1
|
D'Antonio B, Meekan M, Ferreira LC, Taylor MD, Pattiaratchi CB, Sequeira AMM. Salinity drives the distribution of a top-order predator, the tiger shark (Galeocerdo cuvier), in an inverse estuary. Sci Rep 2025; 15:9612. [PMID: 40133394 PMCID: PMC11937537 DOI: 10.1038/s41598-025-92272-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/26/2025] [Indexed: 03/27/2025] Open
Abstract
Understanding how dynamic environmental processes influence the distributions of top-order predators is fundamental to assess top-down effects on ecosystems. Tiger sharks (Galeocerdo cuvier) are a large top-predator that can trigger trophic cascades and structure communities. However, the dynamic physical processes that influence the distributions of these animals in coastal systems are largely unknown. Here, we assess the environmental processes influencing tiger shark movements in the inverse estuary of Shark Bay, Western Australia, a shallow coastal embayment with salinities consistently above that of the adjacent ocean. We applied Bayesian generalized linear mixed-effects models to generate dynamic predictions of suitable habitat for tiger sharks in this region. These habitats were associated with dense and shallow seagrass beds and largely reflected the spatial variability of hypersaline water (< 40). Under future climate scenarios, coastal areas worldwide are predicted to experience inverse estuarine conditions. We anticipate that the physical processes that influence tiger shark distributions in this study will become applicable to numerous other species of gill-breathing fauna in coastal ecosystems across the globe.
Collapse
Affiliation(s)
- Ben D'Antonio
- School of Engineering and the UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, University of Western Australia, Perth, WA, 6009, Australia.
| | - Mark Meekan
- The UWA Oceans Institute, University of Western Australia, Perth, WA, Australia
- OSSARI - Ocean Sciences and Solutions Applied Research Institute, Neom, Saudi Arabia
| | - Luciana C Ferreira
- Australian Institute of Marine Science, Indian Ocean Marine Research Centre, University of Western Australia, Perth, WA, 6009, Australia
| | - Michael D Taylor
- The UWA Oceans Institute, University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Charitha B Pattiaratchi
- School of Engineering and the UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Ana M M Sequeira
- The UWA Oceans Institute, University of Western Australia, Perth, WA, Australia
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
- Research School of Biology, Division of Ecology and Evolution, ANU College of Sciences, The Australian National University, 46 Sullivans Creek Road, Canberra, ACT, 2600, Australia
| |
Collapse
|
2
|
Velkey A, Kinslow K, Bowers M, Hoffman E, Martin J, Surisetty B. Zebrafish ( Danio rerio) Prefer Undisturbed Shoals over Shoals Exposed to the Synthetic Alarm Substance Hypoxanthine-3N-oxide (C 5H 4N 4O 2). BIOLOGY 2025; 14:233. [PMID: 40136490 PMCID: PMC11939818 DOI: 10.3390/biology14030233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/30/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025]
Abstract
As an anti-predation behavior, shoaling enhances survival among prey species by reducing individual predation risk through mechanisms like the dilution effect and collective vigilance. Zebrafish-a highly social and genetically tractable species-are valuable for studying these behaviors. The present study examined zebrafish's social preferences in a 3-chamber open-tank free-swim task, assessing whether visual cues alone could distinguish between an intact and an alarmed shoal exposed to the synthetic alarm substance H3NO. Subjects were allowed to freely associate with either shoal while their behaviors were recorded and analyzed. The results reveal a significant preference for proximity to the intact shoal, indicating zebrafish's ability to visually discern threat levels. Subjects spent nearly twice as much time in the zone near the intact shoal, with reduced freezing and faster movement velocities compared to the alarmed shoal zone. Males exhibited more freezing behavior than females, consistent with sex-specific strategies in threat response. These findings underscore zebrafish's reliance on visual cues for social responding under predatory threat and highlight sex-based differences in threat perception. This research expands the understanding of zebrafish's social dynamics and provides a robust framework for future exploration of the neural mechanisms underlying social behavior and threat assessment in zebrafish.
Collapse
Affiliation(s)
- Andrew Velkey
- Neuroscience Program, Christopher Newport University, Newport News, VA 23607, USA; (K.K.); (J.M.)
| | - Kaitlyn Kinslow
- Neuroscience Program, Christopher Newport University, Newport News, VA 23607, USA; (K.K.); (J.M.)
| | - Megan Bowers
- Department of Molecular Biology & Chemistry, Christopher Newport University, Newport News, VA 23607, USA; (M.B.); (E.H.); (B.S.)
| | - Ethan Hoffman
- Department of Molecular Biology & Chemistry, Christopher Newport University, Newport News, VA 23607, USA; (M.B.); (E.H.); (B.S.)
| | - Jamie Martin
- Neuroscience Program, Christopher Newport University, Newport News, VA 23607, USA; (K.K.); (J.M.)
| | - Bandhavi Surisetty
- Department of Molecular Biology & Chemistry, Christopher Newport University, Newport News, VA 23607, USA; (M.B.); (E.H.); (B.S.)
| |
Collapse
|
3
|
Cloutier Z, Festa-Bianchet M, Pelletier F. Direct and indirect effects of cougar predation on bighorn sheep fitness. Ecology 2024; 105:e4374. [PMID: 39031035 DOI: 10.1002/ecy.4374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/05/2024] [Accepted: 04/14/2024] [Indexed: 07/22/2024]
Abstract
Predation has direct effects on prey population dynamics through mortality, and it can induce indirect effects through fear. The indirect effects of predation have been documented experimentally, but few studies have quantified them in nature so that their role in prey population dynamics remains controversial. Given the expanding or reintroduced populations of large predators in many areas, the quantification of indirect effects of predation is crucial. We sought to evaluate the direct and indirect fitness effects of intense cougar (Puma concolor) predation using 48 years of data on marked bighorn sheep (Ovis canadensis) on Ram Mountain, Alberta, Canada. We compared years of intense cougar predation with years with no or occasional cougar predation. We first quantified the effects of predation on neonatal, weaning, and overwinter lamb survival, three metrics potentially affected by direct and indirect effects. We then investigated the possible indirect effects of intense cougar predation on lamb production, female summer mass gain, and lamb mass at weaning. We found strong effects of cougar predation on lamb survival, lamb production, and seasonal mass gain of lambs and adult females. In years with high predation, neonatal, weaning, and overwinter lamb survival declined by 18.4%, 19.7% and 20.8%, respectively. Indirect effects included a 14.2% decline in lamb production. Female summer mass gain decreased by 15.6% and lamb mass at weaning declined by 8.0% in years of intense cougar predation. Our findings bring key insights on the impacts of predation on prey fitness by reporting moderate to large effects on recruitment and illustrate the importance of indirect effects of predation on population dynamics.
Collapse
Affiliation(s)
- Zachary Cloutier
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Marco Festa-Bianchet
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre d'études nordiques, Québec City, Quebec, Canada
| | - Fanie Pelletier
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre d'études nordiques, Québec City, Quebec, Canada
| |
Collapse
|
4
|
Thapa SK, de Jong JF, Hof AR, Subedi N, Liefting Y, Prins HHT. Integration of the landscape of fear concept in grassland management: An experimental study on subtropical monsoon grasslands in Bardia National Park, Nepal. Ecol Evol 2024; 14:e70098. [PMID: 39100204 PMCID: PMC11294578 DOI: 10.1002/ece3.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024] Open
Abstract
The 'landscape of fear' concept offers valuable insights into wildlife behaviour, yet its practical integration into habitat management for conservation remains underexplored. In this study, conducted in the subtropical monsoon grasslands of Bardia National Park, Nepal, we aimed to bridge this gap through a multi-year, landscape-scale experimental investigation in Bardia National Park, Nepal. The park has the highest density of tigers (with an estimated density of ~7 individuals per 100 km2) in Nepal, allowing us to understand the effect of habitat management on predation risk and resource availability especially for three cervid species: chital (Axis axis), swamp deer (Rucervus duvaucelii) and hog deer (Axis porcinus). We used plots with varying mowing frequency (0-4 times per year), size (ranging from small: 49 m2 to large: 3600 m2) and artificial fertilisation type (none, phosphorus, nitrogen) to assess the trade-offs between probable predation risk and resources for these cervid species, which constitute primary prey for tigers in Nepal. Our results showed distinct responses of these deer to perceived predation risk within grassland habitats. Notably, these deer exhibited heightened use of larger plots, indicative of a perceived sense of safety, as evidenced by the higher occurrence of pellet groups in the larger plots (mean = 0.1 pellet groups m-2 in 3600 m2 plots vs. 0.07 in 400 m2 and 0.05 in 49 m2 plots). Furthermore, the level of use by the deer was significantly higher in larger plots that received mowing and fertilisation treatments compared to smaller plots subjected to similar treatments. Of particular interest is the observation that chital and swamp deer exhibited greater utilisation of the centre (core) areas within the larger plots (mean = 0.21 pellet groups m-2 at the centre vs. 0.13 at the edge) despite the edge (periphery) also provided attractive resources to these deer. In contrast, hog deer did not display any discernible reaction to the experimental treatments, suggesting potential species-specific variations in response to perceived predation risk arising from management interventions. Our findings emphasise the importance of a sense of security as a primary determinant of habitat selection for medium-sized deer within managed grassland environments. These insights carry practical implications for park managers, providing a nuanced understanding of integrating the 'landscape of fear' into habitat management strategies. This study emphasises that the 'landscape of fear' concept can and should be integrated into habitat management to maintain delicate predator-prey dynamics within ecosystems.
