1
|
Jati S, Munoz-Mayorga D, Shahabi S, Tang K, Tao Y, Dickson DW, Litvan I, Ghosh G, Mahata SK, Chen X. Chromogranin A deficiency attenuates tauopathy by altering epinephrine-alpha-adrenergic receptor signaling in PS19 mice. Nat Commun 2025; 16:4703. [PMID: 40393970 PMCID: PMC12092710 DOI: 10.1038/s41467-025-59682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 04/30/2025] [Indexed: 05/22/2025] Open
Abstract
Metabolic disorders such as insulin resistance and hypertension are potential risk factors for aging and neurodegenerative diseases. These conditions are reversed in Chromogranin A (CgA) knockout (CgA-KO) mice. CgA is known to be associated with protein aggregates in the brains of neurodegenerative diseases including Alzheimer's disease (AD). Here, we investigated the role of CgA in Tau pathogenesis in AD and corticobasal degeneration (CBD). CgA ablation in Tauopathy mice (PS19) (CgA-KO/PS19) reduced pathological Tau aggregation and spreading, extended lifespan, and improved cognitive function. Transcriptomic and metabolite analysis of mouse cortices revealed elevated alpha-1-adrenergic receptors (Adra1) expression and high Epinephrine (EPI) levels in PS19 mice compared to WT mice, mirroring observations in AD and CBD patients. CgA depletion in PS19 mice lowered cortical EPI levels and the expression of Adra1 back to normal. Treatment of WT hippocampal organotypic slice cultures with EPI or Adra1 agonist promoted, while an Adra1 antagonist inhibited Tau hyperphosphorylation and formation of neurofibrillary tangles, which is unaltered upon CgA depletion. These findings demonstrate the involvement of CgA in Tau pathogenesis and highlight the interplay between the EPI-Adra1 signaling pathway and CgA in Tauopathy.
Collapse
Affiliation(s)
- Suborno Jati
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA, United States of America
| | - Daniel Munoz-Mayorga
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | - Shandy Shahabi
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA, United States of America
| | - Kechun Tang
- Department of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Yuren Tao
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| | | | - Irene Litvan
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
- Parkinson and Other Movement Disorders Center, University of California San Diego, La Jolla, CA, United States of America
| | - Gourisankar Ghosh
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, CA, United States of America.
| | - Sushil K Mahata
- Department of Medicine, University of California San Diego, La Jolla, CA, United States of America.
- Veterans Affairs San Diego Healthcare System, San Diego, CA, United States of America.
| | - Xu Chen
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States of America
| |
Collapse
|
2
|
Kovilakath A, Mauro AG, Valentine YA, Raucci FJ, Jamil M, Carter C, Thompson J, Chen Q, Beutner G, Yue Y, Allegood J, Wang XX, Dail J, Devarakonda T, Myakala K, Windle JJ, Subler MA, Montefusco D, Willard B, Javaheri A, Bernas T, Mahata SK, Levi M, Liu J, Porter GA, Lesnefsky EJ, Salloum FN, Cowart LA. SPTLC3 Is Essential for Complex I Activity and Contributes to Ischemic Cardiomyopathy. Circulation 2024; 150:622-641. [PMID: 38660786 PMCID: PMC11333184 DOI: 10.1161/circulationaha.123.066879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Dysregulated metabolism of bioactive sphingolipids, including ceramides and sphingosine-1-phosphate, has been implicated in cardiovascular disease, although the specific species, disease contexts, and cellular roles are not completely understood. Sphingolipids are produced by the serine palmitoyltransferase enzyme, canonically composed of 2 subunits, SPTLC1 (serine palmitoyltransferase long chain base subunit 1) and SPTLC2 (serine palmitoyltransferase long chain base subunit 2). Noncanonical sphingolipids are produced by a more recently described subunit, SPTLC3 (serine palmitoyltransferase long chain base subunit 3). METHODS The noncanonical (d16) and canonical (d18) sphingolipidome profiles in cardiac tissues of patients with end-stage ischemic cardiomyopathy and in mice with ischemic cardiomyopathy were analyzed by targeted lipidomics. Regulation of SPTLC3 by HIF1α under ischemic conditions was determined with chromatin immunoprecipitation. Transcriptomics, lipidomics, metabolomics, echocardiography, mitochondrial electron transport chain, mitochondrial membrane fluidity, and mitochondrial membrane potential were assessed in the cSPTLC3KO transgenic mice we generated. Furthermore, morphological and functional studies were performed on cSPTLC3KO mice subjected to permanent nonreperfused myocardial infarction. RESULTS Herein, we report that SPTLC3 is induced in both human and mouse models of ischemic cardiomyopathy and leads to production of atypical sphingolipids bearing 16-carbon sphingoid bases, resulting in broad changes in cell sphingolipid composition. This induction is in part attributable to transcriptional regulation by HIF1α under ischemic conditions. Furthermore, cardiomyocyte-specific depletion of SPTLC3 in mice attenuates oxidative stress, fibrosis, and hypertrophy in chronic ischemia, and mice demonstrate improved cardiac function and increased survival along with increased ketone and glucose substrate metabolism utilization. Depletion of SPTLC3 mechanistically alters the membrane environment and subunit composition of mitochondrial complex I of the electron transport chain, decreasing its activity. CONCLUSIONS Our findings suggest a novel essential role for SPTLC3 in electron transport chain function and a contribution to ischemic injury by regulating complex I activity.
Collapse
Affiliation(s)
- Anna Kovilakath
- Department of Human and Molecular Genetics (A.K., M.J., J.J.W., M.A.S.), Virginia Commonwealth University, Richmond
| | - Adolfo G Mauro
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Richmond, VA (A.G.M., J.T., Q.C., T.D., E.J.L., F.N.S.)
| | - Yolander A Valentine
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research (Y.A.V.), Virginia Commonwealth University, Richmond
- Department of Biochemistry and Molecular Biology (Y.A.V., Y.Y., J.A., J.D., D.M., E.J.L., L.A.C.), Virginia Commonwealth University, Richmond
| | - Frank J Raucci
- Department of Pediatrics, Division of Pediatric Cardiology (F.J.R.), Virginia Commonwealth University, Richmond
| | - Maryam Jamil
- Department of Human and Molecular Genetics (A.K., M.J., J.J.W., M.A.S.), Virginia Commonwealth University, Richmond
| | - Christiane Carter
- Bioinformatics Shared Resource, Massey Comprehensive Cancer Center (C.C., J.L.), Virginia Commonwealth University, Richmond
| | - Jeremy Thompson
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Richmond, VA (A.G.M., J.T., Q.C., T.D., E.J.L., F.N.S.)
| | - Qun Chen
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Richmond, VA (A.G.M., J.T., Q.C., T.D., E.J.L., F.N.S.)
| | - Gisela Beutner
- Department of Pediatrics (G.B., G.A.P.), University of Rochester Medical Center, NY
| | - Yang Yue
- Department of Biochemistry and Molecular Biology (Y.A.V., Y.Y., J.A., J.D., D.M., E.J.L., L.A.C.), Virginia Commonwealth University, Richmond
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology (Y.A.V., Y.Y., J.A., J.D., D.M., E.J.L., L.A.C.), Virginia Commonwealth University, Richmond
| | - Xiaoxin X Wang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC (X.X.W., K.M., M.L.)
| | - Jordan Dail
- Department of Biochemistry and Molecular Biology (Y.A.V., Y.Y., J.A., J.D., D.M., E.J.L., L.A.C.), Virginia Commonwealth University, Richmond
| | - Teja Devarakonda
- Department of Physiology and Biophysics (F.N.S., T.D., E.J.L.), Virginia Commonwealth University, Richmond
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Richmond, VA (A.G.M., J.T., Q.C., T.D., E.J.L., F.N.S.)
| | - Komuraiah Myakala
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC (X.X.W., K.M., M.L.)
| | - Jolene J Windle
- Department of Human and Molecular Genetics (A.K., M.J., J.J.W., M.A.S.), Virginia Commonwealth University, Richmond
- Massey Comprehensive Cancer Center (J.J.W., J.L., F.N.S., L.A.C.), Virginia Commonwealth University, Richmond
| | - Mark A Subler
- Department of Human and Molecular Genetics (A.K., M.J., J.J.W., M.A.S.), Virginia Commonwealth University, Richmond
| | - David Montefusco
- Department of Biochemistry and Molecular Biology (Y.A.V., Y.Y., J.A., J.D., D.M., E.J.L., L.A.C.), Virginia Commonwealth University, Richmond
| | - Belinda Willard
- Proteomics and Metabolomics Shared Laboratory Resource, Lerner Research Institute, Cleveland Clinic, OH (B.W.)
| | - Ali Javaheri
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO (A.J.)
- St. Louis Veterans' Affairs Medical Center, MO (A.J.)
| | - Tytus Bernas
- Department of Anatomy and Neurobiology (T.B.), Virginia Commonwealth University, Richmond
| | - Sushil K Mahata
- Veterans' Affairs San Diego Healthcare System and University of California San Diego, (S.K.M)
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC (X.X.W., K.M., M.L.)
| | - Jinze Liu
- Bioinformatics Shared Resource, Massey Comprehensive Cancer Center (C.C., J.L.), Virginia Commonwealth University, Richmond
- Massey Comprehensive Cancer Center (J.J.W., J.L., F.N.S., L.A.C.), Virginia Commonwealth University, Richmond
| | - George A Porter
- Department of Pediatrics (G.B., G.A.P.), University of Rochester Medical Center, NY
- Department of Pharmacology and Physiology (G.A.P.), University of Rochester Medical Center, NY
- Aab Cardiovascular Research Institute (G.A.P.), University of Rochester Medical Center, NY
| | - Edward J Lesnefsky
- Department of Biochemistry and Molecular Biology (Y.A.V., Y.Y., J.A., J.D., D.M., E.J.L., L.A.C.), Virginia Commonwealth University, Richmond
- Department of Physiology and Biophysics (F.N.S., T.D., E.J.L.), Virginia Commonwealth University, Richmond
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Richmond, VA (A.G.M., J.T., Q.C., T.D., E.J.L., F.N.S.)
- Richmond Veterans' Affairs Medical Center, VA (E.J.L., L.A.C.)
| | - Fadi N Salloum
- Department of Physiology and Biophysics (F.N.S., T.D., E.J.L.), Virginia Commonwealth University, Richmond
- Massey Comprehensive Cancer Center (J.J.W., J.L., F.N.S., L.A.C.), Virginia Commonwealth University, Richmond
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Richmond, VA (A.G.M., J.T., Q.C., T.D., E.J.L., F.N.S.)
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology (Y.A.V., Y.Y., J.A., J.D., D.M., E.J.L., L.A.C.), Virginia Commonwealth University, Richmond
- Massey Comprehensive Cancer Center (J.J.W., J.L., F.N.S., L.A.C.), Virginia Commonwealth University, Richmond
- Richmond Veterans' Affairs Medical Center, VA (E.J.L., L.A.C.)
| |
Collapse
|
3
|
Kopp EL, Deussen DN, Cuomo R, Lorenz R, Roth DM, Mahata SK, Patel HH. Modeling and Phenotyping Acute and Chronic Type 2 Diabetes Mellitus In Vitro in Rodent Heart and Skeletal Muscle Cells. Cells 2023; 12:2786. [PMID: 38132105 PMCID: PMC10741513 DOI: 10.3390/cells12242786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Type 2 diabetes (T2D) has a complex pathophysiology which makes modeling the disease difficult. We aimed to develop a novel model for simulating T2D in vitro, including hyperglycemia, hyperlipidemia, and variably elevated insulin levels targeting muscle cells. We investigated insulin resistance (IR), cellular respiration, mitochondrial morphometry, and the associated function in different T2D-mimicking conditions in rodent skeletal (C2C12) and cardiac (H9C2) myotubes. The physiological controls included 5 mM of glucose with 20 mM of mannitol as osmotic controls. To mimic hyperglycemia, cells were exposed to 25 mM of glucose. Further treatments included insulin, palmitate, or both. After short-term (24 h) or long-term (96 h) exposure, we performed radioactive glucose uptake and mitochondrial function assays. The mitochondrial size and relative frequencies were assessed with morphometric analyses using electron micrographs. C2C12 and H9C2 cells that were treated short- or long-term with insulin and/or palmitate and HG showed IR. C2C12 myotubes exposed to T2D-mimicking conditions showed significantly decreased ATP-linked respiration and spare respiratory capacity and less cytoplasmic area occupied by mitochondria, implying mitochondrial dysfunction. In contrast, the H9C2 myotubes showed elevated ATP-linked and maximal respiration and increased cytoplasmic area occupied by mitochondria, indicating a better adaptation to stress and compensatory lipid oxidation in a T2D environment. Both cell lines displayed elevated fractions of swollen/vacuolated mitochondria after T2D-mimicking treatments. Our stable and reproducible in vitro model of T2D rapidly induced IR, changes in the ATP-linked respiration, shifts in energetic phenotypes, and mitochondrial morphology, which are comparable to the muscles of patients suffering from T2D. Thus, our model should allow for the study of disease mechanisms and potential new targets and allow for the screening of candidate therapeutic compounds.
