1
|
Wei X, Hu X, Li T, Li Y, Yu Y, Jiang X, Wang H, Yang J, Jiao X, Zhou X, Sun Y. Comprehensive Extraction and Biological Activities of Mycosporine-like Amino Acids and Glyceroglycolipids Extracts from Two Macroalgae Ecklonia kurome and Ulva lactuca. Foods 2025; 14:440. [PMID: 39942033 PMCID: PMC11817109 DOI: 10.3390/foods14030440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Mycosporine-like amino acids (MAAs) and glyceroglycolipids have promising applications in various fields, but limited research exists on their simultaneous extraction from macroalgae. This study optimized the key parameters (liquid-solid ratio, extraction temperature and extraction time) in the extraction of MAAs and glyceroglycolipids from Ecklonia kurome and Ulva lactuca using single factor and response surface experiments. The yields of MAAs from E. kurome and U. lactuca were 169.71 mg/g and 177.33 mg/g, respectively, while glyceroglycolipids were extracted from the residue with yields of 163.51 mg/g and 213.45 mg/g, respectively. Both extracts showed concentration-dependent antioxidant activities, with the MAAs extracted from U. lactuca demonstrating the strongest effect. The addition of MAA extract to flaxseed oil significantly reduced oxidation rancidity, highlighting its potential as a natural antioxidant for oils. The glyceroglycolipid extract from E. kurome exhibited significant moisture absorption, and a water-retaining agent prepared from this extract showed excellent moisture retention and resistance to high temperatures, freezing, and pressure. A silica gel column chromatography method confirmed the presence of MGDG in the purified glyceroglycolipid extract. These findings suggested that E. kurome and U. lactuca can be converted into high-value-added compounds with potential applications in food, cosmetics, and pharmaceuticals.
Collapse
Affiliation(s)
- Xin Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (X.W.); (T.L.); (J.Y.)
| | - Xiaoqi Hu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (X.W.); (T.L.); (J.Y.)
| | - Tianhuan Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (X.W.); (T.L.); (J.Y.)
| | - Yuxiang Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (X.W.); (T.L.); (J.Y.)
| | - You Yu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (X.W.); (T.L.); (J.Y.)
| | - Xiujing Jiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (X.W.); (T.L.); (J.Y.)
| | - Haonan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (X.W.); (T.L.); (J.Y.)
| | - Jie Yang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (X.W.); (T.L.); (J.Y.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Lianyungang 222005, China
- Jiangsu Institute of Marine Resources Development, Lianyungang 222005, China
| | - Xue Jiao
- Jiangsu Coast Development Group Co., Ltd., Nanjing 210095, China; (X.J.); (X.Z.)
| | - Xinghu Zhou
- Jiangsu Coast Development Group Co., Ltd., Nanjing 210095, China; (X.J.); (X.Z.)
| | - Yingying Sun
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (X.W.); (T.L.); (J.Y.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Lianyungang 222005, China
- Jiangsu Institute of Marine Resources Development, Lianyungang 222005, China
| |
Collapse
|
2
|
Pereira RC, Paradas WC, de Carvalho RT, de Lima Moreira D, Kelecom A, Passos RMF, Atella GC, Salgado LT. Chemical Defense against Herbivory in the Brown Marine Macroalga Padina gymnospora Could Be Attributed to a New Hydrocarbon Compound. PLANTS (BASEL, SWITZERLAND) 2023; 12:1073. [PMID: 36903932 PMCID: PMC10005330 DOI: 10.3390/plants12051073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Brown marine macroalga Padina gymnospora (Phaeophyceae, Ochrophyta) produces both secondary metabolites (phlorotannins) and precipitate calcium carbonate (CaCO3-aragonite) on its surface as potential defensive strategies against herbivory. Here, we have evaluated the effect of natural concentrations of organic extracts (dichloromethane-DI; ethyl acetate-EA and methanol-ME, and three isolated fractions) and mineralized tissues of P. gymnospora as chemical and physical resistance, respectively, against the sea urchin Lytechinus variegatus through experimental laboratory feeding bioassays. Fatty acids (FA), glycolipids (GLY), phlorotannins (PH) and hydrocarbons (HC) were also characterized and/or quantified in extracts and fractions from P. gymnospora using nuclear magnetic resonance (NMR) and gas chromatography (GC) coupled to mass spectrometry (CG/MS) or GC coupled to flame ionization detector (FID) and chemical analysis. Our results showed that chemicals from the EA extract of P. gymnospora were significantly important in reducing consumption by L. variegatus, but the CaCO3 did not act as a physical protection against consumption by this sea urchin. An enriched fraction containing 76% of the new hydrocarbon 5Z,8Z,11Z,14Z-heneicosatetraene exhibited a significant defensive property, while other chemicals found in minor amounts, such as GLY, PH, saturated and monounsaturated FAs and CaCO3 did not interfere with the susceptibility of P. gymnospora to L. variegatus consumption. We suggest that the unsaturation of the 5Z,8Z,11Z,14Z-heneicosatetraene from P. gymnospora is probably an important structural characteristic responsible for the defensive property verified against the sea urchin.
Collapse
Affiliation(s)
- Renato Crespo Pereira
- Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24220-900, Brazil
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
| | - Wladimir Costa Paradas
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro 22460-030, Brazil
| | | | | | - Alphonse Kelecom
- Departamento de Biologia Geral, Instituto de Biologia, Universidade Federal Fluminense, Niterói 24220-900, Brazil
| | | | - Georgia Correa Atella
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | | |
Collapse
|
3
|
Jorissen H, Galand PE, Bonnard I, Meiling S, Raviglione D, Meistertzheim AL, Hédouin L, Banaigs B, Payri CE, Nugues MM. Coral larval settlement preferences linked to crustose coralline algae with distinct chemical and microbial signatures. Sci Rep 2021; 11:14610. [PMID: 34272460 PMCID: PMC8285400 DOI: 10.1038/s41598-021-94096-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 07/05/2021] [Indexed: 11/09/2022] Open
Abstract
The resilience of coral reefs is dependent on the ability of corals to settle after disturbances. While crustose coralline algae (CCA) are considered important substrates for coral settlement, it remains unclear whether coral larvae respond to CCA metabolites and microbial cues when selecting sites for attachment and metamorphosis. This study tested the settlement preferences of an abundant coral species (Acropora cytherea) against six different CCA species from three habitats (exposed, subcryptic and cryptic), and compared these preferences with the metabolome and microbiome characterizing the CCA. While all CCA species induced settlement, only one species (Titanoderma prototypum) significantly promoted settlement on the CCA surface, rather than on nearby dead coral or plastic surfaces. This species had a very distinct bacterial community and metabolomic fingerprint. Furthermore, coral settlement rates and the CCA microbiome and metabolome were specific to the CCA preferred habitat, suggesting that microbes and/or chemicals serve as environmental indicators for coral larvae. Several amplicon sequence variants and two lipid classes—glycoglycerolipids and betaine lipids—present in T. prototypum were identified as potential omic cues influencing coral settlement. These results support that the distinct microbiome and metabolome of T. prototypum may promote the settlement and attachment of coral larvae.
