1
|
Gonzalez-Sanchez FA, Sanchez-Huerta TM, Huerta-Gonzalez A, Sepulveda-Villegas M, Altamirano J, Aguilar-Aleman JP, Garcia-Varela R. Diabetes current and future translatable therapies. Endocrine 2024; 86:865-881. [PMID: 38971945 DOI: 10.1007/s12020-024-03944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/23/2024] [Indexed: 07/08/2024]
Abstract
Diabetes is one of the major diseases and concerns of public health systems that affects over 200 million patients worldwide. It is estimated that 90% of these patients suffer from diabetes type 2, while 10% present diabetes type 1. This type of diabetes and certain types of diabetes type 2, are characterized by dysregulation of blood glycemic levels due to the total or partial depletion of insulin-secreting pancreatic β-cells. Different approaches have been proposed for long-term treatment of insulin-dependent patients; amongst them, cell-based approaches have been the subject of basic and clinical research since they allow blood glucose level sensing and in situ insulin secretion. The current gold standard for insulin-dependent patients is on-demand exogenous insulin application; cell-based therapies aim to remove this burden from the patient and caregivers. In recent years, protocols to isolate and implant pancreatic islets from diseased donors have been developed and tested in clinical trials. Nevertheless, the shortage of donors, along with the need of immunosuppressive companion therapies, have pushed researchers to focus their attention and efforts to overcome these disadvantages and develop alternative strategies. This review discusses current tested clinical approaches and future potential alternatives for diabetes type 1, and some diabetes type 2, insulin-dependent patients. Additionally, advantages and disadvantages of these discussed methods.
Collapse
Affiliation(s)
- Fabio Antonio Gonzalez-Sanchez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Departamento de Bioingeniería y Biotecnología, Av. General Ramon Corona No 2514, Colonia Nuevo Mexico, CP 45201, Zapopan, Jalisco, México
| | - Triana Mayra Sanchez-Huerta
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Departamento de Bioingeniería y Biotecnología, Av. General Ramon Corona No 2514, Colonia Nuevo Mexico, CP 45201, Zapopan, Jalisco, México
| | - Alexandra Huerta-Gonzalez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Departamento de Bioingeniería y Biotecnología, Av. General Ramon Corona No 2514, Colonia Nuevo Mexico, CP 45201, Zapopan, Jalisco, México
| | - Maricruz Sepulveda-Villegas
- Departamento de Medicina Genómica y Hepatología, Hospital Civil de Guadalajara, "Fray Antonio Alcalde", Guadalajara, 44280, Jalisco, Mexico
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44100, Jalisco, Mexico
| | - Julio Altamirano
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Epigmenio González 500, San Pablo, 76130, Santiago de Queretaro, Qro, México
| | - Juan Pablo Aguilar-Aleman
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Departamento de Ingenieria Biomedica, Av. General Ramon Corona No 2514, Colonia Nuevo Mexico, CP 45201, Zapopan, Jalisco, México
| | - Rebeca Garcia-Varela
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Departamento de Bioingeniería y Biotecnología, Av. General Ramon Corona No 2514, Colonia Nuevo Mexico, CP 45201, Zapopan, Jalisco, México.
- Carbone Cancer Center, University of Wisconsin - Madison, 1111 Highland Ave, Wisconsin, 53705, Madison, USA.
| |
Collapse
|
2
|
Song J, Wang L, Wang L, Guo X, He Q, Cui C, Hu H, Zang N, Yang M, Yan F, Liang K, Wang C, Liu F, Sun Y, Sun Z, Lai H, Hou X, Chen L. Mesenchymal stromal cells ameliorate mitochondrial dysfunction in α cells and hyperglucagonemia in type 2 diabetes via SIRT1/FoxO3a signaling. Stem Cells Transl Med 2024; 13:776-790. [PMID: 38864709 PMCID: PMC11328933 DOI: 10.1093/stcltm/szae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/24/2024] [Indexed: 06/13/2024] Open
Abstract
Dysregulation of α cells results in hyperglycemia and hyperglucagonemia in type 2 diabetes mellitus (T2DM). Mesenchymal stromal cell (MSC)-based therapy increases oxygen consumption of islets and enhances insulin secretion. However, the underlying mechanism for the protective role of MSCs in α-cell mitochondrial dysfunction remains unclear. Here, human umbilical cord MSCs (hucMSCs) were used to treat 2 kinds of T2DM mice and αTC1-6 cells to explore the role of hucMSCs in improving α-cell mitochondrial dysfunction and hyperglucagonemia. Plasma and supernatant glucagon were detected by enzyme-linked immunosorbent assay (ELISA). Mitochondrial function of α cells was assessed by the Seahorse Analyzer. To investigate the underlying mechanisms, Sirtuin 1 (SIRT1), Forkhead box O3a (FoxO3a), glucose transporter type1 (GLUT1), and glucokinase (GCK) were assessed by Western blotting analysis. In vivo, hucMSC infusion improved glucose and insulin tolerance, as well as hyperglycemia and hyperglucagonemia in T2DM mice. Meanwhile, hucMSC intervention rescued the islet structure and decreased α- to β-cell ratio. Glucagon secretion from αTC1-6 cells was consistently inhibited by hucMSCs in vitro. Meanwhile, hucMSC treatment activated intracellular SIRT1/FoxO3a signaling, promoted glucose uptake and activation, alleviated mitochondrial dysfunction, and enhanced ATP production. However, transfection of SIRT1 small interfering RNA (siRNA) or the application of SIRT1 inhibitor EX-527 weakened the therapeutic effects of hucMSCs on mitochondrial function and glucagon secretion. Our observations indicate that hucMSCs mitigate mitochondrial dysfunction and glucagon hypersecretion of α cells in T2DM via SIRT1/FoxO3a signaling, which provides novel evidence demonstrating the potential for hucMSCs in treating T2DM.