Collapse
Affiliation(s)
- Shyam Kumar Thapa
- National Trust for Nature ConservationLalitpurNepal
- Zoological Society of London, Nepal OfficeKathmanduNepal
| | - Joost F. de Jong
- Wildlife Ecology and Conservation GroupWageningen University and ResearchWageningenThe Netherlands
| | - Anouschka R. Hof
- Wildlife Ecology and Conservation GroupWageningen University and ResearchWageningenThe Netherlands
| | | | - Yorick Liefting
- Wildlife Ecology and Conservation GroupWageningen University and ResearchWageningenThe Netherlands
| | | |
Collapse
|
5
|
Thibault M, Letourneur Y, Cleguer C, Bonneville C, Briand MJ, Derville S, Bustamante P, Garrigue C. C and N stable isotopes enlighten the trophic behaviour of the dugong (Dugong dugon). Sci Rep 2024; 14:896. [PMID: 38195771 PMCID: PMC10776846 DOI: 10.1038/s41598-023-50578-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/21/2023] [Indexed: 01/11/2024] Open
Abstract
The dugong (Dugong dugon), a large marine mammal herbivore of the Indo-Pacific, is vulnerable to extinction at a global scale due to a combination of human-related threats including habitat degradation. The species forages on seagrass habitats (marine phanerogams) and plays a key role in the functioning and sensitivity of these declining coastal ecosystems. The trophic behaviour and plasticity of dugong populations in response to extrinsic and intrinsic factors are therefore crucial features to both dugong and seagrass conservation. Yet, this knowledge remains limited to few visual observations and analyses of mouth, stomach or faecal contents of stranded individuals. We take advantage of a long-term monitoring of stranded individuals from the endangered New Caledonian population to depict features of dugongs' trophic ecology from Carbon and Nitrogen stable isotopes. A total of 59 dugong skin samples were used to portrait the stable isotope niche of dugongs according to their sex and maturity. In light of previous work conducted in New Caledonia, a subset of these samples was used to model the trophic mix of dugong males and females. Our stable isotope mixing models used C and N isotope values of 10 taxa bbelonging to five divisions of metazoans, plants, and chromists. Our results represent the first estimate of the species dietary niche in the isotopic space. They suggest that the diet of dugong calves overlaps more with that of adult females (δ13C: - 6.38 ± 1.13 ‰; δ15N: 2.49 ± 1.10 ‰) than males (δ13C: - 5.92 ± 1.10 ‰; δ15N: 3.69 ± 1.28 ‰). Further, we highlight differences in the expected trophic mix of dugong adult males and females. From these, we formulate a sex-specific foraging behaviour hypothesis in dugongs, whereby lactating females could forage over smaller spatial ranges but more diverse food sources thanmales. The study emphasizes the importance of long-term stranding monitoring programs to study the ecology of marine mammals.. Finally, it depicts an ecological feature that may contribute to the sensitivity of vulnerable dugongs to ongoing changes on tropical coastal ecosystems.
Collapse
Affiliation(s)
- Martin Thibault
- Centre d'Écologie et des Sciences de la Conservation (CESCO), Muséum National d'Histoire Naturelle, Station de Biologie Marine, 1 Place de la Croix, 29900, Concarneau, France.
- UMR ENTROPIE (UR-IRD-IFREMER-CNRS-UNC), Labex-CORAIL, 98800, Nouméa, New Caledonia.
| | - Yves Letourneur
- UMR ENTROPIE (UR-IRD-IFREMER-CNRS-UNC), Labex-CORAIL, 98800, Nouméa, New Caledonia
| | - Christophe Cleguer
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University, Townsville, Australia
| | - Claire Bonneville
- UMR ENTROPIE (UR-IRD-IFREMER-CNRS-UNC), Labex-CORAIL, 98800, Nouméa, New Caledonia
| | - Marine J Briand
- CRIOBE, USR 3278 EPHE-CNRS-UPVD, LabEx « Corail », PSL Research University, Université de Perpignan, Avenue Paul Alduy, 66860, Perpignan Cedex, France
| | - Solène Derville
- UMR ENTROPIE (UR-IRD-IFREMER-CNRS-UNC), Labex-CORAIL, 98800, Nouméa, New Caledonia
- Opération Cétacés, BP 12827, 98802, Nouméa, New Caledonia
| | - Paco Bustamante
- Littoral Environnement Et Sociétés (LIENSs), UMR 7266, CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Claire Garrigue
- UMR ENTROPIE (UR-IRD-IFREMER-CNRS-UNC), Labex-CORAIL, 98800, Nouméa, New Caledonia
- Opération Cétacés, BP 12827, 98802, Nouméa, New Caledonia
| |
Collapse
|
6
|
Silver-Gorges I, Ceriani SA, Fuentes MMPB. Fine-scale intraspecific niche partitioning in a highly mobile, marine megafauna species: implications for ecology and conservation. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221529. [PMID: 37388320 PMCID: PMC10300683 DOI: 10.1098/rsos.221529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/09/2023] [Indexed: 07/01/2023]
Abstract
A species may partition its realized ecological niche along bionomic and scenopoetic axes due to intraspecific competition for limited resources. How partitioning manifests depends on resource needs and availability by and for the partitioning groups. Here we demonstrate the utility of analysing short- and long-term stable carbon and nitrogen isotope ratios from imperiled marine megafauna to characterize realized niche partitioning in these species. We captured 113 loggerhead sea turtles (Caretta caretta) at a high-use area in the eastern Big Bend, Florida, between 2016 and 2022, comprising 53 subadults, 10 adult males and 50 adult females. We calculated trophic niche metrics using established and novel methods, and constructed Bayesian ellipses and hulls, to characterize loggerhead isotopic niches. These analyses indicated that loggerheads partition their realized ecological niche by lifestage, potentially along both bionomic (e.g. trophic) and/or scenopoetic (e.g. habitat, latitude or longitude) axes, and display different characteristics of resource use within their niches. Analysis of stable isotopes from tissues with different turnover rates enabled this first characterization of intraspecific niche partitioning between and within neritic lifestages in loggerhead turtles, which has direct implications for ongoing research and conservation efforts for this and other imperiled marine species.
Collapse
Affiliation(s)
- Ian Silver-Gorges
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL 32304, USA
| | - Simona A. Ceriani
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, FL 33701, USA
| | - Mariana M. P. B. Fuentes
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL 32304, USA
| |
Collapse
|
7
|
Monson DH, Taylor RL, Hilderbrand GV, Erlenbach JA, Coletti HA, Kloecker KA, Esslinger GG, Bodkin JL. Brown bear–sea otter interactions along the Katmai coast: terrestrial and nearshore communities linked by predation. J Mammal 2022. [DOI: 10.1093/jmammal/gyac095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Sea otters were extirpated throughout much of their range by the maritime fur trade in the 18th and 19th centuries, including the coast of Katmai National Park and Preserve in southcentral Alaska. Brown bears are an important component of the Katmai ecosystem where they are the focus of a thriving ecotourism bear-viewing industry as they forage in sedge meadows and dig clams in the extensive tidal flats that exist there. Sea otters began reoccupying Katmai in the 1970s where their use of intertidal clam resources overlapped that of brown bears. By 2008, the Katmai sea otter population had grown to an estimated 7,000 animals and was likely near carrying capacity; however, in 2006–2015, the age-at-death distribution (AADD) of sea otter carcasses collected at Katmai included a higher-than-expected proportion of prime-age animals compared to most other sea otter populations in Alaska. The unusual AADD warranted scientific investigation, particularly because the Katmai population is part of the Threatened southwest sea otter stock. Brown bears in Katmai are known to prey on marine mammals and sea otters, but depredation rates are unknown; thus, we investigated carnivore predation, especially by brown bears, as a potential explanation for abnormally high prime-age otter mortality. We installed camera traps at two island-based marine mammal haulout sites within Katmai to gather direct evidence that brown bears prey on seals and sea otters. Over a period of two summers, we gathered photo evidence of brown bears making 22 attempts to prey on sea otters of which nine (41%) were successful and 12 attempts to prey on harbor seals of which one (8%) was successful. We also developed a population model based on the AADD to determine if the living population is declining, as suggested by the high proportion of prime-age animals in the AADD. We found that the population trend predicted by the modeled AADDs was contradictory to aerial population surveys that indicated the population was not in steep decline but was consistent with otter predation. Future work should focus on the direct and indirect effects these top-level predators have on each other and the coastal community that connects them.
Collapse
Affiliation(s)
- Daniel H Monson
- U.S. Geological Survey, Alaska Science Center , 4210 University Avenue, Anchorage, Alaska 99508 , USA
| | - Rebecca L Taylor
- U.S. Geological Survey, Alaska Science Center , 4210 University Avenue, Anchorage, Alaska 99508 , USA
| | - Grant V Hilderbrand
- National Park Service, Alaska Regional Office , 240 W. 5th Avenue, Anchorage, Alaska 99501 , USA
| | - Joy A Erlenbach
- School of Biological Sciences, Washington State University , Pullman, Washington 99164 , USA
| | - Heather A Coletti
- National Park Service, Southwest Alaska Inventory and Monitoring Program , 4175 Geist Road, Fairbanks, Alaska 99709 , USA
| | - Kimberly A Kloecker
- U.S. Geological Survey, Alaska Science Center , 4210 University Avenue, Anchorage, Alaska 99508 , USA
| | - George G Esslinger
- U.S. Geological Survey, Alaska Science Center , 4210 University Avenue, Anchorage, Alaska 99508 , USA
| | - James L Bodkin
- U.S. Geological Survey, Alaska Science Center , 4210 University Avenue, Anchorage, Alaska 99508 , USA
| |
Collapse
|
8
|
Dynamic landscapes of fear: understanding spatiotemporal risk. Trends Ecol Evol 2022; 37:911-925. [PMID: 35817684 DOI: 10.1016/j.tree.2022.06.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023]
Abstract
The landscape of fear (LOF) concept posits that prey navigate spatial heterogeneity in perceived predation risk, balancing risk mitigation against other activities necessary for survival and reproduction. These proactive behavioral responses to risk can affect individual fitness, population dynamics, species interactions, and coexistence. Yet, antipredator responses in free-ranging prey often contradict expectations, raising questions about the generality and scalability of the LOF framework and suggesting that a purely spatial, static LOF conceptualization may be inadequate. Here, we outline a 'dynamic' LOF framework that explicitly incorporates time to account for predictable spatiotemporal variation in risk-resource trade-offs. This integrated approach suggests novel predictions about predator effects on prey behaviors to refine understanding of the role predators play in ecological communities.