Collapse
Affiliation(s)
- Elena L. Kopp
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
- Faculty of Medicine, University of Munich (LMU Munich), 80539 Munich, Germany
| | - Daniel N. Deussen
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
- Faculty of Medicine, University of Munich (LMU Munich), 80539 Munich, Germany
| | - Raphael Cuomo
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| | - Reinhard Lorenz
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, 80539 Munich, Germany
| | - David M. Roth
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Sushil K. Mahata
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Medicine, University of California, San Diego, CA 92093, USA
| | - Hemal H. Patel
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| |
Collapse
|
4
|
Iyer DR, Venkatraman J, Tanguy E, Vitale N, Mahapatra NR. Chromogranin A and its derived peptides: potential regulators of cholesterol homeostasis. Cell Mol Life Sci 2023; 80:271. [PMID: 37642733 PMCID: PMC11072126 DOI: 10.1007/s00018-023-04908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023]
Abstract
Chromogranin A (CHGA), a member of the granin family of proteins, has been an attractive therapeutic target and candidate biomarker for several cardiovascular, neurological, and inflammatory disorders. The prominence of CHGA stems from the pleiotropic roles of several bioactive peptides (e.g., catestatin, pancreastatin, vasostatins) generated by its proteolytic cleavage and by their wide anatomical distribution. These peptides are emerging as novel modulators of cardiometabolic diseases that are often linked to high blood cholesterol levels. However, their impact on cholesterol homeostasis is poorly understood. The dynamic nature of cholesterol and its multitudinous roles in almost every aspect of normal body function makes it an integral component of metabolic physiology. A tightly regulated coordination of cholesterol homeostasis is imperative for proper functioning of cellular and metabolic processes. The deregulation of cholesterol levels can result in several pathophysiological states. Although studies till date suggest regulatory roles for CHGA and its derived peptides on cholesterol levels, the mechanisms by which this is achieved still remain unclear. This review aims to aggregate and consolidate the available evidence linking CHGA with cholesterol homeostasis in health and disease. In addition, we also look at common molecular regulatory factors (viz., transcription factors and microRNAs) which could govern the expression of CHGA and genes involved in cholesterol homeostasis under basal and pathological conditions. In order to gain further insights into the pathways mediating cholesterol regulation by CHGA/its derived peptides, a few prospective signaling pathways are explored, which could act as primers for future studies.
Collapse
Affiliation(s)
- Dhanya R Iyer
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Janani Venkatraman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Emeline Tanguy
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, 5 Rue Blaise Pascal, 67000, Strasbourg, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212 and Université de Strasbourg, 5 Rue Blaise Pascal, 67000, Strasbourg, France.
| | - Nitish R Mahapatra
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
5
|
Guérineau NC. Adaptive remodeling of the stimulus-secretion coupling: Lessons from the 'stressed' adrenal medulla. VITAMINS AND HORMONES 2023; 124:221-295. [PMID: 38408800 DOI: 10.1016/bs.vh.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Stress is part of our daily lives and good health in the modern world is offset by unhealthy lifestyle factors, including the deleterious consequences of stress and associated pathologies. Repeated and/or prolonged stress may disrupt the body homeostasis and thus threatens our lives. Adaptive processes that allow the organism to adapt to new environmental conditions and maintain its homeostasis are therefore crucial. The adrenal glands are major endocrine/neuroendocrine organs involved in the adaptive response of the body facing stressful situations. Upon stress episodes and in response to activation of the sympathetic nervous system, the first adrenal cells to be activated are the neuroendocrine chromaffin cells located in the medullary tissue of the adrenal gland. By releasing catecholamines (mainly epinephrine and to a lesser extent norepinephrine), adrenal chromaffin cells actively contribute to the development of adaptive mechanisms, in particular targeting the cardiovascular system and leading to appropriate adjustments of blood pressure and heart rate, as well as energy metabolism. Specifically, this chapter covers the current knowledge as to how the adrenal medullary tissue remodels in response to stress episodes, with special attention paid to chromaffin cell stimulus-secretion coupling. Adrenal stimulus-secretion coupling encompasses various elements taking place at both the molecular/cellular and tissular levels. Here, I focus on stress-driven changes in catecholamine biosynthesis, chromaffin cell excitability, synaptic neurotransmission and gap junctional communication. These signaling pathways undergo a collective and finely-tuned remodeling, contributing to appropriate catecholamine secretion and maintenance of body homeostasis in response to stress.
Collapse
Affiliation(s)
- Nathalie C Guérineau
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
6
|
Neikirk K, Vue Z, Katti P, Rodriguez BI, Omer S, Shao J, Christensen T, Garza Lopez E, Marshall A, Palavicino-Maggio CB, Ponce J, Alghanem AF, Vang L, Barongan T, Beasley HK, Rodman T, Stephens D, Mungai M, Correia M, Exil V, Damo S, Murray SA, Crabtree A, Glancy B, Pereira RO, Abel ED, Hinton AO. Systematic Transmission Electron Microscopy-Based Identification and 3D Reconstruction of Cellular Degradation Machinery. Adv Biol (Weinh) 2023; 7:e2200221. [PMID: 36869426 DOI: 10.1002/adbi.202200221] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/16/2023] [Indexed: 03/05/2023]
Abstract
Various intracellular degradation organelles, including autophagosomes, lysosomes, and endosomes, work in tandem to perform autophagy, which is crucial for cellular homeostasis. Altered autophagy contributes to the pathophysiology of various diseases, including cancers and metabolic diseases. This paper aims to describe an approach to reproducibly identify and distinguish subcellular structures involved in macroautophagy. Methods are provided that help avoid common pitfalls. How to distinguish between lysosomes, lipid droplets, autolysosomes, autophagosomes, and inclusion bodies are also discussed. These methods use transmission electron microscopy (TEM), which is able to generate nanometer-scale micrographs of cellular degradation components in a fixed sample. Serial block face-scanning electron microscopy is also used to visualize the 3D morphology of degradation machinery using the Amira software. In addition to TEM and 3D reconstruction, other imaging techniques are discussed, such as immunofluorescence and immunogold labeling, which can be used to classify cellular organelles, reliably and accurately. Results show how these methods may be used to accurately quantify cellular degradation machinery under various conditions, such as treatment with the endoplasmic reticulum stressor thapsigargin or ablation of the dynamin-related protein 1.
Collapse
Affiliation(s)
- Kit Neikirk
- Department of Biology, University of Hawaii at Hilo, Hilo, HI, 96720, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| | - Zer Vue
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| | - Prasanna Katti
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ben I Rodriguez
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| | - Salem Omer
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| | - Jianqiang Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, 52242, USA
| | - Trace Christensen
- Microscopy and Cell Analysis Core Facility, Mayo Clinic, Rochester, MN, 55905, USA
| | - Edgar Garza Lopez
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| | - Andrea Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| | | | - Jessica Ponce
- School of Medicine, University of Utah, Salt Lake City, UT, 84112, USA
| | - Ahmad F Alghanem
- Eastern Region, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Al Hasa, Riyadh 14611, Saudi Arabia
| | - Larry Vang
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| | - Taylor Barongan
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| | - Heather K Beasley
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, 37208, USA
| | - Taylor Rodman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| | - Dominique Stephens
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| | - Margaret Mungai
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Marcelo Correia
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Vernat Exil
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Steven Damo
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, 37208, USA
| | - Sandra A Murray
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Amber Crabtree
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| | - Brian Glancy
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20814, USA
| | - Renata O Pereira
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, 52242, USA
| | - E Dale Abel
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, Iowa City, IA, 52242, USA
| | - Antentor O Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA
| |
Collapse
|
7
|
Parchure A, Tian M, Stalder D, Boyer CK, Bearrows SC, Rohli KE, Zhang J, Rivera-Molina F, Ramazanov BR, Mahata SK, Wang Y, Stephens SB, Gershlick DC, von Blume J. Liquid-liquid phase separation facilitates the biogenesis of secretory storage granules. J Cell Biol 2022; 221:e202206132. [PMID: 36173346 PMCID: PMC9526250 DOI: 10.1083/jcb.202206132] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 02/03/2023] Open
Abstract
Insulin is synthesized by pancreatic β-cells and stored into secretory granules (SGs). SGs fuse with the plasma membrane in response to a stimulus and deliver insulin to the bloodstream. The mechanism of how proinsulin and its processing enzymes are sorted and targeted from the trans-Golgi network (TGN) to SGs remains mysterious. No cargo receptor for proinsulin has been identified. Here, we show that chromogranin (CG) proteins undergo liquid-liquid phase separation (LLPS) at a mildly acidic pH in the lumen of the TGN, and recruit clients like proinsulin to the condensates. Client selectivity is sequence-independent but based on the concentration of the client molecules in the TGN. We propose that the TGN provides the milieu for converting CGs into a "cargo sponge" leading to partitioning of client molecules, thus facilitating receptor-independent client sorting. These findings provide a new receptor-independent sorting model in β-cells and many other cell types and therefore represent an innovation in the field of membrane trafficking.
Collapse
Affiliation(s)
- Anup Parchure
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Meng Tian
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Danièle Stalder
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Cierra K. Boyer
- Departments of Pharmacology and Neuroscience, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA
| | - Shelby C. Bearrows
- Departments of Pharmacology and Neuroscience, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA
| | - Kristen E. Rohli
- Departments of Pharmacology and Neuroscience, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
- Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA
| | - Jianchao Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI
| | - Felix Rivera-Molina
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Bulat R. Ramazanov
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Sushil K. Mahata
- Department of Medicine, University of California San Diego, La Jolla, CA
- VA San Diego Healthcare System, San Diego, CA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI
| | - Samuel B. Stephens
- Departments of Pharmacology and Neuroscience, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
| | - David C. Gershlick
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Julia von Blume
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
8
|
Liu MA, Shahabi S, Jati S, Tang K, Gao H, Jin Z, Miller W, Meunier FA, Ying W, van den Bogaart G, Ghosh G, Mahata SK. Gut microbial DNA and immune checkpoint gene Vsig4/CRIg are key antagonistic players in healthy aging and age-associated development of hypertension and diabetes. Front Endocrinol (Lausanne) 2022; 13:1037465. [PMID: 36440192 PMCID: PMC9691654 DOI: 10.3389/fendo.2022.1037465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022] Open
Abstract
Aims Aging is associated with the development of insulin resistance and hypertension which may stem from inflammation induced by accumulation of toxic bacterial DNA crossing the gut barrier. The aim of this study was to identify factors counter-regulating these processes. Taking advantage of the Chromogranin A (CgA) knockout (CgA-KO) mouse as a model for healthy aging, we have identified Vsig4 (V-set and immunoglobulin domain containing 4) as the critical checkpoint gene in offsetting age-associated hypertension and diabetes. Methods and Results The CgA-KO mice display two opposite aging phenotypes: hypertension but heightened insulin sensitivity at young age, whereas the blood pressure normalizes at older age and insulin sensitivity further improves. In comparison, aging WT mice gradually lost glucose tolerance and insulin sensitivity and developed hypertension. The gut barrier, compromised in aging WT mice, was preserved in CgA KO mice leading to major 35-fold protection against bacterial DNA-induced inflammation. Similarly, RNA sequencing showed increased expression of the Vsig4 gene (which removes bacterial DNA) in the liver of 2-yr-old CgA-KO mice, which may account for the very low accumulation of microbial DNA in the heart. The reversal of hypertension in aging CgA-KO mice likely stems from (i) low accumulation of microbial DNA, (ii) decreased spillover of norepinephrine in the heart and kidneys, and (iii) reduced inflammation. Conclusion We conclude that healthy aging relies on protection from bacterial DNA and the consequent low inflammation afforded by CgA-KO. Vsig4 also plays a crucial role in "healthy aging" by counteracting age-associated insulin resistance and hypertension.