Collapse
Affiliation(s)
- Jia Song
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Lingshu Wang
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Liming Wang
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Xinghong Guo
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Qin He
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Chen Cui
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Huiqing Hu
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Nan Zang
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Mengmeng Yang
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Fei Yan
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Kai Liang
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Chuan Wang
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Fuqiang Liu
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Yujing Sun
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Zheng Sun
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
| | - Hong Lai
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine and Health, Jinan 250012, Shandong, People's Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan 250012, Shandong, People's Republic of China
| | - Xinguo Hou
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine and Health, Jinan 250012, Shandong, People's Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan 250012, Shandong, People's Republic of China
| | - Li Chen
- Department of Endocrinology and Metabolism, Qilu Hospital of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan 250012, Shandong, People's Republic of China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine and Health, Jinan 250012, Shandong, People's Republic of China
- Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan 250012, Shandong, People's Republic of China
| |
Collapse
|
3
|
Leão IS, Dantas JR, Araújo DB, Ramos MEN, Silva KR, Batista LS, Pereira MDFC, Luiz RR, da Silva CC, Maiolino A, Rebelatto CLK, Daga DR, Senegaglia AC, Brofman PRS, de Oliveira JEP, Zajdenverg L, Rodacki M. Evaluation of type 1 diabetes' partial clinical remission after three years of heterologous adipose tissue derived stromal/stem cells transplantation associated with vitamin D supplementation. Diabetol Metab Syndr 2024; 16:114. [PMID: 38790009 PMCID: PMC11127374 DOI: 10.1186/s13098-024-01302-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/04/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Mesenchymal stem cell infusion and vitamin D supplementation may have immunomodulatory actions that could prolong the preservation of residual insulin secretion in patients with type 1 diabetes (T1D). Intervention with these agents after onset of T1D could favor the development of a remission phase, with potential clinical impact. We aimed to compare the presence of clinical remission (CR), glycemic control and daily insulin requirement at 6, 12, 18, 24 and 36 months after the diagnosis of T1D using IDAA1c in patients who received therapy with adipose tissue-derived mesenchymal stem cell (ASC) infusion and vitamin D supplementation and a control group. METHODS This retrospective cohort study analyzed data from the medical records of patients with T1D diagnosed between 15 and 40 years. Partial CR was defined as an IDAA1c index < 9. Patients in the intervention group received an infusion of adipose tissued-derived mesenchymal stem cells (ASCs) within 3 months after diagnosis and supplementation with 2000 IU of cholecalciferol for 1 year, started on the day following the infusion. Partial CR was also determined using the ISPAD criteria, to assess its agreement with IDAA1c. RESULTS A total of 28 patients were evaluated: 7 in the intervention group (group 1) and 21 in the control group (group 2). All patients in group 1 evolved with partial CR while only 46.7% of patients in group 2 had this outcome. Group 1 had a higher frequency of CR when evaluated with IDAA1c and ISPAD criteria. The mean duration of CR varied between the two criteria. Although HbA1c was similar between groups during follow-up, group 1 had a lower total daily insulin requirement (p < 0.005) at all time points. At 36 months, group 1 used 49% of the total daily insulin dose used by group 2 with similar glycemic control. CONCLUSION The intervention with infusion of ASC + vitamin D supplementation was associated with partial CR at 6 months. Although there were no differences in CR established by the IDAA1c and ISPAD criteria after three years of follow-up, patients who underwent intervention had nearly the half insulin requirement of controls with conventional treatment, with similar glycemic control. TRIAL REGISTRATION 37001514.0.0000.5257.
Collapse
Affiliation(s)
- Isabella Sued Leão
- Department of Internal Medicine, Nutrology Section, Universidade Federal do Rio de Janeiro (UFRJ), Av Professor Rodolpho Paulo Rocco 255, 22440035, Rio de Janeiro, RJ, Brazil.
| | - Joana Rodrigues Dantas
- Department of Internal Medicine, Nutrology Section, Universidade Federal do Rio de Janeiro (UFRJ), Av Professor Rodolpho Paulo Rocco 255, 22440035, Rio de Janeiro, RJ, Brazil
| | - Débora Baptista Araújo
- Department of Internal Medicine, Nutrology Section, Universidade Federal do Rio de Janeiro (UFRJ), Av Professor Rodolpho Paulo Rocco 255, 22440035, Rio de Janeiro, RJ, Brazil
| | - Maria Eduarda Nascimento Ramos
- Department of Internal Medicine, Nutrology Section, Universidade Federal do Rio de Janeiro (UFRJ), Av Professor Rodolpho Paulo Rocco 255, 22440035, Rio de Janeiro, RJ, Brazil
| | - Karina Ribeiro Silva
- Laboratory of Tissue Bioengineering, Instituto Nacional de Metrologia Qualidade e Tecnologia Campus de Xerem, Duque de Caxias, Brazil
- Histology and Embryology Departament, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandra S Batista
- Laboratory of Tissue Bioengineering, Instituto Nacional de Metrologia Qualidade e Tecnologia Campus de Xerem, Duque de Caxias, Brazil
- Center for Biological Research (Numpex-Bio), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria de Fátima Carvalho Pereira
- Department of Internal Medicine, Nutrology Section, Universidade Federal do Rio de Janeiro (UFRJ), Av Professor Rodolpho Paulo Rocco 255, 22440035, Rio de Janeiro, RJ, Brazil
| | - Ronir Raggio Luiz
- Institute of Public Health Studies, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Angelo Maiolino
- Hematology Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Débora Regina Daga
- Core Cell Technology, Pontifical Catholic University of Parana, Curitiba, Brazil
| | | | | | - José Egídio Paulo de Oliveira
- Department of Internal Medicine, Nutrology Section, Universidade Federal do Rio de Janeiro (UFRJ), Av Professor Rodolpho Paulo Rocco 255, 22440035, Rio de Janeiro, RJ, Brazil
| | - Lenita Zajdenverg
- Department of Internal Medicine, Nutrology Section, Universidade Federal do Rio de Janeiro (UFRJ), Av Professor Rodolpho Paulo Rocco 255, 22440035, Rio de Janeiro, RJ, Brazil
| | - Melanie Rodacki
- Department of Internal Medicine, Nutrology Section, Universidade Federal do Rio de Janeiro (UFRJ), Av Professor Rodolpho Paulo Rocco 255, 22440035, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Ozkan S, Isildar B, Sahin H, Saygi HI, Konukoglu D, Koyuturk M. Comparative analysis of effects of conditioned mediums obtained from 2D or 3D cultured mesenchymal stem cells on kidney functions of diabetic rats: Early intervention could potentiate transdifferentiation of parietal epithelial cell into podocyte precursors. Life Sci 2024; 343:122543. [PMID: 38460812 DOI: 10.1016/j.lfs.2024.122543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
AIM The secretome of mesenchymal stem cells (MSCs) could be a potential therapeutic intervention for diabetes and associated complications like nephropathy. This study aims to evaluate the effects of conditioned mediums (CMs) collected from umbilical cord-derived MSCs incubated under 2-dimensional (2D) or 3D culture conditions on kidney functions of rats with type-I diabetes (T1D). MAIN METHODS Sprague-Dawley rats were treated with 20 mg/kg streptozocin for 5 consecutive days to induce T1D, and 12 doses of CMs were applied intraperitoneally for 4 weeks. The therapeutic effects of CMs were comparatively investigated by biochemical, physical, histopathological, and immunohistochemical analysis. KEY FINDINGS 3D-CM had significantly higher total protein concentration than the 2D-CM Albumin/creatinine ratios of both treatment groups were significantly improved in comparison to diabetes. Light microscopic evaluations showed that glomerular and cortical tubular damages were significantly ameliorated in only the 3D-CM applied group compared to the diabetes group, which were correlated with transmission electron microscopic observations. The nephrin and synaptopodin expressions increased in both treatment groups compared to diabetes. The WT1, Ki-67, and active caspase-3 expressions in glomeruli and parietal layers of the treatment groups suggest that both types of CMs suppress apoptosis and promote possible parietal epithelial cells' (PECs') transdifferentiation towards podocyte precursor cells by switching on WT1 expression in parietal layer rather than inducing new cell proliferation. SIGNIFICANCE 3D-CM was found to be more effective in improving kidney functions than 2D-CM by ameliorating glomerular damage through the possible mechanism of transdifferentiation of PECs into podocyte precursors and suppressing glomerular apoptosis.
