1
|
Davidson JL, McKnight KR, Szojka M, Gannon D, Wisnoski NI, Werner CM, Liang M, Seabloom EW, Ray C, DeSiervo MH, Shoemaker LG. Effects of Disturbance and Fertilisation on Plant Community Synchrony, Biodiversity and Stability Through Succession. Ecol Lett 2025; 28:e70052. [PMID: 40172486 DOI: 10.1111/ele.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/30/2024] [Accepted: 10/09/2024] [Indexed: 04/04/2025]
Abstract
Global change drivers alter multiple components of community composition, with cascading impacts on ecosystem stability. However, it remains largely unknown how interactions among global change drivers will alter community synchrony, especially across successional timescales. We analysed a 22-year time series of grassland community data from Cedar Creek, USA, to examine the joint effects of pulse soil disturbance and press nitrogen addition on community synchrony, richness, evenness and stability during transient and post-transient periods of succession. Using multiple regression and structural equation modelling, we found that nitrogen addition and soil disturbance decreased both synchrony and stability, thereby weakening the negative synchrony-stability relationship. We found evidence of the portfolio effect during transience, but once communities settled on a restructured state post-transience, diversity no longer influenced the synchrony-stability relationship. Differences between transient and post-transient drivers of synchrony and stability underscore the need for long-term data to inform ecosystem management under ongoing global change.
Collapse
Affiliation(s)
| | | | - Megan Szojka
- Botany Department, University of Wyoming, Laramie, Wyoming, USA
| | - Dustin Gannon
- Botany Department, University of Wyoming, Laramie, Wyoming, USA
- College of Forestry, Oregon State University, Corvallis, Oregon, USA
| | - Nathan I Wisnoski
- Botany Department, University of Wyoming, Laramie, Wyoming, USA
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Chhaya M Werner
- Botany Department, University of Wyoming, Laramie, Wyoming, USA
- Department of Environmental Science Policy and Sustainability, Southern Oregon University, Ashland, Oregon, USA
| | - Maowei Liang
- University of Minnesota, St. Paul, Minnesota, USA
| | | | - Courtenay Ray
- Botany Department, University of Wyoming, Laramie, Wyoming, USA
| | - Melissa H DeSiervo
- Botany Department, University of Wyoming, Laramie, Wyoming, USA
- Biology Department, Union College, Schenectady, New York, USA
| | | |
Collapse
|
2
|
Cady SM, Fuhlendorf SD, Davis CA, Luttbeg B, Roberts CP, Loss SR. The relative influence of climate extremes and species richness on the temporal variability of bird communities. Ecology 2025; 106:e70005. [PMID: 39968807 DOI: 10.1002/ecy.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/24/2024] [Accepted: 08/30/2024] [Indexed: 02/20/2025]
Abstract
Understanding the relationship between biodiversity and ecological stability is increasingly urgent as rapid species extinction continues. Though evidence of positive diversity-stability relationships is accumulating, empirical results are inconsistent, and effect sizes tend to be small, raising questions about relative contributions of intrinsic (i.e., species composition/interactions) and extrinsic (i.e., environmental) drivers of stability. Community stability may be more strongly influenced by environmental conditions than by community diversity in some contexts, yet little is known about the comparative importance of diversity and climate means, extremes, and variability in regulating stability. We used a half-century of continental-scale bird data to quantify avian community temporal variability (a metric often used to approximate ecological stability) at 1379 sites and compared relative effects of climatic variables and species richness. We found that extreme heat and extremely low precipitation at decadal scales are associated with high bird community variability and these climate variables outperformed species richness in terms of variance explained and magnitude of effect. This provides empirical support for the theoretical concept that, at a continental, decadal scale, environmental conditions can play a larger role than intrinsic factors in determining community stability. Our findings also increase understanding of how climate extremes cause diverse ecological responses.
Collapse
Affiliation(s)
- Samantha M Cady
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Samuel D Fuhlendorf
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Craig A Davis
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Barney Luttbeg
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Caleb P Roberts
- U.S. Geological Survey, Arkansas Cooperative Fish and Wildlife Research Unit, University of Arkansas, Fayetteville, Arkansas, USA
| | - Scott R Loss
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
3
|
Shipley JR, Frei ER, Bergamini A, Boch S, Schulz T, Ginzler C, Barandun M, Bebi P, Bolliger J, Bollmann K, Delpouve N, Gossner MM, Graham C, Krumm F, Marty M, Pichon N, Rigling A, Rixen C. Agricultural practices and biodiversity: Conservation policies for semi-natural grasslands in Europe. Curr Biol 2024; 34:R753-R761. [PMID: 39163831 DOI: 10.1016/j.cub.2024.06.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Europe's semi-natural grasslands support notably high levels of temperate biodiversity across multiple taxonomic groups. However, these ecosystems face unique conservation challenges. Contemporary agricultural practices have replaced historical traditional low-intensity agriculture in many regions, resulting in a spectrum of management intensities within these ecosystems, ranging from highly intensive methods to complete abandonment. Paradoxically, both extremes along this spectrum of management intensity can be detrimental to biodiversity of semi-natural grasslands. Moreover, while anthropogenic climate change is an overarching threat to these ecosystems, rapid changes in land use and its intensity often present more immediate pressures. Often occurring at a faster rate than climate change itself, these land-use changes have the potential to rapidly impact the biodiversity of these grasslands. Here, we divide the ecological processes, threats, and developments to semi-natural grasslands into three sections. First, we examine the different impacts of agricultural intensification and abandonment on these ecosystems, considering their different consequences for biodiversity. Second, we review seminal works on various evidence-based management practices and offer a concise summary that provides support for various conservation and management strategies. However, the socio-economic factors that drive both abandonment and intensification in semi-natural grasslands can also be used to develop solutions through strategic governmental and non-governmental interventions. Accordingly, we conclude with a way forward by providing several key policy recommendations. By synthesizing existing knowledge and identifying research gaps, this essay aims to provide valuable insights for advancing the sustainable management of semi-natural grasslands.
