vida, Universidad San Sebastián, Santiago, Chile
| | - Juan C. Sáez
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Helmuth A. Sánchez
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile,*Correspondence: Helmuth A. Sánchez, ; Agustín D. Martínez,
| | - Agustín D. Martínez
- Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile,*Correspondence: Helmuth A. Sánchez, ; Agustín D. Martínez,
| |
Collapse
|
15
|
Mattiazzi ÂL, Cóser PL, Endruweit Battisti ID, Pinto JD, Pinto Vieira Biaggio E. Auditory Brainstem response electrophysiological thresholds with narrow band chirps stimuli in hearing infants. Int J Pediatr Otorhinolaryngol 2023; 164:111417. [PMID: 36525696 DOI: 10.1016/j.ijporl.2022.111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/17/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES to describe reference values for the electrophysiological thresholds obtained in the frequency-specific Auditory Brainstem Response (fsABR) with the NB CE-Chirp® LS and NB iChirp stimuli in hearing infants and to compare the variables: Minimum Levels of Response (MLR), latency, amplitude and examination time. METHODS the sample consisted of 74 full-term infants, with a mean age of 23.11 days, 29 females and 45 males. The participants underwent fsABR at the frequencies of 500 Hz, 1000 Hz, 2000 Hz and 4000 Hz, to measure the MLR with the NB CE-Chirp® LS stimulus in the Eclipse equipment, and with the NB iChirp stimulus in the SmartEP, all in natural sleep and performed in the same session. The waveforms were evaluated by judges and later, for the comparison of thresholds and examination time, analyzed with the Wilcoxon test. To compare latency and amplitude, the Student's T Test and ANOVA were used for the same variables, but with the same stimulus. The Kruskal-Wallis test was used to compare the examination time at the different frequencies. RESULTS The MLR and latency at 500 Hz and 1000 Hz showed a statistically significant difference between the stimuli, with lower thresholds and higher latencies for the NB iChirp. Higher amplitudes were obtained with the NB iChirp stimulus. The average examination time for the threshold investigation in the four frequencies was 40 min for each ear. CONCLUSION it was possible to present reference values for the MLR and latencies for the NB CE-Chirp® LS and NB iChirp stimuli for hearing infants. In addition, with the NB iChirp, the latency of the responses was influenced by the frequency, but it was the stimulus that provided greater amplitudes. With the NB CE-Chirp® LS, the frequency did not influence latency, except at 500 Hz, and the stimulus provided recordings that facilitated the visualization of wave V. There was no difference in the examination time between the stimuli, nor between the test frequencies.
Collapse
Affiliation(s)
| | | | | | - Julia Dalcin Pinto
- Speech Therapy Department, Federal University of Santa Maria, Santa Maria, Brazil
| | | |
Collapse
|
16
|
Areias B, Parente MPL, Gentil F, Caroça C, Paço J, Natal Jorge RM. A finite element model to predict the consequences of endolymphatic hydrops in the basilar membrane. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3541. [PMID: 34697909 DOI: 10.1002/cnm.3541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/21/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Ménière's disease is an inner ear disorder, associated with episodes of vertigo, fluctuant hearing loss, tinnitus, and aural fullness. Ménière's disease is associated with endolymphatic hydrops. Clinical evidences show that this disease is often incapacitating, negatively affecting the patients' everyday life. The pathogenesis of Ménière's disease is still not fully understood and remains unclear. Previous numerical studies available in the literature related with endolymphatic hydrops, are very scarce. The present work applies the finite element method to investigate the consequences of endolymphatic hydrops in the normal hearing, associated with the Ménière's disease. The obtained results for the steady state dynamics analysis are in accordance with clinical evidences. The results show that the basilar membrane is not affected in the same intensity along its length and that the lower frequencies are more affected by the endolymphatic hydrops. From a clinical point of view, this work shows the relationship between the increasing of the endolymphatic pressure and the development of hearing loss.
Collapse
Affiliation(s)
- Bruno Areias
- INEGI, Institute of Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal
| | - Marco P L Parente
- INEGI, Institute of Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal
- FEUP, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Fernanda Gentil
- Escola Superior de Saúde - Politécnico do Porto, Clínica ORL - Dr. Eurico de Almeida, WIDEX, Porto, Portugal
| | - Cristina Caroça
- Núcleo académico-clínico de otorrinolaringologia e cirurgia cervico-facial do Hospital CUF Tejo/NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Centre, NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - João Paço
- Núcleo académico-clínico de otorrinolaringologia e cirurgia cervico-facial do Hospital CUF Tejo/NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
- Comprehensive Health Research Centre, NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Renato M Natal Jorge
- INEGI, Institute of Science and Innovation in Mechanical and Industrial Engineering, Porto, Portugal
- FEUP, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
17
|
Berger J, Rubinstein J. A flexible anatomical set of mechanical models for the organ of Corti. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210016. [PMID: 34540242 PMCID: PMC8441134 DOI: 10.1098/rsos.210016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
We build a flexible platform to study the mechanical operation of the organ of Corti (OoC) in the transduction of basilar membrane (BM) vibrations to oscillations of an inner hair cell bundle (IHB). The anatomical components that we consider are the outer hair cells (OHCs), the outer hair cell bundles, Deiters cells, Hensen cells, the IHB and various sections of the reticular lamina. In each of the components we apply Newton's equations of motion. The components are coupled to each other and are further coupled to the endolymph fluid motion in the subtectorial gap. This allows us to obtain the forces acting on the IHB, and thus study its motion as a function of the parameters of the different components. Some of the components include a nonlinear mechanical response. We find that slight bending of the apical ends of the OHCs can have a significant impact on the passage of motion from the BM to the IHB, including critical oscillator behaviour. In particular, our model implies that the components of the OoC could cooperate to enhance frequency selectivity, amplitude compression and signal to noise ratio in the passage from the BM to the IHB. Since the model is modular, it is easy to modify the assumptions and parameters for each component.
Collapse
Affiliation(s)
- Jorge Berger
- Department of Physics and Optical Engineering, Ort Braude College, Karmiel, Israel
| | | |
Collapse
|
18
|
Feasibility of Cochlea High-frequency Ultrasound and Microcomputed Tomography Registration for Cochlear Computer-assisted Surgery: A Testbed. Otol Neurotol 2021; 42:e779-e787. [PMID: 33871251 DOI: 10.1097/mao.0000000000003091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION There remains no standard imaging method that allows computer-assisted surgery of the cochlea in real time. However, recent evidence suggests that high-frequency ultrasound (HFUS) could permit real-time visualization of cochlear architecture. Registration with an imaging modality that suffers neither attenuation nor conical deformation could reveal useful anatomical landmarks to surgeons. Our study aimed to address the feasibility of an automated three-dimensional (3D) HFUS/microCT registration, and to evaluate the identification of cochlear structures using 2D/3D HFUS and microCT. METHODS MicroCT, and 2D/3D 40 MHz US in B-mode were performed on ex vivo guinea pig cochlea. An automatic rigid registration algorithm was applied to segmented 3D images. This automatic registration was then compared to a reference method using manual annotated landmarks placed by two senior otologists. Inter- and intrarater reliabilities were evaluated using intraclass correlation coefficient (ICC) and the mean registration error was calculated. RESULTS 3D HFUS/microCT automatic registration was successful. Excellent levels of concordance were achieved with regards intra-rater reliability for both raters with micro-CT and US images (ICC ranging from 0.98 to 1, p < 0.001) and with regards inter-rater reliability (ICC ranging from 0.99 to 1, p < 0.001). The mean HFUS/microCT automated RE for both observers was 0.17 ± 0.03 mm [0.10-0.25]. Identification of the basilar membrane, modiolus, scala tympani, and scala vestibuli was possible with 2D/3D HFUS and micro-CT. CONCLUSIONS HFUS/microCT image registration is feasible. 2D/3D HFUS and microCT allow the visualization of cochlear structures. Many potential clinical applications are conceivable.