Collapse
Affiliation(s)
- Serbay Ozkan
- Izmir Katip Çelebi University, Faculty of Medicine, Histology and Embryology Department, Turkey; Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Histology and Embryology Department, Turkey
| | - Basak Isildar
- Balıkesir University, Faculty of Medicine, Histology and Embryology Department, Turkey; Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Histology and Embryology Department, Turkey
| | - Hakan Sahin
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Histology and Embryology Department, Turkey
| | - Halil Ibrahim Saygi
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Histology and Embryology Department, Turkey; Istanbul Medeniyet University, Faculty of Medicine, Histology and Embryology Department, Turkey
| | - Dildar Konukoglu
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Medical Biochemistry Department, Turkey
| | - Meral Koyuturk
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Histology and Embryology Department, Turkey.
| |
Collapse
|
5
|
Ahmadzadeh F, Esmaili M, Ehsan Enderami S, Ghasemi M, Azadeh H, Abediankenari S. Epigallocatechin-3-gallate maintains Th1/Th2 response balance and mitigates type-1 autoimmune diabetes induced by streptozotocin through promoting the effect of bone-marrow-derived mesenchymal stem cells. Gene 2024; 894:148003. [PMID: 37977318 DOI: 10.1016/j.gene.2023.148003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Stem-cell-based therapy is one of the most promising therapeutic strategies owing to its regenerative and immunomodulatory properties. Epigallocatechin-3-gallate (EGCG), a known antioxidant and anti-inflammatory agent, has beneficial effects on cellular protection. We aimed to elucidate the feasibility of using EGCG, along with bone marrow-derived mesenchymal stem cells (BM-MSCs), to improve pancreatic damage through their immune regulatory functions in an experimental model of type 1 diabetes mellitus (T1DM) induced by multiple injections of streptozotocin (STZ). BM-MSCs were isolated from C57BL/6 mice and characterized. The diabetic groups were treated intraperitoneally with PBS, MSCs, EGCG, and a combination of MSCs and EGCG. Real-time PCR assays showed that MSCs with EGCG modulated T-bet and GATA-3 expression and upregulated the mRNA levels of Foxp-3 more efficiently. Analyses of spleen-isolated lymphocytes revealed that combinational treatment pronouncedly increased regulatory cytokines and decreased pro-inflammatory cytokines and splenocyte proliferation. The histopathological assessment demonstrated that co-treatment significantly reduced insulitis and recovered pancreatic islet morphology. Furthermore, the combination of MSCs and EGCG is associated with downregulated blood glucose and enhanced insulin levels. Therefore, combined therapy with EGCG and MSCs holds clinical potential for treating T1DM through synergetic effects in maintaining the Th1/Th2 response balance and promoting the regeneration of damaged pancreatic tissues.
Collapse
Affiliation(s)
- Fatemeh Ahmadzadeh
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mozhgan Esmaili
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Ehsan Enderami
- Immunogenetics Research Center, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Ghasemi
- Department of Pathology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Azadeh
- Department of Internal Medicine, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeid Abediankenari
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
6
|
Margiana R. Enhancing Spermatogenesis in Non-obstructive Azoospermia Through Mesenchymal Stem Cell Therapy22. Curr Stem Cell Res Ther 2024; 19:1429-1441. [PMID: 38243988 DOI: 10.2174/011574888x283311231226081845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/29/2023] [Accepted: 11/10/2023] [Indexed: 01/22/2024]
Abstract
Stem cells hold great promise as novel and encouraging therapeutic tools in the treatment of degenerative disorders due to their differentiation potential while maintaining the capability to self-renewal and their unlimited ability to divide and regenerate tissue. A variety of different types of stem cells can be used in cell therapy. Among these, mesenchymal stem cell (MSC) therapy has gradually established itself as a novel method for treating damaged tissues that need restoration and renewal. Male infertility is an important health challenge affecting approximately 8-12% of people around the world. This abnormality can be caused by primary, congenital, acquired, or idiopathic reasons. Men with no sperm in their semen have a condition called azoospermia, caused by non-obstructive (NOA) causes and post-testicular obstructive causes. Accumulating evidence has shown that various types of MSCs can differentiate into germ cells and improve spermatogenesis in the seminiferous tubules of animal models. In addition, recent studies in animal models have exhibited that extracellular vesicles derived from MSCs can stimulate the progression of spermatogenesis and germ cell regeneration in the recipient testes. In spite of the fact that various improvements have been made in the treatment of azoospermia disorder in animal models by MSC or their extracellular vesicles, no clinical trials have been carried out to test their therapeutic effect on the NOA. In this review, we summarize the potential of MSC transplantation for treating infertility caused by NOA.
Collapse
Affiliation(s)
- Ria Margiana
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Indonesia General Academic Hospital, Depok, Indonesia
- Ciptomangunkusumo General Academic Hospital, Jakarta, Indonesia
| |
Collapse
|
7
|
Cifuentes SJ, Domenech M. Heparin-collagen I bilayers stimulate FAK/ERK½ signaling via α2β1 integrin to support the growth and anti-inflammatory potency of mesenchymal stromal cells. J Biomed Mater Res A 2024; 112:65-81. [PMID: 37723658 DOI: 10.1002/jbm.a.37614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/20/2023]
Abstract
Understanding mesenchymal stromal cells (MSCs) growth mechanisms in response to surface chemistries is essential to optimize culture methods for high-quality and robust cell yields in cell manufacturing applications. Heparin (HEP) and collagen 1 (COL) substrates have been reported to enhance cell adhesion, growth, viability, and secretory potential in MSCs. However, the biomolecular mechanisms underlying the benefits of combined HEP/COL substrates are unknown. This work used HEP/COL bilayered surfaces to investigate the role of integrin-HEP interactions in the advantages of MSC culture. The layer-by-layer approach (LbL) was used to create HEP/COL bilayers, which were made up of stacks of 8 and 9 layers that combined HEP and COL in an alternate arrangement. Surface spectroscopic investigations and laser scanning microscopy evaluations verified the biochemical fingerprint of each component and a total stacked bilayer thickness of roughly 150 nm. Cell growth and apoptosis in response to IC50 and IC75 levels of BTT-3033 and Cilengitide, α2β1 and αvβ3 integrin inhibitors respectively, were evaluated on HEP/COL coated surfaces using two bone marrow-derived MSC donors. While integrin activity did not affect cell growth rates, it significantly affected cell adhesion and apoptosis on HEP/COL surfaces. HEP-ending HEP/COL surfaces significantly increased FAK-ERK½ phosphorylation and endogenous cell COL deposition compared to COL, COL-ending HEP/COL and uncoated surfaces. BTT-3033 but not Cilengitide treatment markedly affected FAK-ERK½ activity levels on HEP-ending HEP/COL surfaces supporting a major role for α2β1 activity. BTT-3033 treatment on HEP-ending bilayers reduced MSC-mediated macrophage inhibitory activity and altered the cytokine profile of co-cultures. Overall, this study supports a novel role for HEP in regulating the survival and potency of MSCs via enhancing the α2β1-FAK-ERK½ signaling mechanism.
Collapse
Affiliation(s)
- Said J Cifuentes
- Bioengineering Graduate Program, University of Puerto Rico Mayaguez, Mayaguez, Puerto Rico, USA
| | - Maribella Domenech
- Bioengineering Graduate Program, University of Puerto Rico Mayaguez, Mayaguez, Puerto Rico, USA
- Department of Chemical Engineering, University of Puerto Rico Mayaguez, Mayaguez, Puerto Rico, USA
| |
Collapse
|
8
|
Isildar B, Ozkan S, Koyuturk M. Therapeutic Potential of Mesenchymal Stem Cell‐Derived Conditioned Medium for Diabetes Mellitus and Related Complications. ADVANCED THERAPEUTICS 2023; 6. [DOI: 10.1002/adtp.202300216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Indexed: 01/06/2025]
Abstract
AbstractDiabetes mellitus (DM) is one of the most life‐threatening metabolic disorders, with 9% of the global prevalence, and it is estimated to be rising to 12.2% in 2045. Currently, there is no definitive treatment for DM. Although life‐saving, insulin administration to control blood sugar is not a cure for DM and is insufficient to prevent DM‐related complications such as nephropathy, neuropathy, or retinopathy. For this reason, studies are continuing to develop treatments that will provide β‐cell regeneration while suppressing autoimmunity. Mesenchymal stem cells (MSCs) are multipotent stem cells with a high proliferation capacity, immunosuppression, and immunomodulation ability. MSCs have gained therapeutic importance with these properties besides their differentiation ability. The immunosuppressive and immunomodulatory properties of the cells arise from the soluble and insoluble factors they secrete into the extracellular environment. Therefore, the culture medium where these cells grow has therapeutic value and is named conditioned medium (CM). In this context, CM obtained from MSCs can provide a similar therapeutic effect with fewer safety concerns. Furthermore, preconditioning of MSCs can improve the effectiveness of these cells and associated cellular products. So, this review summarizes the recent advances in MSC‐derived CMs and their therapeutic potential for DM and related complications.