Collapse
Affiliation(s)
- J Ryan Shipley
- WSL Institute for Snow and Avalanche Research, Davos, Switzerland; Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.
| | - Esther R Frei
- WSL Institute for Snow and Avalanche Research, Davos, Switzerland; Climate Change, Extremes and Natural Hazards in Alpine Regions Research Centre CERC, Davos, Switzerland
| | - Ariel Bergamini
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Steffen Boch
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Tobias Schulz
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Christian Ginzler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Marco Barandun
- Forage Production and Grassland Systems, Agroscope, Zurich, Switzerland
| | - Peter Bebi
- WSL Institute for Snow and Avalanche Research, Davos, Switzerland; Climate Change, Extremes and Natural Hazards in Alpine Regions Research Centre CERC, Davos, Switzerland
| | - Janine Bolliger
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Kurt Bollmann
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Noémie Delpouve
- Université de Lorraine, AgroParisTech, INRAE, Silva, Nancy, France
| | - Martin M Gossner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Catherine Graham
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Frank Krumm
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Mauro Marty
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Noémie Pichon
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Andreas Rigling
- ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, Forest Ecology, Zurich, Switzerland
| | - Christian Rixen
- WSL Institute for Snow and Avalanche Research, Davos, Switzerland; Climate Change, Extremes and Natural Hazards in Alpine Regions Research Centre CERC, Davos, Switzerland
| |
Collapse
|
4
|
Wang K, Wang C, Fu B, Huang J, Wei F, Leng X, Feng X, Li Z, Jiang W. Divergent driving mechanisms of community temporal stability in China's drylands. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100404. [PMID: 38585198 PMCID: PMC10997951 DOI: 10.1016/j.ese.2024.100404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 04/09/2024]
Abstract
Climate change and anthropogenic activities are reshaping dryland ecosystems globally at an unprecedented pace, jeopardizing their stability. The stability of these ecosystems is crucial for maintaining ecological balance and supporting local communities. Yet, the mechanisms governing their stability are poorly understood, largely due to the scarcity of comprehensive field data. Here we show the patterns of community temporal stability and its determinants across an aridity spectrum by integrating a transect survey across China's drylands with remote sensing. Our results revealed a U-shaped relationship between community temporal stability and aridity, with a pivotal shift occurring around an aridity level of 0.88. In less arid areas (aridity level below 0.88), enhanced precipitation and biodiversity were associated with increased community productivity and stability. Conversely, in more arid zones (aridity level above 0.88), elevated soil organic carbon and biodiversity were linked to greater fluctuations in community productivity and reduced stability. Our study identifies a critical aridity threshold that precipitates significant changes in community stability in China's drylands, underscoring the importance of distinct mechanisms driving ecosystem stability in varying aridity contexts. These insights are pivotal for developing informed ecosystem management and policy strategies tailored to the unique challenges of dryland conservation.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cong Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Shaanxi Yan'an Forest Ecosystem National Observation and Research Station, Beijing, 100085, China
- National Observation and Research Station of Earth Critical Zone on the Loess Plateau in Shaanxi, Xi'an, 710061, China
| | - Bojie Fu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shaanxi Yan'an Forest Ecosystem National Observation and Research Station, Beijing, 100085, China
- National Observation and Research Station of Earth Critical Zone on the Loess Plateau in Shaanxi, Xi'an, 710061, China
| | - Jianbei Huang
- Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745, Jena, Germany
| | - Fangli Wei
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuejing Leng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoming Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zongshan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Shaanxi Yan'an Forest Ecosystem National Observation and Research Station, Beijing, 100085, China
- National Observation and Research Station of Earth Critical Zone on the Loess Plateau in Shaanxi, Xi'an, 710061, China
| | - Wei Jiang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
5
|
Sasaki T, Berdugo M, Kinugasa T, Batdelger G, Baasandai E, Eisenhauer N. Aridity-dependent shifts in biodiversity-stability relationships but not in underlying mechanisms. GLOBAL CHANGE BIOLOGY 2024; 30:e17365. [PMID: 38864217 DOI: 10.1111/gcb.17365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 06/13/2024]
Abstract
Climate change will affect the way biodiversity influences the stability of plant communities. Although biodiversity, associated species asynchrony, and species stability could enhance community stability, the understanding of potential nonlinear shifts in the biodiversity-stability relationship across a wide range of aridity (measured as the aridity index, the precipitation/potential evapotranspiration ratio) gradients and the underlying mechanisms remain limited. Using an 8-year dataset from 687 sites in Mongolia, which included 5496 records of vegetation and productivity, we found that the temporal stability of plant communities decreased more rapidly in more arid areas than in less arid areas. The result suggests that future aridification across terrestrial ecosystems may adversely affect community stability. Additionally, we identified nonlinear shifts in the effects of species richness and species synchrony on temporal community stability along the aridity gradient. Species synchrony was a primary driver of community stability, which was consistently negatively affected by species richness while being positively affected by the synchrony between C3 and C4 species across the aridity gradient. These results highlight the crucial role of C4 species in stabilizing communities through differential responses to interannual climate variations between C3 and C4 species. Notably, species richness and the synchrony between C3 and C4 species independently regulated species synchrony, ultimately affecting community stability. We propose that maintaining plant communities with a high diversity of C3 and C4 species will be key to enhancing community stability across Mongolian grasslands. Moreover, species synchrony, species stability, species richness and the synchrony between C3 and C4 species across the aridity gradient consistently mediated the impacts of aridity on community stability. Hence, strategies aimed at promoting the maintenance of biological diversity and composition will help ecosystems adapt to climate change or mitigate its adverse effects on ecosystem stability.