Collapse
Affiliation(s)
- Hendrikje Jorissen
- CRIOBE USR 3278, EPHE-UPVD-CNRS-PSL, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France.
| | - Pierre E Galand
- CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Sorbonne Université, 66500, Banyuls-sur-Mer, France
| | - Isabelle Bonnard
- CRIOBE USR 3278, EPHE-UPVD-CNRS-PSL, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France.,Laboratoire d'Excellence « CORAIL», 98729, Papetoai, Moorea, French Polynesia
| | - Sonora Meiling
- CRIOBE USR 3278, EPHE-UPVD-CNRS-PSL, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France.,University of the Virgin Islands, St Thomas, 00802-6004, Virgin Islands (U.S.)
| | - Delphine Raviglione
- CRIOBE USR 3278, EPHE-UPVD-CNRS-PSL, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France
| | - Anne-Leila Meistertzheim
- CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Sorbonne Université, 66500, Banyuls-sur-Mer, France.,Plastic@Sea, Observatoire Océanologique de Banyuls, 66650, Banyuls-sur-Mer, France
| | - Laetitia Hédouin
- CRIOBE USR 3278, EPHE-UPVD-CNRS-PSL, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France.,Laboratoire d'Excellence « CORAIL», 98729, Papetoai, Moorea, French Polynesia
| | - Bernard Banaigs
- CRIOBE USR 3278, EPHE-UPVD-CNRS-PSL, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France.,Laboratoire d'Excellence « CORAIL», 98729, Papetoai, Moorea, French Polynesia
| | | | - Maggy M Nugues
- CRIOBE USR 3278, EPHE-UPVD-CNRS-PSL, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France.,Laboratoire d'Excellence « CORAIL», 98729, Papetoai, Moorea, French Polynesia
| |
Collapse
|
4
|
Emeline CB, Ludovic D, Laurent V, Catherine L, Kruse I, Erwan AG, Florian W, Philippe P. Induction of Phlorotannins and Gene Expression in the Brown Macroalga Fucus vesiculosus in Response to the Herbivore Littorina littorea. Mar Drugs 2021; 19:185. [PMID: 33810577 PMCID: PMC8067260 DOI: 10.3390/md19040185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 01/05/2023] Open
Abstract
Mechanisms related to the induction of phlorotannin biosynthesis in marine brown algae remain poorly known. Several studies undertaken on fucoid species have shown that phlorotannins accumulate in the algae for several days or weeks after being exposed to grazing, and this is measured by direct quantification of soluble phenolic compounds. In order to investigate earlier inducible responses involved in phlorotannin metabolism, Fucus vesiculosus was studied between 6 and 72 h of grazing by the sea snail Littorina littorea. In this study, the quantification of soluble phenolic compounds was complemented by a Quantitative real-time PCR (qRT-PCR) approach applied on genes that are potentially involved in either the phlorotannin metabolism or stress responses. Soluble phlorotannin levels remained stable during the kinetics and increased significantly only after 12 h in the presence of grazers, compared to the control, before decreasing to the initial steady state for the rest of the kinetics. Under grazing conditions, the expression of vbpo, cyp450 and ast6 genes was upregulated, respectively, at 6 h, 12 h and 24 h, and cyp450 gene was downregulated after 72 h. Interestingly, the pksIII gene involved in the synthesis of phloroglucinol was overexpressed under grazing conditions after 24 h and 72 h. This study supports the hypothesis that phlorotannins are able to provide an inducible chemical defense under grazing activity, which is regulated at different stages of the stress response.
Collapse
Affiliation(s)
- Creis Bendelac Emeline
- Integrative Biology of Marine Models (LBI2M), CNRS, Sorbonne Université, UMR 8227, Station Biologique, Place Georges Teissier, 29680 Roscoff, Brittany, France; (C.B.E.); (D.L.); (V.L.); (L.C.)
- International Research Laboratory IRL 3614, CNRS, Sorbonne Université, PUC, UACH, Evolutionary Biology and Ecology of Algae, EBEA, Station Biologique, 29680 Roscoff, Brittany, France
| | - Delage Ludovic
- Integrative Biology of Marine Models (LBI2M), CNRS, Sorbonne Université, UMR 8227, Station Biologique, Place Georges Teissier, 29680 Roscoff, Brittany, France; (C.B.E.); (D.L.); (V.L.); (L.C.)
| | - Vallet Laurent
- Integrative Biology of Marine Models (LBI2M), CNRS, Sorbonne Université, UMR 8227, Station Biologique, Place Georges Teissier, 29680 Roscoff, Brittany, France; (C.B.E.); (D.L.); (V.L.); (L.C.)
| | - Leblanc Catherine
- Integrative Biology of Marine Models (LBI2M), CNRS, Sorbonne Université, UMR 8227, Station Biologique, Place Georges Teissier, 29680 Roscoff, Brittany, France; (C.B.E.); (D.L.); (V.L.); (L.C.)
| | - Inken Kruse
- Helmholtz Centre for Ocean Research (GEOMAR), Düsternbrooker Weg 20, 24105 Kiel, Germany; (I.K.); (W.F.)
| | - Ar Gall Erwan
- Laboratoire des Sciences de l’Environnement Marin, UBO European Institute for Marine Studies IUEM, University of Brest—Western Brittany, UMR 6539 LEMAR, Technopôle Brest Iroise, Rue Dumont d’Urville, 29280 Plouzané, Brittany, France
| | - Weinberger Florian
- Helmholtz Centre for Ocean Research (GEOMAR), Düsternbrooker Weg 20, 24105 Kiel, Germany; (I.K.); (W.F.)
| | - Potin Philippe
- Integrative Biology of Marine Models (LBI2M), CNRS, Sorbonne Université, UMR 8227, Station Biologique, Place Georges Teissier, 29680 Roscoff, Brittany, France; (C.B.E.); (D.L.); (V.L.); (L.C.)
| |
Collapse
|
5
|
Abbott DW, Aasen IM, Beauchemin KA, Grondahl F, Gruninger R, Hayes M, Huws S, Kenny DA, Krizsan SJ, Kirwan SF, Lind V, Meyer U, Ramin M, Theodoridou K, von Soosten D, Walsh PJ, Waters S, Xing X. Seaweed and Seaweed Bioactives for Mitigation of Enteric Methane: Challenges and Opportunities. Animals (Basel) 2020; 10:E2432. [PMID: 33353097 PMCID: PMC7766277 DOI: 10.3390/ani10122432] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/07/2020] [Accepted: 12/15/2020] [Indexed: 12/27/2022] Open
Abstract
Seaweeds contain a myriad of nutrients and bioactives including proteins, carbohydrates and to a lesser extent lipids as well as small molecules including peptides, saponins, alkaloids and pigments. The bioactive bromoform found in the red seaweed Asparagopsis taxiformis has been identified as an agent that can reduce enteric CH4 production from livestock significantly. However, sustainable supply of this seaweed is a problem and there are some concerns over its sustainable production and potential negative environmental impacts on the ozone layer and the health impacts of bromoform. This review collates information on seaweeds and seaweed bioactives and the documented impact on CH4 emissions in vitro and in vivo as well as associated environmental, economic and health impacts.