Collapse
|
19
|
Powell KA, Wiet GJ, Hittle B, Oswald GI, Keith JP, Stredney D, Andersen SAW. Atlas-based segmentation of cochlear microstructures in cone beam CT. Int J Comput Assist Radiol Surg 2021; 16:363-373. [PMID: 33580852 DOI: 10.1007/s11548-020-02304-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 12/18/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE To develop an automated segmentation approach for cochlear microstructures [scala tympani (ST), scala vestibuli (SV), modiolus (Mod), mid-modiolus (Mid-Mod), and round window membrane (RW)] in clinical cone beam computed tomography (CBCT) images of the temporal bone for use in surgical simulation software and for preoperative surgical evaluation. METHODS This approach was developed using the publicly available OpenEar (OE) Library that includes temporal bone specimens with spatially registered CBCT and 3D micro-slicing images. Five of these datasets were spatially aligned to our internal OSU atlas. An atlas of cochlear microstructures was created from one of the OE datasets. An affine registration of this atlas to the remaining OE CBCT images was used for automatically segmenting the cochlear microstructures. Quantitative metrics and visual review were used for validating the automatic segmentations. RESULTS The average DICE metrics were 0.77 and 0.74 for the ST and SV, respectively. The average Hausdorff distance (AVG HD) was 0.11 mm and 0.12 mm for both scalae. The mean distance between the centroids for the round window was 0.32 mm, and the mean AVG HD was 0.09 mm. The mean distance and angular rotation between the mid-modiolar axes were 0.11 mm and 9.8 degrees, respectively. Visually, the segmented structures were accurate and similar to that manually traced by an expert observer. CONCLUSIONS An atlas-based approach using 3D micro-slicing data and affine spatial registration in the cochlear region was successful in segmenting cochlear microstructures of temporal bone anatomy for use in simulation software and potentially for pre-surgical planning and rehearsal.
Collapse
Affiliation(s)
- Kimerly A Powell
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA.
| | - Gregory J Wiet
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, USA
| | - Brad Hittle
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Grace I Oswald
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Jason P Keith
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Don Stredney
- Interface Laboratory, The Ohio State University, Columbus, OH, USA
| | - Steven Arild Wuyts Andersen
- Department of Otolaryngology - Head and Neck Surgery, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, USA.,Department of Otorhinolaryngology-Head and Neck Surgery, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
20
|
Lee TL, Lin PH, Chen PL, Hong JB, Wu CC. Hereditary Hearing Impairment with Cutaneous Abnormalities. Genes (Basel) 2020; 12:43. [PMID: 33396879 PMCID: PMC7823799 DOI: 10.3390/genes12010043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022] Open
Abstract
Syndromic hereditary hearing impairment (HHI) is a clinically and etiologically diverse condition that has a profound influence on affected individuals and their families. As cutaneous findings are more apparent than hearing-related symptoms to clinicians and, more importantly, to caregivers of affected infants and young individuals, establishing a correlation map of skin manifestations and their underlying genetic causes is key to early identification and diagnosis of syndromic HHI. In this article, we performed a comprehensive PubMed database search on syndromic HHI with cutaneous abnormalities, and reviewed a total of 260 relevant publications. Our in-depth analyses revealed that the cutaneous manifestations associated with HHI could be classified into three categories: pigment, hyperkeratosis/nail, and connective tissue disorders, with each category involving distinct molecular pathogenesis mechanisms. This outline could help clinicians and researchers build a clear atlas regarding the phenotypic features and pathogenetic mechanisms of syndromic HHI with cutaneous abnormalities, and facilitate clinical and molecular diagnoses of these conditions.
Collapse
Affiliation(s)
- Tung-Lin Lee
- Department of Medical Education, National Taiwan University Hospital, Taipei City 100, Taiwan;
| | - Pei-Hsuan Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 11556, Taiwan;
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City 100, Taiwan;
| | - Pei-Lung Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City 100, Taiwan;
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei City 100, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10041, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 10041, Taiwan
| | - Jin-Bon Hong
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei City 100, Taiwan
- Department of Dermatology, National Taiwan University Hospital, Taipei City 100, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 11556, Taiwan;
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei City 100, Taiwan;
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 10041, Taiwan
- Department of Medical Research, National Taiwan University Biomedical Park Hospital, Hsinchu City 300, Taiwan
| |
Collapse
|
21
|
Lavenir L, Zemiti N, Akkari M, Subsol G, Venail F, Poignet P. HFUS Imaging of the Cochlea: A Feasibility Study for Anatomical Identification by Registration with MicroCT. Ann Biomed Eng 2020; 49:1308-1317. [PMID: 33128180 DOI: 10.1007/s10439-020-02671-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 10/21/2020] [Indexed: 11/25/2022]
Abstract
Cochlear implantation consists in electrically stimulating the auditory nerve by inserting an electrode array inside the cochlea, a bony structure of the inner ear. In the absence of any visual feedback, the insertion results in many cases of damages of the internal structures. This paper presents a feasibility study on intraoperative imaging and identification of cochlear structures with high-frequency ultrasound (HFUS). 6 ex-vivo guinea pig cochleae were subjected to both US and microcomputed tomography (µCT) we respectively referred as intraoperative and preoperative modalities. For each sample, registration based on simulating US from the scanner was performed to allow a precise matching between the visible structures. According to two otologists, the procedure led to a target registration error of 0.32 mm ± 0.05. Thanks to referring to a better preoperative anatomical representation, we were able to intraoperatively identify the modiolus, both scalae vestibuli and tympani and deduce the location of the basilar membrane, all of which is of great interest for cochlear implantation. Our main objective is to extend this procedure to the human case and thus provide a new tool for inner ear surgery.
