1
|
Xu C, Silliman BR, Chen J, Li X, Thomsen MS, Zhang Q, Lee J, Lefcheck JS, Daleo P, Hughes BB, Jones HP, Wang R, Wang S, Smith CS, Xi X, Altieri AH, van de Koppel J, Palmer TM, Liu L, Wu J, Li B, He Q. Herbivory limits success of vegetation restoration globally. Science 2023; 382:589-594. [PMID: 37917679 DOI: 10.1126/science.add2814] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/21/2023] [Indexed: 11/04/2023]
Abstract
Restoring vegetation in degraded ecosystems is an increasingly common practice for promoting biodiversity and ecological function, but successful implementation is hampered by an incomplete understanding of the processes that limit restoration success. By synthesizing terrestrial and aquatic studies globally (2594 experimental tests from 610 articles), we reveal substantial herbivore control of vegetation under restoration. Herbivores at restoration sites reduced vegetation abundance more strongly (by 89%, on average) than those at relatively undegraded sites and suppressed, rather than fostered, plant diversity. These effects were particularly pronounced in regions with higher temperatures and lower precipitation. Excluding targeted herbivores temporarily or introducing their predators improved restoration by magnitudes similar to or greater than those achieved by managing plant competition or facilitation. Thus, managing herbivory is a promising strategy for enhancing vegetation restoration efforts.
Collapse
Affiliation(s)
- Changlin Xu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai, China
| | - Brian R Silliman
- Nicholas School of the Environment, Duke University, Beaufort, NC, USA
| | - Jianshe Chen
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai, China
| | - Xincheng Li
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai, China
| | - Mads S Thomsen
- Marine Ecology Research Group and Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Department of Bioscience, Aarhus University, Roskilde, Denmark
| | - Qun Zhang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai, China
| | - Juhyung Lee
- Marine Science Center, Northeastern University, Nahant, MA, USA
- Department of Oceanography and Marine Research Institute, Pusan National University, Busan, Republic of Korea
| | - Jonathan S Lefcheck
- Tennenbaum Marine Observatories Network and MarineGEO Program, Smithsonian Environmental Research Center, Edgewater, MD, USA
- University of Maryland Center for Environmental Science, Cambridge, MD, USA
| | - Pedro Daleo
- Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMdP, CONICETC, Mar del Plata, Argentina
| | - Brent B Hughes
- Department of Biology, Sonoma State University, Rohnert Park, CA, USA
| | - Holly P Jones
- Department of Biological Sciences and Institute for the Study of the Environment, Sustainability, and Energy, Northern Illinois University, DeKalb, IL, USA
| | - Rong Wang
- School of Ecological and Environmental Sciences, Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, East China Normal University, Shanghai, China
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Carter S Smith
- Nicholas School of the Environment, Duke University, Beaufort, NC, USA
| | - Xinqiang Xi
- Department of Ecology, School of Life Science, Nanjing University, Nanjing, Jiangsu, China
| | - Andrew H Altieri
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - Johan van de Koppel
- Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research, Yerseke, Netherlands
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Todd M Palmer
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jihua Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Bo Li
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
| | - Qiang He
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Valdez SR, Daleo P, DeLaMater DS, Silliman BR. Variable responses to top-down and bottom-up control on multiple traits in the foundational plant, Spartina alterniflora. PLoS One 2023; 18:e0286327. [PMID: 37228166 DOI: 10.1371/journal.pone.0286327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
While the effects of top-down and bottom-up forces on aboveground plant growth have been extensively examined, less is known about the relative impacts of these factors on other aspects of plant life history. In a fully-factorial, field experiment in a salt marsh in Virginia, USA, we manipulated grazing intensity (top-down) and nutrient availability (bottom-up) and measured the response in a suite of traits for smooth cordgrass (Spartina alterniflora). The data presented within this manuscript are unpublished, original data that were collected from the same experiment presented in Silliman and Zieman 2001. Three categories of traits and characteristics were measured: belowground characteristics, litter production, and reproduction, encompassing nine total responses. Of the nine response variables measured, eight were affected by treatments. Six response variables showed main effects of grazing and/ or fertilization, while three showed interactive effects. In general, fertilization led to increased cordgrass belowground biomass and reproduction, the former of which conflicts with predictions based on resource competition theory. Higher grazing intensity had negative impacts on both belowground biomass and reproduction. This result contrasts with past studies in this system that concluded grazer impacts are likely relegated to aboveground plant growth. In addition, grazers and fertilization interacted to alter litter production so that litter production disproportionately increased with fertilization when grazers were present. Our results revealed both predicted and unexpected effects of grazing and nutrient availability on understudied traits in a foundational plant and that these results were not fully predictable from understanding the impacts on aboveground biomass alone. Since these diverse traits link to diverse ecosystem functions, such as carbon burial, nutrient cycling, and ecosystem expansion, developing future studies to explore multiple trait responses and synthesizing the ecological knowledge on top-down and bottom-up forces with trait-based methodologies may provide a promising path forward in predicting variability in ecosystem function.