Collapse
Affiliation(s)
- D. Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1 Avenue South, Lethbridge, AB T1J 4B1, Canada; (D.W.A.); (K.A.B.); (R.G.); (X.X.)
| | - Inga Marie Aasen
- Department of Biotechnology and Nanomedicine, SINTEF Industry, 7465 Trondheim, Norway;
| | - Karen A. Beauchemin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1 Avenue South, Lethbridge, AB T1J 4B1, Canada; (D.W.A.); (K.A.B.); (R.G.); (X.X.)
| | - Fredrik Grondahl
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden;
| | - Robert Gruninger
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1 Avenue South, Lethbridge, AB T1J 4B1, Canada; (D.W.A.); (K.A.B.); (R.G.); (X.X.)
| | - Maria Hayes
- Food BioSciences Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin 15, Ireland
| | - Sharon Huws
- Queens University Belfast (QUB), Belfast, BT7 1NN Co., Antrim, Ireland; (S.H.); (K.T.); (P.J.W.)
| | - David A. Kenny
- Animal Bioscience Research Centre, Grange, Dunsany, C15 PW93 Co., Meath, Ireland; (D.A.K.); (S.F.K.); (S.W.)
| | - Sophie J. Krizsan
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden; (S.J.K.); (M.R.)
| | - Stuart F. Kirwan
- Animal Bioscience Research Centre, Grange, Dunsany, C15 PW93 Co., Meath, Ireland; (D.A.K.); (S.F.K.); (S.W.)
| | - Vibeke Lind
- Norwegian Institute of Bioeconomy Research (NIBIO), Post Box 115, 1431 Ås, Norway;
| | - Ulrich Meyer
- Friedrich-Loeffler-Institut (FLI), Bundesforschungsinstitut für Tiergesundheit, Federal Research Institute for Animal Health, 38116 Braunschweig, Germany; (U.M.); (D.v.S.)
| | - Mohammad Ramin
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden; (S.J.K.); (M.R.)
| | - Katerina Theodoridou
- Queens University Belfast (QUB), Belfast, BT7 1NN Co., Antrim, Ireland; (S.H.); (K.T.); (P.J.W.)
| | - Dirk von Soosten
- Friedrich-Loeffler-Institut (FLI), Bundesforschungsinstitut für Tiergesundheit, Federal Research Institute for Animal Health, 38116 Braunschweig, Germany; (U.M.); (D.v.S.)
| | - Pamela J. Walsh
- Queens University Belfast (QUB), Belfast, BT7 1NN Co., Antrim, Ireland; (S.H.); (K.T.); (P.J.W.)
| | - Sinéad Waters
- Animal Bioscience Research Centre, Grange, Dunsany, C15 PW93 Co., Meath, Ireland; (D.A.K.); (S.F.K.); (S.W.)
| | - Xiaohui Xing
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, 5403-1 Avenue South, Lethbridge, AB T1J 4B1, Canada; (D.W.A.); (K.A.B.); (R.G.); (X.X.)
| |
Collapse
|
6
|
Choi YY, Lee SJ, Lee YJ, Kim HS, Eom JS, Kim SC, Kim ET, Lee SS. New challenges for efficient usage of Sargassum fusiforme for ruminant production. Sci Rep 2020; 10:19655. [PMID: 33184385 PMCID: PMC7661511 DOI: 10.1038/s41598-020-76700-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/29/2020] [Indexed: 11/09/2022] Open
Abstract
Sargassum fusiforme, which is a type of brown algae, can provide fiber and minerals to ruminant diets. In this study, dried S. fusiforme was tested in vitro at four different doses 1, 3, 5, and 10% of the total ration for its effect on ruminal fermentation characteristics, and gas profiles when incubated for 72 h. At a level of 1 and 10%, S. fusiforme supplementation augmented total volatile fatty acid (VFA) concentrations compared to that with 0% supplementation. In addition, total gas, methane, and carbon dioxide emissions significantly decreased at 3 and 24 h of incubation at this dose. An in situ trial was performed for 72 h with S. fusiforme to evaluate it as a potential feed ingredient by comparing its degradation parameters with timothy hay (Phleum pretense). 1H nuclear magnetic resonance spectroscopy profiling was used to identify and quantify metabolites of S. fusiforme. Mannitol, guanidoacetate and ethylene glycol were largely accumulated in S. fusiforme. Moreover, nutritious minerals for feed ingredients were present in S. fusiforme. Whereas a high concentration of arsenic was found in S. fusiforme, it was within the allowable limit for ruminants. Our results suggest that S. fusiforme could represent an alternative, renewable feed ingredient for ruminant diets, with nutritional, as well as environmental, benefits.
Collapse
Affiliation(s)
- You Young Choi
- Division of Applied Life Science (BK21 Plus) and Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, South Korea
| | - Shin Ja Lee
- Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University, Jinju, 52828, South Korea
| | - Ye Jun Lee
- Division of Applied Life Science (BK21 Plus) and Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, South Korea
| | - Hyun Sang Kim
- Division of Applied Life Science (BK21 Plus) and Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, South Korea
| | - Jun Sik Eom
- Division of Applied Life Science (BK21 Plus) and Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, South Korea
| | - Sam Churl Kim
- Division of Applied Life Science (BK21 Plus) and Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, South Korea
| | - Eun Tae Kim
- National Institute of Animal Science, Rural Development Administration (RDA), Cheonan, 31000, South Korea
| | - Sung Sill Lee
- Division of Applied Life Science (BK21 Plus) and Institute of Agriculture and Life Science (IALS), Gyeongsang National University, Jinju, 52828, South Korea.
- Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University, Jinju, 52828, South Korea.
| |
Collapse
|
7
|
Quigley CTC, Capistrant-Fossa KA, Morrison HG, Johnson LE, Morozov A, Hertzberg VS, Brawley SH. Bacterial Communities Show Algal Host ( Fucus spp.)/Zone Differentiation Across the Stress Gradient of the Intertidal Zone. Front Microbiol 2020; 11:563118. [PMID: 33072025 PMCID: PMC7541829 DOI: 10.3389/fmicb.2020.563118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
The intertidal zone often has varying levels of environmental stresses (desiccation, temperature, light) that result in highly stress-tolerant macrobiota occupying the upper zone while less tolerant species occupy the lower zone, but little comparative information is available for intertidal bacteria. Here we describe natural (unmanipulated) bacterial communities of three Fucus congeners (F. spiralis, high zone; F. vesiculosus, mid zone; F. distichus, low zone) as well as those of F. vesiculosus transplanted to the high zone (Dry and Watered treatments) and to the mid zone (Procedural Control) during summer in Maine (United States). We predicted that bacterial communities would be different among the differently zoned natural congeners, and that higher levels of desiccation stress in the high zone would cause bacterial communities of Dry transplants to become similar to F. spiralis, whereas relieving desiccation stress on Watered transplants would maintain the mid-zone F. vesiculosus bacterial community. Bacteria were identified as amplicon sequence variants (ASVs) after sequencing the V4 hypervariable region of the 16S rRNA gene. Microbiome composition and structure were significantly different between the differently zoned congeners at each tissue type (holdfasts, receptacles, vegetative tips). ASVs significantly associated with the mid-zone congener were frequently also present on the high-zone or low-zone congener, whereas overlap in ASVs between the high-zone and low-zone congeners was rare. Only 7 of 6,320 total ASVs were shared among tissues over all congeners and transplant treatments. Holdfast bacterial community composition of Dry transplants was not significantly different from that of F. spiralis, but Watered holdfast communities were significantly different from those of F. spiralis and not significantly different from those of procedural controls. Additional stressor(s) appeared important, because bacterial communities of Dry and Watered transplants were only marginally different from each other (p = 0.059). The relative abundance of Rhodobacteraceae associated with holdfasts generally correlated with environmental stress with highest abundance associated with F. spiralis and the two high-zone transplant treatments. These findings suggest that the abiotic stressors that shape distributional patterns of host species also affect their bacterial communities.