Collapse
|
9
|
Griffin LP, Casselberry GA, Lowerre-Barbieri SK, Acosta A, Adams AJ, Cooke SJ, Filous A, Friess C, Guttridge TL, Hammerschlag N, Heim V, Morley D, Rider MJ, Skomal GB, Smukall MJ, Danylchuk AJ, Brownscombe JW. Predator-prey landscapes of large sharks and game fishes in the Florida Keys. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2584. [PMID: 35333436 DOI: 10.1002/eap.2584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 06/24/2021] [Indexed: 06/14/2023]
Abstract
Interspecific interactions can play an essential role in shaping wildlife populations and communities. To date, assessments of interspecific interactions, and more specifically predator-prey dynamics, in aquatic systems over broad spatial and temporal scales (i.e., hundreds of kilometers and multiple years) are rare due to constraints on our abilities to measure effectively at those scales. We applied new methods to identify space-use overlap and potential predation risk to Atlantic tarpon (Megalops atlanticus) and permit (Trachinotus falcatus) from two known predators, great hammerhead (Sphyrna mokarran) and bull (Carcharhinus leucas) sharks, over a 3-year period using acoustic telemetry in the coastal region of the Florida Keys (USA). By examining spatiotemporal overlap, as well as the timing and order of arrival at specific locations compared to random chance, we show that potential predation risk from great hammerhead and bull sharks to Atlantic tarpon and permit are heterogeneous across the Florida Keys. Additionally, we find that predator encounter rates with these game fishes are elevated at specific locations and times, including a prespawning aggregation site in the case of Atlantic tarpon. Further, using machine learning algorithms, we identify environmental variability in overlap between predators and their potential prey, including location, habitat, time of year, lunar cycle, depth, and water temperature. These predator-prey landscapes provide insights into fundamental ecosystem function and biological conservation, especially in the context of emerging fishery-related depredation issues in coastal marine ecosystems.
Collapse
Affiliation(s)
- Lucas P Griffin
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Grace A Casselberry
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Susan K Lowerre-Barbieri
- Florida Fish and Wildlife Conservation Commission, Florida Fish and Wildlife Research Institute, St. Petersburg, Florida, USA
| | - Alejandro Acosta
- South Florida Regional Lab, Florida Fish and Wildlife Conservation Commission, Marathon, Florida, USA
| | - Aaron J Adams
- Bonefish & Tarpon Trust, Miami, Florida, USA
- Florida Atlantic University, Harbor Branch Oceanographic Institute, Fort Pierce, Florida, USA
| | - Steven J Cooke
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Alex Filous
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Claudia Friess
- Florida Fish and Wildlife Conservation Commission, Florida Fish and Wildlife Research Institute, St. Petersburg, Florida, USA
| | | | - Neil Hammerschlag
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
| | - Vital Heim
- Bimini Biological Field Station Foundation, Bimini, The Bahamas
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Danielle Morley
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
- South Florida Regional Lab, Florida Fish and Wildlife Conservation Commission, Marathon, Florida, USA
| | - Mitchell J Rider
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
| | - Gregory B Skomal
- Massachusetts Division of Marine Fisheries, New Bedford, Massachusetts, USA
| | | | - Andy J Danylchuk
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | | |
Collapse
|
10
|
Derville S, Cleguer C, Garrigue C. Ecoregional and temporal dynamics of dugong habitat use in a complex coral reef lagoon ecosystem. Sci Rep 2022; 12:552. [PMID: 35017573 PMCID: PMC8752826 DOI: 10.1038/s41598-021-04412-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022] Open
Abstract
Mobile marine species display complex and nonstationary habitat use patterns that require understanding to design effective management measures. In this study, the spatio-temporal habitat use dynamics of the vulnerable dugong (Dugong dugon) were modelled from 16 satellite-tagged individuals in the coral reef lagoonal ecosystems of New Caledonia, South Pacific. Dugong residence time was calculated along the interpolated tracks (9371 hourly positions) to estimate intensity of use in three contrasting ecoregions, previously identified through hierarchical clustering of lagoon topographic characteristics. Across ecoregions, differences were identified in dugong spatial intensity of use of shallow waters, deeper lagoon waters and the fore-reef shelf outside the barrier reef. Maps of dugong intensity of use were predicted from these ecological relationships and validated with spatial density estimates derived from aerial surveys conducted for population assessment. While high correlation was found between the two datasets, our study extended the spatial patterns of dugong distribution obtained from aerial surveys across the diel cycle, especially in shallow waters preferentially used by dugongs at night/dusk during high tide. This study has important implications for dugong conservation and illustrates the potential benefits of satellite tracking and dynamic habitat use modelling to inform spatial management of elusive and mobile marine mammals.
Collapse
Affiliation(s)
- Solène Derville
- UMR ENTROPIE (IRD-Université de La Réunion-CNRS-Laboratoire d'excellence LabEx-CORAIL), 98800, Nouméa, New Caledonia.
- Opération Cétacés, 98802, Nouméa, New Caledonia.
- Marine Mammal Institute, Oregon State University, 2030 SE Marine Science Dr., Newport, OR, 97365, USA.
| | - Christophe Cleguer
- UMR ENTROPIE (IRD-Université de La Réunion-CNRS-Laboratoire d'excellence LabEx-CORAIL), 98800, Nouméa, New Caledonia
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA, 6150, Australia
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University, Townsville, 4811, Australia
| | - Claire Garrigue
- UMR ENTROPIE (IRD-Université de La Réunion-CNRS-Laboratoire d'excellence LabEx-CORAIL), 98800, Nouméa, New Caledonia
- Opération Cétacés, 98802, Nouméa, New Caledonia
| |
Collapse
|
11
|
Bracis C, Wirsing AJ. Prey Foraging Behavior After Predator Introduction Is Driven by Resource Knowledge and Exploratory Tendency. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.698370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Predator reintroductions are often used as a means of restoring the ecosystem services that these species can provide. The ecosystem consequences of predator reintroduction depend on how prey species respond. Yet, to date, we lack a general framework for predicting these responses. To address this knowledge gap, we modeled the impacts of predator reintroduction on foragers as a function of predator characteristics (habitat domain; i.e., area threatened) and prey characteristics (knowledge of alternative habitat and exploratory tendency). Foraging prey had the capacity to both remember and return to good habitat and to remember and avoid predators. In general, we found that forager search time increased and consumption decreased after predator introduction. However, predator habitat domain played a key role in determining how much prey habitat use changed following reintroduction, and the forager's knowledge of alternative habitats and exploratory inclinations affected what types of habitat shifts occurred. Namely, habitat shifts and consumption sacrifices by prey were extreme in some cases, particularly when they were pushed far from their starting locations by broad-domain predators, whereas informed foragers spent less time searching and displayed smaller reductions to consumption than their naïve counterparts following predator exposure. More exploratory foragers exhibited larger habitat shifts, thereby sacrificing consumption but reducing encounters by relocating to refugia, whereas less exploratory foragers managed risk in place and consequently suffered increased encounters while consuming more resources. By implication, reintroductions of predators with broad habitat domains are especially likely to impose foraging and movements costs on prey, but forager spatial memory state can mitigate these effects, as informed foragers can better access alternate habitat and avoid predators with smaller reductions in consumption.
Collapse
|
12
|
Nowicki RJ, Thomson JA, Fourqurean JW, Wirsing AJ, Heithaus MR. Loss of predation risk from apex predators can exacerbate marine tropicalization caused by extreme climatic events. J Anim Ecol 2021; 90:2041-2052. [PMID: 33624313 DOI: 10.1111/1365-2656.13424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 11/16/2020] [Indexed: 11/27/2022]
Abstract
Extreme climatic events (ECEs) and predator removal represent some of the most widespread stressors to ecosystems. Though species interactions can alter ecological effects of climate change (and vice versa), it is less understood whether, when and how predator removal can interact with ECEs to exacerbate their effects. Understanding the circumstances under which such interactions might occur is critical because predator loss is widespread and ECEs can generate rapid phase shifts in ecosystems which can ultimately lead to tropicalization. Our goal was to determine whether loss of predation risk may be an important mechanism governing ecosystem responses to extreme events, and whether the effects of such events, such as tropicalization, can occur even when species range shifts do not. Specifically, our goal was to experimentally simulate the loss of an apex predator, the tiger shark Galeocerdo cuvier effects on a recently damaged seagrass ecosystem of Shark Bay, Australia by applying documented changes to risk-sensitive grazing of dugong Dugong dugon herbivores. Using a 16-month-field experiment established in recently disturbed seagrass meadows, we used previous estimates of risk-sensitive dugong foraging behaviour to simulate altered risk-sensitive foraging densities and strategies of dugongs consistent with apex predator loss, and tracked seagrass responses to the simulated grazing. Grazing treatments targeted and removed tropical seagrasses, which declined. However, like in other mixed-bed habitats where dugongs forage, treatments also incidentally accelerated temperate seagrass losses, revealing that herbivore behavioural changes in response to predator loss can exacerbate ECE and promote tropicalization, even without range expansions or introductions of novel species. Our results suggest that changes to herbivore behaviours triggered by loss of predation risk can undermine ecological resilience to ECEs, particularly where long-lived herbivores are abundant. By implication, ongoing losses of apex predators may combine with increasingly frequent ECEs to amplify climate change impacts across diverse ecosystems and large spatial scales.