Collapse
Affiliation(s)
- Matthew A. Liu
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Shandy Shahabi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| | - Suborno Jati
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| | - Kechun Tang
- Veterans Affairs (VA) San Diego Healthcare System, San Diego, CA, United States
| | - Hong Gao
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Zhongmou Jin
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Wyatt Miller
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| | - Frédéric A. Meunier
- Clem Jones Center for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Wei Ying
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Geert van den Bogaart
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| | - Sushil K. Mahata
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
- Veterans Affairs (VA) San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
9
|
Lin Z, Li Y, Hang Y, Wang C, Liu B, Li J, Yin L, Jiang X, Du X, Qiao Z, Zhu F, Zhang Z, Zhang Q, Zhou Z. Tuning the Size of Large Dense-Core Vesicles and Quantal Neurotransmitter Release via Secretogranin II Liquid-Liquid Phase Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202263. [PMID: 35896896 PMCID: PMC9507364 DOI: 10.1002/advs.202202263] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Large dense-core vesicles (LDCVs) are larger in volume than synaptic vesicles, and are filled with multiple neuropeptides, hormones, and neurotransmitters that participate in various physiological processes. However, little is known about the mechanism determining the size of LDCVs. Here, it is reported that secretogranin II (SgII), a vesicle matrix protein, contributes to LDCV size regulation through its liquid-liquid phase separation in neuroendocrine cells. First, SgII undergoes pH-dependent polymerization and the polymerized SgII forms phase droplets with Ca2+ in vitro and in vivo. Further, the Ca2+ -induced SgII droplets recruit reconstituted bio-lipids, mimicking the LDCVs biogenesis. In addition, SgII knockdown leads to significant decrease of the quantal neurotransmitter release by affecting LDCV size, which is differently rescued by SgII truncations with different degrees of phase separation. In conclusion, it is shown that SgII is a unique intravesicular matrix protein undergoing liquid-liquid phase separation, and present novel insights into how SgII determines LDCV size and the quantal neurotransmitter release.
Collapse
Affiliation(s)
- Zhaohan Lin
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Yinglin Li
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Yuqi Hang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Changhe Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Bing Liu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Jie Li
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Lili Yin
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Xiaohan Jiang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Xingyu Du
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Zhongjun Qiao
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Feipeng Zhu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Zhe Zhang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Quanfeng Zhang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| | - Zhuan Zhou
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular MedicineInstitute of Molecular MedicineCollege of Future TechnologyPeking‐Tsinghua Center for Life Sciences, and PKU‐IDG/McGovern Institute for Brain ResearchPeking UniversityBeijing100871China
| |
Collapse
|
10
|
Moon JS, da Cunha FF, Huh JY, Andreyev AY, Lee J, Mahata SK, Reis FC, Nasamran CA, Lee YS. ANT2 drives proinflammatory macrophage activation in obesity. JCI Insight 2021; 6:147033. [PMID: 34676827 PMCID: PMC8564915 DOI: 10.1172/jci.insight.147033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Macrophage proinflammatory activation is an important etiologic component of the development of insulin resistance and metabolic dysfunction in obesity. However, the underlying mechanisms are not clearly understood. Here, we demonstrate that a mitochondrial inner membrane protein, adenine nucleotide translocase 2 (ANT2), mediates proinflammatory activation of adipose tissue macrophages (ATMs) in obesity. Ant2 expression was increased in ATMs of obese mice compared with lean mice. Myeloid-specific ANT2-knockout (ANT2-MKO) mice showed decreased adipose tissue inflammation and improved insulin sensitivity and glucose tolerance in HFD/obesity. At the molecular level, we found that ANT2 mediates free fatty acid–induced mitochondrial permeability transition, leading to increased mitochondrial reactive oxygen species production and damage. In turn, this increased HIF-1α expression and NF-κB activation, leading to proinflammatory macrophage activation. Our results provide a previously unknown mechanism for how obesity induces proinflammatory activation of macrophages with propagation of low-grade chronic inflammation (metaflammation).
Collapse
Affiliation(s)
- Jae-Su Moon
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, California, USA
| | - Flavia Franco da Cunha
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, California, USA
| | - Jin Young Huh
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, California, USA
| | - Alexander Yu Andreyev
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, California, USA
| | - Jihyung Lee
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, California, USA
| | - Sushil K Mahata
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, California, USA.,VA San Diego Healthcare System, San Diego, California, USA
| | - Felipe Cg Reis
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, California, USA
| | - Chanond A Nasamran
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Yun Sok Lee
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
11
|
Xiang C, Chen P, Zhang Q, Li Y, Pan Y, Xie W, Sun J, Liu Z. Intestinal microbiota modulates adrenomedullary response through Nod1 sensing in chromaffin cells. iScience 2021; 24:102849. [PMID: 34381974 PMCID: PMC8333343 DOI: 10.1016/j.isci.2021.102849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/07/2021] [Accepted: 07/09/2021] [Indexed: 12/20/2022] Open
Abstract
The intestinal microbiota closely interacts with the neuroendocrine system and exerts profound effects on host physiology. Here, we report that nucleotide-binding oligomerization domain 1 (Nod1) ligand derived from intestinal bacteria modulates catecholamine storage and secretion in mouse adrenal chromaffin cells. The cytosolic peptidoglycan receptor Nod1 is involved in chromogranin A (Chga) retention in dense core granules (DCGs) in chromaffin cells. Mechanistically, upon recognizing its ligand, Nod1 localizes to DCGs, and recruits Rab2a, which is critical for Chga and epinephrine retention in DCGs. Depletion of Nod1 ligand or deficiency of Nod1 leads to a profound defect in epinephrine storage in chromaffin cells and subsequently less secretion upon stimulation. The intestine-adrenal medulla cross talk bridged by Nod1 ligand modulates adrenal medullary responses during the immobilization-induced stress response in mice. Thus, our study uncovers a mechanism by which intestinal microbes modulate epinephrine secretion in response to stress, which may provide further understanding of the gut-brain axis.
Collapse
Affiliation(s)
- Chen Xiang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peihua Chen
- University of Chinese Academy of Sciences, Beijing 100049, China
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, CAS; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, CAS, Beijing, 100101, China
| | - Qin Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yinghui Li
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Pan
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenchun Xie
- Key Laboratory of Interdisciplinary Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Guang Dong Bio-healtech Advanced Co., Ltd., Foshan, 528000, P. R. China
| | - Jianyuan Sun
- University of Chinese Academy of Sciences, Beijing 100049, China
- The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, CAS; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, CAS, Beijing, 100101, China
| | - Zhihua Liu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Immunology, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| |
Collapse
|
12
|
Muntjewerff EM, Tang K, Lutter L, Christoffersson G, Nicolasen MJT, Gao H, Katkar GD, Das S, ter Beest M, Ying W, Ghosh P, El Aidy S, Oldenburg B, van den Bogaart G, Mahata SK. Chromogranin A regulates gut permeability via the antagonistic actions of its proteolytic peptides. Acta Physiol (Oxf) 2021; 232:e13655. [PMID: 33783968 DOI: 10.1111/apha.13655] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
Abstract
AIM A "leaky" gut barrier has been implicated in the initiation and progression of a multitude of diseases, for example, inflammatory bowel disease (IBD), irritable bowel syndrome and celiac disease. Here we show how pro-hormone Chromogranin A (CgA), produced by the enteroendocrine cells, and Catestatin (CST: hCgA352-372 ), the most abundant CgA-derived proteolytic peptide, affect the gut barrier. METHODS Colon tissues from region-specific CST-knockout (CST-KO) mice, CgA-knockout (CgA-KO) and WT mice were analysed by immunohistochemistry, western blot, ultrastructural and flowcytometry studies. FITC-dextran assays were used to measure intestinal barrier function. Mice were supplemented with CST or CgA fragment pancreastatin (PST: CgA250-301 ). The microbial composition of cecum was determined. CgA and CST levels were measured in blood of IBD patients. RESULTS Plasma levels of CST were elevated in IBD patients. CST-KO mice displayed (a) elongated tight, adherens junctions and desmosomes similar to IBD patients, (b) elevated expression of Claudin 2, and (c) gut inflammation. Plasma FITC-dextran measurements showed increased intestinal paracellular permeability in the CST-KO mice. This correlated with a higher ratio of Firmicutes to Bacteroidetes, a dysbiotic pattern commonly encountered in various diseases. Supplementation of CST-KO mice with recombinant CST restored paracellular permeability and reversed inflammation, whereas CgA-KO mice supplementation with CST and/or PST in CgA-KO mice showed that intestinal paracellular permeability is regulated by the antagonistic roles of these two peptides: CST reduces and PST increases permeability. CONCLUSION The pro-hormone CgA regulates the intestinal paracellular permeability. CST is both necessary and sufficient to reduce permeability and primarily acts by antagonizing PST.
Collapse
Affiliation(s)
- Elke M. Muntjewerff
- Department of Tumor Immunology Radboud Institute for Molecular Life SciencesRadboud University Medical Center Nijmegen the Netherlands
| | - Kechun Tang
- VA San Diego Healthcare System San Diego CA USA
| | - Lisanne Lutter
- Center for Translational Immunology Utrecht University Medical Center Utrecht the Netherlands
- Department of Gastroenterology and Hepatology Utrecht University Medical Center Utrecht the Netherlands
| | - Gustaf Christoffersson
- Science for Life Laboratory Uppsala University Uppsala Sweden
- Department of Medical Cell biology Uppsala University Uppsala Sweden
| | - Mara J. T. Nicolasen
- Department of Tumor Immunology Radboud Institute for Molecular Life SciencesRadboud University Medical Center Nijmegen the Netherlands
| | - Hong Gao
- Department of Medicine University of California San Diego La Jolla CA USA
| | - Gajanan D. Katkar
- Department of Cellular and Molecular Medicine University of California San Diego La Jolla CA USA
| | - Soumita Das
- Department of Pathology University of California San Diego La Jolla CA USA
| | - Martin ter Beest
- Department of Tumor Immunology Radboud Institute for Molecular Life SciencesRadboud University Medical Center Nijmegen the Netherlands
| | - Wei Ying
- Department of Medicine University of California San Diego La Jolla CA USA
| | - Pradipta Ghosh
- Department of Medicine University of California San Diego La Jolla CA USA
- Department of Cellular and Molecular Medicine University of California San Diego La Jolla CA USA
| | - Sahar El Aidy
- Department of Molecular Immunology and Microbiology Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen Groningen the Netherlands
| | - Bas Oldenburg
- Department of Gastroenterology and Hepatology Utrecht University Medical Center Utrecht the Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology Radboud Institute for Molecular Life SciencesRadboud University Medical Center Nijmegen the Netherlands
- Department of Molecular Immunology and Microbiology Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen Groningen the Netherlands
| | - Sushil K. Mahata
- VA San Diego Healthcare System San Diego CA USA
- Department of Medicine University of California San Diego La Jolla CA USA
| |
Collapse
|
13
|
Zheng HT, Zhuang ZX, Chen CJ, Liao HY, Chen HL, Hsueh HC, Chen CF, Chen SE, Huang SY. Effects of acute heat stress on protein expression and histone modification in the adrenal gland of male layer-type country chickens. Sci Rep 2021; 11:6499. [PMID: 33753796 PMCID: PMC7985386 DOI: 10.1038/s41598-021-85868-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/08/2021] [Indexed: 01/31/2023] Open
Abstract
The adrenal gland responds to heat stress by epinephrine and glucocorticoid release to alleviate the adverse effects. This study investigated the effect of acute heat stress on the protein profile and histone modification in the adrenal gland of layer-type country chickens. A total of 192 roosters were subject to acute heat stress and thereafter classified into a resistant or susceptible group according to body temperature change. The iTRAQ analysis identified 80 differentially expressed proteins, in which the resistant group had a higher level of somatostatin and hydroxy-δ-5-steroid dehydrogenase but a lower parathymosin expression in accordance with the change of serum glucocorticoid levels. Histone modification analysis identified 115 histone markers. The susceptible group had a higher level of tri-methylation of histone H3 lysine 27 (H3K27me3) and showed a positive crosstalk with K36me and K37me in the H3 tails. The differential changes of body temperature projected in physiological regulation at the hypothalamus-pituitary-adrenal axis suggest the genetic heterogeneity in basic metabolic rate and efficiency for heat dissipation to acclimate to thermal stress and maintain body temperature homeostasis. The alteration of adrenal H3K27me3 level was associated with the endocrine function of adrenal gland and may contribute to the thermotolerance of chickens.