Collapse
Affiliation(s)
- Takehiro Sasaki
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Japan
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
- Institute for Multidisciplinary Sciences, Yokohama National University, Yokohama, Japan
| | - Miguel Berdugo
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain
- Department of Environment Systems Science, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | | | - Gantsetseg Batdelger
- Information and Research Institute of Meteorology, Hydrology and Environment (IRIMHE) of Mongolia, Ulaanbaatar, Mongolia
| | - Erdenetsetseg Baasandai
- Information and Research Institute of Meteorology, Hydrology and Environment (IRIMHE) of Mongolia, Ulaanbaatar, Mongolia
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
- Institute for Multidisciplinary Sciences, Yokohama National University, Yokohama, Japan
| |
Collapse
|
6
|
Chen X, Lu H, Ren Z, Zhang Y, Liu R, Zhang Y, Han X. Reproductive height determines the loss of clonal grasses with nitrogen enrichment in a temperate grassland. PLANT DIVERSITY 2024; 46:256-264. [PMID: 38807914 PMCID: PMC11128833 DOI: 10.1016/j.pld.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/30/2024]
Abstract
Tall clonal grasses commonly display competitive advantages with nitrogen (N) enrichment. However, it is currently unknown whether the height is derived from the vegetative or reproductive module. Moreover, it is unclear whether the height of the vegetative or reproductive system regulates the probability of extinction and colonization, and determines species diversity. In this study, the impacts on clonal grasses were studied in a field experiment employing two frequencies (twice a year vs. monthly) crossing with nine N addition rates in a temperate grassland, China. We found that the N addition decreased species frequency and increased extinction probability, but did not change the species colonization probability. A low frequency of N addition decreased species frequency and colonization probability, but increased extinction probability. Moreover, we found that species reproductive height was the best index to predict the extinction probability of clonal grasses in N-enriched conditions. The low frequency of N addition may overestimate the negative effect from N deposition on clonal grass diversity, suggesting that a higher frequency of N addition is more suitable in assessing the ecological effects of N deposition. Overall, this study illustrates that reproductive height was associated with the clonal species extinction probability under N-enriched environment.
Collapse
Affiliation(s)
- Xu Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Haining Lu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Zhengru Ren
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Yuqiu Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Ruoxuan Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Yunhai Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| |
Collapse
|
7
|
Ma F, Yan Y, Svenning JC, Quan Q, Peng J, Zhang R, Wang J, Tian D, Zhou Q, Niu S. Opposing effects of warming on the stability of above- and belowground productivity in facing an extreme drought event. Ecology 2024; 105:e4193. [PMID: 37882140 DOI: 10.1002/ecy.4193] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/05/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023]
Abstract
Climate warming, often accompanied by extreme drought events, could have profound effects on both plant community structure and ecosystem functioning. However, how warming interacts with extreme drought to affect community- and ecosystem-level stability remains a largely open question. Using data from a manipulative experiment with three warming treatments in an alpine meadow that experienced one extreme drought event, we investigated how warming modulates resistance and recovery of community structural and ecosystem functional stability in facing with extreme drought. We found warming decreased resistance and recovery of aboveground net primary productivity (ANPP) and structural resistance but increased resistance and recovery of belowground net primary productivity (BNPP), overall net primary productivity (NPP), and structural recovery. The findings highlight the importance of jointly considering above- and belowground processes when evaluating ecosystem stability under global warming and extreme climate events. The stability of dominant species, rather than species richness and species asynchrony, was identified as a key predictor of ecosystem functional resistance and recovery, except for BNPP recovery. In addition, structural resistance of common species contributed strongly to the resistance changes in BNPP and NPP. Importantly, community structural resistance and recovery dominated the resistance and recovery of BNPP and NPP, but not for ANPP, suggesting the different mechanisms underlie the maintenance of stability of above- versus belowground productivity. This study is among the first to explain that warming modulates ecosystem stability in the face of extreme drought and lay stress on the need to investigate ecological stability at the community level for a more mechanistic understanding of ecosystem stability in response to climate extremes.