Collapse
Affiliation(s)
- Lucas Lavenir
- LIRMM, University of Montpellier, CNRS, Montpellier, France
| | - Nabil Zemiti
- LIRMM, University of Montpellier, CNRS, Montpellier, France.
| | - Mohamed Akkari
- Department of ENT and Head and Neck Surgery, University Hospital Gui de Chauliac, University of Montpellier, Montpellier, France
| | - Gérard Subsol
- LIRMM, University of Montpellier, CNRS, Montpellier, France
| | - Frédéric Venail
- Department of ENT and Head and Neck Surgery, University Hospital Gui de Chauliac, University of Montpellier, Montpellier, France.,Institute for Neurosciences of Montpellier, INSERM U105, Montpellier, France
| | | |
Collapse
|
22
|
Barozzi S, Soi D, Intieri E, Giani M, Aldè M, Tonon E, Signorini L, Renieri A, Fallerini C, Perin P, Montini G, Ambrosetti U. Vestibular and audiological findings in the Alport syndrome. Am J Med Genet A 2020; 182:2345-2358. [PMID: 32820599 DOI: 10.1002/ajmg.a.61796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 01/20/2023]
Abstract
Alport syndrome (AS) is caused by mutations in collagen IV, which is widespread in the basement membranes of many organs, including the kidneys, eyes, and ears. Whereas the effects of collagen IV changes in the cochlea are well known, no changes have been described in the posterior labyrinth. The aim of this study was to investigate both the auditory and the vestibular function of a group of individuals with AS. Seventeen patients, aged 9-52, underwent audiological tests including pure-tone and speech audiometry, immittance test and otoacoustic emissions and vestibular tests including video head impulse test, rotatory test, and vestibular evoked myogenic potentials. Hearing loss affected 25% of the males and 27.3% of the females with X-linked AS. It was sensorineural with a cochlear localization and a variable severity. 50% of the males and 45.4% of the females had a hearing impairment in the high-frequency range. Otoacoustic emissions were absent in about one-third of the individuals. A peripheral vestibular dysfunction was present in 75% of the males and 45.4% of the females, with no complaints of vertigo or dizziness. The vestibular impairment was compensated and the vestibulo-ocular reflex asymmetry was more evident in rotatory tests carried out at lower than higher speeds; a vestibular hypofunction was present in all hearing impaired ears although it was also found in subjects with normal hearing. A posterior labyrinth injury should be hypothesized in AS even when the patient does not manifest hearing disorders or evident signs of renal failure.
Collapse
Affiliation(s)
- Stefania Barozzi
- Audiology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Daniela Soi
- Audiology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,ASST Nord Milano, Milan, Italy
| | - Elisabetta Intieri
- Audiology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,UOC Otorinolaringoiatria ASST Valle Olona, Busto Arsizio, Italy
| | - Marisa Giani
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mirko Aldè
- Audiology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,UOC Audiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eleonora Tonon
- Audiology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Lia Signorini
- Audiology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy.,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | - Paola Perin
- Dipartimento di scienze del Sistema nervoso e del comportamento, Università di Pavia, Pavia, Italy
| | - Giovanni Montini
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Giuliana Bernardo Caprotti chair of Pediatrics, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Umberto Ambrosetti
- Audiology Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,UOC Audiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
23
|
Viola G, Chang J, Maltby T, Steckler F, Jomaa M, Sun J, Edusei J, Zhang D, Vilches A, Gao S, Liu X, Saeed S, Zabalawi H, Gale J, Song W. Bioinspired Multiresonant Acoustic Devices Based on Electrospun Piezoelectric Polymeric Nanofibers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34643-34657. [PMID: 32639712 PMCID: PMC7460092 DOI: 10.1021/acsami.0c09238] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/08/2020] [Indexed: 05/23/2023]
Abstract
Cochlear hair cells are critical for the conversion of acoustic into electrical signals and their dysfunction is a primary cause of acquired hearing impairments, which worsen with aging. Piezoelectric materials can reproduce the acoustic-electrical transduction properties of the cochlea and represent promising candidates for future cochlear prostheses. The majority of piezoelectric hearing devices so far developed are based on thin films, which have not managed to simultaneously provide the desired flexibility, high sensitivity, wide frequency selectivity, and biocompatibility. To overcome these issues, we hypothesized that fibrous membranes made up of polymeric piezoelectric biocompatible nanofibers could be employed to mimic the function of the basilar membrane, by selectively vibrating in response to different frequencies of sound and transmitting the resulting electrical impulses to the vestibulocochlear nerve. In this study, poly(vinylidene fluoride-trifluoroethylene) piezoelectric nanofiber-based acoustic circular sensors were designed and fabricated using the electrospinning technique. The performance of the sensors was investigated with particular focus on the identification of the resonance frequencies and acoustic-electrical conversion in fibrous membrane with different size and fiber orientation. The voltage output (1-17 mV) varied in the range of low resonance frequency (100-400 Hz) depending on the diameter of the macroscale sensors and alignment of the fibers. The devices developed can be regarded as a proof-of-concept demonstrating the possibility of using piezoelectric fibers to convert acoustic waves into electrical signals, through possible synergistic effects of piezoelectricity and triboelectricity. The study has paved the way for the development of self-powered nanofibrous implantable auditory sensors.
Collapse
Affiliation(s)
- Giuseppe Viola
- UCL
Centre for Biomaterials in Surgical Reconstruction and Regeneration,
Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| | - Jinke Chang
- UCL
Centre for Biomaterials in Surgical Reconstruction and Regeneration,
Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| | - Thomas Maltby
- Electrical
and Electronic Engineering, London South
Bank University, London SE1 0AA, United Kingdom
| | - Felix Steckler
- UCL
Centre for Biomaterials in Surgical Reconstruction and Regeneration,
Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| | - Mohamed Jomaa
- UCL
Centre for Biomaterials in Surgical Reconstruction and Regeneration,
Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| | - Jianfei Sun
- UCL
Centre for Biomaterials in Surgical Reconstruction and Regeneration,
Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
- School
of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
| | - Janelle Edusei
- UCL
Centre for Biomaterials in Surgical Reconstruction and Regeneration,
Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| | - Dong Zhang
- UCL
Centre for Biomaterials in Surgical Reconstruction and Regeneration,
Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| | - Antonio Vilches
- Electrical
and Electronic Engineering, London South
Bank University, London SE1 0AA, United Kingdom
| | - Shuo Gao
- UCL
Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Xiao Liu
- UCL
Department of Electronic and Electrical Engineering, University College London, London WC1E 7JE, United Kingdom
| | - Shakeel Saeed
- UCL Ear Institute, University
College London, London WC1X 8EE, United Kingdom
| | - Hassan Zabalawi
- UCL Ear Institute, University
College London, London WC1X 8EE, United Kingdom
| | - Jonathan Gale
- UCL Ear Institute, University
College London, London WC1X 8EE, United Kingdom
| | - Wenhui Song
- UCL
Centre for Biomaterials in Surgical Reconstruction and Regeneration,
Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| |
Collapse
|
24
|
Russell IJ, Lukashkina VA, Levic S, Cho YW, Lukashkin AN, Ng L, Forrest D. Emilin 2 promotes the mechanical gradient of the cochlear basilar membrane and resolution of frequencies in sound. SCIENCE ADVANCES 2020; 6:eaba2634. [PMID: 32577518 PMCID: PMC7286672 DOI: 10.1126/sciadv.aba2634] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
The detection of different frequencies in sound is accomplished with remarkable precision by the basilar membrane (BM), an elastic, ribbon-like structure with graded stiffness along the cochlear spiral. Sound stimulates a wave of displacement along the BM with maximal magnitude at precise, frequency-specific locations to excite neural signals that carry frequency information to the brain. Perceptual frequency discrimination requires fine resolution of this frequency map, but little is known of the intrinsic molecular features that demarcate the place of response on the BM. To investigate the role of BM microarchitecture in frequency discrimination, we deleted extracellular matrix protein emilin 2, which disturbed the filamentous organization in the BM. Emilin2 -/- mice displayed broadened mechanical and neural frequency tuning with multiple response peaks that are shifted to lower frequencies than normal. Thus, emilin 2 confers a stiffness gradient on the BM that is critical for accurate frequency resolution.