Collapse
Affiliation(s)
- Basak Isildar
- Balikesir University Faculty of Medicine Histology and Embryology Department Balikesir 10185 Turkey
| | - Serbay Ozkan
- Izmir Katip Celebi University Faculty of Medicine Histology and Embryology Department Izmir 35620 Turkey
| | - Meral Koyuturk
- Istanbul University‐Cerrahpasa Cerrahpasa Faculty of Medicine Histology and Embryology Department Istanbul 34098 Turkey
| |
Collapse
|
9
|
Isildar B, Ozkan S, Ercin M, Gezginci-Oktayoglu S, Oncul M, Koyuturk M. 2D and 3D cultured human umbilical cord-derived mesenchymal stem cell-conditioned medium has a dual effect in type 1 diabetes model in rats: immunomodulation and beta-cell regeneration. Inflamm Regen 2022; 42:55. [PMID: 36451229 PMCID: PMC9710085 DOI: 10.1186/s41232-022-00241-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a T-cell-mediated autoimmune disease characterized by the irreversible destruction of insulin-producing β-cells in pancreatic islets. Helper and cytotoxic T-cells and cytokine production, which is impaired by this process, take a synergetic role in β-cell destruction, and hyperglycemia develops due to insulin deficiency in the body. Mesenchymal stem cells (MSCs) appear like an excellent therapeutic tool for autoimmune diseases with pluripotent, regenerative, and immunosuppressive properties. Paracrine factors released from MSCs play a role in immunomodulation by increasing angiogenesis and proliferation and suppressing apoptosis. In this context, the study aims to investigate the therapeutic effects of MSC's secretomes by conditioned medium (CM) obtained from human umbilical cord-derived MSCs cultured in 2-dimensional (2D) and 3-dimensional (3D) environments in the T1D model. METHODS First, MSCs were isolated from the human umbilical cord, and the cells were characterized. Then, two different CMs were prepared by culturing MSCs in 2D and 3D environments. The CM contents were analyzed in terms of total protein, IL-4, IL-10, IL-17, and IFN-λ. In vivo studies were performed in Sprague-Dawley-type rats with an autoimmune T1D model, and twelve doses of CM were administered intraperitoneally for 4 weeks within the framework of a particular treatment model. In order to evaluate immunomodulation, the Treg population was determined in lymphocytes isolated from the spleen after sacrification, and IL-4, IL-10, IL-17, and IFN-λ cytokines were analyzed in serum. Finally, β-cell regeneration was evaluated immunohistochemically by labeling Pdx1, Nkx6.1, and insulin markers, which are critical for the formation of β-cells. RESULTS Total protein and IL-4 levels were higher in 3D-CM compared to 2D-CM. In vivo results showed that CMs induce the Treg population and regulate cytokine release. When the immunohistochemical results were evaluated together, it was determined that CM application significantly increased the rate of β-cells in the islets. This increase was at the highest level in the 3D-CM applied group. CONCLUSION The dual therapeutic effect of MSC-CM on immunomodulation and homeostasis/regeneration of β-cells in the T1D model has been demonstrated. Furthermore, this effect could be improved by using 3D scaffolds for culturing MSCs while preparing CM.
Collapse
Affiliation(s)
- Basak Isildar
- grid.506076.20000 0004 1797 5496Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Serbay Ozkan
- grid.506076.20000 0004 1797 5496Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Merve Ercin
- grid.9601.e0000 0001 2166 6619Department of Biology, Molecular Biology Section, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Selda Gezginci-Oktayoglu
- grid.9601.e0000 0001 2166 6619Department of Biology, Molecular Biology Section, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Mahmut Oncul
- grid.506076.20000 0004 1797 5496Department of Gynecology and Obstetrics, Cerrahpasa Faculty of Medicine, Istanbul University- Cerrahpasa, Istanbul, Turkey
| | - Meral Koyuturk
- grid.506076.20000 0004 1797 5496Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
10
|
Nagy G, Szekely TE, Somogyi A, Herold M, Herold Z. New therapeutic approaches for type 1 diabetes: Disease-modifying therapies. World J Diabetes 2022; 13:835-850. [PMID: 36312000 PMCID: PMC9606789 DOI: 10.4239/wjd.v13.i10.835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/08/2022] [Accepted: 09/15/2022] [Indexed: 02/05/2023] Open
Abstract
It has been 100 years since the first successful clinical use of insulin, yet it remains the only treatment option for type 1 diabetes mellitus (T1DM) patients. Advances in diabetes care, such as insulin analogue therapies and new devices, including continuous glucose monitoring with continuous subcutaneous insulin infusion have improved the quality of life of patients but have no impact on the pathogenesis of the disease. They do not eliminate long-term complications and require several lifestyle sacrifices. A more ideal future therapy for T1DM, instead of supplementing the insufficient hormone production (a consequence of β-cell destruction), would also aim to stop or slow down the destructive autoimmune process. The discovery of the autoimmune nature of type 1 diabetes mellitus has presented several targets by which disease progression may be altered. The goal of disease-modifying therapies is to target autoimmune mechanisms and prevent β-cell destruction. T1DM patients with better β-cell function have better glycemic control, reduced incidence of long-term complications and hypoglycemic episodes. Unfortunately, at the time symptomatic T1DM is diagnosed, most of the insulin secreting β cells are usually lost. Therefore, to maximize the salvageable β-cell mass by disease-modifying therapies, detecting autoimmune markers in an early, optimally presymptomatic phase of T1DM is of great importance. Disease-modifying therapies, such as immuno- and regenerative therapies are expected to take a relevant place in diabetology. The aim of this article was to provide a brief insight into the pathogenesis and course of T1DM and present the current state of disease-modifying therapeutic interventions that may impact future diabetes treatment.