Collapse
Affiliation(s)
- Fangfang Ma
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Yingjie Yan
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- Department of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Quan Quan
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Jinlong Peng
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- Department of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ruiyang Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Qingping Zhou
- Institute of Qinghai-Tibetan Plateau, Southwest University for Nationalities, Chengdu, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- Department of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Du L, Tian S, Sun J, Zhang B, Mu XH, Tang L, Zheng X, Li Y. Ecosystem multifunctionality, maximum height, and biodiversity of shrub communities affected by precipitation fluctuations in Northwest China. FRONTIERS IN PLANT SCIENCE 2023; 14:1259858. [PMID: 37818321 PMCID: PMC10560859 DOI: 10.3389/fpls.2023.1259858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/28/2023] [Indexed: 10/12/2023]
Abstract
Introduction Dryland ecosystems face serious threats from climate change. Establishing the spatial pattern of ecosystem multifunctionality, maximum height and the correlation of biodiversity patterns with climate change is important for understanding changes in complex ecosystem processes. However, the understanding of their relationships across large spatial areas remains limited in drylands. Methods Accordingly, this study examined the spatial patterns of ecosystem multifunctionality, maximum height and considered a set of potential environmental drivers by investigating natural shrub communities in Northwest China. Results We found that the ecosystem multifunctionality (EMF) and maximum height of shrub communities were both affected by longitude, which was positively correlated with the precipitation gradient. Specifically, the EMF was driven by high precipitation seasonality, and the maximum height was driven by high precipitation stability during the growing season. Among the multiple biodiversity predictors, species beta diversity (SD-beta) is the most common in determining EMF, although this relationship is weak. Discussion Unlike tree life form, we did not observe biodiversity-maximum height relationships in shrub communities. Based on these results, we suggest that more attention should be paid to the climatical fluctuations mediated biodiversity mechanisms, which are tightly correlated with ecosystem's service capacity and resistance capacity under a rapid climate change scenario in the future.
Collapse
Affiliation(s)
- Lan Du
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, Xinjiang, China
| | - Shengchuan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, Xinjiang, China
| | - Jing Sun
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, Xinjiang, China
| | - Bin Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, Xinjiang, China
| | - Xiao-Han Mu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, Xinjiang, China
| | - Lisong Tang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, Xinjiang, China
| | - Xinjun Zheng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, Xinjiang, China
| | - Yan Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang, Xinjiang, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A and F University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Lv G, He M, Wang C, Wang Z. The stability of perennial grasses mediates the negative impacts of long-term warming and increasing precipitation on community stability in a desert steppe. FRONTIERS IN PLANT SCIENCE 2023; 14:1235510. [PMID: 37575909 PMCID: PMC10415016 DOI: 10.3389/fpls.2023.1235510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023]
Abstract
Background Desert steppe, as an ecotone between desert and grassland, has few species and is sensitive to climate change. Climate change alters species diversity and the stability of functional groups, which may positively or negatively affect community stability. However, the response of plant community stability in the desert steppe to experimental warming and increasing precipitation remains largely unexplored. Methods In a factorial experiment of warming and increasing precipitation for five to seven years (ambient precipitation (P0), ambient precipitation increased by 25% and 50% (P1 and P2), ambient temperature (W0), ambient temperature increased by 2°C and 4°C (W1 and W2)), we estimated the importance value (IV) of four functional groups (perennial grasses, semi-shrubs, perennial forbs and annual herbs), species diversity and community stability. Results Compared to W0P0, the IV of perennial grasses was reduced by 37.66% in W2P2, whereas the IV of perennial forbs increased by 48.96%. Although increasing precipitation and experimental warming significantly altered species composition, the effect on species diversity was insignificant (P > 0.05). In addition, increasing precipitation and experimental warming had a significant negative impact on community stability. The stability of perennial grasses significantly explained community stability. Conclusion Our results suggest that the small number of species in desert steppe limits the contribution of species diversity to regulating community stability. By contrast, maintaining high stability of perennial grasses can improve community stability in the desert steppe.
Collapse
Affiliation(s)
| | | | - Chengjie Wang
- Key Laboratory of Grassland Resources of the Ministry of Education/College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhanyi Wang
- Key Laboratory of Grassland Resources of the Ministry of Education/College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
10
|
Zhang Z, Zhang Z, Hautier Y, Qing H, Yang J, Bao T, Hajek OL, Knapp AK. Effects of intra-annual precipitation patterns on grassland productivity moderated by the dominant species phenology. FRONTIERS IN PLANT SCIENCE 2023; 14:1142786. [PMID: 37113592 PMCID: PMC10126275 DOI: 10.3389/fpls.2023.1142786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Phenology and productivity are important functional indicators of grassland ecosystems. However, our understanding of how intra-annual precipitation patterns affect plant phenology and productivity in grasslands is still limited. Here, we conducted a two-year precipitation manipulation experiment to explore the responses of plant phenology and productivity to intra-annual precipitation patterns at the community and dominant species levels in a temperate grassland. We found that increased early growing season precipitation enhanced the above-ground biomass of the dominant rhizome grass, Leymus chinensis, by advancing its flowering date, while increased late growing season precipitation increased the above-ground biomass of the dominant bunchgrass, Stipa grandis, by delaying senescence. The complementary effects in phenology and biomass of the dominant species, L. chinensis and S. grandis, maintained stable dynamics of the community above-ground biomass under intra-annual precipitation pattern variations. Our results highlight the critical role that intra-annual precipitation and soil moisture patterns play in the phenology of temperate grasslands. By understanding the response of phenology to intra-annual precipitation patterns, we can more accurately predict the productivity of temperate grasslands under future climate change.