Collapse
Affiliation(s)
- Hao-Teng Zheng
- grid.260542.70000 0004 0532 3749Department of Animal Science, National Chung Hsing University, 145 Xingda Road, Taichung, 40227 Taiwan
| | - Zi-Xuan Zhuang
- grid.260542.70000 0004 0532 3749Department of Animal Science, National Chung Hsing University, 145 Xingda Road, Taichung, 40227 Taiwan
| | - Chao-Jung Chen
- grid.411508.90000 0004 0572 9415Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, 2 Yude Road, Taichung, 40447 Taiwan ,grid.254145.30000 0001 0083 6092Graduate Institute of Integrated Medicine, China Medical University, 91 Hsueh–Shih Road, Taichung, 40402 Taiwan
| | - Hsin-Yi Liao
- grid.411508.90000 0004 0572 9415Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, 2 Yude Road, Taichung, 40447 Taiwan
| | - Hung-Lin Chen
- grid.260542.70000 0004 0532 3749Department of Animal Science, National Chung Hsing University, 145 Xingda Road, Taichung, 40227 Taiwan
| | - Huang-Chun Hsueh
- grid.260542.70000 0004 0532 3749Department of Animal Science, National Chung Hsing University, 145 Xingda Road, Taichung, 40227 Taiwan
| | - Chih-Feng Chen
- grid.260542.70000 0004 0532 3749Department of Animal Science, National Chung Hsing University, 145 Xingda Road, Taichung, 40227 Taiwan ,grid.260542.70000 0004 0532 3749The iEGG and Animal Biotechnology Center, National Chung Hsing University, 145 Xingda Road, Taichung, 40227 Taiwan
| | - Shuen-Ei Chen
- grid.260542.70000 0004 0532 3749Department of Animal Science, National Chung Hsing University, 145 Xingda Road, Taichung, 40227 Taiwan ,grid.260542.70000 0004 0532 3749The iEGG and Animal Biotechnology Center, National Chung Hsing University, 145 Xingda Road, Taichung, 40227 Taiwan ,grid.260542.70000 0004 0532 3749Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, 145 Xingda Road, Taichung, 40227 Taiwan ,grid.260542.70000 0004 0532 3749Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, 145 Xingda Road, Taichung, 40227 Taiwan
| | - San-Yuan Huang
- grid.260542.70000 0004 0532 3749Department of Animal Science, National Chung Hsing University, 145 Xingda Road, Taichung, 40227 Taiwan ,grid.260542.70000 0004 0532 3749The iEGG and Animal Biotechnology Center, National Chung Hsing University, 145 Xingda Road, Taichung, 40227 Taiwan ,grid.260542.70000 0004 0532 3749Research Center for Sustainable Energy and Nanotechnology, National Chung Hsing University, 145 Xingda Road, Taichung, 40227 Taiwan
| |
Collapse
|
14
|
Zemljic-Harpf AE, Hoe LES, Schilling JM, Zuniga-Hertz JP, Nguyen A, Vaishnav YJ, Belza GJ, Budiono BP, Patel PM, Head BP, Dillmann WH, Mahata SK, Peart JN, Roth DM, Headrick JP, Patel HH. Morphine induces physiological, structural, and molecular benefits in the diabetic myocardium. FASEB J 2021; 35:e21407. [PMID: 33583084 PMCID: PMC10843897 DOI: 10.1096/fj.201903233r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 01/03/2023]
Abstract
The obesity epidemic has increased type II diabetes mellitus (T2DM) across developed countries. Cardiac T2DM risks include ischemic heart disease, heart failure with preserved ejection fraction, intolerance to ischemia-reperfusion (I-R) injury, and refractoriness to cardioprotection. While opioids are cardioprotective, T2DM causes opioid receptor signaling dysfunction. We tested the hypothesis that sustained opioid receptor stimulus may overcome diabetes mellitus-induced cardiac dysfunction via membrane/mitochondrial-dependent protection. In a murine T2DM model, we investigated effects of morphine on cardiac function, I-R tolerance, ultrastructure, subcellular cholesterol expression, mitochondrial protein abundance, and mitochondrial function. T2DM induced 25% weight gain, hyperglycemia, glucose intolerance, cardiac hypertrophy, moderate cardiac depression, exaggerated postischemic myocardial dysfunction, abnormalities in mitochondrial respiration, ultrastructure and Ca2+ -induced swelling, and cell death were all evident. Morphine administration for 5 days: (1) improved glucose homeostasis; (2) reversed cardiac depression; (3) enhanced I-R tolerance; (4) restored mitochondrial ultrastructure; (5) improved mitochondrial function; (6) upregulated Stat3 protein; and (7) preserved membrane cholesterol homeostasis. These data show that morphine treatment restores contractile function, ischemic tolerance, mitochondrial structure and function, and membrane dynamics in type II diabetic hearts. These findings suggest potential translational value for short-term, but high-dose morphine administration in diabetic patients undergoing or recovering from acute ischemic cardiovascular events.
Collapse
Affiliation(s)
- Alice E. Zemljic-Harpf
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Louise E. See Hoe
- Department of Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Jan M. Schilling
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Juan P. Zuniga-Hertz
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Alexander Nguyen
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Yash J. Vaishnav
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Gianna J. Belza
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Boris P. Budiono
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, QLD, Australia
| | - Piyush M. Patel
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Brian P. Head
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Wolfgang H. Dillmann
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sushil K. Mahata
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jason N. Peart
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, QLD, Australia
| | - David M. Roth
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - John P. Headrick
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, QLD, Australia
| | - Hemal H. Patel
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
15
|
Huh JY, Reilly SM, Abu-Odeh M, Murphy AN, Mahata SK, Zhang J, Cho Y, Seo JB, Hung CW, Green CR, Metallo CM, Saltiel AR. TANK-Binding Kinase 1 Regulates the Localization of Acyl-CoA Synthetase ACSL1 to Control Hepatic Fatty Acid Oxidation. Cell Metab 2020; 32:1012-1027.e7. [PMID: 33152322 PMCID: PMC7710607 DOI: 10.1016/j.cmet.2020.10.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/20/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022]
Abstract
Hepatic TANK (TRAF family member associated NFκB activator)-binding kinase 1 (TBK1) activity is increased during obesity, and administration of a TBK1 inhibitor reduces fatty liver. Surprisingly, liver-specific TBK1 knockout in mice produces fatty liver by reducing fatty acid oxidation. TBK1 functions as a scaffolding protein to localize acyl-CoA synthetase long-chain family member 1 (ACSL1) to mitochondria, which generates acyl-CoAs that are channeled for β-oxidation. TBK1 is induced during fasting and maintained in the unphosphorylated, inactive state, enabling its high affinity binding to ACSL1 in mitochondria. In TBK1-deficient liver, ACSL1 is shifted to the endoplasmic reticulum to promote fatty acid re-esterification in lieu of oxidation in response to fasting, which accelerates hepatic lipid accumulation. The impaired fatty acid oxidation in TBK1-deficient hepatocytes is rescued by the expression of kinase-dead TBK1. Thus, TBK1 operates as a rheostat to direct the fate of fatty acids in hepatocytes, supporting oxidation when inactive during fasting and promoting re-esterification when activated during obesity.
Collapse
Affiliation(s)
- Jin Young Huh
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Shannon M Reilly
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Mohammad Abu-Odeh
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Anne N Murphy
- Department of Pharmacology, University of California, San Diego, San Diego, CA 92093, USA
| | - Sushil K Mahata
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA; VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Jinyu Zhang
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Yoori Cho
- Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA
| | - Jong Bae Seo
- Department of Biosciences, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Chao-Wei Hung
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA
| | - Courtney R Green
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| | - Alan R Saltiel
- Department of Medicine, University of California, San Diego, San Diego, CA 92093, USA; Department of Pharmacology, University of California, San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
16
|
Nandi SS, Katsurada K, Sharma NM, Anderson DR, Mahata SK, Patel KP. MMP9 inhibition increases autophagic flux in chronic heart failure. Am J Physiol Heart Circ Physiol 2020; 319:H1414-H1437. [PMID: 33064567 DOI: 10.1152/ajpheart.00032.2020] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increased matrix metalloprotease 9 (MMP9) after myocardial infarction (MI) exacerbates ischemia-induced chronic heart failure (CHF). Autophagy is cardioprotective during CHF; however, whether increased MMP9 suppresses autophagic activity in CHF is unknown. This study aimed to determine whether increased MMP9 suppressed autophagic flux and MMP9 inhibition increased autophagic flux in the heart of rats with post-MI CHF. Sprague-Dawley rats underwent either sham surgery or coronary artery ligation 6-8 wk before being treated with MMP9 inhibitor for 7 days, followed by cardiac autophagic flux measurement with lysosomal inhibitor bafilomycin A1. Furthermore, autophagic flux was measured in vitro by treating H9c2 cardiomyocytes with two independent pharmacological MMP9 inhibitors, salvianolic acid B (SalB) and MMP9 inhibitor-I, and CRISPR/cas9-mediated MMP9 genetic ablation. CHF rats showed cardiac infarct, significantly increased left ventricular end-diastolic pressure (LVEDP), and increased MMP9 activity and fibrosis in the peri-infarct areas of left ventricular myocardium. Measurement of the autophagic markers LC3B-II and p62 with lysosomal inhibition showed decreased autophagic flux in the peri-infarct myocardium. Treatment with SalB for 7 days in CHF rats decreased MMP9 activity and cardiac fibrosis but increased autophagic flux in the peri-infarct myocardium. As an in vitro corollary study, measurement of autophagic flux in H9c2 cardiomyocytes and fibroblasts showed that pharmacological inhibition or genetic ablation of MMP9 upregulates autophagic flux. These data are consistent with our observations that MMP9 inhibition upregulates autophagic flux in the heart of rats with CHF. In conclusion, the results in this study suggest that the beneficial outcome of MMP9 inhibition in pathological cardiac remodeling is in part mediated by improved autophagic flux.NEW & NOTEWORTHY This study elucidates that the improved cardiac extracellular matrix (ECM) remodeling and cardioprotective effect of matrix metalloprotease 9 (MMP9) inhibition in chronic heart failure (CHF) are via increased autophagic flux. Autophagy is cardioprotective; however, the mechanism of autophagy suppression in CHF is unknown. We for the first time demonstrated here that increased MMP9 suppressed cardiac autophagy and ablation of MMP9 increased cardiac autophagic flux in CHF rats. Restoring the physiological level of autophagy in the failing heart is a challenge, and our study addressed this challenge. The novelty and highlights of this report are as follows: 1) MMP9 regulates cardiomyocyte and fibroblast autophagy, 2) MMP9 inhibition protects CHF after myocardial infarction (MI) via increased cardiac autophagic flux, 3) MMP9 inhibition increased cardiac autophagy via activation of AMP-activated protein kinase (AMPK)α, Beclin-1, Atg7 pathway and suppressed mechanistic target of rapamycin (mTOR) pathway.