Collapse
Affiliation(s)
- Robert J Nowicki
- International Center for Coral Reef Research and Restoration, Mote Marine Laboratory, Summerland Key, FL, USA.,Department of Biological Sciences and Center for Coastal Oceans Research, Florida International University, Miami, FL, USA
| | - Jordan A Thomson
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Warrnambool, VIC, Australia
| | - James W Fourqurean
- Department of Biological Sciences and Center for Coastal Oceans Research, Florida International University, Miami, FL, USA
| | - Aaron J Wirsing
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
| | - Michael R Heithaus
- Department of Biological Sciences and Center for Coastal Oceans Research, Florida International University, Miami, FL, USA
| |
Collapse
|
13
|
Lester EK, Langlois TJ, Simpson SD, McCormick MI, Meekan MG. Reef‐wide evidence that the presence of sharks modifies behaviors of teleost mesopredators. Ecosphere 2021. [DOI: 10.1002/ecs2.3301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- E. K. Lester
- School of Biological Sciences The University of Western Australia Crawley Western Australia Australia
- The UWA Oceans InstituteThe University of Western Australia Crawley Western Australia Australia
- Australian Institute of Marine Science Crawley Western Australia Australia
| | - T. J. Langlois
- School of Biological Sciences The University of Western Australia Crawley Western Australia Australia
- The UWA Oceans InstituteThe University of Western Australia Crawley Western Australia Australia
| | - S. D. Simpson
- Biosciences College of Life and Environmental Sciences University of Exeter Exeter UK
| | - M. I. McCormick
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Queensland Australia
| | - M. G. Meekan
- The UWA Oceans InstituteThe University of Western Australia Crawley Western Australia Australia
- Australian Institute of Marine Science Crawley Western Australia Australia
| |
Collapse
|
14
|
Spatial and Temporal Patterns in Macroherbivore Grazing in a Multi-Species Tropical Seagrass Meadow of the Great Barrier Reef. DIVERSITY 2021. [DOI: 10.3390/d13010012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Macroherbivory is an important process in seagrass meadows worldwide; however, the impact of macroherbivores on seagrasses in the Great Barrier Reef (GBR) has received little attention. We used exclusion cages and seagrass tethering assays to understand how the intensity of macroherbivory varies over space and time in the seagrass meadows around Green Island (Queensland), and what impact this has on overall meadow structure. Rates of macroherbivory were comparatively low, between 0.25–44% of daily seagrass productivity; however, rates were highly variable over a one-year period, and among sites. Loss of seagrass material to macroherbivory was predominantly due to fish; however, urchin herbivory was also taking place. Macroherbivory rates were of insufficient intensity to impact overall meadow structure. No macroherbivory events were identified on video cameras that filmed in the day, indicating that feeding may be occurring infrequently in large shoals, or at night. While relatively low compared to some meadows, seagrass macroherbivory was still an important process at this site. We suggest that in this highly protected area of the GBR, where the ecosystem and food webs remain largely intact, macroherbivory was maintained at a low level and was unlikely to cause the large-scale meadow structuring influence that can be seen in more modified seagrass systems.
Collapse
|
15
|
Cleguer C, Garrigue C, Marsh H. Dugong (Dugong dugon) movements and habitat use in a coral reef lagoonal ecosystem. ENDANGER SPECIES RES 2020. [DOI: 10.3354/esr01061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Little is known about how the Vulnerable dugong Dugong dugon uses coral reef lagoons despite the importance of these habitats throughout much of its vast range. We used GPS satellite tracking systems to explore the space use of 12 dugongs at 3 locations in the coral reef lagoons of the main island of New Caledonia in the southwest Pacific: Cap Goulvain, Ouano and Nouméa. The movements of the tracked dugongs varied among individuals and all except one animal undertook large-scale movements (>15 km; mean [±SE] 37.7 ± 5.2 km) from their capture location (maximum waterway distance range: 13.8 to 72.9 km). The straight-line distances between the furthest GPS locations during each animal’s tracking period ranged from 21.3 to 74.5 km. We identified areas used intensively by dugongs in all 3 study areas, some of which were areas where seagrass presence has not been verified, or where dugongs have not been observed during past aerial surveys. Dugongs spent most of their tracking time within the lagoons, with 99.4% of GPS locations found inside the barrier reef. Nonetheless, where the lagoon was narrow and confined, 3 tracked dugongs used the fore reef shelf outside the barrier reef in the open ocean to commute between bays. Our findings can inform conservation and management initiatives in New Caledonia as well as other countries within the dugong’s range which have similar habitat geomorphology but where dugongs occur in numbers too low to be tracked and are considered Critically Endangered.
Collapse
Affiliation(s)
- C Cleguer
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
- Harry Butler Institute, Centre for Sustainable Aquatic Ecosystems, Murdoch University, Murdoch, Western Australia 6150, Australia
- Opération Cétacés, Nouméa 98802, New Caledonia
- UMR ENTROPIE (IRD-Université de La Réunion-CNRS), 98800, New Caledonia
| | - C Garrigue
- Opération Cétacés, Nouméa 98802, New Caledonia
- UMR ENTROPIE (IRD-Université de La Réunion-CNRS), 98800, New Caledonia
| | - H Marsh
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
16
|
Brown CM, Paxton AB, Taylor JC, Van Hoeck RV, Fatzinger MH, Silliman BR. Short-term changes in reef fish community metrics correlate with variability in large shark occurrence. FOOD WEBS 2020. [DOI: 10.1016/j.fooweb.2020.e00147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Frank SC, Blaalid R, Mayer M, Zedrosser A, Steyaert SMJG. Fear the reaper: ungulate carcasses may generate an ephemeral landscape of fear for rodents. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191644. [PMID: 32742677 PMCID: PMC7353961 DOI: 10.1098/rsos.191644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Animal carcasses provide an ephemeral pulse of nutrients for scavengers that use them. Carcass sites can increase species interactions and/or ephemeral, localized landscapes of fear for prey within the vicinity. Few studies have applied the landscape of fear to carcasses. Here, we use a mass die-off of reindeer caused by lightning in Norway to test whether rodents avoided larger scavengers (e.g. corvids and fox). We used the presence and abundance of faeces as a proxy for carcass use over the course of 2 years and found that rodents showed the strongest avoidance towards changes in raven abundance (β = -0.469, s.e. = 0.231, p-value = 0.0429), but not fox, presumably due to greater predation risk imposed by large droves of raven. Moreover, the emergence of rodent occurrence within the carcass area corresponded well with the disappearance of raven during the second year of the study. We suggest that carcasses have the potential to shape the landscape of fear for prey, but that the overall effects of carcasses on individual fitness and populations of species ultimately depend on the carcass regime, e.g. carcass size, count, and areal extent, frequency and the scavenger guild. We discuss conservation implications and how carcass provisioning and landscapes of fear could be potentially used to manage populations and ecosystems, but that there is a gap in understanding that must first be bridged.
Collapse
Affiliation(s)
- S. C. Frank
- Faculty of Technology, Natural Sciences and Maritime Sciences, Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, 3800 Bø i Telemark, Norway
| | - R. Blaalid
- Norwegian Institute for Nature Research, Thormøhlensgate 55, 5006 Bergen
| | - M. Mayer
- Department of Bioscience, Aarhus University, 8410 Rønde, Denmark
| | - A. Zedrosser
- Faculty of Technology, Natural Sciences and Maritime Sciences, Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, 3800 Bø i Telemark, Norway
- Department of Integrative Biology, Institute of Wildlife Biology and Game Management, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - S. M. J. G. Steyaert
- Faculty of Technology, Natural Sciences and Maritime Sciences, Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, 3800 Bø i Telemark, Norway
- Faculty of Biosciences and Aquaculture, Nord University, 7711 Steinkjer, Norway
| |
Collapse
|
18
|
Killer whale presence drives bowhead whale selection for sea ice in Arctic seascapes of fear. Proc Natl Acad Sci U S A 2020; 117:6590-6598. [PMID: 32152110 PMCID: PMC7104343 DOI: 10.1073/pnas.1911761117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The effects of predator intimidation on habitat use and behavior of prey species are rarely quantified for large marine vertebrates over ecologically relevant scales. Using state space movement models followed by a series of step selection functions, we analyzed movement data of concurrently tracked prey, bowhead whales (Balaena mysticetus; n = 7), and predator, killer whales (Orcinus orca; n = 3), in a large (63,000 km2), partially ice-covered gulf in the Canadian Arctic. Our analysis revealed pronounced predator-mediated shifts in prey habitat use and behavior over much larger spatiotemporal scales than previously documented in any marine or terrestrial ecosystem. The striking shift from use of open water (predator-free) to dense sea ice and shorelines (predators present) was exhibited gulf-wide by all tracked bowheads during the entire 3-wk period killer whales were present, constituting a nonconsumptive effect (NCE) with unknown energetic or fitness costs. Sea ice is considered quintessential habitat for bowhead whales, and ice-covered areas have frequently been interpreted as preferred bowhead foraging habitat in analyses that have not assessed predator effects. Given the NCEs of apex predators demonstrated here, however, unbiased assessment of habitat use and distribution of bowhead whales and many marine species may not be possible without explicitly incorporating spatiotemporal distribution of predation risk. The apparent use of sea ice as a predator refuge also has implications for how bowhead whales, and likely other ice-associated Arctic marine mammals, will cope with changes in Arctic sea ice dynamics as historically ice-covered areas become increasingly ice-free during summer.