Collapse
Affiliation(s)
- Geza Nagy
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest H-1088, Hungary
| | - Tekla Evelin Szekely
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest H-1088, Hungary
| | - Aniko Somogyi
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest H-1088, Hungary
| | - Magdolna Herold
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest H-1088, Hungary
| | - Zoltan Herold
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest H-1083, Hungary
| |
Collapse
|
11
|
Padovano M, Scopetti M, Manetti F, Morena D, Radaelli D, D'Errico S, Di Fazio N, Frati P, Fineschi V. Pancreatic transplant surgery and stem cell therapy: Finding the balance between therapeutic advances and ethical principles. World J Stem Cells 2022; 14:577-586. [PMID: 36157914 PMCID: PMC9453273 DOI: 10.4252/wjsc.v14.i8.577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/24/2022] [Accepted: 08/01/2022] [Indexed: 02/07/2023] Open
Abstract
The latest achievements in the field of pancreas transplantation and stem cell therapy require an effort by the scientific community to clarify the ethical implications of pioneering treatments, often characterized by high complexity from a surgical point of view, due to transplantation of multiple organs at the same time or at different times, and from an immunological point of view for stem cell therapy. The fundamental value in the field of organ transplants is, of course, a solidarity principle, namely that of protecting the health and life of people for whom transplantation is a condition of functional recovery, or even of survival. The nature of this value is that of a concept to which the legal discipline of transplants entrusts its own ethical dignity and for which it has ensured a constitutional recognition in different systems. The general principle of respect for human life, both of the donor and of the recipient, evokes the need not to put oneself and one's neighbor in dangerous conditions. The present ethical reflection aims to find a balance between the latest therapeutic advances and several concepts including the idea of the person, the respect due to the dead, the voluntary nature of the donation and the consent to the same, the gratuitousness of the donation, the scientific progress and the development of surgical techniques, and the policies of health promotion.
Collapse
Affiliation(s)
- Martina Padovano
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Matteo Scopetti
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome, Rome 00189, Italy
| | - Federico Manetti
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Donato Morena
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Davide Radaelli
- Department of Medicine, Surgery and Health, University of Trieste, Trieste 34149, Italy
| | - Stefano D'Errico
- Department of Medicine, Surgery and Health, University of Trieste, Trieste 34149, Italy
| | - Nicola Di Fazio
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome 00185, Italy.
| |
Collapse
|
12
|
Placenta derived Mesenchymal Stem Cells transplantation in Type 1 diabetes: preliminary report of phase 1 clinical trial. J Diabetes Metab Disord 2021; 20:1179-1189. [PMID: 34900770 DOI: 10.1007/s40200-021-00837-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022]
Abstract
Introduction Type 1 Diabetes Mellitus (T1DM) is an auto immune reaction against insulin secreting beta cells. Exogenous insulin administration is the only standard treatment for T1DM. However, despite tight glycemic control many patients will develop chronic life-threatening complications. Recently, stem cell transplantation has been suggested as a novel treatment for eliminating the beta cell damage and promoting their regeneration by modulating auto-immunity. To our knowledge; this is the first preliminary report of placenta derived MSCs (PLMSCs) transplantation in juvenile T1DM. Method An Open label non-randomized phase 1 clinical trial was designed to evaluate the safety of PLMSCs transplantation in new onset juvenile T1DM (IRCT20171021036903N2). PLMSCs were manufactured in our clean room facility using a Xeno-free/GMP compliant protocol. The first series of patients (n = 4) received one dose of1 × 106 PLMSCs/kg intravenously. Diabetic clinical and laboratory parameters and side effects were evaluated weekly for the first month, monthly for 6 months, and then every 3 month till 1 year. Results Serious adverse events were not seen during 1 year follow-up. Partial remission and hypoglycemic attacks were happened one month after transplantation in two patients. ZnT8-Ab decreased till month 3 and then increased again in all patients. Anti Gad-Ab decreased till month 3 of follow up then increased. Discussion This preliminary report of our phase I clinical trial demonstrated the short term safety of PLMSCs transplantation in juvenile T1DM. To prove the long term safety and probable efficacy of this treatment more investigations are needed. Trial registration Iranian Registry of Clinical Trials: IRCT20171021036903N2.
Collapse
|
13
|
Song J, He Q, Guo X, Wang L, Wang J, Cui C, Hu H, Yang M, Cui Y, Zang N, Yan F, Liu F, Sun Y, Liang K, Qin J, Zhao R, Wang C, Sun Z, Hou X, Li W, Chen L. Mesenchymal stem cell-conditioned medium alleviates high fat-induced hyperglucagonemia via miR-181a-5p and its target PTEN/AKT signaling. Mol Cell Endocrinol 2021; 537:111445. [PMID: 34464683 DOI: 10.1016/j.mce.2021.111445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/08/2021] [Accepted: 08/25/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND α-cell dysregulation gives rise to fasting and postprandial hyperglycemia in type 2 diabetes mellitus(T2DM). Administration of Mesenchymal stem cells (MSCs) or their conditioned medium can improve islet function and enhance insulin secretion. However, studies showing the direct effect of MSCs on islet α-cell dysfunction are limited. METHODS In this study, we used high-fat diet (HFD)-induced mice and α-cell line exposure to palmitate (PA) to determine the effects of bone marrow-derived MSC-conditioned medium (bmMSC-CM) on glucagon secretion. Plasma and supernatant glucagon were detected by enzyme-linked immunosorbent assay(ELISA). To investigate the potential signaling pathways, phosphatase and tensin homolog deleted on chromosome 10 (PTEN), AKT and phosphorylated AKT(p-AKT) were assessed by Western blotting. RESULTS In vivo, bmMSC-CM infusion improved the glucose and insulin tolerance and protected against HFD-induced hyperglycemia and hyperglucagonemia. Meanwhile, bmMSC-CM infusion ameliorated HFD-induced islet hypertrophy and decreased α- and β-cell area. Consistently, in vitro, glucagon secretion from α-cells or primary islets was inhibited by bmMSC-CM, accompanied by reduction of intracellular PTEN expression and restoration of AKT signaling. Previous studies and the TargetScan database indicate that miR-181a and its target PTEN play vital roles in ameliorating α-cell dysfunction. We observed that miR-181a-5p was highly expressed in BM-MSCs but prominently lower in αTC1-6 cells. Overexpression or downregulation of miR-181a-5p respectively alleviated or aggravated glucagon secretion in αTC1-6 cells via the PTEN/AKT signaling pathway. CONCLUSIONS Our observations suggest that MSC-derived miR-181a-5p mitigates glucagon secretion of α-cells by regulating PTEN/AKT signaling, which provides novel evidence demonstrating the potential for MSCs in treating T2DM.
Collapse
Affiliation(s)
- Jia Song
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Qin He
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Xinghong Guo
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Lingshu Wang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Jinbang Wang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Chen Cui
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Huiqing Hu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Mengmeng Yang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Yixin Cui
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Nan Zang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Fei Yan
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Fuqiang Liu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Yujing Sun
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Kai Liang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Jun Qin
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Ruxing Zhao
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Chuan Wang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Zheng Sun
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Xinguo Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China; Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, Shandong, China; Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, Shandong, China; Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, 250012, Shandong, China
| | - Wenjuan Li
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China; Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, Shandong, China; Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, Shandong, China; Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, 250012, Shandong, China.
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China; Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, Shandong, China; Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, Shandong, China; Jinan Clinical Research Center for Endocrine and Metabolic Disease, Jinan, 250012, Shandong, China.
| |
Collapse
|
14
|
Tissue Engineering Strategies for Improving Beta Cell Transplantation Outcome. CURRENT TRANSPLANTATION REPORTS 2021. [DOI: 10.1007/s40472-021-00333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
Purpose of Review
Beta cell replacement therapy as a form of islet transplantation is a promising alternative therapy with the possibility to make selected patients with type 1 diabetes (T1D) insulin independent. However, this technique faces challenges such as extensive activation of the host immune system post-transplantation, lifelong need for immunosuppression, and the scarcity of islet donor pancreas. Advancement in tissue engineering strategies can improve these challenges and allow for a more widespread application of this therapy. This review will discuss the recent development and clinical translation of tissue engineering strategies in beta cell replacement therapy.