Collapse
Affiliation(s)
| | | | - Hilary G Morrison
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Ladd E Johnson
- Département de Biologie, Université Laval, Québec, QC, Canada
| | - Aleksey Morozov
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Vicki S Hertzberg
- Center for Data Science, Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, United States
| | - Susan H Brawley
- School of Marine Sciences, University of Maine, Orono, ME, United States
| |
Collapse
|
8
|
Buedenbender L, Astone FA, Tasdemir D. Bioactive Molecular Networking for Mapping the Antimicrobial Constituents of the Baltic Brown Alga Fucus vesiculosus. Mar Drugs 2020; 18:E311. [PMID: 32545808 PMCID: PMC7345172 DOI: 10.3390/md18060311] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022] Open
Abstract
The brown alga Fucus vesiculosus is common to the intertidal zones of the Baltic Sea, where it is exposed to high fouling pressures by microorganisms. Our previous studies showed, repeatedly, the consistent antimicrobial activity of F. vesiculosus crude extracts against human pathogens, while untargeted metabolomics analyses have revealed a variety of metabolites. In this study, we applied the UPLC-QToF-MS/MS-based "bioactive molecular networking" (BMN) concept on the most bioactive n-hexane and n-butanol subextracts of Baltic F. vesiculosus coupled with in silico dereplication tools to identify the compounds responsible for antimicrobial activity. The first antimicrobial cluster identified by BMN was galactolipids. Our targeted isolation efforts for this class led to the isolation of six monogalactosyldiacylglycerol (MGDG) derivatives (1-6) and one digalactosyldiacylglycerol (DGDG, 7). The MGDGs 5 and 6 and the DGDG 7 exhibited activity against Staphylococcus aureus. The second compound class with high bioactivity was phlorotannins. In particular, phlorethol-type phlorotannins showed high correlations with antimicrobial activity based on the BMN approach, and two phlorotannins (8-9) were isolated. This study shows that antimicrobial components of F. vesiculosus reside in the algal cell walls and membranes and that BMN provides a complementary tool for the targeted isolation of bioactive metabolites.
Collapse
Affiliation(s)
- Larissa Buedenbender
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (L.B.); (F.A.A.)
| | - Francesca Anna Astone
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (L.B.); (F.A.A.)
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (L.B.); (F.A.A.)
- Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, 424118 Kiel, Germany
| |
Collapse
|
9
|
Sun Y, Dong S, Guo G, Guo L, Pu Y. Antialgal Activity of Glycoglycerolipids Derived from a Green Macroalgae Ulva prolifera on Six Species of Red Tide Microalgae. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1757-899x/484/1/012057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Raddatz S, Guy-Haim T, Rilov G, Wahl M. Future warming and acidification effects on anti-fouling and anti-herbivory traits of the brown alga Fucus vesiculosus (Phaeophyceae). JOURNAL OF PHYCOLOGY 2017; 53:44-58. [PMID: 27711971 DOI: 10.1111/jpy.12473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 07/24/2016] [Indexed: 06/06/2023]
Abstract
Human-induced ocean warming and acidification have received increasing attention over the past decade and are considered to have substantial consequences for a broad range of marine species and their interactions. Understanding how these interactions shift in response to climate change is particularly important with regard to foundation species, such as the brown alga Fucus vesiculosus. This macroalga represents the dominant habitat former on coastal rocky substrata of the Baltic Sea, fulfilling functions essential for the entire benthic community. Its ability to withstand extensive fouling and herbivory regulates the associated community and ecosystem dynamics. This study tested the interactive effects of future warming, acidification, and seasonality on the interactions of a marine macroalga with potential foulers and consumers. F. vesiculosus rockweeds were exposed to different combinations of conditions predicted regionally for the year 2100 (+∆5°C, +∆700 μatm CO2 ) using multifactorial long-term experiments in novel outdoor benthic mesocosms ("Benthocosms") over 9-12-week periods in four seasons. Possible shifts in the macroalgal susceptibility to fouling and consumption were tested using consecutive bioassays. Algal susceptibility to fouling and grazing varied substantially among seasons and between treatments. In all seasons, warming predominantly affected anti-fouling and anti-herbivory interactions while acidification had a subtle nonsignificant influence. Interestingly, anti-microfouling activity was highest during winter under warming, while anti-macrofouling and anti-herbivory activities were highest in the summer under warming. These contrasting findings indicate that seasonal changes in anti-fouling and anti-herbivory traits may interact with ocean warming in altering F. vesiculosus community composition in the future.
Collapse
Affiliation(s)
- Stefanie Raddatz
- Department of Benthic Ecology, GEOMAR, Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Tamar Guy-Haim
- Department of Marine Biology, Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Haifa, 31080, Israel
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mt. Carmel, Haifa, 31905, Israel
| | - Gil Rilov
- Department of Marine Biology, Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Haifa, 31080, Israel
| | - Martin Wahl
- Department of Benthic Ecology, GEOMAR, Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
| |
Collapse
|
11
|
Copper Contamination Impairs Herbivore Initiation of Seaweed Inducible Defenses and Decreases Their Effectiveness. PLoS One 2015; 10:e0135395. [PMID: 26274491 PMCID: PMC4537182 DOI: 10.1371/journal.pone.0135395] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/21/2015] [Indexed: 11/19/2022] Open
Abstract
Seaweed-herbivore interactions are often mediated by environmental conditions, yet the roles of emerging anthropogenic stressors on these interactions are poorly understood. For example, chemical contaminants have unknown consequences on seaweed inducible resistance and herbivore response to these defenses despite known deleterious effects of contaminants on animal inducible defenses. Here, we investigated the effect of copper contamination on the interactions between a snail herbivore and a brown seaweed that displays inducible resistance to grazing. We examined seaweed inducible resistance and its effectiveness for organisms exposed to copper at two time points, either during induction or after herbivores had already induced seaweed defenses. Under ambient conditions, non-grazed tissues were more palatable than grazed tissues. However, copper additions negated the preference for non-grazed tissues regardless of the timing of copper exposure, suggesting that copper decreased both how herbivores initiated these inducible defenses and their subsequent effectiveness. Copper decreased stimulation of defenses, at least in part, by suppressing snail grazing pressure—the cue that turns inducible defenses on. Copper decreased effectiveness of defenses by preventing snails from preferentially consuming non-grazed seaweed. Thus, contaminants can potentially stress communities by changing seaweed-herbivore interactions mediated via inducible defenses. Given the ubiquity of seaweed inducible resistance and their potential influence on herbivores, we hypothesize that copper contamination may change the impact of these resistant traits on herbivores.