Collapse
Affiliation(s)
- Shyam S Nandi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kenichi Katsurada
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Neeru M Sharma
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Daniel R Anderson
- Department of Cardiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Sushil K Mahata
- Department of Medicine, Metabolic Physiology and Ultrastructural Biology Laboratory, University of California, San Diego, California.,Department of Veterans Affairs San Diego Healthcare System, San Diego, California
| | - Kaushik P Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
17
|
Ji Q, Zhang Y, Zhang H, Liu J, Cao C, Yuan Z, Ma Q, Zhang W. Effects of β-adrenoceptor activation on haemodynamics during hypoxic stress in rats. Exp Physiol 2020; 105:1660-1668. [PMID: 32706493 DOI: 10.1113/ep088669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/23/2020] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? The acute hypoxic compensatory reaction is based on haemodynamic changes, and β-adrenoceptors are involved in haemodynamic regulation. What is the role of β-adrenoceptors in haemodynamics during hypoxic exposure? What is the main finding and its importance? Activation of β2 -adrenoceptors attenuates the increase in pulmonary artery pressure during hypoxic exposure. This compensatory reaction activated by β2 -adrenoceptors during hypoxic stress is very important to maintain the activities of normal life. ABSTRACT The acute hypoxic compensatory reaction is accompanied by haemodynamic changes. We monitored the haemodynamic changes in rats undergoing acute hypoxic stress and applied antagonists of β-adrenoceptor (β-ARs) subtypes to reveal the regulatory role of β-ARs on haemodynamics. Sprague-Dawley rats were randomly divided into control, atenolol (β1 -AR antagonist), ICI 118,551 (β2 -AR antagonist) and propranolol (non-selective β-AR antagonist) groups. Rats were continuously recorded for changes in haemodynamic indexes for 10 min after administration. Then, a hypoxic ventilation experiment [15% O2 , 2200 m a.sl., 582 mmHg (0.765 Pa), P O 2 87.3 mmHg; Xining, China] was conducted, and the indexes were monitored for 5 min after induction of hypoxia. Plasma catecholamine concentrations were also measured. We found that, during normoxia, the mean arterial pressure, heart rate, ascending aortic blood flow and pulmonary artery pressure were reduced in the propranolol and atenolol groups. Catecholamine concentrations were increased significantly in the atenolol group compared with the control group. During hypoxia, mean arterial pressure and total peripheral resistance were decreased in the control, propranolol and ICI 118,551 groups. Pulmonary arterial pressure and pulmonary vascular resistance were increased in the propranolol and ICI 118,551 groups. During hypoxia, catecholamine concentrations were increased significantly in the control group, but decreased in β-AR antagonist groups. In conclusion, the β2 -AR is involved in regulation of pulmonary haemodynamics in the acute hypoxic compensatory reaction, and the activation of β2 -ARs attenuates the increase in pulmonary arterial pressure during hypoxic stress. This compensatory reaction activated by β2 -ARs during hypoxic stress is very important to maintain activities of normal life.
Collapse
Affiliation(s)
- Qiaorong Ji
- Department of Basic Medicine, Medical College of Qinghai University, No.16 kunlun road, Xining, Qinghai, 810001, China.,Pathophysiology Laboratory, The Key Laboratory of Science and Technology for High Altitude Medicine, No.16 kunlun road, Xining, Qinghai, 810001, China
| | - Yu Zhang
- Department of Basic Medicine, Medical College of Qinghai University, No.16 kunlun road, Xining, Qinghai, 810001, China
| | - Huan Zhang
- Department of Pathology, Weinan Central Hospital, Shengli street, Weinan, Shaanxi, 714000, China
| | - Jie Liu
- Department of Basic Medicine, Medical College of Qinghai University, No.16 kunlun road, Xining, Qinghai, 810001, China.,Pathophysiology Laboratory, The Key Laboratory of Science and Technology for High Altitude Medicine, No.16 kunlun road, Xining, Qinghai, 810001, China
| | - Chengzhu Cao
- Department of Basic Medicine, Medical College of Qinghai University, No.16 kunlun road, Xining, Qinghai, 810001, China.,Pathophysiology Laboratory, The Key Laboratory of Science and Technology for High Altitude Medicine, No.16 kunlun road, Xining, Qinghai, 810001, China
| | - Zhouyang Yuan
- Department of Basic Medicine, Medical College of Qinghai University, No.16 kunlun road, Xining, Qinghai, 810001, China.,Pathophysiology Laboratory, The Key Laboratory of Science and Technology for High Altitude Medicine, No.16 kunlun road, Xining, Qinghai, 810001, China
| | - Qianqian Ma
- Department of Basic Medicine, Medical College of Qinghai University, No.16 kunlun road, Xining, Qinghai, 810001, China.,Pathophysiology Laboratory, The Key Laboratory of Science and Technology for High Altitude Medicine, No.16 kunlun road, Xining, Qinghai, 810001, China
| | - Wei Zhang
- Department of Basic Medicine, Medical College of Qinghai University, No.16 kunlun road, Xining, Qinghai, 810001, China.,Pathophysiology Laboratory, The Key Laboratory of Science and Technology for High Altitude Medicine, No.16 kunlun road, Xining, Qinghai, 810001, China
| |
Collapse
|
18
|
Carmon O, Laguerre F, Riachy L, Delestre-Delacour C, Wang Q, Tanguy E, Jeandel L, Cartier D, Thahouly T, Haeberlé AM, Fouillen L, Rezazgui O, Schapman D, Haefelé A, Goumon Y, Galas L, Renard PY, Alexandre S, Vitale N, Anouar Y, Montero-Hadjadje M. Chromogranin A preferential interaction with Golgi phosphatidic acid induces membrane deformation and contributes to secretory granule biogenesis. FASEB J 2020; 34:6769-6790. [PMID: 32227388 DOI: 10.1096/fj.202000074r] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/28/2020] [Accepted: 03/14/2020] [Indexed: 12/14/2022]
Abstract
Chromogranin A (CgA) is a key luminal actor of secretory granule biogenesis at the trans-Golgi network (TGN) level but the molecular mechanisms involved remain obscure. Here, we investigated the possibility that CgA acts synergistically with specific membrane lipids to trigger secretory granule formation. We show that CgA preferentially interacts with the anionic glycerophospholipid phosphatidic acid (PA). In accordance, bioinformatic analysis predicted a PA-binding domain (PABD) in CgA sequence that effectively bound PA (36:1) or PA (40:6) in membrane models. We identified PA (36:1) and PA (40:6) as predominant species in Golgi and granule membranes of secretory cells, and we found that CgA interaction with these PA species promotes artificial membrane deformation and remodeling. Furthermore, we demonstrated that disruption of either CgA PABD or phospholipase D (PLD) activity significantly alters secretory granule formation in secretory cells. Our findings show for the first time the ability of CgA to interact with PLD-generated PA, which allows membrane remodeling and curvature, key processes necessary to initiate secretory granule budding.
Collapse
Affiliation(s)
- Ophélie Carmon
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| | - Fanny Laguerre
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| | - Lina Riachy
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| | - Charlène Delestre-Delacour
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| | - Qili Wang
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Emeline Tanguy
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Lydie Jeandel
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| | - Dorthe Cartier
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| | - Tamou Thahouly
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Anne-Marie Haeberlé
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Laetitia Fouillen
- Laboratoire de Biogénèse Membranaire, CNRS, Plateforme Métabolome, Université de Bordeaux, UMR-5200, Villenave D'Ornon, France
| | - Olivier Rezazgui
- INSA Rouen, CNRS, Normandie University, UNIROUEN, COBRA, UMR 6014 and FR 3038, Rouen, France
| | - Damien Schapman
- Normandie University, UNIROUEN, INSERM, PRIMACEN, Rouen, France
| | - Alexandre Haefelé
- INSA Rouen, CNRS, Normandie University, UNIROUEN, COBRA, UMR 6014 and FR 3038, Rouen, France
| | - Yannick Goumon
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Ludovic Galas
- Normandie University, UNIROUEN, INSERM, PRIMACEN, Rouen, France
| | - Pierre-Yves Renard
- INSA Rouen, CNRS, Normandie University, UNIROUEN, COBRA, UMR 6014 and FR 3038, Rouen, France
| | - Stéphane Alexandre
- Polymères, Biopolymères, Surfaces Laboratory, CNRS, Normandie University, UNIROUEN, UMR 6270, Rouen, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Youssef Anouar
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| | - Maité Montero-Hadjadje
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| |
Collapse
|
19
|
Catestatin improves insulin sensitivity by attenuating endoplasmic reticulum stress: In vivo and in silico validation. Comput Struct Biotechnol J 2020; 18:464-481. [PMID: 32180905 PMCID: PMC7063178 DOI: 10.1016/j.csbj.2020.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/18/2022] Open
Abstract
An endogenous peptide catestatin alleviates obesity-induced ER stress. Alleviation of ER stress by catestatin improves insulin sensitivity. PID controller based model of ER stress is supported by experimental findings. It predicts AKT phosphorylation achieves insulin sensitivity overcoming ER stress.
Obesity is characterized by a state of chronic, unresolved inflammation in insulin-targeted tissues. Obesity-induced inflammation causes accumulation of proinflammatory macrophages in adipose tissue and liver. Proinflammatory cytokines released from tissue macrophages inhibits insulin sensitivity. Obesity also leads to inflammation-induced endoplasmic reticulum (ER) stress and insulin resistance. In this scenario, based on the data (specifically patterns) generated by our in vivo experiments on both diet-induced obese (DIO) and normal chow diet (NCD) mice, we developed an in silico state space model to integrate ER stress and insulin signaling pathways. Computational results successfully followed the experimental results for both DIO and NCD conditions. Chromogranin A (CgA) peptide catestatin (CST: hCgA352-372) improves obesity-induced hepatic insulin resistance by reducing inflammation and inhibiting proinflammatory macrophage infiltration. We reasoned that the anti-inflammatory effects of CST would alleviate ER stress. CST decreased obesity-induced ER dilation in hepatocytes and macrophages. On application of Proportional-Integral-Derivative (PID) controllers on the in silico model, we checked whether the reduction of phosphorylated PERK resulting in attenuation of ER stress, resembling CST effect, could enhance insulin sensitivity. The simulation results clearly pointed out that CST not only decreased ER stress but also enhanced insulin sensitivity in mammalian cells. In vivo experiment validated the simulation results by depicting that CST caused decrease in phosphorylation of UPR signaling molecules and increased phosphorylation of insulin signaling molecules. Besides simulation results predicted that enhancement of AKT phosphorylation helps in both overcoming ER stress and achieving insulin sensitivity. These effects of CST were verified in hepatocyte culture model.
Collapse
|
20
|
Laguerre F, Anouar Y, Montero-Hadjadje M. Chromogranin A in the early steps of the neurosecretory pathway. IUBMB Life 2019; 72:524-532. [PMID: 31891241 DOI: 10.1002/iub.2218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Chromogranin A (CgA) is a soluble glycoprotein stored with hormones and neuropeptides in secretory granules (SG) of most (neuro)endocrine cells and neurons. Since its discovery in 1967, many studies have reported its structural characteristics, biological roles, and mechanisms of action. Indeed, CgA is both a precursor of various biologically active peptides and a granulogenic protein regulating the storage and secretion of hormones and neuropeptides. This review emphasizes the findings and theoretical concepts around the CgA-linked molecular machinery controlling hormone/neuropeptide aggregation and the interaction of CgA-hormone/neuropeptide aggregates with the trans-Golgi membrane to allow hormone/neuropeptide targeting and SG biogenesis. We will also discuss the intriguing alteration of CgA expression and secretion in various neurological disorders, which could provide insights to elucidate the molecular mechanisms underlying these pathophysiological conditions.