Recent Findings
Tissue engineering offers innovative solutions for producing unlimited glucose responsive cells and fabrication of appropriate devices/scaffolds for transplantation applications. Generation of pancreatic organoids with supporting cells in biocompatible biomaterials is a powerful technique to improve the function of insulin-producing cell clusters. Fabrication of physical barriers such as encapsulation strategies can protect the cells from the host immune system and allow for graft retrieval, although this strategy still faces major challenges to fully restore physiological glucose regulation.
Summary
The three main components of tissue engineering strategies including the generation of stem cell-derived insulin-producing cells and organoids and the possibilities for therapeutic delivery of cell-seeded devices to extra-hepatic sites need to come together in order to provide safe and functional insulin-producing devices for clinical beta cell replacement therapy.
Collapse
|
15
|
Lu J, Shen SM, Ling Q, Wang B, Li LR, Zhang W, Qu DD, Bi Y, Zhu DL. One repeated transplantation of allogeneic umbilical cord mesenchymal stromal cells in type 1 diabetes: an open parallel controlled clinical study. Stem Cell Res Ther 2021; 12:340. [PMID: 34112266 PMCID: PMC8194026 DOI: 10.1186/s13287-021-02417-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
Background The preservation or restoration of β cell function in type 1 diabetes (T1D) remains as an attractive and challengeable therapeutic target. Mesenchymal stromal cells (MSCs) are multipotent cells with high capacity of immunoregulation, which emerged as a promising cell-based therapy for many immune disorders. The objective of this study was to examine the efficacy and safety of one repeated transplantation of allogeneic MSCs in individuals with T1D. Methods This was a nonrandomized, open-label, parallel-armed prospective study. MSCs were isolated from umbilical cord (UC) of healthy donors. Fifty-three participants including 33 adult-onset (≥ 18 years) and 20 juvenile-onset T1D were enrolled. Twenty-seven subjects (MSC-treated group) received an initial systemic infusion of allogeneic UC-MSCs, followed by a repeat course at 3 months, whereas the control group (n = 26) only received standard care based on intensive insulin therapy. Data at 1-year follow-up was reported in this study. The primary endpoint was clinical remission defined as a 10% increase from baseline in the level of fasting and/or postprandial C-peptide. The secondary endpoints included side effects, serum levels of HbA1c, changes in fasting and postprandial C-peptide, and daily insulin doses. Results After 1-year follow-up, 40.7% subjects in MSC-treated group achieved the primary endpoint, significantly higher than that in the control arm. Three subjects in MSC-treated group, in contrast to none in control group, achieved insulin independence and maintained insulin free for 3 to 12 months. Among the adult-onset T1D, the percent change of postprandial C-peptide was significantly increased in MSC-treated group than in the control group. However, changes in fasting or postprandial C-peptide were not significantly different between groups among the juvenile-onset T1D. Multivariable logistic regression assay indicated that lower fasting C-peptide and higher dose of UC-MSC correlated with achievement of clinical remission after transplantation. No severe side effects were observed. Conclusion One repeated intravenous dose of allogeneic UC-MSCs is safe in people with recent-onset T1D and may result in better islet β cell preservation during the first year after diagnosis compared to standard treatment alone. Trial registration ChiCTR2100045434. Registered on April 15, 2021—retrospectively registered, http://www.chictr.org.cn/ Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02417-3.
Collapse
Affiliation(s)
- Jing Lu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Shan-Mei Shen
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Qing Ling
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Bin Wang
- Clinical Stem Cell Center, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Li-Rong Li
- School of Clinical Medicine and Nursing, Suzhou Vocational Health College, No 28, Kehua Road, Suzhou International Education Park, Suzhou, 215151, Jiangsu, China
| | - Wei Zhang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Duo-Duo Qu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yan Bi
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| | - Da-Long Zhu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, No 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
16
|
Sun Y, Tao Q, Wu X, Zhang L, Liu Q, Wang L. The Utility of Exosomes in Diagnosis and Therapy of Diabetes Mellitus and Associated Complications. Front Endocrinol (Lausanne) 2021; 12:756581. [PMID: 34764939 PMCID: PMC8576340 DOI: 10.3389/fendo.2021.756581] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/01/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus and the associated complications are metabolic diseases with high morbidity that result in poor quality of health and life. The lack of diagnostic methods for early detection results in patients losing the best treatment opportunity. Oral hypoglycemics and exogenous insulin replenishment are currently the most common therapeutic strategies, which only yield temporary glycemic control rather than curing the disease and its complications. Exosomes are nanoparticles containing bioactive molecules reflecting individual physiological status, regulating metabolism, and repairing damaged tissues. They function as biomarkers of diabetes mellitus and diabetic complications. Considering that exosomes are bioactive molecules, can be obtained from body fluid, and have cell-type specificity, in this review, we highlight the multifold effects of exosomes in the pathology and therapy of diabetes mellitus and diabetic complications.
Collapse
Affiliation(s)
- Yaoxiang Sun
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, China
| | - Qing Tao
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Xueqin Wu
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, China
| | - Ling Zhang
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, China
| | - Qi Liu
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, China
| | - Lei Wang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
17
|
He Q, Wang L, Zhao R, Yan F, Sha S, Cui C, Song J, Hu H, Guo X, Yang M, Cui Y, Sun Y, Sun Z, Liu F, Dong M, Hou X, Chen L. Mesenchymal stem cell-derived exosomes exert ameliorative effects in type 2 diabetes by improving hepatic glucose and lipid metabolism via enhancing autophagy. Stem Cell Res Ther 2020; 11:223. [PMID: 32513303 PMCID: PMC7278170 DOI: 10.1186/s13287-020-01731-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/05/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
Background Mesenchymal stem cell (MSC)-based therapy is currently considered to be an effective treatment strategy for diabetes and hepatic disorders, such as liver cirrhosis and non-alcoholic fatty liver disease. Exosomes are important mediators of cellular connections, and increasing evidence has suggested that exosomes derived from MSCs may be used as direct therapeutic agents; their mechanisms of action, however, remain largely unclear. Here, we evaluated the efficacy and molecular mechanisms of human umbilical cord MSC-derived exosomes (HucMDEs) on hepatic glucose and lipid metabolism in type 2 diabetes mellitus (T2DM). Methods HucMDEs were used to treat T2DM rats, as well as palmitic acid (PA)-treated L-O2 cells, in order to determine the effects of HucMDEs on hepatic glucose and lipid metabolism. To evaluate the changes in autophagy and potential signaling pathways, autophagy-related proteins (BECN1, microtubule-associated protein 1 light chain 3 beta [MAP 1LC3B]), autophagy-related genes (ATGs, ATG5, and ATG7), AMP-activated protein kinase (AMPK), and phosphorylated AMPK (p-AMPK) were assessed by Western blotting. Results HucMDEs promoted hepatic glycolysis, glycogen storage, and lipolysis, and reduced gluconeogenesis. Additionally, autophagy potentially contributed to the effects of HucMDE treatment. Transmission electron microscopy revealed an increased formation of autophagosomes in HucMDE-treated groups, and the autophagy marker proteins, BECN1 and MAP 1LC3B, were also increased. Moreover, autophagy inhibitor 3-methyladenine significantly reduced the effects of HucMDEs on glucose and lipid metabolism in T2DM rats. Based on its phosphorylation status, we found that the AMPK signaling pathway was activated and induced autophagy in T2DM rats and PA-treated L-O2 cells. Meanwhile, the transfection of AMPK siRNA or application of the AMPK inhibitor, Comp C, weakened the therapeutic effects of HucMDEs on glucose and lipid metabolism. Conclusions These findings demonstrate that HucMDEs improved hepatic glucose and lipid metabolism in T2DM rats by activating autophagy via the AMPK pathway, which provides novel evidence suggesting the potential for HucMDEs in clinically treating T2DM patients.