Collapse
Affiliation(s)
- Stephanie R Valdez
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, North Carolina, United States of America
| | - Pedro Daleo
- Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET - UNMDP, Mar del Plata, Argentina
| | - David S DeLaMater
- Nicholas School of the Environment, University Program In Ecology, Duke University, Durham, North Carolina, United States of America
| | - Brian R Silliman
- Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University, Beaufort, North Carolina, United States of America
| |
Collapse
|
3
|
Blake RE, Olin JA. Responses to simultaneous anthropogenic and biological stressors were mixed in an experimental saltmarsh ecosystem. MARINE ENVIRONMENTAL RESEARCH 2022; 179:105644. [PMID: 35696877 DOI: 10.1016/j.marenvres.2022.105644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Coastal ecosystems are essential for absorbing and bouncing back from the impacts of climate change, yet accelerating climate change is causing anthropogenically-derived stressors in these ecosystems to grow. The effects of stressors are more difficult to foresee when they act simultaneously, however, predicting these effects is critical for understanding ecological change. Spartina alterniflora (Spartina), a foundational saltmarsh plant key to coastal resilience, is subject to biological stress such as herbivory, as well as anthropogenic stress such as chemical pollution. Using saltmarsh mesocosms as a model system in a fully factorial experiment, we tested whether the effects of herbivory and two chemicals (oil and dispersant) were mediated or magnified in combination. Spartina responded to stressors asynchronously; ecophysiology responded negatively to oil and herbivores in the first 2-3 weeks of the experiment, whereas biomass responded negatively to oil and herbivores cumulatively throughout the experiment. We generally found mixed multi-stressor effects, with slightly more antagonistic effects compared to either synergistic or additive effects, despite significant reductions in Spartina biomass and growth from both chemical and herbivore treatments. We also observed an indirect positive effect of oil on Spartina, via a direct negative effect on insect herbivores. Our findings suggest that multi-stressor effects in our model system, 1) are mixed but can be antagonistic more often than expected, a finding contrary to previous assumptions of primarily synergistic effects, 2) can vary in duration, 3) can be difficult to discern a priori, and 4) can lead to ecological surprises through indirect effects with implications for coastal resilience. This leads us to conclude that understanding the simultaneous effects of multiple stressors is critical for predicting foundation-species persistence, discerning ecosystem resilience, and managing and mitigating impacts on ecosystem services.
Collapse
Affiliation(s)
- Rachael E Blake
- Department of Oceanography & Coastal Sciences, Louisiana State University, Baton Rouge, LA, USA; DataKind, 419 McDonald Ave Unit 180184, Brooklyn, NY, USA.
| | - Jill A Olin
- Department of Oceanography & Coastal Sciences, Louisiana State University, Baton Rouge, LA, USA; Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| |
Collapse
|
4
|
Wasson K, Tanner KE, Woofolk A, McCain S, Suraci JP. Top-down and sideways: Herbivory and cross-ecosystem connectivity shape restoration success at the salt marsh-upland ecotone. PLoS One 2021; 16:e0247374. [PMID: 33617558 PMCID: PMC7899356 DOI: 10.1371/journal.pone.0247374] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/06/2021] [Indexed: 12/22/2022] Open
Abstract
Wetland restoration provides remarkable opportunities to understand vegetation dynamics and to inform success of future projects through rigorous restoration experiments. Salt marsh restoration typically focuses on physical factors such as sediment dynamics and elevation. Despite many demonstrations of strong top-down effects on salt marshes, the potential for consumers to affect salt marsh restoration projects has rarely been quantified. Recently, major restoration projects at the Elkhorn Slough National Estuarine Research Reserve in central California, USA provided an opportunity to examine how herbivory influences restoration success. We quantified the strength of consumer effects by comparing caged to uncaged plantings, and compared effects among plant species and sites. We used camera traps to detect which herbivores were most common and how their abundance varied spatially. Beyond characterizing consumer effects, we also tested management strategies for reducing negative effects of herbivory at the restoration sites, including caging, mowing, and acoustic playbacks of predator sounds. We found extremely strong consumer effects at sites with extensive stands of exotic forbs upland of the high marsh; uncaged restoration plants suffered heavy herbivory and high mortality, while most caged plants survived. Brush rabbits (Sylvilagus bachmani) were by far the most frequent consumers of these high marsh plants. Our work thus provides the first evidence of mammal consumers affecting salt marsh restoration success. Mowing of tall exotic forb cover adjacent to the marsh at one restoration site greatly reduced consumption, and nearly all monitored plantings survived at a second restoration site where construction had temporarily eliminated upland cover. Playbacks of predator sounds did not significantly affect restoration plantings, but restoration efforts in marsh communities vulnerable to terrestrial herbivory may benefit from concurrent restoration of predator communities in the upland habitats surrounding the marsh. A landscape approach is thus critical for recognizing linkages between terrestrial and marine vegetation.