Collapse
Affiliation(s)
- Fanny Laguerre
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Rouen, France
| | - Youssef Anouar
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Rouen, France
| | - Maité Montero-Hadjadje
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Rouen, France
| |
Collapse
|
21
|
González-Santana A, Castañeyra L, Baz-Dávila R, Estévez-Herrera J, Domínguez N, Méndez-López I, Padín JF, Castañeyra A, Machado JD, Ebert SN, Borges R. Adrenergic chromaffin cells are adrenergic even in the absence of epinephrine. J Neurochem 2019; 152:299-314. [PMID: 31677273 DOI: 10.1111/jnc.14904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 11/30/2022]
Abstract
Adrenal chromaffin cells release epinephrine (EPI) and norepinephrine (NE) into the bloodstream as part of the homeostatic response to situations like stress. Here we utilized EPI-deficient mice generated by knocking out (KO) the phenylethanolamine N-methyltransferase (Pnmt) gene. These Pnmt-KO mice were bred to homozygosis but displayed no major phenotype. The lack of EPI was partially compensated by an increase in NE, suggesting that EPI storage was optimized in adrenergic cells. Electron microscopy showed that despite the lack of EPI, chromaffin granules retain their shape and general appearance. This indicate that granules from adrenergic or noradrenergic cells preserve their characteristics even though they contain only NE. Acute insulin injection largely reduced the EPI content in wild-type animals, with a minimal reduction in NE, whereas there was only a partial reduction in NE content in Pnmt-KO mice. The analysis of exocytosis by amperometry revealed a reduction in the quantum size (-30%) and Imax (-21%) of granules in KO cells relative to the wild-type granules, indicating a lower affinity of NE for the granule matrix of adrenergic cells. As amperometry cannot distinguish between adrenergic or noradrenergic cells, it would suggest even a larger reduction in the affinity for the matrix. Therefore, our results demonstrate that adrenergic cells retain their structural characteristics despite the almost complete absence of EPI. Furthermore, the chromaffin granule matrix from adrenergic cells is optimized to accumulate EPI, with NE being a poor substitute. Open Science: This manuscript was awarded with the Open Materials Badge For more information see: https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
| | - Leandro Castañeyra
- Unidad de Farmacología, Facultad de Medicina, Universidad de la Laguna, Tenerife, Spain
| | - Rebeca Baz-Dávila
- Unidad de Farmacología, Facultad de Medicina, Universidad de la Laguna, Tenerife, Spain
| | | | - Natalia Domínguez
- INTEGRARE, Généthon, Inserm, Univ Evry, Université Paris-Saclay, Evry, France
| | - Iago Méndez-López
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain
| | - J Fernando Padín
- Instituto Teófilo Hernando, Universidad Autónoma de Madrid, Madrid, Spain.,Departamento Ciencias Médicas (Farmacología), Facultad de Medicina, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Agustín Castañeyra
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - José-David Machado
- Unidad de Farmacología, Facultad de Medicina, Universidad de la Laguna, Tenerife, Spain
| | - Steven N Ebert
- Division of Metabolic and Cardiovascular Sciences, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, USA
| | - Ricardo Borges
- Unidad de Farmacología, Facultad de Medicina, Universidad de la Laguna, Tenerife, Spain
| |
Collapse
|
22
|
Habuta M, Fujita H, Sato K, Bando T, Inoue J, Kondo Y, Miyaishi S, Kumon H, Ohuchi H. Dickkopf3 (Dkk3) is required for maintaining the integrity of secretory vesicles in the mouse adrenal medulla. Cell Tissue Res 2019; 379:157-167. [DOI: 10.1007/s00441-019-03113-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/22/2019] [Indexed: 01/21/2023]
|
23
|
Weber NC, Schilling JM, Warmbrunn MV, Dhanani M, Kerindongo R, Siamwala J, Song Y, Zemljic-Harpf AE, Fannon MJ, Hollmann MW, Preckel B, Roth DM, Patel HH. Helium-Induced Changes in Circulating Caveolin in Mice Suggest a Novel Mechanism of Cardiac Protection. Int J Mol Sci 2019; 20:E2640. [PMID: 31146391 PMCID: PMC6600664 DOI: 10.3390/ijms20112640] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 12/26/2022] Open
Abstract
The noble gas helium (He) induces cardioprotection in vivo through unknown molecular mechanisms. He can interact with and modify cellular membranes. Caveolae are cholesterol and sphingolipid-enriched invaginations of the plasma-membrane-containing caveolin (Cav) proteins that are critical in protection of the heart. Mice (C57BL/6J) inhaled either He gas or adjusted room air. Functional measurements were performed in the isolated Langendorff perfused heart at 24 h post He inhalation. Electron paramagnetic resonance spectrometry (EPR) of samples was carried out at 24 h post He inhalation. Immunoblotting was used to detect Cav-1/3 expression in whole-heart tissue, exosomes isolated from platelet free plasma (PFP) and membrane fractions. Additionally, transmission electron microscopy analysis of cardiac tissue and serum function and metabolomic analysis were performed. In contrast to cardioprotection observed in in vivo models, the isolated Langendorff perfused heart revealed no protection after He inhalation. However, levels of Cav-1/3 were reduced 24 h after He inhalation in whole-heart tissue, and Cav-3 was increased in exosomes from PFP. Addition of serum to muscle cells in culture or naïve ventricular tissue increased mitochondrial metabolism without increasing reactive oxygen species generation. Primary and lipid metabolites determined potential changes in ceramide by He exposure. In addition to direct effects on myocardium, He likely induces the release of secreted membrane factors enriched in caveolae. Our results suggest a critical role for such circulating factors in He-induced organ protection.
Collapse
Affiliation(s)
- Nina C Weber
- Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, #125, 3350 La Jolla Village Dr., San Diego, CA 92161, USA.
| | - Jan M Schilling
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, #125, 3350 La Jolla Village Dr., San Diego, CA 92161, USA.
| | - Moritz V Warmbrunn
- Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, #125, 3350 La Jolla Village Dr., San Diego, CA 92161, USA.
| | - Mehul Dhanani
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, #125, 3350 La Jolla Village Dr., San Diego, CA 92161, USA.
| | - Raphaela Kerindongo
- Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - Jamila Siamwala
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, #125, 3350 La Jolla Village Dr., San Diego, CA 92161, USA.
- Brown University and VA Providence, 830 Chalkstone Avenue, Providence, RI 02908, USA.
| | - Young Song
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, #125, 3350 La Jolla Village Dr., San Diego, CA 92161, USA.
| | - Alice E Zemljic-Harpf
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, #125, 3350 La Jolla Village Dr., San Diego, CA 92161, USA.
| | - McKenzie J Fannon
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, #125, 3350 La Jolla Village Dr., San Diego, CA 92161, USA.
| | - Markus W Hollmann
- Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - Benedikt Preckel
- Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - David M Roth
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, #125, 3350 La Jolla Village Dr., San Diego, CA 92161, USA.
| | - Hemal H Patel
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, #125, 3350 La Jolla Village Dr., San Diego, CA 92161, USA.
| |
Collapse
|
24
|
Sawada A, Wang S, Jian M, Leem J, Wackerbarth J, Egawa J, Schilling JM, Platoshyn O, Zemljic-Harpf A, Roth DM, Patel HH, Patel PM, Marsala M, Head BP. Neuron-targeted caveolin-1 improves neuromuscular function and extends survival in SOD1 G93A mice. FASEB J 2019; 33:7545-7554. [PMID: 30894019 DOI: 10.1096/fj.201802652rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interventions that preserve motor neurons or restore functional motor neuroplasticity may extend longevity in amyotrophic lateral sclerosis (ALS). Delivery of neurotrophins may potentially revive degenerating motor neurons, yet this approach is dependent on the proper subcellular localization of neurotrophin receptor (NTR) to plasmalemmal signaling microdomains, termed membrane/lipid rafts (MLRs). We previously showed that overexpression of synapsin-driven caveolin-1 (Cav-1) (SynCav1) increases MLR localization of NTR [e.g., receptor tyrosine kinase B (TrkB)], promotes hippocampal synaptic and neuroplasticity, and significantly improves learning and memory in aged mice. The present study crossed a SynCav1 transgene-positive (SynCav1+) mouse with the mutant human superoxide dismutase glycine to alanine point mutation at amino acid 93 (hSOD1G93A) mouse model of ALS. When compared with hSOD1G93A, hSOD1G93A/SynCav1+ mice exhibited greater body weight and longer survival as well as better motor function. Microscopic analyses of hSOD1G93A/SynCav1+ spinal cords revealed preserved spinal cord α-motor neurons and preserved mitochondrial morphology. Moreover, hSOD1G93A/SynCav1+ spinal cords contained more MLRs (cholera toxin subunit B positive) and MLR-associated TrkB and Cav-1 protein expression. These findings demonstrate that SynCav1 delays disease progression in a mouse model of ALS, potentially by preserving or restoring NTR expression and localization to MLRs.-Sawada, A., Wang, S., Jian, M., Leem, J., Wackerbarth, J., Egawa, J., Schilling, J. M., Platoshyn, O., Zemljic-Harpf, A., Roth, D. M., Patel, H. H., Patel, P. M., Marsala, M., Head, B. P. Neuron-targeted caveolin-1 improves neuromuscular function and extends survival in SOD1G93A mice.
Collapse
Affiliation(s)
- Atsushi Sawada
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA.,Department of Anesthesiology, Sapporo Medical University, Sapporo, Japan
| | - Shanshan Wang
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Minyu Jian
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA.,Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Joseph Leem
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Jesse Wackerbarth
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Junji Egawa
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA.,Department of Anesthesiology, Nara Medical University, Kashihara, Japan; and
| | - Jan M Schilling
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Oleksandr Platoshyn
- Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
| | - Alice Zemljic-Harpf
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - David M Roth
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Hemal H Patel
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Piyush M Patel
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| | - Martin Marsala
- Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
| | - Brian P Head
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California-San Diego, La Jolla, California, USA
| |
Collapse
|
25
|
Sahu BS, Mahata S, Bandyopadhyay K, Mahata M, Avolio E, Pasqua T, Sahu C, Bandyopadhyay GK, Bartolomucci A, Webster NJG, Van Den Bogaart G, Fischer-Colbrie R, Corti A, Eiden LE, Mahata SK. Catestatin regulates vesicular quanta through modulation of cholinergic and peptidergic (PACAPergic) stimulation in PC12 cells. Cell Tissue Res 2018; 376:51-70. [PMID: 30467710 DOI: 10.1007/s00441-018-2956-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/30/2018] [Indexed: 12/23/2022]
Abstract
We have previously shown that the chromogranin A (CgA)-derived peptide catestatin (CST: hCgA352-372) inhibits nicotine-induced secretion of catecholamines from the adrenal medulla and chromaffin cells. In the present study, we seek to determine whether CST regulates dense core (DC) vesicle (DCV) quanta (catecholamine and chromogranin/secretogranin proteins) during acute (0.5-h treatment) or chronic (24-h treatment) cholinergic (nicotine) or peptidergic (PACAP, pituitary adenylyl cyclase activating polypeptide) stimulation of PC12 cells. In acute experiments, we found that both nicotine (60 μM) and PACAP (0.1 μM) decreased intracellular norepinephrine (NE) content and increased 3H-NE secretion, with both effects markedly inhibited by co-treatment with CST (2 μM). In chronic experiments, we found that nicotine and PACAP both reduced DCV and DC diameters and that this effect was likewise prevented by CST. Nicotine or CST alone increased expression of CgA protein and together elicited an additional increase in CgA protein, implying that nicotine and CST utilize separate signaling pathways to activate CgA expression. In contrast, PACAP increased expression of CgB and SgII proteins, with a further potentiation by CST. CST augmented the expression of tyrosine hydroxylase (TH) but did not increase intracellular NE levels, presumably due to its inability to cause post-translational activation of TH through serine phosphorylation. Co-treatment of CST with nicotine or PACAP increased quantal size, plausibly due to increased synthesis of CgA, CgB and SgII by CST. We conclude that CST regulates DCV quanta by acutely inhibiting catecholamine secretion and chronically increasing expression of CgA after nicotinic stimulation and CgB and SgII after PACAPergic stimulation.
Collapse
Affiliation(s)
- Bhavani Shankar Sahu
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA. .,Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA.