Collapse
|
19
|
Lester EK, Langlois TJ, Simpson SD, McCormick MI, Meekan MG. The hemisphere of fear: the presence of sharks influences the three dimensional behaviour of large mesopredators in a coral reef ecosystem. OIKOS 2020. [DOI: 10.1111/oik.06844] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Emily K. Lester
- School of Biological Sciences and the UWA Oceans Inst., Univ. of Western Australia Crawley WA Australia
- Australian Inst. of Marine Science, UWA Oceans Inst. Crawley WA Australia
| | - Tim J. Langlois
- School of Biological Sciences and the UWA Oceans Inst., Univ. of Western Australia Crawley WA Australia
| | - Stephen D. Simpson
- Biosciences, College of Life and Environmental Sciences, Univ. of Exeter Exeter UK
| | - Mark I. McCormick
- Dept of Marine Biology and Aquaculture, ARC Centre of Excellence for Coral Reef Studies, James Cook Univ. Townsville QLD Australia
| | - Mark G. Meekan
- Australian Inst. of Marine Science, UWA Oceans Inst. Crawley WA Australia
| |
Collapse
|
20
|
Lidgard DC, Bowen WD, Iverson SJ. Sex-differences in fine-scale home-range use in an upper-trophic level marine predator. MOVEMENT ECOLOGY 2020; 8:11. [PMID: 32082578 PMCID: PMC7020581 DOI: 10.1186/s40462-020-0196-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The distribution of prey in the ocean is spatially and temporally patchy. How predators respond to this prey patchiness may have consequences on their foraging success, and thus physical condition. The recent ability to record fine-scale movements of marine animals combined with novel home-range analyses that incorporate the dimension of time should permit a better understanding of how individuals utilise different regions of space and the consequences on their foraging success. METHODS Over a six-year study, we used T-LoCoH (Time-Local Convex Hull) home-range software to model archival GPS (Global Positioning System) data from 81 grey seals to investigate the fine-scale spatio-temporal use of space and the distribution of apparent foraging effort. Regions of home-ranges were classified according to the frequency of return visits (site fidelity) and duration of visits (intensity of use). Generalized linear mixed -effects models were used to test hypotheses on seasonal changes in foraging distribution and behaviour and the role of space-use and state on determining foraging success. RESULTS Male grey seals had larger home-ranges and core areas than females, and both sexes showed a contraction in home-range and core area in fall leading up to the breeding season compared with summer. Heavier individuals had smaller core areas than lighter ones, suggesting access to higher quality habitat might be limited to those individuals with greater foraging experience and competitive ability. The size of the home-range or core area was not an important predictor of the rate of mass gain. A fine-scale spatio-temporal analysis of habitat use within the home-range provided evidence of intra-annual site fidelity at presumed foraging locations, suggesting predictably in prey distribution. Neither sex nor season were useful predictors for classifying behaviour. Rather, individual identity explained much of the variation in fine-scale behaviour. CONCLUSIONS Understanding how upper-trophic level marine predators use space provides opportunities to explore the consequences of variation in foraging tactics and their success on fitness. Having knowledge of the drivers that shape this intraspecific variation can contribute toward predicting how these predators may respond to both natural and man-made environmental forcing.
Collapse
Affiliation(s)
- D. C. Lidgard
- Department of Biology, Dalhousie University, B3H 4J1, Halifax, Nova Scotia Canada
- Population Ecology Division, Bedford Institute of Oceanography, Department of Fisheries and Oceans, Dartmouth, Nova Scotia B2Y 4A2 Canada
| | - W. D. Bowen
- Population Ecology Division, Bedford Institute of Oceanography, Department of Fisheries and Oceans, Dartmouth, Nova Scotia B2Y 4A2 Canada
| | - S. J. Iverson
- Department of Biology, Dalhousie University, B3H 4J1, Halifax, Nova Scotia Canada
| |
Collapse
|
21
|
Pritchard CE, Palme R, Langkilde T. Glucocorticoid and triiodothyronine concentrations do not correlate with behavior in vicuñas (Vicugna vicugna). Gen Comp Endocrinol 2020; 286:113299. [PMID: 31606464 DOI: 10.1016/j.ygcen.2019.113299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 11/26/2022]
Abstract
State-dependent foraging theory posits that animals should make foraging decisions based on energetic condition, where animals with fewer energetic reserves prioritize foraging over other behaviors, including antipredator behaviors. However, few studies have investigated these trade-offs at an individual level in wild, free-ranging animals. We investigated the relationships between internal condition and behavior in a wild mammal, the vicuña (Vicugna vicugna), which makes state-dependent decisions about the use of two habitats with different characteristics that contribute to their internal condition. Using non-invasively collected fecal samples, we measured glucocorticoid metabolites (GCMs) and thyroid hormones (THs) as indicators of combined stress (predation and nutritional), and just nutritional stress, respectively. We video recorded 20-minute behavioral observations and focused on behaviors which often demand a trade-off between energy acquisition and antipredator behaviors-vigilance and foraging. We found differences in expression of these behaviors between the two sites but found no relationships between physiological parameters (GCMs and THs) and behavior (vigilance and foraging) at either site. We suggest that state-dependent foraging may be difficult to observe in large mammals under baseline conditions and that GCMs and THs may be insensitive to small changes in stress stimuli at this scale, and where these wild animals have the entire suite of behavioral responses available to them.
Collapse
Affiliation(s)
- Catharine E Pritchard
- 208 Mueller Laboratory, The Pennsylvania State University, University Park, PA 16801, USA.
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria.
| | - Tracy Langkilde
- 208 Mueller Laboratory, The Pennsylvania State University, University Park, PA 16801, USA.
| |
Collapse
|
22
|
Salinas-de-León P, Fierro-Arcos D, Suarez-Moncada J, Proaño A, Guachisaca-Salinas J, Páez-Rosas D. A matter of taste: Spatial and ontogenetic variations on the trophic ecology of the tiger shark at the Galapagos Marine Reserve. PLoS One 2019; 14:e0222754. [PMID: 31539419 PMCID: PMC6754146 DOI: 10.1371/journal.pone.0222754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/07/2019] [Indexed: 11/18/2022] Open
Abstract
Sharks are top predators across ocean food webs and have a major ecological role in marine ecosystems. Investigating the trophic ecology of this group of species is thus essential to understand ecosystem functioning and inform specific management actions aimed at shark conservation. The Galapagos Islands represent one of the last ocean wildernesses, where populations of sharks and other top marine predators come close to a pristine status. Here we provide the first study on the trophic ecology of the tiger shark (Galeocerdo cuvier) within the Galapagos Marine Reserve (GMR), using a combination of stable isotope analysis, satellite tracking, and passive acoustic telemetry to investigate ontogenetic and spatial variations at two regions. The mean estimated δ13C and δ15N at Isabela island (western region) were -13.9 ± 0.5‰ and 13.7 ± 0.7‰; and for Santa Cruz island (central region) were -13.8 ± 0.3‰ and 13.4 ± 0.7‰, respectively. Green sea turtles (Chelonia mydas) were the main prey item for large tiger sharks (>280 cm TL), while smaller sharks mainly fed on squid and pelagic fish. Tiger sharks exhibited a high degree of philopatry around green sea-turtle nesting areas, with the majority of sharks detected around green sea-turtle nesting areas for at least 10 months after their capture date, and some individuals were even present during the entire three-year study period. Although we did not report statistically significant differences between the two regions, isotopic and electronic tagging data suggest that tiger sharks in the Galapagos could be segregated into specific populations separated by geographical scales of <100 km. The high productivity of the archipelago, along with the protection from industrial fishing granted by the GMR, result in abundant and predictable sources of prey. This high food abundance, combined with the presence of suitable habitats throughout the tiger shark life cycle, might result in a reduction of migratory behaviours when compared to movement patterns of tiger sharks in other ocean basins. Additional studies using genetic tools could provide further evidence on the presence of separate management units, as it has been recently revealed for other shark species inhabiting the GMR.
Collapse
Affiliation(s)
- Pelayo Salinas-de-León
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Galapagos Islands, Ecuador
- Pristine Seas, National Geographic Society, Washington, DC, United States of America
- * E-mail:
| | - Denisse Fierro-Arcos
- Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Galapagos Islands, Ecuador
| | | | - Alberto Proaño
- Galapagos National Park, Puerto Ayora, Galapagos Islands, Ecuador
| | | | - Diego Páez-Rosas
- Galapagos National Park, Puerto Ayora, Galapagos Islands, Ecuador
- Universidad San Francisco de Quito, Galapagos Science Center, Isla San Cristóbal, Galapagos Islands, Ecuador
| |
Collapse
|
23
|
Speed CW, Rees MJ, Cure K, Vaughan B, Meekan MG. Protection from illegal fishing and shark recovery restructures mesopredatory fish communities on a coral reef. Ecol Evol 2019; 9:10553-10566. [PMID: 31624567 PMCID: PMC6787830 DOI: 10.1002/ece3.5575] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/13/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022] Open
Abstract
The recovery of communities of predatory fishes within a no-take marine reserve after the eradication of illegal fishing provides an opportunity to examine the role of sharks and other large-bodied mesopredatory fishes in structuring reef fish communities. We used baited remote underwater video stations to investigate whether an increase in sharks was associated with a change in structure of the mesopredatory fish community at Ashmore Reef, Western Australia. We found an almost fourfold increase in shark abundance in reef habitat from 0.64 hr-1 ± 0.15 SE in 2004, when Ashmore Reef was being fished illegally, to 2.45 hr-1 ± 0.37 in 2016, after eight years of full-time enforcement of the reserve. Shark recovery in reef habitat was accompanied by a two and a half-fold decline in the abundance of small mesopredatory fishes (≤50 cm TL) (14.00 hr-1 ± 3.79 to 5.6 hr-1 ± 1.20) and a concomitant increase in large mesopredatory fishes (≥100 cm TL) from 1.82 hr-1 ± 0.48 to 4.27 hr-1 ± 0.93. In contrast, near-reef habitats showed an increase in abundance of large mesopredatory fishes between years (2.00 hr-1 ± 0.65 to 4.56 hr-1 ± 1.11), although only smaller increases in sharks (0.67 hr-1 ± 0.25 to 1.22 hr-1 ± 0.34) and smaller mesopredatory fishes. Although the abundance of most mesopredatory groups increased with recovery from fishing, we suggest that the large decline of small mesopredatory fish in reef habitat was mostly due to higher predation pressure following the increase in sharks and large mesopredatory fishes. At the regional scale, the structure of fished communities at Ashmore Reef in 2004 resembled those of present day Scott Reefs, where fishing still continues today. In 2016, Ashmore fish communities resembled those of the Rowley Shoals, which have been protected from fishing for decades.