Collapse
Affiliation(s)
- Qin He
- Department of Endocrinology, Qilu Hospital of Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Lingshu Wang
- Department of Endocrinology, Qilu Hospital of Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Ruxing Zhao
- Department of Endocrinology, Qilu Hospital of Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Fei Yan
- Department of Endocrinology, Qilu Hospital of Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Sha Sha
- Department of Endocrinology, Qilu Hospital of Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Chen Cui
- Department of Endocrinology, Qilu Hospital of Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Jia Song
- Department of Endocrinology, Qilu Hospital of Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Huiqing Hu
- Department of Endocrinology, Qilu Hospital of Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xinghong Guo
- Department of Endocrinology, Qilu Hospital of Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Mengmeng Yang
- Department of Endocrinology, Qilu Hospital of Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yixin Cui
- Department of Endocrinology, Qilu Hospital of Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yujing Sun
- Department of Endocrinology, Qilu Hospital of Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Zheng Sun
- Department of Endocrinology, Qilu Hospital of Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Fuqiang Liu
- Department of Endocrinology, Qilu Hospital of Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Ming Dong
- Department of Endocrinology, Qilu Hospital of Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China.,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, Shandong, China.,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, Shandong, China
| | - Xinguo Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China. .,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, Shandong, China. .,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, Shandong, China.
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, No. 107 Wenhua Xi Road, Jinan, 250012, Shandong, China. .,Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, 250012, Shandong, China. .,Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, Jinan, 250012, Shandong, China.
| |
Collapse
|
18
|
Black L, Zorina T. Cell-based immunomodulatory therapy approaches for type 1 diabetes mellitus. Drug Discov Today 2020; 25:380-391. [DOI: 10.1016/j.drudis.2019.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/11/2019] [Accepted: 11/30/2019] [Indexed: 12/14/2022]
|
19
|
Stiner R, Alexander M, Liu G, Liao W, Liu Y, Yu J, Pone EJ, Zhao W, Lakey JRT. Transplantation of stem cells from umbilical cord blood as therapy for type I diabetes. Cell Tissue Res 2019; 378:155-162. [PMID: 31209568 DOI: 10.1007/s00441-019-03046-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 04/21/2019] [Indexed: 12/15/2022]
Abstract
In recent years, human umbilical cord blood has emerged as a rich source of stem, stromal and immune cells for cell-based therapy. Among the stem cells from umbilical cord blood, CD45+ multipotent stem cells and CD90+ mesenchymal stem cells have the potential to treat type I diabetes mellitus (T1DM), to correct autoimmune dysfunction and replenish β-cell numbers and function. In this review, we compare the general characteristics of umbilical cord blood-derived multipotent stem cells (UCB-SCs) and umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) and introduce their applications in T1DM. Although there are some differences in surface marker expression between UCB-SCs and UCB-MSCs, the two cell types display similar functions such as suppressing function of stimulated lymphocytes and imparting differentiation potential to insulin-producing cells (IPCs) in the setting of low immunogenicity, thereby providing a promising and safe approach for T1DM therapy.
Collapse
Affiliation(s)
- Rachel Stiner
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA.,Department of Surgery, University of California, Irvine, 333 City Boulevard West, Suite 1600, Orange, CA, 92868, USA
| | - Michael Alexander
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA.,Department of Surgery, University of California, Irvine, 333 City Boulevard West, Suite 1600, Orange, CA, 92868, USA.,Department of Biomedical Engineering, University of California, Irvine, 402 E Peltason Dr, Irvine, CA, 92697, USA
| | - Guangyang Liu
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA.,Department of Surgery, University of California, Irvine, 333 City Boulevard West, Suite 1600, Orange, CA, 92868, USA.,Department of Biomedical Engineering, University of California, Irvine, 402 E Peltason Dr, Irvine, CA, 92697, USA.,Baylx, Inc., 23 Spectrum Pointe Dr Suite 207, Lake Forest, CA, 92630, USA
| | - Wenbin Liao
- Baylx, Inc., 23 Spectrum Pointe Dr Suite 207, Lake Forest, CA, 92630, USA
| | - Yongjun Liu
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, 402 E Peltason Dr, Irvine, CA, 92697, USA.,Baylx, Inc., 23 Spectrum Pointe Dr Suite 207, Lake Forest, CA, 92630, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, 147 Bison Modular, Irvine, CA, 92697, USA
| | - Jingxia Yu
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA.,Department of Surgery, University of California, Irvine, 333 City Boulevard West, Suite 1600, Orange, CA, 92868, USA.,Department of Biomedical Engineering, University of California, Irvine, 402 E Peltason Dr, Irvine, CA, 92697, USA.,Baylx, Inc., 23 Spectrum Pointe Dr Suite 207, Lake Forest, CA, 92630, USA
| | - Egest J Pone
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, 402 E Peltason Dr, Irvine, CA, 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, 147 Bison Modular, Irvine, CA, 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, 101 The City Dr S, Orange, CA, 92868, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Weian Zhao
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, 402 E Peltason Dr, Irvine, CA, 92697, USA.,Baylx, Inc., 23 Spectrum Pointe Dr Suite 207, Lake Forest, CA, 92630, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, 147 Bison Modular, Irvine, CA, 92697, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, 101 The City Dr S, Orange, CA, 92868, USA.,Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Jonathan R T Lakey
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, 845 Health Sciences Road, Irvine, CA, 92697, USA. .,Department of Surgery, University of California, Irvine, 333 City Boulevard West, Suite 1600, Orange, CA, 92868, USA. .,Department of Biomedical Engineering, University of California, Irvine, 402 E Peltason Dr, Irvine, CA, 92697, USA. .,Baylx, Inc., 23 Spectrum Pointe Dr Suite 207, Lake Forest, CA, 92630, USA.
| |
Collapse
|
20
|
van Megen KM, van 't Wout EJT, Lages Motta J, Dekker B, Nikolic T, Roep BO. Activated Mesenchymal Stromal Cells Process and Present Antigens Regulating Adaptive Immunity. Front Immunol 2019; 10:694. [PMID: 31001285 PMCID: PMC6457321 DOI: 10.3389/fimmu.2019.00694] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 03/13/2019] [Indexed: 12/25/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are inherently immunomodulatory through production of inhibiting soluble factors and expression of immunosuppressive cell surface markers. We tested whether activated MSCs qualify for the induction of antigen-specific immune regulation. Bone marrow derived human MSCs were activated by interferon-γ and analyzed for antigen uptake and processing and immune regulatory features including phenotype, immunosuppressive capacity, and metabolic activity. To assess whether activated MSC can modulate adaptive immunity, MSCs were pulsed with islet auto-antigen (GAD65) peptide to stimulate GAD65-specific T-cells. We confirm that inflammatory activation of MSCs increased HLA class II, PD-L1, and intracellular IDO expression, whereas co-stimulatory molecules including CD86 remained absent. MSCs remained locked in their metabolic phenotype, as activation did not alter glycolytic function or mitochondrial respiration. MSCs were able to uptake and process protein. Activated HLA-DR3-expressing MSCs pulsed with GAD65 peptide inhibited proliferation of HLA-DR3-restricted GAD65-specific T-cells, while this HLA class II expression did not induce cellular alloreactivity. Conditioning of antigen-specific T-cells by activated and antigen-pulsed MSCs prevented T-cells to proliferate upon subsequent activation by dendritic cells, even after removal of the MSCs. In sum, activation of MSCs with inflammatory stimuli turns these cells into suppressive cells capable of mediating adaptive regulation of proinflammatory pathogenic T-cells.