Collapse
Affiliation(s)
- Kerstin Wasson
- Elkhorn Slough National Estuarine Research Reserve, Royal Oaks, California, United States of America
- Ecology and Evolutionary Biology, University of California, Santa Cruz, California, United States of America
- * E-mail:
| | - Karen E. Tanner
- Ecology and Evolutionary Biology, University of California, Santa Cruz, California, United States of America
| | - Andrea Woofolk
- Elkhorn Slough National Estuarine Research Reserve, Royal Oaks, California, United States of America
| | - Sean McCain
- California Department of Fish and Wildlife, Sacramento, California, United States of America
| | - Justin P. Suraci
- Environmental Studies, University of California, Santa Cruz, California, United States of America
| |
Collapse
|
5
|
Hou W, Zhang R, Xi Y, Liang S, Sun Z. The role of waterlogging stress on the distribution of salt marsh plants in the Liao River estuary wetland. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
6
|
Strauss AT, Shoemaker LG, Seabloom EW, Borer ET. Cross‐scale dynamics in community and disease ecology: relative timescales shape the community ecology of pathogens. Ecology 2019; 100:e02836. [DOI: 10.1002/ecy.2836] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/15/2019] [Accepted: 06/25/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Alexander T. Strauss
- Department of Ecology, Evolution, and Behavior University of Minnesota St. Paul Minnesota 55108 USA
| | - Lauren G. Shoemaker
- Department of Ecology, Evolution, and Behavior University of Minnesota St. Paul Minnesota 55108 USA
| | - Eric W. Seabloom
- Department of Ecology, Evolution, and Behavior University of Minnesota St. Paul Minnesota 55108 USA
| | - Elizabeth T. Borer
- Department of Ecology, Evolution, and Behavior University of Minnesota St. Paul Minnesota 55108 USA
| |
Collapse
|
7
|
Pagès JF, Jenkins SR, Bouma TJ, Sharps E, Skov MW. Opposing Indirect Effects of Domestic Herbivores on Saltmarsh Erosion. Ecosystems 2018. [DOI: 10.1007/s10021-018-0322-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Dai X, Long C, Xu J, Guo Q, Zhang W, Zhang Z, Bater. Are dominant plant species more susceptible to leaf-mining insects? A case study at Saihanwula Nature Reserve, China. Ecol Evol 2018; 8:7633-7648. [PMID: 30151177 PMCID: PMC6106163 DOI: 10.1002/ece3.4284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 04/18/2018] [Accepted: 05/20/2018] [Indexed: 11/21/2022] Open
Abstract
Dominant species significantly affect interspecific relationships, community structure, and ecosystem function. In the field, dominant species are often identified by their high importance values. Selective foraging on dominant species is a common phenomenon in ecology. Our hypothesis is that dominant plant groups with high importance values are more susceptible to leaf-mining insects at the regional level. Here, we used the Saihanwula National Nature Reserve as a case study to examine the presence-absence patterns of leaf-mining insects on different plants in a forest-grassland ecotone in Northeast China. We identified the following patterns: (1) After phylogenetic correction, plants with high importance values are more likely to host leafminers at the species, genus, or family level. (2) Other factors including phylogenetic isolation, life form, water ecotype, and phytogeographical type of plants have different influences on the relationship between plant dominance and leafminer presence. In summary, the importance value is a valid predictor of the presence of consumers, even when we consider the effects of plant phylogeny and other plant attributes. Dominant plant groups are large and susceptible targets of leaf-mining insects. The consistent leaf-mining distribution pattern across different countries, vegetation types, and plant taxa can be explained by the "species-area relationship" or the "plant apparency hypothesis."