Collapse
Affiliation(s)
- Conrad W. Speed
- Australian Institute of Marine ScienceIndian Ocean Marine Research CentreUWA (MO96)CrawleyWAAustralia
- Global FinPrint ProjectIndian Ocean Marine Research CentreUWA (MO96)CrawleyWAAustralia
| | - Matthew J. Rees
- Australian Institute of Marine ScienceIndian Ocean Marine Research CentreUWA (MO96)CrawleyWAAustralia
- Global FinPrint ProjectIndian Ocean Marine Research CentreUWA (MO96)CrawleyWAAustralia
| | - Katherine Cure
- Australian Institute of Marine ScienceIndian Ocean Marine Research CentreUWA (MO96)CrawleyWAAustralia
| | - Brigit Vaughan
- Australian Institute of Marine ScienceIndian Ocean Marine Research CentreUWA (MO96)CrawleyWAAustralia
| | - Mark G. Meekan
- Australian Institute of Marine ScienceIndian Ocean Marine Research CentreUWA (MO96)CrawleyWAAustralia
- Global FinPrint ProjectIndian Ocean Marine Research CentreUWA (MO96)CrawleyWAAustralia
| |
Collapse
|
24
|
Top predators induce habitat shifts in prey within marine protected areas. Oecologia 2019; 190:375-385. [PMID: 31155681 DOI: 10.1007/s00442-019-04421-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/19/2019] [Indexed: 10/26/2022]
Abstract
Emerging conservation efforts for the world's large predators may, if successful, restore natural predator-prey interactions. Marine reserves, where large predators tend to be relatively common, offer an experimental manipulation to investigate interactions between large-bodied marine predators and their prey. We hypothesized that southern stingrays-large, long-lived and highly interactive mesopredators-would invest in anti-predator behavior in marine reserves where predatory large sharks, the primary predator of stingrays, are more abundant. Specifically, we predicted southern stingrays in marine reserves would reduce the use of deep forereef habitats in the favor of shallow flats where the risk of shark encounters is lower. Baited remote underwater video was used to survey stingrays and reef sharks in flats and forereef habitats of two reserves and two fished sites in Belize. The interaction between "protection status" and "habitat" was the most important factor determining stingray presence. As predicted, southern stingrays spent more time interacting with baited remote underwater videos in the safer flats habitats, were more likely to have predator-inflicted damage inside reserves, and were less abundant in marine reserves but only in the forereef habitat. These results are consistent with a predation-sensitive habitat shift rather than southern stingray populations being reduced by direct predation from reef sharks. Our study provides evidence that roving predators can induce pronounced habitat shifts in prey that rely on crypsis and refuging, rather than active escape, in high-visibility, heterogeneous marine habitats. Given documented impacts of stingrays on benthic communities it is possible restoration of reef shark populations with reserves could induce reef ecosystem changes through behavior-mediated trophic cascades.
Collapse
|
25
|
Pirog A, Jaquemet S, Ravigné V, Cliff G, Clua E, Holmes BJ, Hussey NE, Nevill JEG, Temple AJ, Berggren P, Vigliola L, Magalon H. Genetic population structure and demography of an apex predator, the tiger shark Galeocerdo cuvier. Ecol Evol 2019; 9:5551-5571. [PMID: 31160982 PMCID: PMC6540675 DOI: 10.1002/ece3.5111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/20/2019] [Accepted: 02/26/2019] [Indexed: 12/16/2022] Open
Abstract
Population genetics has been increasingly applied to study large sharks over the last decade. Whilst large shark species are often difficult to study with direct methods, improved knowledge is needed for both population management and conservation, especially for species vulnerable to anthropogenic and climatic impacts. The tiger shark, Galeocerdo cuvier, is an apex predator known to play important direct and indirect roles in tropical and subtropical marine ecosystems. While the global and Indo-West Pacific population genetic structure of this species has recently been investigated, questions remain over population structure and demographic history within the western Indian (WIO) and within the western Pacific Oceans (WPO). To address the knowledge gap in tiger shark regional population structures, the genetic diversity of 286 individuals sampled in seven localities was investigated using 27 microsatellite loci and three mitochondrial genes (CR,COI, and cytb). A weak genetic differentiation was observed between the WIO and the WPO, suggesting high genetic connectivity. This result agrees with previous studies and highlights the importance of the pelagic behavior of this species to ensure gene flow. Using approximate Bayesian computation to couple information from both nuclear and mitochondrial markers, evidence of a recent bottleneck in the Holocene (2,000-3,000 years ago) was found, which is the most probable cause for the low genetic diversity observed. A contemporary effective population size as low as 111 [43,369] was estimated during the bottleneck. Together, these results indicate low genetic diversity that may reflect a vulnerable population sensitive to regional pressures. Conservation measures are thus needed to protect a species that is classified as Near Threatened.
Collapse
Affiliation(s)
- Agathe Pirog
- UMR ENTROPIE (Université de La Réunion/IRD/CNRS)Université de La RéunionSaint Denis, La RéunionFrance
| | - Sébastien Jaquemet
- UMR ENTROPIE (Université de La Réunion/IRD/CNRS)Université de La RéunionSaint Denis, La RéunionFrance
| | | | - Geremy Cliff
- KwaZulu‐Natal Sharks BoardUmhlanga RocksSouth Africa
- School of Life SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Eric Clua
- EPHE‐CNRS‐UPVDCNRS UPVDUSR 3278 CRIOBEPSL Research UniversityPerpignanFrance
- Laboratoire d'Excellence CORAILPerpignanFrance
| | - Bonnie J. Holmes
- School of Biological SciencesUniversity of Queensland, St LuciaBrisbaneQueenslandAustralia
| | - Nigel E. Hussey
- Biological SciencesUniversity of WindsorWindsorOntarioCanada
| | | | - Andrew J. Temple
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle‐upon‐TyneUK
| | - Per Berggren
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle‐upon‐TyneUK
| | - Laurent Vigliola
- Laboratoire d'Excellence CORAILPerpignanFrance
- UMR ENTROPIE (Université de La Réunion/IRD/CNRS)Institut de Recherche pour le DéveloppementNouméaNouvelle CalédonieFrance
| | - Hélène Magalon
- UMR ENTROPIE (Université de La Réunion/IRD/CNRS)Université de La RéunionSaint Denis, La RéunionFrance
- Laboratoire d'Excellence CORAILPerpignanFrance
| |
Collapse
|
26
|
Nowicki R, Heithaus M, Thomson J, Burkholder D, Gastrich K, Wirsing A. Indirect legacy effects of an extreme climatic event on a marine megafaunal community. ECOL MONOGR 2019. [DOI: 10.1002/ecm.1365] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Robert Nowicki
- International Center for Coral Reef Research and Restoration Mote Marine Laboratory 24244 Overseas Highway Summerland Key Florida 33042 USA
- Department of Biological Sciences and Marine Education and Research Initiative Florida International University Miami Florida 33199 USA
| | - Michael Heithaus
- Department of Biological Sciences and Marine Education and Research Initiative Florida International University Miami Florida 33199 USA
| | - Jordan Thomson
- School of Life and Environmental Sciences Deakin University Warrnambool Campus Warrnambool Victoria 3280 Australia
| | - Derek Burkholder
- Guy Harvey Research Institute Nova Southeastern University Ft Lauderdale Florida 33314 USA
| | - Kirk Gastrich
- Department of Biological Sciences and Marine Education and Research Initiative Florida International University Miami Florida 33199 USA
| | - Aaron Wirsing
- School of Environmental and Forest Sciences University of Washington Box 352100 Seattle Washington 98195 USA
| |
Collapse
|
27
|
Jorgensen SJ, Anderson S, Ferretti F, Tietz JR, Chapple T, Kanive P, Bradley RW, Moxley JH, Block BA. Killer whales redistribute white shark foraging pressure on seals. Sci Rep 2019; 9:6153. [PMID: 30992478 PMCID: PMC6467992 DOI: 10.1038/s41598-019-39356-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/18/2019] [Indexed: 01/09/2023] Open
Abstract
Predatory behavior and top-down effects in marine ecosystems are well-described, however, intraguild interactions among co-occurring marine top predators remain less understood, but can have far reaching ecological implications. Killer whales and white sharks are prominent upper trophic level predators with highly-overlapping niches, yet their ecological interactions and subsequent effects have remained obscure. Using long-term electronic tagging and survey data we reveal rare and cryptic interactions between these predators at a shared foraging site, Southeast Farallon Island (SEFI). In multiple instances, brief visits from killer whales displaced white sharks from SEFI, disrupting shark feeding behavior for extended periods at this aggregation site. As a result, annual predations of pinnipeds by white sharks at SEFI were negatively correlated with close encounters with killer whales. Tagged white sharks relocated to other aggregation sites, creating detectable increases in white shark density at Ano Nuevo Island. This work highlights the importance of risk effects and intraguild relationships among top ocean predators and the value of long-term data sets revealing these consequential, albeit infrequent, ecological interactions.