Collapse
Affiliation(s)
- Ian J. Russell
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Brighton BN2 4GJ, UK
| | - Victoria A. Lukashkina
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Brighton BN2 4GJ, UK
| | - Snezana Levic
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Brighton BN2 4GJ, UK
- Brighton and Sussex Medical School, University of Sussex, Brighton BN1 9PX, UK
| | - Young-Wook Cho
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Andrei N. Lukashkin
- Sensory Neuroscience Research Group, School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Brighton BN2 4GJ, UK
| | - Lily Ng
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Raufer S, Idoff C, Zosuls A, Marino G, Blanke N, Bigio IJ, O'Malley JT, Burgess BJ, Nadol JB, Guinan JJ, Nakajima HH. Anatomy of the Human Osseous Spiral Lamina and Cochlear Partition Bridge: Relevance for Cochlear Partition Motion. J Assoc Res Otolaryngol 2020; 21:171-182. [PMID: 32166603 DOI: 10.1007/s10162-020-00748-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/20/2020] [Indexed: 11/29/2022] Open
Abstract
The classic view of cochlear partition (CP) motion, generalized to be for all mammals, was derived from basal-turn measurements in laboratory animals. Recently, we reported motion of the human CP in the cochlear base that differs substantially from the classic view. We described a human soft tissue "bridge" (non-existent in the classic view) between the osseous spiral lamina (OSL) and basilar membrane (BM), and showed how OSL and bridge move in response to sound. Here, we detail relevant human anatomy to better understand the relationship between form and function. The bridge and BM have similar widths that increase linearly from base to apex, whereas the OSL width decreases from base to apex, leading to an approximately constant total CP width throughout the cochlea. The bony three-dimensional OSL microstructure, reconstructed from unconventionally thin, 2-μm histological sections, revealed thin, radially wide OSL plates with pores that vary in size, extent, and distribution with cochlear location. Polarized light microscopy revealed collagen fibers in the BM that spread out medially through the bridge to connect to the OSL. The long width and porosity of the OSL may explain its considerable bending flexibility. The similarity of BM and bridge widths along the cochlea, both containing continuous collagen fibers, may make them a functional unit and allow maximum CP motion near the bridge-BM boundary, as recently described. These anatomical findings may help us better understand the motion of the structures surrounding the organ of Corti and how they shape the input to the cochlear sensory mechanism.
Collapse
Affiliation(s)
- Stefan Raufer
- Massachusetts Eye and Ear, Boston, MA, 02114, USA. .,Speech and Hearing Bioscience and Technology Program, Harvard Medical School, Boston, MA, 02115, USA. .,Medizinische Hochschule Hannover, Klinik für Hals-Nasen-Ohrenheilkunde, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Cornelia Idoff
- Massachusetts Eye and Ear, Boston, MA, 02114, USA.,Faculty of Medicine and Health Sciences, Linköping University, 58183, Linköping, Sweden
| | | | | | - Nathan Blanke
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Irving J Bigio
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Jennifer T O'Malley
- Massachusetts Eye and Ear, Boston, MA, 02114, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA, 02115, USA
| | - Barbara J Burgess
- Massachusetts Eye and Ear, Boston, MA, 02114, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA, 02115, USA
| | - Joseph B Nadol
- Massachusetts Eye and Ear, Boston, MA, 02114, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA, 02115, USA
| | - John J Guinan
- Massachusetts Eye and Ear, Boston, MA, 02114, USA.,Speech and Hearing Bioscience and Technology Program, Harvard Medical School, Boston, MA, 02115, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA, 02115, USA
| | - Hideko H Nakajima
- Massachusetts Eye and Ear, Boston, MA, 02114, USA.,Speech and Hearing Bioscience and Technology Program, Harvard Medical School, Boston, MA, 02115, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
26
|
Effects of Various Trajectories on Tissue Preservation in Cochlear Implant Surgery: A Micro-Computed Tomography and Synchrotron Radiation Phase-Contrast Imaging Study. Ear Hear 2019; 40:393-400. [PMID: 29952804 DOI: 10.1097/aud.0000000000000624] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The purpose of this study was to evaluate the three-dimensional (3D) anatomy and potential damage to the hook region of the human cochlea following various trajectories at cochlear implantation (CI). The goal was to determine which of the approaches can avoid lesions to the soft tissues, including the basilar membrane and its suspension to the lateral wall. Currently, there is increased emphasis on conservation of inner ear structures, even in nonhearing preservation CI surgery. DESIGN Micro-computed tomography and various CI approaches were made in an archival collection of macerated and freshly fixed human temporal bones. Furthermore, synchrotron radiation phase-contrast imaging was used to reproduce the soft tissues. The 3D anatomy was investigated using bony and soft tissue algorithms, and influences on inner ear structures were examined. RESULTS Micro-computed tomography with 3D rendering demonstrated the topography of the round window (RW) and osseous spiral laminae, while synchrotron imaging allowed reproduction of soft tissues such as the basilar membrane and its suspension around the RW membrane. Anterior cochleostomies and anteroinferior cochleostomies invariably damaged the intracochlear soft tissues while inferior cochleostomies sporadically left inner ear structures unaffected. CONCLUSIONS Results suggest that cochleostomy approaches often traumatize the soft tissues at the hook region at CI surgery. For optimal structural preservation, the RW approach is, therefore, recommended.
Collapse
|
27
|
Three-dimensional imaging of the extracellular matrix and cell interactions in the developing prenatal mouse cornea. Sci Rep 2019; 9:11277. [PMID: 31375736 PMCID: PMC6677755 DOI: 10.1038/s41598-019-47653-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 07/15/2019] [Indexed: 11/26/2022] Open
Abstract
As the outer lens in the eye, the cornea needs to be strong and transparent. These properties are governed by the arrangement of the constituent collagen fibrils, but the mechanisms of how this develops in mammals is unknown. Using novel 3-dimensional scanning and conventional transmission electron microscopy, we investigated the developing mouse cornea, focusing on the invading cells, the extracellular matrix and the collagen types deposited at different stages. Unlike the well-studied chick, the mouse cornea had no acellular primary stroma. Collagen fibrils initially deposited at E13 from the presumptive corneal stromal cells, become organised into fibril bundles orthogonally arranged between cells. Extensive cell projections branched to adjacent stromal cells and interacted with the basal lamina and collagen fibrils. Types I, II and V collagen were expressed from E12 posterior to the surface ectoderm, and became widespread from E14. Type IX collagen localised to the corneal epithelium at E14. Type VII collagen, the main constituent of anchoring filaments, was localised posterior to the basal lamina. We conclude that the cells that develop the mouse cornea do not require a primary stroma for cell migration. The cells have an elaborate communication system which we hypothesise helps cells to align collagen fibrils.