Collapse
Affiliation(s)
- Ze Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Zhihao Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Hua Qing
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Jie Yang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Tiejun Bao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Olivia L. Hajek
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, United States
| | - Alan K. Knapp
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
11
|
Zhang Y, Ren Z, Lu H, Chen X, Liu R, Zhang Y. Autumn nitrogen enrichment destabilizes ecosystem biomass production in a semiarid grassland. FUNDAMENTAL RESEARCH 2023; 3:170-178. [PMID: 38932923 PMCID: PMC11197746 DOI: 10.1016/j.fmre.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022] Open
Abstract
Nitrogen (N) deposition decreases the temporal stability of ecosystem aboveground biomass production (ecosystem stability). However, little is known about how the responses of ecosystem stability differ based on seasonal N enrichment. By adding N in autumn, winter, or growing season, from October 2014 to May 2020, in a temperate grassland in northern China, we found that only N addition in autumn resulted in a significantly positive correlation between ecosystem mean aboveground net primary productivity (ANPP) and its standard deviation and significantly reduced ecosystem stability. Autumn N-induced reduction in ecosystem stability was associated with the vanished negative effect of community-wide species asynchrony (asynchronous dynamics among populations to environmental perturbations) on the standard deviation of ecosystem ANPP in combination with the emerged positive effect of dominance (Simpson's dominance index that indicates the relative weight of dominant species in a community). Our findings indicate that autumn N addition might overestimate the negative effect of annual atmospheric N deposition on ecosystem stability, suggesting that to better evaluate the influence of N deposition in temperate grasslands, both field experiments and global modeling should consider not only the annual N load but also its seasonal dynamics. Moreover, further studies should pay more attention to the alteration in the ecosystem temporal deviations, which might be more sensitive to human-induced environmental changes.
Collapse
Affiliation(s)
- Yuqiu Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Zhengru Ren
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Haining Lu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Xu Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Ruoxuan Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Yunhai Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| |
Collapse
|
12
|
Stakelienė V, Pašakinskienė I, Ložienė K, Ryliškis D, Skridaila A. Vertical Columns with Sustainable Green Cover: Meadow Plants in Urban Design. PLANTS (BASEL, SWITZERLAND) 2023; 12:636. [PMID: 36771721 PMCID: PMC9921580 DOI: 10.3390/plants12030636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Unique vertical column structures were constructed for the greening of a structure at the Botanical Garden of Vilnius University, in which a plant cover was formed using the turf rolls of semi-natural meadows that were wrapped on 197 columns, with each column consisting of three equal segments. By evaluating the species composition and the abundance of vegetation in the segments of the columns, we studied how this natural cover changes and what its survival potential is. During the five years of observation, 97 plant species were determined in total. Over time, the initial plant species of fertile soils were mostly replaced by ruderal, nitrophilous, and pioneer plants. Out of the 58 original species, 18 disappeared, while 39 new ones emerged. In the vegetation cover on the north exposition of the building, the original species composition declined faster. The most persistent species were ruderal short-lived Conyza canadensis, Melilotus albus, and Urtica dioica, and long-lived Elytrigia repens. As for vegetation classes, the initial plant communities of the Molinio-Arrhenatheretea elatioris vegetation class were partially replaced by the plant communities of the Koelerio-Corynephoretea canescentis and Artemisietea vulgaris classes; however, unformed plant communities finally became prevalent. All directions, including the north, east, south and west, were equally dominated by semi-shade- and semi-light-loving plant species, together with a less abundant representation of light-loving species. Meanwhile, an unexpected establishment of the light-loving annual Arabidopsis arenosa was observed on the least illuminated north exposition. Likewise, the perennial Festuca pratensis, which is particularly resistant to wintering, emerged and spread on all expositions. The vegetation in the vertical columns was dynamic, and the initial plant species significantly diminished in the five years; however, as new species took place, the columns remained sufficiently covered with a green carpet of plants. This study reveals the benefits of using semi-natural meadow turfs in vertical greening of buildings in the harsh climate of a 5b hardiness zone, which is accompanied by distressing climatic fluctuations during the vegetation season.