| | - Sumana Mahata
- California Institute of Technology, Pasadena, CA, USA
| | - Keya Bandyopadhyay
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA
| | - Manjula Mahata
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA
| | | | | | - Chinmayi Sahu
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Gautam K Bandyopadhyay
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas J G Webster
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA.,VA San Diego Healthcare System, San Diego, CA, USA
| | | | | | - Angelo Corti
- IRCCS San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| | - Lee E Eiden
- Section on Molecular Neuroscience, NIMH-IRP, Bethesda, MD, USA
| | - Sushil K Mahata
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA. .,VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
26
|
McWherter C, Choi YJ, Serrano RL, Mahata SK, Terkeltaub R, Liu-Bryan R. Arhalofenate acid inhibits monosodium urate crystal-induced inflammatory responses through activation of AMP-activated protein kinase (AMPK) signaling. Arthritis Res Ther 2018; 20:204. [PMID: 30189890 PMCID: PMC6127987 DOI: 10.1186/s13075-018-1699-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/14/2018] [Indexed: 12/23/2022] Open
Abstract
Background Arhalofenate acid, the active acid form of arhalofenate, is a non-agonist peroxisome proliferator-activated receptor γ (PPARγ) ligand, with uricosuric activity via URAT1 inhibition. Phase II studies revealed decreased acute arthritis flares in arhalofenate-treated gout compared with allopurinol alone. Hence, we investigated the anti-inflammatory effects and mechanisms of arhalofenate and its active acid form for responses to monosodium urate (MSU) crystals. Methods We assessed in-vivo responses to MSU crystals in murine subcutaneous air pouches and in-vitro responses in murine bone marrow-derived macrophages (BMDMs) by enzyme-linked immunosorbent assay (ELISA), SDS-PAGE/Western blot, immunostaining, and transmission electron microscopy analyses. Results Oral administration of arhalofenate (250 mg/kg) blunted total leukocyte ingress, neutrophil influx, and air pouch fluid interleukin (IL)-1β, IL-6, and CXCL1 in response to MSU crystal injection (p < 0.05 for each). Arhalofenate acid (100 μM) attenuated MSU crystal-induced IL-1β production in BMDMs via inhibition of NLRP3 inflammasome activation. In addition, arhalofenate acid dose-dependently increased activation (as assessed by phosphorylation) of AMP-activated protein kinase (AMPK). Studying AMPKα1 knockout mice, we elucidated that AMPK mediated the anti-inflammatory effects of arhalofenate acid. Moreover, arhalofenate acid attenuated the capacity of MSU crystals to suppress AMPK activity, regulated expression of multiple downstream AMPK targets that modulate mitochondrial function and oxidative stress, preserved intact mitochondrial cristae and volume density, and promoted anti-inflammatory autophagy flux in BMDMs. Conclusions Arhalofenate acid is anti-inflammatory and acts via AMPK activation and its downstream signaling in macrophages. These effects likely contribute to a reduction of gout flares. Electronic supplementary material The online version of this article (10.1186/s13075-018-1699-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Ramon L Serrano
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA.,University of California San Diego, La Jolla, California, USA
| | - Sushil K Mahata
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA.,University of California San Diego, La Jolla, California, USA
| | - Robert Terkeltaub
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA.,University of California San Diego, La Jolla, California, USA
| | - Ru Liu-Bryan
- VA San Diego Healthcare System, 111K, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA. .,University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
27
|
Bettinsoli P, Ferrari-Toninelli G, Bonini SA, Guarienti M, Cangelosi D, Varesio L, Memo M. Favorable prognostic role of tropomodulins in neuroblastoma. Oncotarget 2018; 9:27092-27103. [PMID: 29930753 PMCID: PMC6007461 DOI: 10.18632/oncotarget.25491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 05/07/2018] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma is a pediatric tumor of the sympatoadrenal lineage of the neural crest characterized by high molecular and clinical heterogeneity, which are the main causes of the poor response to standard multimodal therapy. The identification of new and selective biomarkers is important to improve our knowledge on the mechanisms of neuroblastoma progression and to find the targets for innovative cancer therapies. This study identifies a positive correlation among tropomodulins (TMODs) proteins expression and neuroblastoma progression. TMODs bind the pointed end of actin filaments, regulate polymerization and depolymerization processes modifying actin cytoskeletal dynamic and influencing neuronal development processes. Expression levels of TMODs genes were analyzed in 17 datasets comprising different types of tumors, including neuroblastoma, and it was demonstrated that high levels of tropomodulin1 (TMOD1) and tropomodulin 2 (TMOD2) correlate positively with high survival probability and with favorable clinical and molecular characteristics. Functional studies on neuroblastoma cell lines, showed that TMOD1 knockin induced cell cycle arrest, cell proliferation arrest and a mature functional differentiation. TMOD1 overexpression was responsible for particular cell morphology and biochemical changes which directed cells towards a neuronal favorable differentiation profile. TMOD1 downregulation also induced cell proliferation arrest but caused the loss of mature cell differentiation and promoted the development of neuroendocrine cellular characteristics, delineating an aggressive and unfavorable tumor behavior. Overall, these data indicated that TMODs are favorable prognostic biomarkers in neuroblastoma and we believe that they could contribute to unravel a new pathophysiological mechanism of neuroblastoma resistance contributing to the design of personalized therapeutics opportunities.
Collapse
Affiliation(s)
- Paola Bettinsoli
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Giulia Ferrari-Toninelli
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Sara Anna Bonini
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Michela Guarienti
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Davide Cangelosi
- Laboratory of Molecular Biology, Giannina Gaslini Institute, Genova, Italy
| | - Luigi Varesio
- Laboratory of Molecular Biology, Giannina Gaslini Institute, Genova, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| |
Collapse
|
28
|
Ying W, Mahata S, Bandyopadhyay GK, Zhou Z, Wollam J, Vu J, Mayoral R, Chi NW, Webster NJG, Corti A, Mahata SK. Catestatin Inhibits Obesity-Induced Macrophage Infiltration and Inflammation in the Liver and Suppresses Hepatic Glucose Production, Leading to Improved Insulin Sensitivity. Diabetes 2018; 67:841-848. [PMID: 29432123 PMCID: PMC6463753 DOI: 10.2337/db17-0788] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/28/2018] [Indexed: 12/17/2022]
Abstract
The activation of Kupffer cells (KCs) and monocyte-derived recruited macrophages (McMΦs) in the liver contributes to obesity-induced insulin resistance and type 2 diabetes. Mice with diet-induced obesity (DIO mice) treated with chromogranin A peptide catestatin (CST) showed several positive results. These included decreased hepatic/plasma lipids and plasma insulin, diminished expression of gluconeogenic genes, attenuated expression of proinflammatory genes, increased expression of anti-inflammatory genes in McMΦs, and inhibition of the infiltration of McMΦs resulting in improvement of insulin sensitivity. Systemic CST knockout (CST-KO) mice on normal chow diet (NCD) ate more food, gained weight, and displayed elevated blood glucose and insulin levels. Supplementation of CST normalized glucose and insulin levels. To verify that the CST deficiency caused macrophages to be very proinflammatory in CST-KO NCD mice and produced glucose intolerance, we tested the effects of (sorted with FACS) F4/80+Ly6C- cells (representing KCs) and F4/80-Ly6C+ cells (representing McMΦs) on hepatic glucose production (HGP). Both basal HGP and glucagon-induced HGP were markedly increased in hepatocytes cocultured with KCs and McMΦs from NCD-fed CST-KO mice, and the effect was abrogated upon pretreatment of CST-KO macrophages with CST. Thus, we provide a novel mechanism of HGP suppression through CST-mediated inhibition of macrophage infiltration and function.
Collapse
Affiliation(s)
- Wei Ying
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | | | | | - Zhenqi Zhou
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Joshua Wollam
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Jessica Vu
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Rafael Mayoral
- Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Nai-Wen Chi
- Department of Medicine, University of California, San Diego, La Jolla, CA
- VA San Diego Healthcare System, San Diego, CA
| | - Nicholas J G Webster
- Department of Medicine, University of California, San Diego, La Jolla, CA
- VA San Diego Healthcare System, San Diego, CA
| | - Angelo Corti
- Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| | - Sushil K Mahata
- Department of Medicine, University of California, San Diego, La Jolla, CA
- VA San Diego Healthcare System, San Diego, CA
| |
Collapse
|
29
|
Zhou Z, Ribas V, Rajbhandari P, Drew BG, Moore TM, Fluitt AH, Reddish BR, Whitney KA, Georgia S, Vergnes L, Reue K, Liesa M, Shirihai O, van der Bliek AM, Chi NW, Mahata SK, Tiano JP, Hewitt SC, Tontonoz P, Korach KS, Mauvais-Jarvis F, Hevener AL. Estrogen receptor α protects pancreatic β-cells from apoptosis by preserving mitochondrial function and suppressing endoplasmic reticulum stress. J Biol Chem 2018; 293:4735-4751. [PMID: 29378845 PMCID: PMC5880140 DOI: 10.1074/jbc.m117.805069] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/24/2017] [Indexed: 12/25/2022] Open
Abstract
Estrogen receptor α (ERα) action plays an important role in pancreatic β-cell function and survival; thus, it is considered a potential therapeutic target for the treatment of type 2 diabetes in women. However, the mechanisms underlying the protective effects of ERα remain unclear. Because ERα regulates mitochondrial metabolism in other cell types, we hypothesized that ERα may act to preserve insulin secretion and promote β-cell survival by regulating mitochondrial-endoplasmic reticulum (EndoRetic) function. We tested this hypothesis using pancreatic islet-specific ERα knockout (PERαKO) mice and Min6 β-cells in culture with Esr1 knockdown (KD). We found that Esr1-KD promoted reactive oxygen species production that associated with reduced fission/fusion dynamics and impaired mitophagy. Electron microscopy showed mitochondrial enlargement and a pro-fusion phenotype. Mitochondrial cristae and endoplasmic reticulum were dilated in Esr1-KD compared with ERα replete Min6 β-cells. Increased expression of Oma1 and Chop was paralleled by increased oxygen consumption and apoptosis susceptibility in ERα-KD cells. In contrast, ERα overexpression and ligand activation reduced both Chop and Oma1 expression, likely by ERα binding to consensus estrogen-response element sites in the Oma1 and Chop promoters. Together, our findings suggest that ERα promotes β-cell survival and insulin secretion through maintenance of mitochondrial fission/fusion-mitophagy dynamics and EndoRetic function, in part by Oma1 and Chop repression.
Collapse
Affiliation(s)
- Zhenqi Zhou
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Los Angeles, California 90095
| | - Vicent Ribas
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Los Angeles, California 90095
| | - Prashant Rajbhandari
- Department of Pathology and Laboratory Medicine and the Howard Hughes Research Institute, Los Angeles, California 90095
| | - Brian G Drew
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Los Angeles, California 90095
| | - Timothy M Moore
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Los Angeles, California 90095
| | - Amy H Fluitt
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Los Angeles, California 90095
| | - Britany R Reddish
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Los Angeles, California 90095
| | - Kate A Whitney
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Los Angeles, California 90095
| | - Senta Georgia
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Los Angeles, California 90095
| | - Laurent Vergnes
- Departments of Human Genetics, Los Angeles, California 90095
| | - Karen Reue
- Departments of Human Genetics, Los Angeles, California 90095
| | - Marc Liesa
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Los Angeles, California 90095
| | - Orian Shirihai
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Los Angeles, California 90095
| | | | - Nai-Wen Chi
- Department of Medicine, University of California, San Diego, La Jolla, California 92037
| | - Sushil K Mahata
- Department of Medicine, University of California, San Diego, La Jolla, California 92037; Veterans Affairs San Diego Healthcare System, San Diego, California 92161
| | - Joseph P Tiano
- Department of Medicine and Pharmacology, Tulane University Health Sciences Center, New Orleans, Louisiana 70112
| | - Sylvia C Hewitt
- Receptor Biology Section, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine and the Howard Hughes Research Institute, Los Angeles, California 90095
| | - Kenneth S Korach
- Receptor Biology Section, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Franck Mauvais-Jarvis
- Department of Medicine and Pharmacology, Tulane University Health Sciences Center, New Orleans, Louisiana 70112
| | - Andrea L Hevener
- Department of Medicine, Division of Endocrinology, Diabetes and Hypertension, Los Angeles, California 90095; Iris Cantor UCLA Women's Health Research Center, Los Angeles, California 90095.
| |
Collapse
|
30
|
Dominguez N, van Weering JRT, Borges R, Toonen RFG, Verhage M. Dense-core vesicle biogenesis and exocytosis in neurons lacking chromogranins A and B. J Neurochem 2018; 144:241-254. [PMID: 29178418 PMCID: PMC5814729 DOI: 10.1111/jnc.14263] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 11/26/2022]
Abstract
Chromogranin A and B (Cgs) are considered to be master regulators of cargo sorting for the regulated secretory pathway (RSP) and dense-core vesicle (DCV) biogenesis. To test this, we analyzed the release of neuropeptide Y (NPY)-pHluorin, a live RSP reporter, and the distribution, number, and appearance of DCVs, in mouse hippocampal neurons lacking expression of CHGA and CHGB genes. qRT-PCR analysis showed that expression of other granin family members was not significantly altered in CgA/B-/- neurons. As synaptic maturation of developing neurons depends on secretion of trophic factors in the RSP, we first analyzed neuronal development in standardized neuronal cultures. Surprisingly, dendritic and axonal length, arborization, synapse density, and synaptic vesicle accumulation in synapses were all normal in CgA/B-/- neurons. Moreover, the number of DCVs outside the soma, stained with endogenous marker Secretogranin II, the number of NPY-pHluorin puncta, and the total amount of reporter in secretory compartments, as indicated by pH-sensitive NPY-pHluorin fluorescence, were all normal in CgA/B-/- neurons. Electron microscopy revealed that synapses contained a normal number of DCVs, with a normal diameter, in CgA/B-/- neurons. In contrast, CgA/B-/- chromaffin cells contained fewer and smaller secretory vesicles with a smaller core size, as previously reported. Finally, live-cell imaging at single vesicle resolution revealed a normal number of fusion events upon bursts of action potentials in CgA/B-/- neurons. These events had normal kinetics and onset relative to the start of stimulation. Taken together, these data indicate that the two chromogranins are dispensable for cargo sorting in the RSP and DCV biogenesis in mouse hippocampal neurons.