Collapse
|
28
|
Pharmacokinetics and tissue distribution of neurotrophin 3 after intracochlear delivery. J Control Release 2019; 299:53-63. [PMID: 30790594 DOI: 10.1016/j.jconrel.2019.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/11/2019] [Accepted: 02/15/2019] [Indexed: 01/22/2023]
Abstract
Neurotrophin therapy has potential to reverse some forms of hearing loss. However, cochlear pharmacokinetic studies are challenging due to small fluid volumes. Here a radioactive tracer was used to determine neurotrophin-3 retention, distribution and clearance after intracochlear administration. 125I-neurotrophin-3 was injected into guinea pig cochleae using a sealed injection technique comparing dosing volumes, rates and concentrations up to 750 μg/mL. Retention was measured by whole-cochlear gamma counts at five time points while distribution and clearance were assessed by autoradiography. Smaller injection volumes and higher concentrations correlated with higher retention of neurotrophin-3. Distribution of neurotrophin-3 was widespread throughout the cochlear tissue, decreasing in concentration from base to apex. Tissue distribution was non-uniform, with greatest density in cells lining the scala tympani and lower density in neural target tissue. The time constant for clearance of neurotrophin-3 from cochlear tissues was 38 h but neurotrophin-3 remained detectable for at least 2 weeks. Neurotrophin-3 was evident in the semi-circular canals with minor spread to the contralateral cochlea. This study is the first comprehensive evaluation of the disposition profile for a protein therapy in the cochlea. The findings and methods in this study will provide valuable guidance for the development of protein therapies for hearing loss.
Collapse
|
29
|
Liu W, Rask-Andersen H. Super-resolution immunohistochemistry study on CD4 and CD8 cells and the relation to macrophages in human cochlea. J Otol 2018; 14:1-5. [PMID: 30936894 PMCID: PMC6424713 DOI: 10.1016/j.joto.2018.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 11/25/2022] Open
Abstract
Recently, the human cochlea has been shown to contain numerous resident macrophages under steady-state. The macrophages accumulate in the stria vascularis, among the auditory nerves, and are also spotted in the human organ of Corti. These macrophages may process antigens reaching the cochlea by invasion of pathogens and insertion of CI electrode. Thus, macrophages execute an innate, and possibly an adaptive immunity. Here, we describe the molecular markers CD4 and CD8 of T cells, macrophage markers MHCII and CD11b, as well as the microglial markers TEME119 and P2Y12, in the human cochlea. Immunohistochemistry and the advantageous super-resolution structured illumination microscopy (SR-SIM) were used in the study. CD4+ and CD8+ cells were found in the human cochleae. They were seen in the modiolus in a substantial number adjacent to the vessels, in the peripheral region of the Rosenthal's canal, and occasionally in the spiral ligament. While there are a surprisingly large number of macrophages in the stria vascularis as well as between the auditory neurons, CD4+ and CD8+ cells are hardly seen in these areas, and neither are seen in the organ of Corti. In the modiolus, macrophages, CD4+ and CD8+ cells appeared often in clusters. Interaction between these different cells was easily observed with SR-SIM, showing closely placed cell bodies, and the processes from macrophages reaching out and touching the lymphocytes. Otherwise the CD4+ and CD8+ cells in human cochlear tissue are discretely scattered. The possible roles of these immune cells are speculated. CD4+ and CD8+ cells were found in the human cochleae. They were seen in the modiolus in a substantial number adjacent to the vessels, in the peripheral region of the Rosenthal's canal, and occasionally in the spiral ligament.
Collapse
Affiliation(s)
- Wei Liu
- Department of Surgical Sciences, Section of Otolaryngology, Uppsala University Hospital, SE-751 85, Uppsala, Sweden
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Section of Otolaryngology, Uppsala University Hospital, SE-751 85, Uppsala, Sweden
| |
Collapse
|
30
|
Wang Y, Han L, Diao T, Jing Y, Wang L, Zheng H, Ma X, Qi J, Yu L. A comparison of systemic and local dexamethasone administration: From perilymph/cochlea concentration to cochlear distribution. Hear Res 2018; 370:1-10. [PMID: 30223171 DOI: 10.1016/j.heares.2018.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/03/2018] [Accepted: 09/05/2018] [Indexed: 11/18/2022]
Abstract
Different types of inner ear diseases can damage different cochlear subsites by different mechanisms. Steroids administered by different methods are commonly used for treating inner ear diseases. There is reason to believe that dexamethasone (Dex) may reach cochlear subsite targets via different pathways after administration by different methods: Intratympanic (IT), postaural (PA), and intraperitoneal (IP). The purpose of this study was to explore the cochlear concentration and distribution of Dex after administration by different methods. High-performance liquid chromatography-mass spectrometry and immunofluorescence technology were employed to measure and compare the Dex concentration in the perilymph and cochlear tissue and the cochlear distribution of Dex. IT administration resulted in higher Dex concentrations in the perilymph and cochlear tissues than those with the other administration methods. Intratympanic and postaural administration could result in higher Dex concentrations in the organ of Corti than systemic administration, but systemic administration could result in higher Dex concentrations in the stria vascularis than the other administration methods. A decreasing basal-apical gradient of Dex uptake was present in the cochlea after IT but not IP or PA administration. These results indicate that different administration methods result in different Dex distributions, which can be attributed to features of the cochlear vascular system and intracochlear diffusion. Our results provide clinicians with an experimental basis for the use of different steroid injection routes to optimize the effects on inner ear diseases with different target organs.
Collapse
Affiliation(s)
- Yixu Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, PR China
| | - Lin Han
- Department of Otorhinolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, PR China
| | - Tongxiang Diao
- Department of Otorhinolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, PR China
| | - Yuanyuan Jing
- Department of Otorhinolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, PR China
| | - Lin Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, PR China
| | - Hongwei Zheng
- Department of Otorhinolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, PR China
| | - Xin Ma
- Department of Otorhinolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, PR China
| | - Jingcui Qi
- Department of Otorhinolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, PR China
| | - Lisheng Yu
- Department of Otorhinolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing, PR China.
| |
Collapse
|
31
|
Glueckert R, Johnson Chacko L, Rask-Andersen H, Liu W, Handschuh S, Schrott-Fischer A. Anatomical basis of drug delivery to the inner ear. Hear Res 2018; 368:10-27. [PMID: 30442227 DOI: 10.1016/j.heares.2018.06.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/16/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022]
Abstract
The isolated anatomical position and blood-labyrinth barrier hampers systemic drug delivery to the mammalian inner ear. Intratympanic placement of drugs and permeation via the round- and oval window are established methods for local pharmaceutical treatment. Mechanisms of drug uptake and pathways for distribution within the inner ear are hard to predict. The complex microanatomy with fluid-filled spaces separated by tight- and leaky barriers compose various compartments that connect via active and passive transport mechanisms. Here we provide a review on the inner ear architecture at light- and electron microscopy level, relevant for drug delivery. Focus is laid on the human inner ear architecture. Some new data add information on the human inner ear fluid spaces generated with high resolution microcomputed tomography at 15 μm resolution. Perilymphatic spaces are connected with the central modiolus by active transport mechanisms of mesothelial cells that provide access to spiral ganglion neurons. Reports on leaky barriers between scala tympani and the so-called cortilymph compartment likely open the best path for hair cell targeting. The complex barrier system of tight junction proteins such as occludins, claudins and tricellulin isolates the endolymphatic space for most drugs. Comparison of relevant differences of barriers, target cells and cell types involved in drug spread between main animal models and humans shall provide some translational aspects for inner ear drug applications.