Collapse
|
12
|
Barreto-Bergter E. Editorial: glycan diversity in fungi, bacteria, and sea organisms. Front Cell Infect Microbiol 2015; 5:44. [PMID: 26042210 PMCID: PMC4437228 DOI: 10.3389/fcimb.2015.00044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 12/17/2022] Open
Affiliation(s)
- Eliana Barreto-Bergter
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brasil
| |
Collapse
|
13
|
Plouguerné E, da Gama BAP, Pereira RC, Barreto-Bergter E. Glycolipids from seaweeds and their potential biotechnological applications. Front Cell Infect Microbiol 2014; 4:174. [PMID: 25566511 PMCID: PMC4269193 DOI: 10.3389/fcimb.2014.00174] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/24/2014] [Indexed: 11/16/2022] Open
Abstract
Marine macroalgae, or seaweeds, are a formidable source of natural compounds with diverse biological activities. In the last five decades it has been estimated that more than 3000 natural compounds were discovered from these organisms. The great majority of the published works have focused on terpenoids. In comparison, glycolipids are a neglected class of macroalgal secondary metabolites therefore remaining as a largely unknown reservoir of molecular diversity. Nevertheless, the interest regarding these compounds has been growing fast in the last decades as activities of ecological or pharmaceutical interest have been highlighted. This paper will review recent work regarding isolation and structural characterization of glycolipids from seaweeds and their prospective biological activities.
Collapse
Affiliation(s)
- Erwan Plouguerné
- Laboratório de Produtos Naturais e Ecologia Química Marinha, Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense Niterói, Brazil
| | - Bernardo A P da Gama
- Laboratório de Produtos Naturais e Ecologia Química Marinha, Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense Niterói, Brazil
| | - Renato C Pereira
- Laboratório de Produtos Naturais e Ecologia Química Marinha, Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense Niterói, Brazil
| | - Eliana Barreto-Bergter
- Laboratório de Química Biológica de Microrganismos, Departamento de Microbiologia Geral, Instituto de Microbiologia, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Flöthe CR, Molis M, John U. Induced resistance to periwinkle grazing in the brown seaweed Fucus vesiculosus (Phaeophyceae): molecular insights and seaweed-mediated effects on herbivore interactions. JOURNAL OF PHYCOLOGY 2014; 50:564-576. [PMID: 26988328 DOI: 10.1111/jpy.12186] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/20/2014] [Indexed: 06/05/2023]
Abstract
Herbivory is a key factor for controlling seaweed biomass and community structure. To cope with grazers, constitutive and inducible defenses have evolved in macroalgae. Inducible chemical defenses show grazer-specificity and, at the same time, have the potential to mediate interactions among different herbivores. Furthermore, temporal variations in defense patterns, which may adjust antiherbivory responses to grazing pressure, were reported in two brown seaweeds. However, underlying cellular processes are only rudimentarily characterized. To investigate the response of Fucus vesiculosus (L.) to periwinkle (Littorina obtusata) grazing, feeding assays were conducted at several times during a 33 d induction experiment. Underlying cellular processes were analyzed through gene expression profiling. Furthermore, direct processes driving the antiherbivory response to periwinkle grazing and indirect effects on another herbivore, the isopod Idotea baltica, were elucidated. F. vesiculosus showed multiple defense pulses in response to periwinkle grazing, suggesting a high level of temporal variability in antiherbivory traits. Defense induction was accompanied by extensive transcriptome changes. Approximately 400 genes were significantly up-/down-regulated relative to controls, including genes relevant for translation and the cytoskeleton. Genes involved in photosynthesis were mostly down-regulated, while genes related to the respiratory chain were up-regulated, indicating alterations in resource allocation. The comparison of genes regulated in response to isopod (previous study) and periwinkle grazing suggests specific induction of several genes by each herbivore. However, grazing by both herbivores induced similar metabolic processes in F. vesiculosus. These common defense-related processes reflected in strong indirect effects as isopods were also repelled after previous grazing by L. obtusata.
Collapse
Affiliation(s)
- Carla R Flöthe
- Section Ecological Chemistry, Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, Bremerhaven, 27570, Germany
| | - Markus Molis
- Section Functional Ecology, Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, Bremerhaven, 27570, Germany
| | - Uwe John
- Section Ecological Chemistry, Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, Bremerhaven, 27570, Germany
| |
Collapse
|
15
|
Slattery M, Lesser MP. Allelopathy in the tropical alga Lobophora variegata (Phaeophyceae): mechanistic basis for a phase shift on mesophotic coral reefs? JOURNAL OF PHYCOLOGY 2014; 50:493-505. [PMID: 26988322 DOI: 10.1111/jpy.12160] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 11/26/2013] [Indexed: 05/28/2023]
Abstract
Macroalgal phase shifts on Caribbean reefs have been reported with increasing frequency, and recent reports of these changes on mesophotic coral reefs have raised questions regarding the mechanistic processes behind algal population expansions to deeper depths. The brown alga Lobophora variegata is a dominant species on many shallow and deep coral reefs of the Caribbean and Pacific, and it increased in percent cover (>50%) up to 61 m on Bahamian reefs following the invasion of the lionfish Pterois volitans. We examined the physiological and ecological constraints contributing to the spread of Lobophora on Bahamian reefs across a mesophotic depth gradient from 30 to 61 m, pre- and post-lionfish invasion. Results indicate that there were no physiological limitations to the depth distribution of Lobophora within this range prior to the lionfish invasion. Herbivory by acanthurids and scarids in algal recruitment plots at mesophotic depths was higher prior to the lionfish invasion, and Lobophora chemical defenses were ineffective against an omnivorous fish species. In contrast, Lobophora exhibited significant allelopathic activity against the coral Montastraea cavernosa and the sponge Agelas clathrodes in laboratory assays. These data indicate that when lionfish predation on herbivorous fish released Lobophora from grazing pressure at depth, Lobophora expanded its benthic cover to a depth of 61 m, where it replaced the dominant coral and sponge species. Our results suggest that this chemically defended alga may out-compete these species in situ, and that mesophotic reefs may be further impacted in the near future as Lobophora continues to expand to its compensation point.
Collapse
Affiliation(s)
- Marc Slattery
- Department of Pharmacognosy, University of Mississippi, Oxford, Mississippi, 38677, USA
| | - Michael P Lesser
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire, 03824, USA
| |
Collapse
|
16
|
Anaëlle T, Serrano Leon E, Laurent V, Elena I, Mendiola JA, Stéphane C, Nelly K, Stéphane LB, Luc M, Valérie SP. Green improved processes to extract bioactive phenolic compounds from brown macroalgae using Sargassum muticum as model. Talanta 2013; 104:44-52. [PMID: 23597887 DOI: 10.1016/j.talanta.2012.10.088] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/26/2012] [Accepted: 10/29/2012] [Indexed: 01/11/2023]
Abstract
A comparative study between "alternative" extraction processes such as centrifugal partition extraction (CPE), supercritical fluid extraction (SFE) and pressurized liquid extraction (PLE) and classical solid/liquid used in the laboratory are currently focusing on the efficiency (selectivity and productivity) to obtain bioactive phenolic compounds from the phaeophyte Sargassum muticum model. The choice of the best process was based on several measurements: (i) the total phenolic content measured by the colorimetric Folin-Ciocalteu assay, (ii) radical scavenger and antioxidant activities assessed by the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay, and the β-carotene bleaching method and finally (iii) the method productivity. Irrespective of the solvent used in the processes, alternative methods are always sharply more effective than classical ones. With the exception of SFE which does not allow extracting the totality of the active phenolic compounds, two of the other extraction methods were particularly promising. First, CPE afforded the most important yields in concentrated phenolic compounds (PC) (22.90±0.65% DW) also displaying the best activities (0.52±0.02 and 0.58±0.19 mg/mL for IC50 and AAC700, respectively). Secondly, PLE using an EtOH:water mixture 75:25 (v/v) allowed a good PC extraction (10.18±0.25% DW) with huge efficiency. Despite a lesser activity of the extracts (0.77±0.01 and 1.59±0.15 mg/mL for IC50 and AAC700, respectively) PLE is a green process and potentially complies European norms requirements for the prospective valorization of phenolic compounds from S. muticum in Brittany.