Collapse
Affiliation(s)
- Violeta Stakelienė
- Botanical Garden of Vilnius University, Kairėnų 43, 10239 Vilnius, Lithuania
| | - Izolda Pašakinskienė
- Botanical Garden of Vilnius University, Kairėnų 43, 10239 Vilnius, Lithuania
- Life Sciences Centre, Vilnius University, Saulėtekio 7, 10221 Vilnius, Lithuania
| | - Kristina Ložienė
- Nature Research Centre, Institute of Botany, Žaliųjų Ežerų Str. 47, 08406 Vilnius, Lithuania
| | - Darius Ryliškis
- Botanical Garden of Vilnius University, Kairėnų 43, 10239 Vilnius, Lithuania
| | - Audrius Skridaila
- Botanical Garden of Vilnius University, Kairėnų 43, 10239 Vilnius, Lithuania
| |
Collapse
|
13
|
Li X, Zuo X, Zhao X, Wang S, Yue P, Xu C, Yu Q, Medina-Roldán E. Extreme drought does not alter the stability of aboveground net primary productivity but decreases the stability of belowground net primary productivity in a desert steppe of northern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:24319-24328. [PMID: 36334210 DOI: 10.1007/s11356-022-23938-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Extreme droughts strongly impact grassland ecology, both functionally and structurally. However, a comprehensive understanding of the drought impacts on the ecosystem stability is critical for its sustainable development under changing climate. We experimentally report the impact of extreme drought on the temporal stability of aboveground net primary productivity (ANPP) and belowground net primary productivity (BNPP) in a desert steppe of northern China. The relative importance evaluation of extreme drought, soil properties, species asynchrony, taxonomic, functional, and phylogenetic diversity was performed using structural equation modeling (SEM) to measure the temporal ANPP and BNPP stabilities. Our findings suggested that extreme drought decreased BNPP stability but did not affect ANPP stability. Extreme drought reduced taxonomic and phylogenetic diversity, ANPP, and soil water content but did not affect species asynchrony, functional diversity, or BNPP. Species richness, Shannon-Wiener index, and soil water content were positively correlated with BNPP stability. The SEM results showed a drought-mediated indirect weakening of BNPP stability via modification of species richness. Asynchrony of species unrelated to drought, however, directly affected ANPP stability. The mechanisms underlying the response determination of ANPP and BNPP stability to extreme drought in desert steppe varied notably. Depending on the species asynchrony, ANPP reduced by extreme drought could maintain higher stability. However, extreme drought lowered BNPP stability by altering species richness.
Collapse
Affiliation(s)
- Xiangyun Li
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou, 730000, China
| | - Xiaoan Zuo
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000, China.
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou, 730000, China.
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000, China.
| | - Xueyong Zhao
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou, 730000, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000, China
| | - Shaokun Wang
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou, 730000, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000, China
| | - Ping Yue
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000, China
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region, Gansu Province, Lanzhou, 730000, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000, China
| | - Chong Xu
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 10008, China
| | - Qiang Yu
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 10008, China
| | - Eduardo Medina-Roldán
- Institute of BioEconomy - National Research Council (IBE-CNR), 50019, Sesto Fiorentino, Italy
| |
Collapse
|
14
|
Wolfe E, Cerini F, Besson M, O'Brien D, Clements CF. Spatiotemporal thermal variation drives diversity trends in experimental landscapes. J Anim Ecol 2023; 92:430-441. [PMID: 36494717 PMCID: PMC10108128 DOI: 10.1111/1365-2656.13867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Temperature is a fundamental driver of species' vital rates and thus coexistence, extinctions and community composition. While temperature is neither static in space nor in time, little work has incorporated spatiotemporal dynamics into community-level investigations of thermal variation. We conducted a microcosm experiment using ciliate protozoa to test the effects of temperatures fluctuating synchronously or asynchronously on communities in two-patch landscapes connected by short or long corridors. We monitored the abundance of each species for 4 weeks-equivalent to ~28 generations-measuring the effects of four temperature regimes and two corridor lengths on community diversity and composition. While corridor length significantly altered the trajectory of diversity change in the communities, this did not result in different community structures at the end of the experiment. The type of thermal variation significantly affected both the temporal dynamics of diversity change and final community composition, with synchronous fluctuation causing deterministic extinctions that were consistent across replicates and spatial variation causing the greatest diversity declines. Our results suggest that the presence and type of thermal variation can play an important role in structuring ecological communities, especially when it interacts with dispersal between habitat patches.
Collapse
Affiliation(s)
- Ellie Wolfe
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Francesco Cerini
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Marc Besson
- School of Biological Sciences, University of Bristol, Bristol, UK.,Sorbonne Université CNRS UMR Biologie des organismes marins, BIOM, Banyuls-sur-Mer, France
| | - Duncan O'Brien
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
15
|
Kuang J, Deng D, Han S, Bates CT, Ning D, Shu W, Zhou J. Resistance potential of soil bacterial communities along a biodiversity gradient in forest ecosystems. MLIFE 2022; 1:399-411. [PMID: 38818486 PMCID: PMC10989803 DOI: 10.1002/mlf2.12042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 06/01/2024]
Abstract
Higher biodiversity is often assumed to be a more desirable scenario for maintaining the functioning of ecosystems, but whether species-richer communities are also more disturbance-tolerant remains controversial. In this study, we investigated the bacterial communities based on 472 soil samples from 28 forests across China with associated edaphic and climatic properties. We developed two indexes (i.e., community mean tolerance breadth [CMTB] and community mean response asynchrony [CMRA]) to explore the relationship between diversity and community resistance potential. Moreover, we examined this resistance potential along the climatic and latitudinal gradients. We revealed that CMTB was significantly and negatively related to species richness, resulting from the changes in balance between relative abundances of putative specialists and generalists. In comparison, we found a unimodal relationship between CMRA and richness, suggesting that higher biodiversity might not always lead to higher community resistance. Moreover, our results showed differential local patterns along latitude. In particular, local patterns in the northern region mainly followed general relationships rather than those for the southern forests, which may be attributed to the differences in annual means and annual variations of climate conditions. Our findings highlight that the community resistance potential depends on the composition of diverse species with differential environmental tolerance and responses. This study provides a new, testable evaluation by considering tolerance breadth and response asynchrony at the community level, which will be helpful in assessing the influence of disturbance under rapid shifts in biodiversity and species composition as a result of global environmental change.