Collapse
Affiliation(s)
- R Glueckert
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria; University Clinics Innsbruck, Tirol Kliniken, University Clinic for Ear, Nose and Throat Medicine Innsbruck, Austria.
| | - L Johnson Chacko
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - H Rask-Andersen
- Department of Surgical Sciences, Section of Otolaryngology, Uppsala University Hospital, SE-751 85, Uppsala, Sweden
| | - W Liu
- Department of Surgical Sciences, Section of Otolaryngology, Uppsala University Hospital, SE-751 85, Uppsala, Sweden
| | - S Handschuh
- VetImaging, VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | - A Schrott-Fischer
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
32
|
Schulze J, Sasse S, Prenzler N, Staecker H, Mellott AJ, Roemer A, Durisin M, Lenarz T, Warnecke A. Microenvironmental support for cell delivery to the inner ear. Hear Res 2018; 368:109-122. [PMID: 29945803 DOI: 10.1016/j.heares.2018.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/10/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022]
Abstract
Transplantation of mesenchymal stromal cells (MSC) presents a promising approach not only for the replacement of lost or degenerated cells in diseased organs but also for local drug delivery. It can potentially be used to enhance the safety and efficacy of inner ear surgeries such as cochlear implantation. Options for enhancing the effects of MSC therapy include modulating cell behaviour with customized bio-matrixes or modulating their behaviour by ex vivo transfection of the cells with a variety of genes. In this study, we demonstrate that MSC delivered to the inner ear of guinea pigs or to decellularized cochleae preferentially bind to areas of high heparin concentration. This presents an opportunity for modulating cell behaviour ex vivo. We evaluated the effect of carboxymethylglucose sulfate (Cacicol®), a heparan sulfate analogue on spiral ganglion cells and MSC and demonstrated support of neuronal survival and support of stem cell proliferation.
Collapse
Affiliation(s)
- Jennifer Schulze
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany; Cluster of Excellence "Hearing4all" of the German Research Foundation, Germany
| | - Susanne Sasse
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany
| | - Nils Prenzler
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany
| | - Hinrich Staecker
- Department of Otolaryngology Head and Neck Surgery, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Adam J Mellott
- Department of Plastic Surgery, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Ariane Roemer
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany
| | - Martin Durisin
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany; Cluster of Excellence "Hearing4all" of the German Research Foundation, Germany
| | - Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany; Cluster of Excellence "Hearing4all" of the German Research Foundation, Germany.
| |
Collapse
|
33
|
Salt AN, Hirose K. Communication pathways to and from the inner ear and their contributions to drug delivery. Hear Res 2018; 362:25-37. [PMID: 29277248 PMCID: PMC5911243 DOI: 10.1016/j.heares.2017.12.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/08/2017] [Accepted: 12/05/2017] [Indexed: 01/04/2023]
Abstract
The environment of the inner ear is highly regulated in a manner that some solutes are permitted to enter while others are excluded or transported out. Drug therapies targeting the sensory and supporting cells of the auditory and vestibular systems require the agent to gain entry to the fluid spaces of the inner ear, perilymph or endolymph, which surround the sensory organs. Access to the inner ear fluids from the vasculature is limited by the blood-labyrinth barriers, which include the blood-perilymph and blood-strial barriers. Intratympanic applications provide an alternative approach in which drugs are applied locally. Drug from the applied solution enters perilymph through the round window membrane, through the stapes, and under some circumstances, through thin bone in the otic capsule. The amount of drug applied to the middle ear is always substantially more than the amount entering perilymph. As a result, significant amounts of the applied drug can pass to the digestive system, to the vasculature, and to the brain. Drugs in perilymph pass to the vasculature and to cerebrospinal fluid via the cochlear aqueduct. Conversely, drugs applied to cerebrospinal fluid, including those given intrathecally, can enter perilymph through the cochlear aqueduct. Other possible routes in or out of the ear include passage by neuronal pathways, passage via endolymph and the endolymphatic sac, and possibly via lymphatic pathways. A better understanding of the pathways for drug movements in and out of the ear will enable better intervention strategies.
Collapse
Affiliation(s)
- Alec N Salt
- Department of Otolaryngology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, USA.
| | - Keiko Hirose
- Department of Otolaryngology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, USA
| |
Collapse
|
34
|
Agrawal S, Schart-Morén N, Liu W, Ladak HM, Rask-Andersen H, Li H. The secondary spiral lamina and its relevance in cochlear implant surgery. Ups J Med Sci 2018; 123. [PMID: 29537931 PMCID: PMC5901472 DOI: 10.1080/03009734.2018.1443983] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE We used synchrotron radiation phase contrast imaging (SR-PCI) to study the 3D microanatomy of the basilar membrane (BM) and its attachment to the spiral ligament (SL) (with a conceivable secondary spiral lamina [SSL] or secondary spiral plate) at the round window membrane (RWM) in the human cochlea. The conception of this complex anatomy may be essential for accomplishing structural preservation at cochlear implant surgery. MATERIAL AND METHODS Sixteen freshly fixed human temporal bones were used to reproduce the BM, SL, primary and secondary osseous spiral laminae (OSL), and RWM using volume-rendering software. Confocal microscopy immunohistochemistry (IHC) was performed to analyze the molecular constituents. RESULTS SR-PCI reproduced the soft tissues including the RWM, Reissner's membrane (RM), and the BM attachment to the lateral wall (LW) in three dimensions. A variable SR-PCI contrast enhancement was recognized in the caudal part of the SL facing the scala tympani (ST). It seemed to represent a SSL allied to the basilar crest (BC). The SSL extended along the postero-superior margin of the round window (RW) and immunohistochemically expressed type II collagen. CONCLUSIONS Unlike in several mammalian species, the human SSL is restricted to the most basal portion of the cochlea around the RW. It anchors the BM and may influence its hydro-mechanical properties. It could also help to shield the BM from the RW. The microanatomy should be considered at cochlear implant surgery.