Collapse
Affiliation(s)
- Xiaohua Dai
- Leafminer GroupSchool of Life and Environmental SciencesGannan Normal UniversityGanzhouChina
- National Navel Orange Engineering Research CenterGanzhouChina
| | - Chengpeng Long
- Leafminer GroupSchool of Life and Environmental SciencesGannan Normal UniversityGanzhouChina
| | - Jiasheng Xu
- Leafminer GroupSchool of Life and Environmental SciencesGannan Normal UniversityGanzhouChina
| | - Qingyun Guo
- Leafminer GroupSchool of Life and Environmental SciencesGannan Normal UniversityGanzhouChina
| | - Wei Zhang
- Leafminer GroupSchool of Life and Environmental SciencesGannan Normal UniversityGanzhouChina
| | - Zhihong Zhang
- Leafminer GroupSchool of Life and Environmental SciencesGannan Normal UniversityGanzhouChina
| | - Bater
- Saihanwula National Nature Reserve AdministrationDabanChina
| |
Collapse
|
9
|
Noto AE, Shurin JB. Mean conditions predict salt marsh plant community diversity and stability better than environmental variability. OIKOS 2017. [DOI: 10.1111/oik.04056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Akana E. Noto
- Section of Ecology, Behavior and Evolution, Univ. of California, San Diego; 9500 Gilman Drive, no. 0116 La Jolla CA 92093 USA
| | - Jonathan B. Shurin
- Section of Ecology, Behavior and Evolution, Univ. of California, San Diego; 9500 Gilman Drive, no. 0116 La Jolla CA 92093 USA
| |
Collapse
|
10
|
Parsons MA, Barkley TC, Rachlow JL, Johnson‐Maynard JL, Johnson TR, Milling CR, Hammel JE, Leslie I. Cumulative effects of an herbivorous ecosystem engineer in a heterogeneous landscape. Ecosphere 2016. [DOI: 10.1002/ecs2.1334] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Mitchell A. Parsons
- Department of Fish and Wildlife Sciences University of Idaho Moscow Idaho 83844 USA
| | - Tela C. Barkley
- Department of Fish and Wildlife Sciences University of Idaho Moscow Idaho 83844 USA
| | - Janet L. Rachlow
- Department of Fish and Wildlife Sciences University of Idaho Moscow Idaho 83844 USA
| | - Jodi L. Johnson‐Maynard
- Department of Plant, Soil and Entomological Sciences University of Idaho Moscow Idaho 83844 USA
| | - Timothy R. Johnson
- Department of Statistical Science University of Idaho Moscow Idaho 83844 USA
| | - Charlotte R. Milling
- Department of Fish and Wildlife Sciences University of Idaho Moscow Idaho 83844 USA
| | - John E. Hammel
- Department of Plant, Soil and Entomological Sciences University of Idaho Moscow Idaho 83844 USA
| | - Ian Leslie
- Department of Plant, Soil and Entomological Sciences University of Idaho Moscow Idaho 83844 USA
| |
Collapse
|
11
|
Hughes AR, Hanley TC, Orozco NP, Zerebecki RA. Consumer trait variation influences tritrophic interactions in salt marsh communities. Ecol Evol 2015; 5:2659-72. [PMID: 26257878 PMCID: PMC4523361 DOI: 10.1002/ece3.1564] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/15/2015] [Accepted: 05/20/2015] [Indexed: 11/10/2022] Open
Abstract
The importance of intraspecific variation has emerged as a key question in community ecology, helping to bridge the gap between ecology and evolution. Although much of this work has focused on plant species, recent syntheses have highlighted the prevalence and potential importance of morphological, behavioral, and life history variation within animals for ecological and evolutionary processes. Many small-bodied consumers live on the plant that they consume, often resulting in host plant-associated trait variation within and across consumer species. Given the central position of consumer species within tritrophic food webs, such consumer trait variation may play a particularly important role in mediating trophic dynamics, including trophic cascades. In this study, we used a series of field surveys and laboratory experiments to document intraspecific trait variation in a key consumer species, the marsh periwinkle Littoraria irrorata, based on its host plant species (Spartina alterniflora or Juncus roemerianus) in a mixed species assemblage. We then conducted a 12-week mesocosm experiment to examine the effects of Littoraria trait variation on plant community structure and dynamics in a tritrophic salt marsh food web. Littoraria from different host plant species varied across a suite of morphological and behavioral traits. These consumer trait differences interacted with plant community composition and predator presence to affect overall plant stem height, as well as differentially alter the density and biomass of the two key plant species in this system. Whether due to genetic differences or phenotypic plasticity, trait differences between consumer types had significant ecological consequences for the tritrophic marsh food web over seasonal time scales. By altering the cascading effects of the top predator on plant community structure and dynamics, consumer differences may generate a feedback over longer time scales, which in turn influences the degree of trait divergence in subsequent consumer populations.
Collapse
Affiliation(s)
| | - Torrance C Hanley
- Marine Science Center, Northeastern University Nahant, Massachusetts
| | - Nohelia P Orozco
- Coastal and Marine Laboratory, Florida State University St. Teresa, Florida
| | - Robyn A Zerebecki
- Marine Science Center, Northeastern University Nahant, Massachusetts
| |
Collapse
|
12
|
Daleo P, Alberti J, Bruschetti CM, Pascual J, Iribarne O, Silliman BR. Physical stress modifies top-down and bottom-up forcing on plant growth and reproduction in a coastal ecosystem. Ecology 2015; 96:2147-56. [DOI: 10.1890/14-1776.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|