Collapse
Affiliation(s)
- Tanniou Anaëlle
- LEMAR UMR CNRS UBO IRD IFREMER 6539, Université de Bretagne Occidentale (UBO), Institut Universitaire Européen de la Mer (IUEM), Technopôle Brest-Iroise, Rue Dumont d'Urville, 29280 Plouzané, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nylund GM, Pereyra RT, Wood HL, Johannesson K, Pavia H. Increased resistance towards generalist herbivory in the new range of a habitat-forming seaweed. Ecosphere 2012. [DOI: 10.1890/es12-00203.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
18
|
Bell TM, Sotka EE. Local adaptation in adult feeding preference and juvenile performance in the generalist herbivore Idotea balthica. Oecologia 2012; 170:383-93. [PMID: 22451011 DOI: 10.1007/s00442-012-2302-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 03/05/2012] [Indexed: 10/28/2022]
Abstract
Populations can respond to environmental heterogeneity by genetic adaptation to local conditions. Evidence for local adaptation in herbivores with relatively broad host breadth is scarce, either because generalists rarely locally adapt or because fewer studies have tested for local adaptation. The marine isopod Idotea balthica, a small (<3 cm) generalist herbivore common to estuaries of the northwestern Atlantic, is found on multiple macroalgae and sea grasses north of 42°N, while more southerly populations utilize sea grass-dominated and macroalgal-poor habitats. Feeding preference assays revealed a latitudinal shift in preference hierarchy that mirrors this geographic variation in host availability. Northern populations have higher feeding preference for fresh and freeze-dried tissue of the brown macroalga Fucus vesiculosus and consumed more of its water-soluble and lipophilic extracts relative to southern populations. In contrast, southern populations have a relatively higher preference for the green macroalga Ulva linza and sea grass Zostera marina. The rank of hosts in feeding assays exhibited by northern adults (Fucus = Ulva > Zostera) and southern adults (Ulva > Fucus > Zostera) closely mirrored ranking of juvenile growth rates, suggesting that preference and performance are strongly correlated across these macrophytes. Several of our assays included isopods that had parents reared under uniform laboratory conditions, indicating that geographic differences are genetically mediated and unlikely to reflect phenotypic plasticity or maternal effects. Local adaptation in host use traits may be common in broadly distributed, generalist herbivores in marine and terrestrial systems, and will manifest itself as local shifts in the preference ranking of hosts.
Collapse
Affiliation(s)
- Tina M Bell
- Department of Biology, Grice Marine Laboratory, College of Charleston, Charleston, SC, USA.
| | | |
Collapse
|
19
|
|
20
|
Haavisto F, Välikangas T, Jormalainen V. Induced resistance in a brown alga: phlorotannins, genotypic variation and fitness costs for the crustacean herbivore. Oecologia 2010; 162:685-95. [PMID: 19921521 DOI: 10.1007/s00442-009-1494-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 10/22/2009] [Indexed: 10/20/2022]
Abstract
In the marine littoral, strong grazing pressure selects for macroalgal defenses such as the constitutive and inductive production of defense metabolites. Induced defenses are expected under spatiotemporally varying grazing pressure and should be triggered by a reliable cue from herbivory, thereby reducing grazing pressure via decreased herbivore preference and/or performance. Although induced resistance has frequently been demonstrated in brown macroalgae, it is yet to be investigated whether induced macroalgal resistance shows genetic variation, a prerequisite for evolutionary responses to selection. In addition, consequences of induced resistance on herbivore performance have rarely been tested while the role of brown algal phlorotannins as inducible defense metabolites remains ambiguous. Using preference bioassays, we tested various cues, e.g., natural grazing, waterborne cues or simulated grazing to induce resistance in the brown alga Fucus vesiculosus. Further, we investigated whether there are induced responses in phlorotannin content, genetic variation in induced resistance or incurred performance costs to the mesoherbivore isopod, Idotea baltica. We found that both direct grazing and waterborne grazing cues decreased the palatability of F. vesiculosus, while increasing the total phlorotannin content. Since the sole presence of the herbivore also increased the total soluble phlorotannins, yet failed to stimulate deterrence, we concluded that phlorotannins alone do not explain increased resistance. Induced resistance varied between algal genotypes and thus showed potential for evolutionary responses to variation in grazing pressure. Induced resistance also incurred performance costs for female I. baltica via reduced egg production. Our results show that the induced resistance of F. vesiculosus decreases grazing pressure by deterring herbivores as well as impairing their performance. Resistance may be induced in advance by waterborne cues and spread effectively throughout the F. vesiculosus belt. Through lowering herbivore performance, induced resistance may also reduce future grazing pressure by decreasing the population growth rate of I. baltica.
Collapse
|
21
|
Plouguerné E, Ioannou E, Georgantea P, Vagias C, Roussis V, Hellio C, Kraffe E, Stiger-Pouvreau V. Anti-microfouling activity of lipidic metabolites from the invasive brown alga Sargassum muticum (Yendo) Fensholt. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:52-61. [PMID: 19468792 DOI: 10.1007/s10126-009-9199-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 05/02/2009] [Indexed: 05/22/2023]
Abstract
The purification of the chloroform extract from the brown invasive macroalga Sargassum muticum, through a series of chromatographic separations, yielded 12 fractions that were tested against strains of bacteria, microalgae, and fungi involved in marine biofilm formation. The chemical composition of four (a, c, g, and k) out of the six fractions that exhibited anti-microfouling activity was investigated. Fraction a contained saturated and unsaturated linear hydrocarbons (C12-C27). Arachidonic acid was identified as the major metabolite in fraction c whereas fraction g contained mainly palmitic, linolenic, and palmitoleic acids. Fraction k was submitted to further purification yielding the fraction kAcaF1e that was composed of galactoglycerolipids, active against the growth of two of the four bacterial strains (Shewanella putrefaciens and Polaribacter irgensii) and all tested fungi. These promising results, in particular the isolation and the activity of galactoglycerolipids, attest the potential of the huge biomass of S. muticum as a source of new environmentally friendly antifouling compounds.