Collapse
Affiliation(s)
- Sumit Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada
| | - Nadine Schart-Morén
- Department of Surgical Sciences, Section of Otolaryngology, Department of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden
| | - Wei Liu
- Department of Surgical Sciences, Section of Otolaryngology, Department of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden
| | - Hanif M. Ladak
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada
- Department of Medical Biophysics and Department of Electrical and Computer Engineering, Western University, London, ON, Canada
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Section of Otolaryngology, Department of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden
- CONTACT Helge Rask-Andersen Department of Surgical Sciences, Head and Neck Surgery Section of Otolaryngology, Department of Otolaryngology, Uppsala University Hospital, SE-751 85, Uppsala, Sweden
| | - Hao Li
- Department of Surgical Sciences, Section of Otolaryngology, Department of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
35
|
Kino J, Tsukaguchi H, Kimata T, Nguyen HT, Nakano Y, Miyake N, Matsumoto N, Kaneko K. Nephron development and extrarenal features in a child with congenital nephrotic syndrome caused by null LAMB2 mutations. BMC Nephrol 2017; 18:220. [PMID: 28683731 PMCID: PMC5501564 DOI: 10.1186/s12882-017-0632-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 06/22/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Congenital nephrotic syndrome (CNS) is a rare disorder caused by various structural and developmental defects of glomeruli. It occurs typically as an isolated kidney disorder but associates sometimes with other systemic, extrarenal manifestations. CASE PRESENTATIONS An infant presented with severe CNS, which progressed rapidly to renal failure at age of 3 months and death at 27 months. The clinical phenotypes and genetic causes were studied, including the renal pathology at autopsy. Besides the CNS, the affected child had remarkable right-side predominant eye-ball hypoplasia with bilateral anterior chamber dysgenesis (microcoria). Brain MRI revealed grossly normal development in the cerebrum, cerebellum, and brain stem. Auditory brainstem responses were bilaterally blunted, suggesting a defective auditory system. At autopsy, both kidneys were mildly atrophied with persistent fetal lobulation. Microscopic examination showed a diffuse global sclerosis. However, despite of the smaller size of glomeruli, the nephron number remained similar to that of the age-matched control. Whole-exome sequencing revealed that the affected child was compound heterozygous for novel truncating LAMB2 mutations: a 4-bp insertion (p.Gly1693Alafs*8) and a splicing donor-site substitution (c.1225 + 1G > A), presumably deleting the coiled-coil domains that form the laminin 5-2-1 heterotrimer complex. CONCLUSIONS Our case represents a variation of Pierson syndrome that accompanies CNS with unilateral ocular hypoplasia. The average number but smaller glomeruli could reflect either mal-development or glomerulosclerosis. Heterogeneous clinical expression of LAMB2 defects may associate with the difference in fetal β1 subtype compensation among affected tissues. Further study is necessary to evaluate incidence and features of auditory defect under LAMB2 deficiency.
Collapse
Affiliation(s)
- Jiro Kino
- Department of Pediatrics, Kansai Medical University, 2-5-1 Shimachi, Hirakata, Osaka, 573-1010, Japan
| | - Hiroyasu Tsukaguchi
- Second Department of Internal Medicine, Kansai Medical University, 2-5-1 Shinmachi Hirakata, Osaka, 573-1010, Japan.
| | - Takahisa Kimata
- Department of Pediatrics, Kansai Medical University, 2-5-1 Shimachi, Hirakata, Osaka, 573-1010, Japan
| | - Huan Thanh Nguyen
- Second Department of Internal Medicine, Kansai Medical University, 2-5-1 Shinmachi Hirakata, Osaka, 573-1010, Japan
| | - Yorika Nakano
- Department of Pathology and Laboratory Medicine, Kansai Medical University, Osaka, Japan.,Present Address: Department of Histopathology and Cytology, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Kazunari Kaneko
- Department of Pediatrics, Kansai Medical University, 2-5-1 Shimachi, Hirakata, Osaka, 573-1010, Japan
| |
Collapse
|
36
|
Mellott AJ, Shinogle HE, Nelson-Brantley JG, Detamore MS, Staecker H. Exploiting decellularized cochleae as scaffolds for inner ear tissue engineering. Stem Cell Res Ther 2017; 8:41. [PMID: 28241887 PMCID: PMC5330011 DOI: 10.1186/s13287-017-0505-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/18/2017] [Accepted: 02/10/2017] [Indexed: 11/20/2022] Open
Abstract
Background Use of decellularized tissues has become popular in tissue engineering applications as the natural extracellular matrix can provide necessary physical cues that help induce the restoration and development of functional tissues. In relation to cochlear tissue engineering, the question of whether decellularized cochlear tissue can act as a scaffold and support the incorporation of exogenous cells has not been addressed. Investigators have explored the composition of the cochlear extracellular matrix and developed multiple strategies for decellularizing a variety of different tissues; however, no one has investigated whether decellularized cochlear tissue can support implantation of exogenous cells. Methods As a proof-of-concept study, human Wharton’s jelly cells were perfused into decellularized cochleae isolated from C57BL/6 mice to determine if human Wharton’s jelly cells could implant into decellularized cochlear tissue. Decellularization was verified through scanning electron microscopy. Cocheae were stained with DAPI and immunostained with Myosin VIIa to identify cells. Perfused cochleae were imaged using confocal microscopy. Results Features of the organ of Corti were clearly identified in the native cochleae when imaged with scanning electron microscopy and confocal microscopy. Acellular structures were identified in decellularized cochleae; however, no cellular structures or lipid membranes were present within the decellularized cochleae when imaged via scanning electron microscopy. Confocal microscopy revealed positive identification and adherence of cells in decellularized cochleae after perfusion with human Wharton’s jelly cells. Some cells positively expressed Myosin VIIa after perfusion. Conclusions Human Wharton’s jelly cells are capable of successfully implanting into decellularized cochlear extracellular matrix. The identification of Myosin VIIa expression in human Wharton’s jelly cells after implantation into the decellularized cochlear extracellular matrix suggest that components of the cochlear extracellular matrix may be involved in differentiation.
Collapse
Affiliation(s)
- Adam J Mellott
- Department of Plastic Surgery, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Heather E Shinogle
- Microscopy and Analytical Imaging Laboratory, University of Kansas, Lawrence, KS, 66045, USA
| | - Jennifer G Nelson-Brantley
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 3010, Kansas City, KS, 66160, USA
| | - Michael S Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Hinrich Staecker
- Department of Otolaryngology, Head and Neck Surgery, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 3010, Kansas City, KS, 66160, USA.
| |
Collapse
|
37
|
Elfarnawany M, Alam SR, Rohani SA, Zhu N, Agrawal SK, Ladak HM. Micro-CT versus synchrotron radiation phase contrast imaging of human cochlea. J Microsc 2016; 265:349-357. [PMID: 27935035 DOI: 10.1111/jmi.12507] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/29/2016] [Accepted: 10/30/2016] [Indexed: 11/26/2022]
Abstract
High-resolution images of the cochlea are used to develop atlases to extract anatomical features from low-resolution clinical computed tomography (CT) images. We compare visualization and contrast of conventional absorption-based micro-CT to synchrotron radiation phase contrast imaging (SR-PCI) images of whole unstained, nondecalcified human cochleae. Three cadaveric cochleae were imaged using SR-PCI and micro-CT. Images were visually compared and contrast-to-noise ratios (CNRs) were computed from n = 27 regions-of-interest (enclosing soft tissue) for quantitative comparisons. Three-dimensional (3D) models of cochlear internal structures were constructed from SR-PCI images using a semiautomatic segmentation method. SR-PCI images provided superior visualization of soft tissue microstructures over conventional micro-CT images. CNR improved from 7.5 ± 2.5 in micro-CT images to 18.0 ± 4.3 in SR-PCI images (p < 0.0001). The semiautomatic segmentations yielded accurate reconstructions of 3D models of the intracochlear anatomy. The improved visualization, contrast and modelling achieved using SR-PCI images are very promising for developing atlas-based segmentation methods for postoperative evaluation of cochlear implant surgery.