Collapse
Affiliation(s)
- Natalia Dominguez
- Department of Clinical GeneticsCenter for Neurogenomics and Cognitive Research (CNCR)VU University Amsterdam and VU University Medical Center (VUmc)AmsterdamThe Netherlands
| | - Jan R. T. van Weering
- Department of Clinical GeneticsCenter for Neurogenomics and Cognitive Research (CNCR)VU University Amsterdam and VU University Medical Center (VUmc)AmsterdamThe Netherlands
| | - Ricardo Borges
- Unidad de FarmacologíaFacultad de MedicinaUniversidad de la LagunaTenerifeSpain
| | - Ruud F. G. Toonen
- Functional GenomicsCenter for Neurogenomics and Cognitive Research (CNCR)VU University Amsterdam and VU University Medical Center (VUmc)AmsterdamThe Netherlands
| | - Matthijs Verhage
- Department of Clinical GeneticsCenter for Neurogenomics and Cognitive Research (CNCR)VU University Amsterdam and VU University Medical Center (VUmc)AmsterdamThe Netherlands
- Functional GenomicsCenter for Neurogenomics and Cognitive Research (CNCR)VU University Amsterdam and VU University Medical Center (VUmc)AmsterdamThe Netherlands
| |
Collapse
|
31
|
Bianco M, Gasparri A, Generoso L, Assi E, Colombo B, Scarfò L, Bertilaccio MTS, Scielzo C, Ranghetti P, Dondossola E, Ponzoni M, Caligaris-Cappio F, Ghia P, Corti A. Inhibition of chronic lymphocytic leukemia progression by full-length chromogranin A and its N-terminal fragment in mouse models. Oncotarget 2018; 7:41725-41736. [PMID: 27203389 PMCID: PMC5173091 DOI: 10.18632/oncotarget.9407] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/26/2016] [Indexed: 01/12/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of leukemic B cells in peripheral blood, bone marrow (BM) and lymphoid tissues, and by their recirculation between these compartments. We observed that circulating chromogranin A (CgA) and its N-terminal fragment (called vasostatin-1, CgA1-76), two neuroendocrine secretory polypeptides that enhance the endothelial barrier function, are present in variable amounts in the blood of CLL patients. Studies in animal models showed that daily administration of full-length human CgA1-439 (0.3 μg, i.v., or 1.5 μg/mouse, i.p.) can reduce the BM/blood ratio of leukemic cells in Eμ-TCL1 mice, a transgenic model, and decrease BM, lung and kidney infiltration in Rag2−/−γc−/− mice engrafted with human MEC1 CLL cells, a xenograft model. This treatment also reduced the loss of body weight and improved animal motility. In vitro, CgA enhanced the endothelial barrier integrity and the trans-endothelial migration of MEC1 cells, with a bimodal dose-response curve. Vasostatin-1, but not a larger fragment consisting of N-terminal and central regions of CgA (CgA1-373), inhibited CLL progression in the xenograft model, suggesting that the C-terminal region is crucial for CgA activity and that the N-terminal domain contains a site that is activated by proteolytic cleavage. These findings suggest that circulating full-length CgA and its fragments may contribute to regulate leukemic cell trafficking and reduce tissue infiltration in CLL.
Collapse
Affiliation(s)
- Mimma Bianco
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Anna Gasparri
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Luca Generoso
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Emma Assi
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Barbara Colombo
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Lydia Scarfò
- B Cell Neoplasia Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.,Clinical Lymphoma Unit, Department of Onco-Hematology, San Raffaele Hospital, Milan 20132, Italy.,San Raffaele Vita-Salute University, Milan 20132, Italy
| | - Maria T S Bertilaccio
- Lymphoid Malignancies Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Cristina Scielzo
- Lymphoid Malignancies Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Pamela Ranghetti
- Lymphoid Malignancies Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Eleonora Dondossola
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Maurilio Ponzoni
- Clinical Lymphoma Unit, Department of Onco-Hematology, San Raffaele Hospital, Milan 20132, Italy
| | - Federico Caligaris-Cappio
- Clinical Lymphoma Unit, Department of Onco-Hematology, San Raffaele Hospital, Milan 20132, Italy.,San Raffaele Vita-Salute University, Milan 20132, Italy.,Lymphoid Malignancies Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Paolo Ghia
- B Cell Neoplasia Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.,Clinical Lymphoma Unit, Department of Onco-Hematology, San Raffaele Hospital, Milan 20132, Italy.,San Raffaele Vita-Salute University, Milan 20132, Italy
| | - Angelo Corti
- Tumor Biology and Vascular Targeting Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy.,San Raffaele Vita-Salute University, Milan 20132, Italy
| |
Collapse
|
32
|
Wollam J, Mahata S, Riopel M, Hernandez-Carretero A, Biswas A, Bandyopadhyay GK, Chi NW, Eiden LE, Mahapatra NR, Corti A, Webster NJG, Mahata SK. Chromogranin A regulates vesicle storage and mitochondrial dynamics to influence insulin secretion. Cell Tissue Res 2017; 368:487-501. [PMID: 28220294 PMCID: PMC10843982 DOI: 10.1007/s00441-017-2580-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/16/2017] [Indexed: 01/01/2023]
Abstract
Chromogranin A (CgA) is a prohormone and a granulogenic factor that regulates secretory pathways in neuroendocrine tissues. In β-cells of the endocrine pancreas, CgA is a major cargo in insulin secretory vesicles. The impact of CgA deficiency on the formation and exocytosis of insulin vesicles is yet to be investigated. In addition, no literature exists on the impact of CgA on mitochondrial function in β-cells. Using three different antibodies, we demonstrate that CgA is processed to vasostatin- and catestatin-containing fragments in pancreatic islet cells. CgA deficiency in Chga-KO islets leads to compensatory overexpression of chromogranin B, secretogranin II, SNARE proteins and insulin genes, as well as increased insulin protein content. Ultrastructural studies of pancreatic islets revealed that Chga-KO β-cells contain fewer immature secretory granules than wild-type (WT) control but increased numbers of mature secretory granules and plasma membrane-docked vesicles. Compared to WT control, CgA-deficient β-cells exhibited increases in mitochondrial volume, numerical densities and fusion, as well as increased expression of nuclear encoded genes (Ndufa9, Ndufs8, Cyc1 and Atp5o). These changes in secretory vesicles and the mitochondria likely contribute to the increased glucose-stimulated insulin secretion observed in Chga-KO mice. We conclude that CgA is an important regulator for coordination of mitochondrial dynamics, secretory vesicular quanta and GSIS for optimal secretory functioning of β-cells, suggesting a strong, CgA-dependent positive link between mitochondrial fusion and GSIS.
Collapse
Affiliation(s)
- Joshua Wollam
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sumana Mahata
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Matthew Riopel
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Angshuman Biswas
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Nai-Wen Chi
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Lee E Eiden
- Section on Molecular Neuroscience, NIMH-IRP, Bethesda, MD, USA
| | - Nitish R Mahapatra
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Angelo Corti
- IRCCS San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| | - Nicholas J G Webster
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Sushil K Mahata
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
- VA San Diego Healthcare System, San Diego, CA, USA.
- Metabolic Physiology & Ultrastructural Biology Laboratory, Department of Medicine, University of California, San Diego (0732), 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA.
| |
Collapse
|
33
|
Tang K, Pasqua T, Biswas A, Mahata S, Tang J, Tang A, Bandyopadhyay GK, Sinha-Hikim AP, Chi NW, Webster NJG, Corti A, Mahata SK. Muscle injury, impaired muscle function and insulin resistance in Chromogranin A-knockout mice. J Endocrinol 2017; 232:137-153. [PMID: 27799464 PMCID: PMC5287349 DOI: 10.1530/joe-16-0370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/31/2016] [Indexed: 12/22/2022]
Abstract
Chromogranin A (CgA) is widely expressed in endocrine and neuroendocrine tissues as well as in the central nervous system. We observed CgA expression (mRNA and protein) in the gastrocnemius (GAS) muscle and found that performance of CgA-deficient Chga-KO mice in treadmill exercise was impaired. Supplementation with CgA in Chga-KO mice restored exercise ability suggesting a novel role for endogenous CgA in skeletal muscle function. Chga-KO mice display (i) lack of exercise-induced stimulation of pAKT, pTBC1D1 and phospho-p38 kinase signaling, (ii) loss of GAS muscle mass, (iii) extensive formation of tubular aggregates (TA), (iv) disorganized cristae architecture in mitochondria, (v) increased expression of the inflammatory cytokines Tnfα, Il6 and Ifnγ, and fibrosis. The impaired maximum running speed and endurance in the treadmill exercise in Chga-KO mice correlated with decreased glucose uptake and glycolysis, defects in glucose oxidation and decreased mitochondrial cytochrome C oxidase activity. The lack of adaptation to endurance training correlated with the lack of stimulation of p38MAPK that is known to mediate the response to tissue damage. As CgA sorts proteins to the regulated secretory pathway, we speculate that lack of CgA could cause misfolding of membrane proteins inducing aggregation of sarcoplasmic reticulum (SR) membranes and formation of tubular aggregates that is observed in Chga-KO mice. In conclusion, CgA deficiency renders the muscle energy deficient, impairs performance in treadmill exercise and prevents regeneration after exercise-induced tissue damage.
Collapse
Affiliation(s)
- Kechun Tang
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
| | - Teresa Pasqua
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
| | - Angshuman Biswas
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
| | - Sumana Mahata
- Division of Biology & Biological EngineeringCalifornia Institute of Technology, Pasadena, California, USA
| | - Jennifer Tang
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
| | - Alisa Tang
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
| | | | - Amiya P Sinha-Hikim
- Charles Drew University of Medicine and ScienceLos Angeles, California, USA
- David Geffen School of MedicineUniversity of California-Los Angeles, Los Angeles, California, USA
| | - Nai-Wen Chi
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
- VA San Diego Healthcare SystemSan Diego, California, USA
| | - Nicholas J G Webster
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
- VA San Diego Healthcare SystemSan Diego, California, USA
| | - Angelo Corti
- IRCCS San Raffaele Scientific InstituteSan Raffaele Vita-Salute University, Milan, Italy
| | - Sushil K Mahata
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
- VA San Diego Healthcare SystemSan Diego, California, USA
| |
Collapse
|
34
|
Mahata SK, Zheng H, Mahata S, Liu X, Patel KP. Effect of heart failure on catecholamine granule morphology and storage in chromaffin cells. J Endocrinol 2016; 230:309-23. [PMID: 27402067 PMCID: PMC4980258 DOI: 10.1530/joe-16-0146] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 12/16/2022]
Abstract
One of the key mechanisms involved in sympathoexcitation in chronic heart failure (HF) is the activation of the adrenal glands. Impact of the elevated catecholamines on the hemodynamic parameters has been previously demonstrated. However, studies linking the structural effects of such overactivation with secretory performance and cell metabolism in the adrenomedullary chromaffin cells in vivo have not been previously reported. In this study, HF was induced in male Sprague-Dawley rats by ligation of the left coronary artery. Five weeks after surgery, cardiac function was assessed by ventricular hemodynamics. HF rats showed increased adrenal weight and adrenal catecholamine levels (norepinephrine, epinephrine and dopamine) compared with sham-operated rats. Rats with HF demonstrated increased small synaptic and dense core vesicle in splanchnic-adrenal synapses indicating trans-synaptic activation of catecholamine biosynthetic enzymes, increased endoplasmic reticulum and Golgi lumen width to meet the demand of increased catecholamine synthesis and release, and more mitochondria with dilated cristae and glycogen to accommodate for the increased energy demand for the increased biogenesis and exocytosis of catecholamines from the adrenal medulla. These findings suggest that increased trans-synaptic activation of the chromaffin cells within the adrenal medulla may lead to increased catecholamines in the circulation which in turn contributes to the enhanced neurohumoral drive, providing a unique mechanistic insight for enhanced catecholamine levels in plasma commonly observed in chronic HF condition.
Collapse
Affiliation(s)
- Sushil K Mahata
- VA San Diego Healthcare System Metabolic Physiology & Ultrastructural Biology Lab.Department of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Hong Zheng
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical Center, Omaha, NE, USA
| | - Sumana Mahata
- Caltech Division of BiologyCalifornia Institute of Technology, Pasadena, CA, USA
| | - Xuefei Liu
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical Center, Omaha, NE, USA
| | - Kaushik P Patel
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|