Collapse
Affiliation(s)
| | - Scot Anderson
- Monterey Bay Aquarium, 886 Cannery Row, Monterey, CA, 93940, USA
| | - Francesco Ferretti
- Department of Biology, Stanford University Pacific Grove, California, 93950, USA
| | - James R Tietz
- Point Blue Conservation Science, 3820 Cypress Drive #11, Petaluma, CA, 94954, USA
| | - Taylor Chapple
- Department of Biology, Stanford University Pacific Grove, California, 93950, USA
| | - Paul Kanive
- Monterey Bay Aquarium, 886 Cannery Row, Monterey, CA, 93940, USA.,Fish and Wildlife Management, Montana State University, PO Box 173460, Bozeman, MT, 59717, USA
| | - Russell W Bradley
- Point Blue Conservation Science, 3820 Cypress Drive #11, Petaluma, CA, 94954, USA
| | - Jerry H Moxley
- Monterey Bay Aquarium, 886 Cannery Row, Monterey, CA, 93940, USA
| | - Barbara A Block
- Department of Biology, Stanford University Pacific Grove, California, 93950, USA
| |
Collapse
|
28
|
Hammerschlag N. Quantifying shark predation effects on prey: dietary data limitations and study approaches. ENDANGER SPECIES RES 2019. [DOI: 10.3354/esr00950] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
29
|
Ecosystem Function and Services of Aquatic Predators in the Anthropocene. Trends Ecol Evol 2019; 34:369-383. [PMID: 30857757 DOI: 10.1016/j.tree.2019.01.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 11/23/2022]
Abstract
Arguments for the need to conserve aquatic predator (AP) populations often focus on the ecological and socioeconomic roles they play. Here, we summarize the diverse ecosystem functions and services connected to APs, including regulating food webs, cycling nutrients, engineering habitats, transmitting diseases/parasites, mediating ecological invasions, affecting climate, supporting fisheries, generating tourism, and providing bioinspiration. In some cases, human-driven declines and increases in AP populations have altered these ecosystem functions and services. We present a social ecological framework for supporting adaptive management decisions involving APs in response to social and environmental change. We also identify outstanding questions to guide future research on the ecological functions and ecosystem services of APs in a changing world.
Collapse
|
30
|
van Someren Gréve H, Kiørboe T, Almeda R. Bottom-up behaviourally mediated trophic cascades in plankton food webs. Proc Biol Sci 2019; 286:20181664. [PMID: 30963919 DOI: 10.1098/rspb.2018.1664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Our traditional view of the interactions between marine organisms is conceptualized as food webs where species interact with one another mainly via direct consumption. However, recent research suggests that understudied non-consumptive interactions, such as behaviourally mediated indirect interactions (BMIIs), can influence marine ecosystems as much as consumptive effects. Here, we show, to our knowledge, the first experimental evidence and quantification of bottom-up BMIIs in plankton food webs. We used observational, modelling and experimental approaches to investigate how behavioural responses to resource availability influence predation mortality on grazers with different foraging strategies (ambushing versus active foraging). A three-level food chain was used: phytoplankton as resource, copepod nauplii as grazers of phytoplankton and a large copepod as a predator. Ambushers showed little change in foraging activity with resource availability, whereas active foragers decreased their foraging activity with increasing resources, which led to a decrease (24-50%) in predation mortality. Therefore, an increase in resources ('initiator') causes behavioural changes in active grazers ('transmitter'), which ultimately negatively affects predator ('receiver') consumption rates. Consequently, increase in resource abundance may result in decreasing energy transfer to higher trophic levels. These results indicate that behaviourally mediated interactions drive marine food web dynamics differently from that predicted by only density-mediated or consumptive interactions.
Collapse
Affiliation(s)
- Hans van Someren Gréve
- Centre for Ocean Life, Technical University of Denmark, National Institute for Aquatic Resources , Kemitorvet, Building 202, Kgs. Lyngby , Denmark
| | - Thomas Kiørboe
- Centre for Ocean Life, Technical University of Denmark, National Institute for Aquatic Resources , Kemitorvet, Building 202, Kgs. Lyngby , Denmark
| | - Rodrigo Almeda
- Centre for Ocean Life, Technical University of Denmark, National Institute for Aquatic Resources , Kemitorvet, Building 202, Kgs. Lyngby , Denmark
| |
Collapse
|
31
|
Jessop TS, Ariefiandy A, Purwandana D, Benu YJ, Hyatt M, Letnic M. Little to fear: largest lizard predator induces weak defense responses in ungulate prey. Behav Ecol 2019. [DOI: 10.1093/beheco/ary200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Tim S Jessop
- Centre for Integrative Ecology, School of Life and Environmental Science, Deakin University, Waurn Ponds, Victoria, Australia
- Komodo Survival Program, Denpasar, Bali, Indonesia
| | | | | | | | - Matthew Hyatt
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Mike Letnic
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
32
|
Maszczyk P, Babkiewicz E, Czarnocka-Cieciura M, Gliwicz ZM, Uchmański J, Urban P. Ideal free distribution of Daphnia under predation risk-model predictions and experimental verification. JOURNAL OF PLANKTON RESEARCH 2018; 40:471-485. [PMID: 30057433 PMCID: PMC6055580 DOI: 10.1093/plankt/fby024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 05/16/2018] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
The vertical distribution of planktonic animals, such as Daphnia, in overlapping gradients of food concentration and risk of visual predation should depend on Daphnia population density and should be the result of the group effect of optimizing decisions taken by each individual (juvenile or adult), trading-off a high growth rate to low mortality risk. We tested this hypothesis by comparing the theoretical distributions from simulations based on an experimentally parameterized, optimizing individual-based model (consistent with the assumptions of the concept of the interference ideal free distribution with costs) with distributions observed in laboratory experiments. The simulations were generated for two scenarios, where the shape of the functional response of fish is consistent with either type II or III. The results confirmed the hypothesis. The greatest similarity of the distributions obtained in the experiments and simulations was found for the simulations based on the scenario assuming the type III rather than type II for both age classes of Daphnia. This was consistent with the results of the experiments for the model parameterization, which revealed the type III functional response of fish. Therefore, the results suggest that aggregating may be maladaptive as an anti-vertebrate-predation defense in the case of zooplankton.
Collapse
Affiliation(s)
- Piotr Maszczyk
- Department of Hydrobiology, Faculty of Biology, University of Warsaw at Biology and Chemistry Research Centre, Żwirki i Wigury 101, Warsaw, Poland
| | - Ewa Babkiewicz
- Department of Hydrobiology, Faculty of Biology, University of Warsaw at Biology and Chemistry Research Centre, Żwirki i Wigury 101, Warsaw, Poland
| | - Marta Czarnocka-Cieciura
- Department of Hydrobiology, Faculty of Biology, University of Warsaw at Biology and Chemistry Research Centre, Żwirki i Wigury 101, Warsaw, Poland
| | - Z Maciej Gliwicz
- Department of Hydrobiology, Faculty of Biology, University of Warsaw at Biology and Chemistry Research Centre, Żwirki i Wigury 101, Warsaw, Poland
| | - Janusz Uchmański
- Faculty of Christian Philosophy, Institute of Ecology and Bioethics, Cardinal Stefan Wyszynski University, Wóycickiego 1/3, Warsaw, Poland
| | - Paulina Urban
- Laboratory of Functional and Structural Genomics, Center of New Technologies, University of Warsaw, Banacha 2c, Warsaw, Poland
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2c, Warsaw, Poland
| |
Collapse
|
33
|
Camp MJ, Shipley LA, Johnson TR, Olsoy PJ, Forbey JS, Rachlow JL, Thornton DH. The balancing act of foraging: mammalian herbivores trade-off multiple risks when selecting food patches. Oecologia 2017; 185:537-549. [PMID: 28963624 DOI: 10.1007/s00442-017-3957-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 09/06/2017] [Indexed: 11/29/2022]
Abstract
Animals face multiple risks while foraging such as the risk of acquiring inadequate energy from food and the risk of predation. We evaluated how two sympatric rabbits (pygmy rabbits, Brachylagus idahoensis, and mountain cottontail rabbits, Sylvilagus nuttallii) that differ in size, use of burrows, and habitat specialization in the sagebrush-steppe of western North America respond to different types and levels of perceived risks (i.e., fitness cost × probability of occurrence), including fiber and toxins in food, exposure to predation, and distance from a refuge. We measured food intake by the rabbits at paired food patches that varied in these risks and used the method of paired comparisons to create a relative ranking of habitat cues, which revealed an animal's perceived risk on a single scale representing an integrated response to a variety of risks. Pygmy rabbits perceived exposure to predation risk and distance from a burrow as riskier than did cottontails, whereas cottontails perceived dietary toxin as riskier. Pygmy rabbits consumed lower quality food, containing higher fiber or toxins, thereby avoided feeding in exposed patches or traveling far from their burrow to forage. In contrast, cottontails fed in exposed patches and traveled farther from the burrow to obtain higher quality food. We have shown how risks can be integrated into a single model that allows animals to reveal their perceptions of risks on a single scale that can be used to create a spatially explicit landscape of risk.