Collapse
Affiliation(s)
- M Elfarnawany
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, Ontario, Canada
| | - S Riyahi Alam
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, Ontario, Canada
| | - S A Rohani
- Biomedical Engineering Graduate Program, Western University, London, Ontario, Canada
| | - N Zhu
- Bio-Medical Imaging and Therapy Facility, Canadian Light Source Inc., University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - S K Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, Ontario, Canada.,Biomedical Engineering Graduate Program, Western University, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada.,Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada
| | - H M Ladak
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, Ontario, Canada.,Biomedical Engineering Graduate Program, Western University, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada.,Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada
| |
Collapse
|
38
|
Abstract
In this review, we provide a description of the recent methods used for immunohistochemical staining of the human inner ear using formalin-fixed frozen, paraffin and celloidin-embedded sections. We also show the application of these immunohistochemical methods in auditory and vestibular endorgans microdissected from the human temporal bone. We compare the advantages and disadvantages of immunohistochemistry (IHC) in the different types of embedding media. IHC in frozen and paraffin-embedded sections yields a robust immunoreactive signal. Both frozen and paraffin sections would be the best alternative in the case where celloidin-embedding technique is not available. IHC in whole endorgans yields excellent results and can be used when desiring to detect regional variations of protein expression in the sensory epithelia. One advantage of microdissection is that the tissue is processed immediately and IHC can be made within 1 week of temporal bone collection. A second advantage of microdissection is the excellent preservation of both morphology and antigenicity. Using celloidin-embedded inner ear sections, we were able to detect several antigens by IHC and immunofluorescence using antigen retrieval methods. These techniques, previously applied only in animal models, allow for the study of numerous important proteins expressed in the human temporal bone potentially opening up a new field for future human inner ear research.
Collapse
|
39
|
Santi PA, Aldaya R, Brown A, Johnson S, Stromback T, Cureoglu S, Rask-Andersen H. Scanning Electron Microscopic Examination of the Extracellular Matrix in the Decellularized Mouse and Human Cochlea. J Assoc Res Otolaryngol 2016; 17:159-71. [PMID: 27029011 DOI: 10.1007/s10162-016-0562-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/15/2016] [Indexed: 10/22/2022] Open
Abstract
Decellularized tissues have been used to investigate the extracellular matrix (ECM) in a number of different tissues and species. Santi and Johnson JARO 14:3-15 (2013) first described the decellularized inner ear in the mouse, rat, and human using scanning thin-sheet laser imaging microscopy (sTSLIM). The purpose of the present investigation is to examine decellularized cochleas in the mouse and human at higher resolution using scanning electron microscopy (SEM). Fresh cochleas were harvested and decellularized using detergent extraction methods. Following decellularization, the ECM of the bone, basilar membrane, spiral limbus, and ligament remained, and all of the cells were removed from the cochlea. A number of similarities and differences in the ECM of the mouse and human were observed. A novel, spirally directed structure was present on the basilar membrane and is located at the border between Hensen and Boettcher cells. These septa-like structures formed a single row in the mouse and multiple rows in the human. The basal lamina of the stria vascularis capillaries was present and appeared thicker in the human compared with the mouse. In the mouse, numerous openings beneath the spiral prominence that previously housed the root processes of the external sulcus cells were observed but in the human there was only a single row of openings. These and other anatomical differences in the ECM between the mouse and human may reflect functional differences and/or be due to aging; however, decellularized cochleas provide a new way to examine the cochlear ECM and reveal new observations.
Collapse
Affiliation(s)
- Peter A Santi
- Department of Otolaryngology, University of Minnesota, Lions Research Building 2001 Sixth Street, SE, Minneapolis, MN, 55455, USA.
| | - Robair Aldaya
- Department of Otolaryngology, University of Minnesota, Lions Research Building 2001 Sixth Street, SE, Minneapolis, MN, 55455, USA
| | - Alec Brown
- Department of Otolaryngology, University of Minnesota, Lions Research Building 2001 Sixth Street, SE, Minneapolis, MN, 55455, USA
| | - Shane Johnson
- Department of Otolaryngology, University of Minnesota, Lions Research Building 2001 Sixth Street, SE, Minneapolis, MN, 55455, USA
| | - Tyler Stromback
- Department of Otolaryngology, University of Minnesota, Lions Research Building 2001 Sixth Street, SE, Minneapolis, MN, 55455, USA
| | - Sebahattin Cureoglu
- Department of Otolaryngology, University of Minnesota, Lions Research Building 2001 Sixth Street, SE, Minneapolis, MN, 55455, USA
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Uppsala University Hospital, 751 85, Uppsala, Sweden
| |
Collapse
|
40
|
Manohar S, Jamesdaniel S, Ding D, Salvi R, Seigel GM, Roth JA. Quantitative PCR analysis and protein distribution of drug transporter genes in the rat cochlea. Hear Res 2015; 332:46-54. [PMID: 26626361 DOI: 10.1016/j.heares.2015.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/06/2015] [Accepted: 10/30/2015] [Indexed: 01/29/2023]
Abstract
Membrane transporters can be major determinants in the targeting and effectiveness of pharmaceutical agents. A large number of biologically important membrane transporters have been identified and localized to a variety of tissues, organs and cell types. However, little is known about the expression of key membrane transporters in the inner ear, a promising site for targeted therapeutics, as well as a region vulnerable to adverse drug reactions and environmental factors. In this study, we examined the levels of endogenous membrane transporters in rat cochlea by targeted PCR array analysis of 84 transporter genes, followed by validation and localization in tissues by immunohistochemistry. Our studies indicate that several members of the SLC, VDAC and ABC membrane transporter families show high levels of expression, both at the RNA and protein levels in the rat cochlea. Identification and characterization of these membrane transporters in the inner ear have clinical implications for both therapeutic and cytotoxic mechanisms that may aid in the preservation of auditory function.
Collapse
Affiliation(s)
| | - Samson Jamesdaniel
- Center for Hearing & Deafness, University at Buffalo, NY 14214, United States
| | - Dalian Ding
- Center for Hearing & Deafness, University at Buffalo, NY 14214, United States
| | - Richard Salvi
- Center for Hearing & Deafness, University at Buffalo, NY 14214, United States
| | - Gail M Seigel
- Center for Hearing & Deafness, University at Buffalo, NY 14214, United States; SUNY Eye Institute, New York, United States
| | - Jerome A Roth
- Department of Pharmacology and Toxicology, University at Buffalo, NY 14214, United States.
| |
Collapse
|