Collapse
Affiliation(s)
- Jialiang Kuang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of EducationSchool of Environment and Energy, South China University of TechnologyGuangzhouChina
- Institute for Environmental Genomics, and Department of Microbiology and Plant BiologyUniversity of OklahomaNormanOklahomaUSA
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources and Conservation of Guangdong Higher Education InstitutesCollege of Ecology and Evolution, Sun Yat‐sen UniversityGuangzhouChina
| | - Dongmei Deng
- Institute for Environmental Genomics, and Department of Microbiology and Plant BiologyUniversity of OklahomaNormanOklahomaUSA
- Guangxi Key Laboratory of Green Processing of Sugar ResourcesCollege of Biological and Chemical Engineering, Guangxi University of Science and TechnologyLiuzhouChina
| | - Shun Han
- Institute for Environmental Genomics, and Department of Microbiology and Plant BiologyUniversity of OklahomaNormanOklahomaUSA
| | - Colin T. Bates
- Institute for Environmental Genomics, and Department of Microbiology and Plant BiologyUniversity of OklahomaNormanOklahomaUSA
| | - Daliang Ning
- Institute for Environmental Genomics, and Department of Microbiology and Plant BiologyUniversity of OklahomaNormanOklahomaUSA
| | - Wensheng Shu
- School of Life SciencesSouth China Normal UniversityGuangzhouChina
| | - Jizhong Zhou
- Institute for Environmental Genomics, and Department of Microbiology and Plant BiologyUniversity of OklahomaNormanOklahomaUSA
- School of Civil Engineering and Environmental SciencesUniversity of OklahomaNormanOklahomaUSA
- School of Computer SciencesUniversity of OklahomaNormanOklahomaUSA
- Earth and Environmental SciencesLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
| |
Collapse
|
16
|
Zhang Z, Bao T, Hautier Y, Yang J, Liu Z, Qing H. Intra-annual growing season climate variability drives the community intra-annual stability of a temperate grassland by altering intra-annual species asynchrony and richness in Inner Mongolia, China. Ecol Evol 2022; 12:e9385. [PMID: 36225823 PMCID: PMC9532246 DOI: 10.1002/ece3.9385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/04/2022] [Accepted: 09/19/2022] [Indexed: 11/14/2022] Open
Abstract
Understanding the factors that regulate the functioning of our ecosystems in response to environmental changes can help to maintain the stable provisioning of ecosystem services to mankind. This is especially relevant given the increased variability of environmental conditions due to human activities. In particular, maintaining a stable production and plant biomass during the growing season (intra-annual stability) despite pervasive and directional changes in temperature and precipitation through time can help to secure food supply to wild animals, livestock, and humans. Here, we conducted a 29-year field observational study in a temperate grassland to explore how the intra-annual stability of primary productivity is influenced by biotic and abiotic variables through time. We found that intra-annual precipitation variability in the growing season indirectly influenced the community intra-annual biomass stability by its negative effect on intra-annual species asynchrony. While the intra-annual temperature variability in the growing season indirectly altered community intra-annual biomass stability through affecting the intra-annual species richness. At the same time, although the intra-annual biomass stability of the dominant species and the dominant functional group were insensitive to climate variability, they also promoted the stable community biomass to a certain extent. Our results indicate that ongoing intra-annual climate variability affects community intra-annual biomass stability in the temperate grassland, which has important theoretical significance for us to take active measures to deal with climate change.