Collapse
Affiliation(s)
- M J Camp
- School of the Environment, Washington State University, Pullman, USA.
| | - L A Shipley
- School of the Environment, Washington State University, Pullman, USA
| | - T R Johnson
- Department of Statistical Science, University of Idaho, Moscow, USA
| | - P J Olsoy
- School of the Environment, Washington State University, Pullman, USA
| | - J S Forbey
- Department of Biological Sciences, Boise State University, Boise, USA
| | - J L Rachlow
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, USA
| | - D H Thornton
- School of the Environment, Washington State University, Pullman, USA
| |
Collapse
|
34
|
Walters BT, Cheng TNN, Doyle J, Guglielmo CG, Clinchy M, Zanette LY. Too important to tamper with: predation risk affects body mass and escape behaviour but not escape ability. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12851] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Benjamin T. Walters
- Department of Biology and Advanced Facility for Avian Research (AFAR) University of Western Ontario 1151 Richmond St. North London ONN6A 5B7 Canada
| | - Tin Nok Natalie Cheng
- Department of Biology and Advanced Facility for Avian Research (AFAR) University of Western Ontario 1151 Richmond St. North London ONN6A 5B7 Canada
| | - Justin Doyle
- Department of Computer Science University of Western Ontario 1151 Richmond St. North London ONN6A 5B7 Canada
| | - Chistopher G. Guglielmo
- Department of Biology and Advanced Facility for Avian Research (AFAR) University of Western Ontario 1151 Richmond St. North London ONN6A 5B7 Canada
| | - Michael Clinchy
- Department of Biology and Advanced Facility for Avian Research (AFAR) University of Western Ontario 1151 Richmond St. North London ONN6A 5B7 Canada
| | - Liana Y. Zanette
- Department of Biology and Advanced Facility for Avian Research (AFAR) University of Western Ontario 1151 Richmond St. North London ONN6A 5B7 Canada
| |
Collapse
|
35
|
Camacho C, Sáez-Gómez P, Potti J, Fedriani JM. Nightjars, rabbits, and foxes interact on unpaved roads: spatial use of a secondary prey in a shared-predator system. Ecosphere 2017. [DOI: 10.1002/ecs2.1611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Carlos Camacho
- Department of Evolutionary Ecology; Estación Biológica de Doñana-CSIC; Av. Américo Vespucio 41092 Seville Spain
| | - Pedro Sáez-Gómez
- Department of Integrative Sciences; University of Huelva; Campus Universitario El Carmen Av. Andalucía 21071 Huelva Spain
| | - Jaime Potti
- Department of Evolutionary Ecology; Estación Biológica de Doñana-CSIC; Av. Américo Vespucio 41092 Seville Spain
| | - José María Fedriani
- Department of Conservation Biology; Estación Biológica de Doñana-CSIC; Av. Américo Vespucio 41092 Seville Spain
- Centre for Applied Ecology “Prof. Baeta Neves”/InBIO; Institute Superior of Agronomy; University of Lisbon; Tapada da Ajuda 1349-017 Lisboa Portugal
| |
Collapse
|
36
|
Tol SJ, Coles RG, Congdon BC. Dugong dugon feeding in tropical Australian seagrass meadows: implications for conservation planning. PeerJ 2016; 4:e2194. [PMID: 27441123 PMCID: PMC4941767 DOI: 10.7717/peerj.2194] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/08/2016] [Indexed: 11/20/2022] Open
Abstract
Dugongs (Dugong dugon) are listed as vulnerable to extinction due to rapid population reductions caused in part by loss of seagrass feeding meadows. Understanding dugong feeding behaviour in tropical Australia, where the majority of dugongs live, will assist conservation strategies. We examined whether feeding patterns in intertidal seagrass meadows in tropical north-eastern Australia were related to seagrass biomass, species composition and/or nitrogen content. The total biomass of each seagrass species removed by feeding dugongs was measured and compared to its relative availability. Nitrogen concentrations were also determined for each seagrass species present at the sites. Dugongs consumed seagrass species in proportion to their availability, with biomass being the primary determining factor. Species composition and/or nitrogen content influenced consumption to a lesser degree. Conservation plans focused on protecting high biomass intertidal seagrass meadows are likely to be most effective at ensuring the survival of dugong in tropical north-eastern Australia.
Collapse
Affiliation(s)
- Samantha J Tol
- Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University,Cairns,Queensland, Australia; College of Marine and Environmental Sciences, James Cook University,Cairns,Queensland,Australia
| | - Rob G Coles
- Centre for Tropical Water and Aquatic Ecosystem Research, James Cook University, Cairns, Queensland, Australia
| | - Bradley C Congdon
- College of Marine and Environmental Sciences, James Cook University, Cairns, Queensland, Australia
| |
Collapse
|
37
|
Madin EMP, Dill LM, Ridlon AD, Heithaus MR, Warner RR. Human activities change marine ecosystems by altering predation risk. GLOBAL CHANGE BIOLOGY 2016; 22:44-60. [PMID: 26448058 DOI: 10.1111/gcb.13083] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 08/28/2015] [Accepted: 08/29/2015] [Indexed: 06/05/2023]
Abstract
In ocean ecosystems, many of the changes in predation risk - both increases and decreases - are human-induced. These changes are occurring at scales ranging from global to local and across variable temporal scales. Indirect, risk-based effects of human activity are known to be important in structuring some terrestrial ecosystems, but these impacts have largely been neglected in oceans. Here, we synthesize existing literature and data to explore multiple lines of evidence that collectively suggest diverse human activities are changing marine ecosystems, including carbon storage capacity, in myriad ways by altering predation risk. We provide novel, compelling evidence that at least one key human activity, overfishing, can lead to distinct, cascading risk effects in natural ecosystems whose magnitude exceeds that of presumed lethal effects and may account for previously unexplained findings. We further discuss the conservation implications of human-caused indirect risk effects. Finally, we provide a predictive framework for when human alterations of risk in oceans should lead to cascading effects and outline a prospectus for future research. Given the speed and extent with which human activities are altering marine risk landscapes, it is crucial that conservation and management policy considers the indirect effects of these activities in order to increase the likelihood of success and avoid unfortunate surprises.
Collapse
Affiliation(s)
- Elizabeth M P Madin
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Lawrence M Dill
- Evolutionary and Behavioural Ecology Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - April D Ridlon
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - Michael R Heithaus
- Department of Biological Sciences, Florida International University, 3000 NE 151st Street, North Miami, FL, 33181, USA
| | - Robert R Warner
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| |
Collapse
|
38
|
del Mar Palacios M, Warren DT, McCormick MI. Sensory cues of a top-predator indirectly control a reef fish mesopredator. OIKOS 2015. [DOI: 10.1111/oik.02116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Maria del Mar Palacios
- ARC Centre of Excellence for Coral Reef Studies, and College of Marine and Environmental Sciences, James Cook Univ.; Townsville Queensland 4811 Australia
| | - Donald T. Warren
- ARC Centre of Excellence for Coral Reef Studies, and College of Marine and Environmental Sciences, James Cook Univ.; Townsville Queensland 4811 Australia
| | - Mark I. McCormick
- ARC Centre of Excellence for Coral Reef Studies, and College of Marine and Environmental Sciences, James Cook Univ.; Townsville Queensland 4811 Australia
| |
Collapse
|
39
|
Houghton J, Baird RW, Emmons CK, Hanson MB. Changes in the Occurrence and Behavior of Mammal-Eating Killer Whales in Southern British Columbia and Washington State, 1987–2010. NORTHWEST SCIENCE 2015. [DOI: 10.3955/046.089.0207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Why does the only ‘planktonic tetrapod’ dive? Determinants of diving behaviour in a marine ectotherm. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Wirsing AJ, Heithaus MR. Accounting for individual behavioural variation in studies of habitat selection. J Anim Ecol 2014; 83:319-21. [DOI: 10.1111/1365-2656.12200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 01/02/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Aaron J. Wirsing
- School of Environmental and Forest Sciences; University of Washington; Seattle Washington 98195 USA
| | - Michael R. Heithaus
- Department of Biological Sciences; Marine Sciences Program; Florida International University; North Miami Florida 33181 USA
| |
Collapse
|
42
|
Dynamics of herbivores and resources on a landscape with interspersed resources and refuges. THEOR ECOL-NETH 2014. [DOI: 10.1007/s12080-013-0210-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
43
|
Letessier TB, Meeuwig JJ, Gollock M, Groves L, Bouchet PJ, Chapuis L, Vianna GM, Kemp K, Koldewey HJ. Assessing pelagic fish populations: The application of demersal video techniques to the mid-water environment. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.mio.2013.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Burkepile DE, Burns CE, Tambling CJ, Amendola E, Buis GM, Govender N, Nelson V, Thompson DI, Zinn AD, Smith MD. Habitat selection by large herbivores in a southern African savanna: the relative roles of bottom-up and top-down forces. Ecosphere 2013. [DOI: 10.1890/es13-00078.1] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
45
|
Burkholder DA, Heithaus MR, Fourqurean JW, Wirsing A, Dill LM. Patterns of top-down control in a seagrass ecosystem: could a roving apex predator induce a behaviour-mediated trophic cascade? J Anim Ecol 2013; 82:1192-202. [DOI: 10.1111/1365-2656.12097] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/22/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Derek A. Burkholder
- Department of Biological Sciences; Marine Sciences Program; Florida International University; North Miami FL 33181 USA
| | - Michael R. Heithaus
- Department of Biological Sciences; Marine Sciences Program; Florida International University; North Miami FL 33181 USA
| | - James W. Fourqurean
- Department of Biological Sciences; Marine Sciences Program; Florida International University; North Miami FL 33181 USA
- Southeast Environmental Research Center; Florida International University; Miami FL 33199 USA
| | - Aaron Wirsing
- Department of Biological Sciences; Marine Sciences Program; Florida International University; North Miami FL 33181 USA
- School of Environmental and Forest Sciences; University of Washington; Seattle WA 98195 USA
| | - Lawrence M. Dill
- Evolutionary and Behavioural Ecology Research Group; Department of Biological Sciences; Simon Fraser University; Burnaby BC V5A 1S6 Canada
| |
Collapse
|
46
|
Heithaus MR, Wirsing AJ, Frid A, Dill LM. Behavioral Indicators in Marine Conservation: Lessons from a Pristine Seagrass Ecosystem. Isr J Ecol Evol 2013. [DOI: 10.1560/ijee.53.3.355] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
|
48
|
Eby S, Ritchie ME. The impacts of burning on Thomson's gazelles',Gazella thomsonii, vigilance in Serengeti National Park, Tanzania. Afr J Ecol 2012. [DOI: 10.1111/aje.12044] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Mark E. Ritchie
- Department of Biology; Syracuse University; 107 College Place; Syracuse; NY; 13210; U.S.A
| |
Collapse
|
49
|
|
50
|
Ainley DG, Ballard G. Non-consumptive factors affecting foraging patterns in Antarctic penguins: a review and synthesis. Polar Biol 2011. [DOI: 10.1007/s00300-011-1042-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|