Collapse
Affiliation(s)
- Kayleigh M van Megen
- Department of Diabetes Immunology, Diabetes and Metabolism Research Institute at the Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Ernst-Jan T van 't Wout
- Department of Diabetes Immunology, Diabetes and Metabolism Research Institute at the Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Julia Lages Motta
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands.,Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Bernice Dekker
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Tatjana Nikolic
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Bart O Roep
- Department of Diabetes Immunology, Diabetes and Metabolism Research Institute at the Beckman Research Institute of City of Hope, Duarte, CA, United States.,Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
21
|
Sun Y, Shi H, Yin S, Ji C, Zhang X, Zhang B, Wu P, Shi Y, Mao F, Yan Y, Xu W, Qian H. Human Mesenchymal Stem Cell Derived Exosomes Alleviate Type 2 Diabetes Mellitus by Reversing Peripheral Insulin Resistance and Relieving β-Cell Destruction. ACS NANO 2018; 12:7613-7628. [PMID: 30052036 DOI: 10.1021/acsnano.7b07643] [Citation(s) in RCA: 320] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Exosomes are nanosized extracellular vesicles (EVs) that show great promise in tissue regeneration and injury repair as mesenchymal stem cell (MSC). MSC has been shown to alleviate diabetes mellitus (DM) in both animal models and clinical trials. In this study, we aimed to investigate whether exosomes from human umbilical cord MSC (hucMSC-ex) have a therapeutic effect on type 2 DM (T2DM). We established a rat model of T2DM using a high-fat diet and streptozotocin (STZ). We found that the intravenous injection of hucMSC-ex reduced blood glucose levels as a main paracrine approach of MSC. HucMSC-ex partially reversed insulin resistance in T2DM indirectly to accelerate glucose metabolism. HucMSC-ex restored the phosphorylation (tyrosine site) of the insulin receptor substrate 1 and protein kinase B in T2DM, promoted expression and membrane translocation of glucose transporter 4 in muscle, and increased storage of glycogen in the liver to maintain glucose homeostasis. HucMSC-ex inhibited STZ-induced β-cell apoptosis to restore the insulin-secreting function of T2DM. Taken together, exosomes from hucMSC can alleviate T2DM by reversing peripheral insulin resistance and relieving β-cell destruction, providing an alternative approach for T2DM treatment.
Collapse
Affiliation(s)
- Yaoxiang Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
- Department of Clinical Laboratory , The Affiliated Yixing Hospital of Jiangsu University , Yixing , Jiangsu 214200 , China
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Siqi Yin
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Cheng Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Bin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Peipei Wu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Yinghong Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Fei Mao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Yongmin Yan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine , Jiangsu University , Zhenjiang , Jiangsu 212013 , China
| |
Collapse
|
22
|
Rackham CL, Jones PM. Potential of mesenchymal stromal cells for improving islet transplantation outcomes. Curr Opin Pharmacol 2018; 43:34-39. [PMID: 30103073 DOI: 10.1016/j.coph.2018.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 12/16/2022]
Abstract
Allogeneic islet transplantation as a therapy for Type 1 Diabetes (T1D) is restricted by the limited availability of donor islets, loss of functional islets during pre-transplantation culture in vitro and further extensive loss during the immediate post-transplantation period when islet function and survival is compromised by the hypoxic, inflammatory host environment. In the longer term pathogenic T cell responses drive autoimmunity and chronic allograft rejection. Experimental studies have demonstrated that mesenchymal stromal cells (MSCs) have significant potential to improve the outcomes of clinical islet transplantation. This review explores the potential for MSCs and their 'secretome' to influence donor islet cell function and survival, as well as the host niche. We discuss the possibility of harnessing the therapeutic benefits of MSCs in a cell-free strategy to offer a well-defined, cell-free approach to improve the outcomes of clinical islet transplantation.
Collapse
Affiliation(s)
- Chloe L Rackham
- Department of Diabetes, School of Life Course Sciences, King's College London, Guy's Campus, London SE1 1UL, UK.
| | - Peter M Jones
- Department of Diabetes, School of Life Course Sciences, King's College London, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
23
|
Jiang Y, Zhang W, Xu S, Lin H, Sui W, Liu H, Peng L, Fang Q, Chen L, Lou J. Transplantation of human fetal pancreatic progenitor cells ameliorates renal injury in streptozotocin-induced diabetic nephropathy. J Transl Med 2017; 15:147. [PMID: 28655312 PMCID: PMC5488369 DOI: 10.1186/s12967-017-1253-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/22/2017] [Indexed: 12/16/2022] Open
Abstract
Background Diabetic nephropathy (DN) is a severe complication of diabetes mellitus (DM). Pancreas or islet transplantation has been reported to prevent the development of DN lesions and ameliorate or reverse existing glomerular lesions in animal models. Shortage of pancreas donor is a severe problem. Islets derived from stem cells may offer a potential solution to this problem. Objective To evaluate the effect of stem cell-derived islet transplantation on DN in a rat model of streptozotocin-induced DM. Methods Pancreatic progenitor cells were isolated from aborted fetuses of 8 weeks of gestation. And islets were prepared by suspension culture after a differentiation of progenitor cells in medium containing glucagon-like peptide-1 (Glp-1) and nicotinamide. Then islets were transplanted into the liver of diabetic rats via portal vein. Blood glucose, urinary volume, 24 h urinary protein and urinary albumin were measured once biweekly for 16 weeks. Graft survival was evaluated by monitoring human C-peptide level in rat sera and by immunohistochemical staining for human mitochondrial antigen and human C-peptide in liver tissue. The effect of progenitor-derived islets on filtration membrane was examined by electron microscopy and real-time polymerase chain reaction (PCR). Immunohistochemical staining, real-time PCR and western blot were employed for detecting fibronectin, protein kinase C beta (PKCβ), protein kinase A (PKA), inducible nitric oxide synthase (iNOS) and superoxide dismutase (SOD). Results Islet-like clusters derived from 8th gestational-week human fetal pancreatic progenitors survived in rat liver. And elevated serum level of human C-peptide was detected. Blood glucose, 24 h urinary protein and urinary albumin were lower in progenitor cell group than those in DN or insulin treatment group. Glomerular basement membrane thickness and fibronectin accumulation decreased significantly while podocytes improved morphologically in progenitor cell group. Furthermore, receptor of advanced glycation end products and PKCβ became down-regulated whereas PKA up-regulated by progenitor cell-derived islets. And iNOS rose while SOD declined. Conclusions DN may be reversed by transplantation of human fetal pancreatic progenitor cell-derived islets. And fetal pancreatic progenitor cells offer potential resources for cell replacement therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1253-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongwei Jiang
- Department of Laboratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.,Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Wenjian Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Shiqing Xu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Hua Lin
- Department of Gynecology and Obstetrics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Weiguo Sui
- First Kidney Transplantation Hemopurification Center of Chinese PLA, 181st Hospital of Chinese People's Liberation Army, Guilin, 541002, China
| | - Honglin Liu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Liang Peng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Qing Fang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Jinning Lou
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, 100029, People's Republic of China.
| |
Collapse
|