Collapse
Affiliation(s)
- Erwan Plouguerné
- Université Européenne de Bretagne, Université de Brest, EA LEBHAM 3877, European Institute for Marine Sciences (IUEM), Place N. Copernic, 29280 Plouzané, France.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Jiang RW, Hay ME, Fairchild CR, Prudhomme J, Le Roch K, Aalbersberg W, Kubanek J. Antineoplastic unsaturated fatty acids from Fijian macroalgae. PHYTOCHEMISTRY 2008; 69:2495-500. [PMID: 18757069 PMCID: PMC2590869 DOI: 10.1016/j.phytochem.2008.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 06/24/2008] [Accepted: 07/18/2008] [Indexed: 05/26/2023]
Abstract
Phytochemical analysis of Fijian populations of the green alga Tydemania expeditionis led to the isolation of two unsaturated fatty acids, 3(zeta)-hydroxy-octadeca-4(E),6(Z),15(Z)-trienoic acid (1) and 3(zeta)-hydroxy-hexadeca-4(E),6(Z)-dienoic acid (2), along with the known 3(zeta)-hydroxy-octadeca-4(E),6(Z)-dienoic acid (4). Investigations of the red alga Hydrolithon reinboldii led to identification of a glycolipid, lithonoside (3), and five known compounds, 15-tricosenoic acid, hexacosa-5,9-dienoic methyl ester, beta-sitosterol, 10(S)-hydroxypheophytin A, and 10(R)-hydroxypheophytin A. The structures of 1-3 were elucidated by spectroscopic methods (1D and 2D NMR spectroscopy and ESI-MS). Compounds 1, 2, and 4, containing conjugated double bonds, demonstrated moderate inhibitory activity against a panel of tumor cell lines (including breast, colon, lung, prostate and ovarian cells) with IC(50) values ranging from 1.3 to 14.4 microM. The similar cell selectivity patterns of these three compounds suggest that they might act by a common, but unknown, mechanism of action.
Collapse
Affiliation(s)
- Ren-Wang Jiang
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Mark E. Hay
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Craig R. Fairchild
- Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey,08543
| | - Jacques Prudhomme
- Department of Cell Biology and Neuroscience, University of California Riverside, Riverside, CA, USA 92521
| | - Karine Le Roch
- Department of Cell Biology and Neuroscience, University of California Riverside, Riverside, CA, USA 92521
| | | | - Julia Kubanek
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30332
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332
| |
Collapse
|
24
|
Hoover CA, Slattery M, Targett NM, Marsh AG. Transcriptome and metabolite responses to predation in a South pacific soft coral. THE BIOLOGICAL BULLETIN 2008; 214:319-328. [PMID: 18574108 DOI: 10.2307/25470673] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Sinularia polydactyla, a dioecious, abundant soft coral in the South Pacific, exhibits biochemical phenotypic plasticity in secondary metabolite production in relation to predation intensity. However, it is unclear to what extent changes in secondary metabolites, such as 11beta-acetoxypukalide, may result from specific, induced pathway activities at the level of gene expression. To investigate both chemical changes and differences in mRNA diversity in response to predation stress, artificial predation experiments were conducted in situ on colonies of S. polydactyla. Multivariate statistical analyses of coral biochemical metabolites and our kinetic transcriptome profiling technique indicate that that the induction of 11beta-acetoxypukalide by predation stress likely results from the upregulation of either one dominant transcript or a very small set of transcripts, indicative of a targeted upregulation rather than a generalized, genetic stress response. Overall, this work establishes a routine method for integrating high-throughput transcriptome and metabolome data sets to allow for the identification of metabolites whose intracellular concentrations can be readily linked to gene expression events in response to specific treatments in non-model organisms.
Collapse
Affiliation(s)
- Cindi A Hoover
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA.
| | | | | | | |
Collapse
|
25
|
Jormalainen V, Wikström SA, Honkanen T. Fouling mediates grazing: intertwining of resistances to multiple enemies in the brown alga Fucus vesiculosus. Oecologia 2008; 155:559-69. [PMID: 18157551 DOI: 10.1007/s00442-007-0939-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 12/04/2007] [Indexed: 10/22/2022]
Abstract
Macroalgae have to cope with multiple natural enemies, such as herbivores and epibionts. As these are harmful for the host, the host is expected to show resistance to them. Evolution of resistance is complicated by the interactions among the enemies and the genetic correlations among resistances to different enemies. Here, we explored genetic variation in resistance to epibiosis and herbivory in the brown alga Fucus vesiculosus, both under conditions where the enemies coexisted and where they were isolated. F. vesiculosus showed substantial genetic variation in the resistance to both epibiosis and grazing. Grazing pressure on the alga was generally lower in the presence than in the absence of epibiota. Furthermore, epibiosis modified the susceptibility of different algal genotypes to grazing. Resistances to epibiosis and grazing were independent when measured separately for both enemies but positively correlated when both these enemies coexisted. Thus, when the enemies coexisted, the fate of genotypes with respect to these enemies was intertwined. Genotypic correlation between phlorotannins, brown-algal phenolic secondary metabolites, and the amount of epibiota was negative, indicating that these compounds contribute to resistance to epibiosis. In addition, phlorotannins correlated also with the resistance to grazing, but this correlation disappeared when grazing occurred in the absence of epibiota. This indicates that the patterns of selection for the type of the resistance as well as for the resistance traits vary with the occurrence patterns of the enemies.
Collapse
Affiliation(s)
- Veijo Jormalainen
- Department of Biology, University of Turku, FIN-20014, Turku, Finland.
| | | | | |
Collapse
|
26
|
Rohde S, Wahl M. ANTIFEEDING DEFENSE IN BALTIC MACROALGAE: INDUCTION BY DIRECT GRAZING VERSUS WATERBORNE CUES(1). JOURNAL OF PHYCOLOGY 2008; 44:85-90. [PMID: 27041044 DOI: 10.1111/j.1529-8817.2007.00451.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The prevalence of antigrazing defense induction and the cues triggering induction in marine macroalgae are generally not well understood. We examined the capacity of defense and the mechanisms of regulation in five common perennial macroalgal species from the Baltic Sea, Furcellaria lumbricalis (Huds.) J. V. Lamour., Delesseria sanguinea (Huds.) J. V. Lamour., Phyllophora pseudoceranoides (S. G. Gmel.) Newroth et A. R. A. Taylor, Fucus serratus L., and Fucus evanescens C. Agardh. Specifically, we investigated whether direct feeding and/or waterborne cues from feeding on neighboring conspecifics decreased the palatability of the tested algae. Direct feeding by the local isopod Idotea baltica triggered the induction of chemical defense in Fur. lumbricalis, D. sanguinea, P. pseudoceranoides, F. serratus, and F. evanescens. Conversely, we did not find any evidence for waterborne cues associated with feeding to trigger defense induction in neighboring conspecifics.
Collapse
Affiliation(s)
- Sven Rohde
- Leibniz Institute of Marine Sciences, Duesternbrooker Weg 20, 24105 Kiel, Germany
| | - Martin Wahl
- Leibniz Institute of Marine Sciences, Duesternbrooker Weg 20, 24105 Kiel, Germany
| |
Collapse
|
27
|
Long JD, Hamilton RS, Mitchell JL. Asymmetric competition via induced resistance: specialist herbivores indirectly suppress generalist preference and populations. Ecology 2007; 88:1232-40. [PMID: 17536409 DOI: 10.1890/06-1585] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Species may compete indirectly by altering the traits of a shared resource. For example, herbivore-induced responses in plants may make plants more resistant or susceptible to additional herbivorous insect species. Herbivore-induced plant responses can significantly affect interspecific competition and herbivore population dynamics. These herbivore-herbivore indirect interactions have been overlooked in aquatic ecosystems where previous studies used the same herbivore species to induce changes and to assess the effects of these changes. We asked whether seaweed grazing by one of two herbivorous, congeneric snail species (Littorina obtusata or Littorina littorea) with different feeding strategies and preferences would affect subsequent feeding preferences of three herbivore species (both snails and the isopod Idotea baltica) and population densities of three herbivore species (both snails and a third periwinkle snail, Lacuna vincta). In addition, we measured phlorotannin concentrations to test the hypothesis that these metabolites function as induced defenses in the Phaeophyceae. Snail herbivory induced cue-specific responses in apical tissues of the seaweed Fucus vesiculosus that affected the three herbivore species similarly. When compared to ungrazed controls, direct grazing by Littorina obtusata reduced seaweed palatability by at least 52% for both snail species and the isopod species. In contrast, direct grazing by L. littorea did not decrease seaweed palatability for any herbivore, indicating herbivore-specific responses. Previous grazing by L. obtusata reduced populations of L. littorea on outplanted seaweeds by 46% but had no effect on L. obtusata populations. Phlorotannins, a potential class of inducible chemicals in brown algae, were not more concentrated in grazed seaweed tissues, suggesting that some other trait was responsible for the induced resistance. Our results indicate that marine herbivores may compete via inducible responses in shared seaweeds. These plant-mediated interactions were asymmetric with a specialist (L. obtusata) competitively superior to a generalist (L. littorea).
Collapse
Affiliation(s)
- Jeremy D Long
- Marine Science Center, Northeastern University, 430 Nahant Road, Nahant, Massachusetts 01908, USA.
| | | | | |
Collapse
|
28
|
Agarkova VV, Krupnova TN, Ermakova SP, Shevchenko NM, Zvyagintseva TN. The action of Laminaria japonica extractives on 1,3-β-D-glucanase, a digestive enzyme of the Strongylocentrotus intermedius sea urchin. APPL BIOCHEM MICRO+ 2007. [DOI: 10.1134/s0003683807040187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Korpinen S, Honkanen T, Vesakoski O, Hemmi A, Koivikko R, Loponen J, Jormalainen V. Macroalgal communities face the challenge of changing biotic interactions: review with focus on the Baltic Sea. AMBIO 2007; 36:203-11. [PMID: 17520935 DOI: 10.1579/0044-7447(2007)36[203:mcftco]2.0.co;2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In diverse littoral communities, biotic interactions play an important role in community regulation. This article reviews how eutrophication modifies biotic interactions in littoral macroalgal communities. Eutrophication causes blooms of opportunistic algae, increases epibiotism, and affects regulation by grazers. Opportunistic algae and epibionts harm colonization and growth of perennial algae. Grazing regulates the density and species composition of macroalgal communities, especially at the early stage of algal colonization. Eutrophication supports higher grazer densities by increasing the availability and quality of algae to grazers. This may, on the one hand, enhance the capability of grazers to regulate and counteract the increase of harmful, bloom-forming macroalgae; on the other hand, it may increase grazing pressure on perennial species, with a poor tolerance of grazing. In highly eutrophic conditions, bloom-forming algae may also escape grazing control and accumulate. Increasing epibiotism and grazing threaten in particular the persistence of habitat-forming perennials such as the bladderwrack. An interesting property of biotic interactions is that they do not remain fixed but are able to evolve, as the traits of the interacting species adapt to each other and to abiotic conditions. The potential of plants and grazers to adapt is crucial to their chances to survive in changing environment.
Collapse
Affiliation(s)
- Samuli Korpinen
- Section of Ecology, Department of Biology, University of Turku, Finland.
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
This review covers the recent marine chemical ecology literature for phytoplankton, macroalgae, sponges and other benthic invertebrates; 249 references are cited.
Collapse
Affiliation(s)
- Valerie J Paul
- Smithsonian Marine Station at Fort Pierce, Fort Pierce, FL 34949, USA
| | | | | |
Collapse
|
31
|
Variation in phlorotannin content within two species of brown macroalgae (Desmarestia anceps and D. menziesii) from the Western Antarctic Peninsula. Polar Biol 2005. [DOI: 10.1007/s00300-005-0735-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Borell EM, Foggo A, Coleman RA. Induced resistance in intertidal macroalgae modifies feeding behaviour of herbivorous snails. Oecologia 2004; 140:328-34. [PMID: 15148602 DOI: 10.1007/s00442-004-1589-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Accepted: 04/14/2004] [Indexed: 11/25/2022]
Abstract
Herbivory in terrestrial and marine systems can induce changes in plant chemistry affecting the foraging behaviour of herbivores. A model based on terrestrial plant-herbivore interactions predicts herbivory-induced changes in leaf chemistry to be manifested in (1) increased herbivore mobility, (2) increased feeding dispersal and (3) reduced tissue consumption by herbivores. This study is the first to demonstrate that herbivory-induced changes in the tissue chemistry of the brown seaweed Ascophyllum nodosum elicit the same response in the feeding behaviour of the gastropod Littorina obtusata as predicted for herbivorous insects, providing good evidence for the model's validity across different ecosystems. The potential benefit of increased feeding dispersal to terrestrial plants as suggested by the model is the prevention of concentrated damage to apical tissues thereby preserving the plant's ability to compete for light; A. nodosum does not conform to these predictions. Increased dispersal of feeding damage on A. nodosum away from primary frond tissues would reduce the likelihood of frond breakage implying a fitness benefit of induced resistance.
Collapse
Affiliation(s)
- Esther M Borell
- Marine Biology and Ecology Research Group, School of Biological Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | | | | |
Collapse
|
33
|
Hemmi A, Jormalainen V. Genetic and environmental variation in performance of a marine isopod: effects of eutrophication. Oecologia 2004; 140:302-11. [PMID: 15146322 DOI: 10.1007/s00442-004-1574-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2004] [Accepted: 03/25/2004] [Indexed: 10/26/2022]
Abstract
Environmental variation in food resources modifies performance of herbivores, in addition to genetic variation and maternal effects. In marine benthic habitats, eutrophication may modify herbivores' diets by changing host species composition or nutritional quality of algae for herbivores. We studied experimentally the effects of diet breadth and nutrient availability for the host algae on fitness components of the herbivorous isopod Idotea baltica. We fed the adult isopods with the brown algae Fucus vesiculosus and Pilayella littoralis and juveniles with the green alga Cladophora glomerata. By using half-sib families, we were able to separate the genetic, environmental and maternal effects on intermolt duration and size of the juveniles. The mothers confined to the diet consisting of both Fucus and Pilayella grew better and produced larger egg mass than those having consumed Fucus alone. Nutrient enhancement of algae did not influence the performance of the adult herbivores. However, the juveniles achieved twice the weight as well as shorter intermolt duration when consuming nutrient-treated C. glomerata. Mother's nutrition, either nutrient enrichment of her food algae or diet breadth, did not affect juvenile survival or growth as such, but we found evidence that the broader diet consumed by the mother mediated offspring performance by further accelerating growth rate of the offspring that fed on nutrient-treated alga. Intermolt duration was a highly heritable trait, but size showed very low heritability. Instead, maternal effects on size were substantial, suggesting that differences among mothers in their egg-provisioning ability strongly affect weight gain of their offspring. A high amount of additive genetic variance in intermolt duration implies potential for quick evolutionary responses in the growth schedule in the face of changes in the selective environment. We conclude that eutrophication, in addition to improving growth and reproduction of I. baltica by enhancing food quality and by providing opportunity for broader, more profitable diets, may act as a selective agent on life-history traits. Eutrophication of coastal waters is thus likely to reflect in herbivore density, population dynamics and eventually, grazing pressure of littoral macroalgae.
Collapse
Affiliation(s)
- Anne Hemmi
- Section of Ecology, Department of Biology, University of Turku, 20014, Turku, Finland.
| | | |
Collapse
|