Collapse
Affiliation(s)
- Ze Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian PlateauInner Mongolia UniversityHohhotChina
- Inner Mongolia Key Laboratory of Grassland EcologySchool of Ecology and Environment, Inner Mongolia UniversityHohhotChina
| | - Tiejun Bao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian PlateauInner Mongolia UniversityHohhotChina
- Inner Mongolia Key Laboratory of Grassland EcologySchool of Ecology and Environment, Inner Mongolia UniversityHohhotChina
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of BiologyUtrecht UniversityUtrechtNetherlands
| | - Jie Yang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian PlateauInner Mongolia UniversityHohhotChina
- Inner Mongolia Key Laboratory of Grassland EcologySchool of Ecology and Environment, Inner Mongolia UniversityHohhotChina
| | - Zhongling Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian PlateauInner Mongolia UniversityHohhotChina
- Inner Mongolia Key Laboratory of Grassland EcologySchool of Ecology and Environment, Inner Mongolia UniversityHohhotChina
| | - Hua Qing
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian PlateauInner Mongolia UniversityHohhotChina
- Inner Mongolia Key Laboratory of Grassland EcologySchool of Ecology and Environment, Inner Mongolia UniversityHohhotChina
| |
Collapse
|
17
|
Effects of plant diversity on primary productivity and community stability along soil water and salinity gradients. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
18
|
Hu W, Hou Q, Delgado-Baquerizo M, Stegen JC, Du Q, Dong L, Ji M, Sun Y, Yao S, Gong H, Xiong J, Xia R, Liu J, Aqeel M, Akram MA, Ran J, Deng J. Continental-scale niche differentiation of dominant topsoil archaea in drylands. Environ Microbiol 2022; 24:5483-5497. [PMID: 35706137 DOI: 10.1111/1462-2920.16099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
Archaea represent a diverse group of microorganisms often associated with extreme environments. However, an integrated understanding of biogeographical patterns of the specialist Haloarchaea and the potential generalist ammonia-oxidizing archaea (AOA) across large-scale environmental gradients remains limited. We hypothesize that niche differentiation determines their distinct distributions along environmental gradients. To test the hypothesis, we use a continental-scale research network including 173 dryland sites across northern China. Our results demonstrate that Haloarchaea and AOA dominate topsoil archaeal communities. As hypothesized, Haloarchaea and AOA show strong niche differentiation associated with two ecosystem types mainly found in China's drylands (i.e., deserts vs. grasslands), and they differ in the degree of habitat specialization. The relative abundance and richness of Haloarchaea are higher in deserts due to specialization to relatively high soil salinity and extreme climates, while those of AOA are greater in grassland soils. Our results further indicate a divergence in ecological processes underlying the segregated distributions of Haloarchaea and AOA. Haloarchaea are governed primarily by environmental-based processes while the more generalist AOA are assembled mostly via spatial-based processes. Our findings add to existing knowledge of large-scale biogeography of topsoil archaea, advancing our predictive understanding on changes in topsoil archaeal communities in a drier world. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Weigang Hu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Qingqing Hou
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistemico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, Sevilla, Spain.,Unidad Asociada CSIC-UPO (BioFun). Universidad Pablo de Olavide, Sevilla, Spain
| | - James C Stegen
- Ecosystem Science Team, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Qiajun Du
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Longwei Dong
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Mingfei Ji
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Yuan Sun
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Shuran Yao
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Haiyang Gong
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Junlan Xiong
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Rui Xia
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jiayuan Liu
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Muhammad Adnan Akram
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China.,School of Economics, Lanzhou University, Lanzhou, China
| | - Jinzhi Ran
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| | - Jianming Deng
- State Key Laboratory of Grassland Agro-Ecosystem, College of Ecology, Lanzhou University, Lanzhou, China
| |
Collapse
|
19
|
Chen Z, Xu M, Gao B, Sugihara G, Shen F, Cai Y, Li A, Wu Q, Yang L, Yao Q, Chen X, Yang J, Zhou C, Li M. Causation inference in complicated atmospheric environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119057. [PMID: 35231542 DOI: 10.1016/j.envpol.2022.119057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Reliable attribution is crucial for understanding various climate change issues. However, complicated inner-interactions between various factors make causation inference in atmospheric environment highly challenging. Taking PM2.5-Meteorology causation, which involves a large number of non-Linear and uncertain interactions between many meteorological factors and PM2.5, as a case, we examined the performance of a series of mainstream statistical models, including Correlation Analysis (CA), Partial Correlation Analysis (PCA), Structural Equation Model (SEM), Convergent Cross Mapping (CCM), Partial Cross Mapping (PCM) and Geographical Detector (GD). From a coarse perspective, the Top 3 major meteorological factors for PM2.5 in 190 cities across China extracted using different models were generally consistent. From a strict perspective, the extracted dominant meteorological factor for PM2.5 demonstrated large model variations and shared a limited consistence. Such models as SEM and PCM, which are capable of further separating direct and indirect causation in simple systems, performed poorly to identify the direct and indirect PM2.5-Meteorology causation. The notable inconsistence denied the feasibility of employing multiple models for better causation inference in atmospheric environment. Instead, the sole use of CCM, which is advantageous in dealing with non-linear causation and removing disturbing factors, is a preferable strategy for causation inference in complicated ecosystems. Meanwhile, given the multi-direction, uncertain interactions between many variables, we should be more cautious and less ambitious on the separation of direct and indirect causation. For better causation inference in the complicated atmospheric environment, the combination of statistical models and atmospheric models, and the further exploration of Deep Neural Network can be promising strategies.
Collapse
Affiliation(s)
- Ziyue Chen
- State Lab of Remote Sensing Sciences of China, College of Global and Earth System Sciences, Beijing Normal University, 19 Xinjiekou Street, Haidian, Beijing, 100875, China.
| | - Miaoqing Xu
- State Lab of Remote Sensing Sciences of China, College of Global and Earth System Sciences, Beijing Normal University, 19 Xinjiekou Street, Haidian, Beijing, 100875, China.
| | - Bingbo Gao
- College of Land Science and Technology, China Agricultural University, Beijing, 100083, China.
| | - George Sugihara
- Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Feixue Shen
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China.
| | - Yanyan Cai
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China.
| | - Anqi Li
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China.
| | - Qi Wu
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China.
| | - Lin Yang
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China.
| | - Qi Yao
- State Lab of Remote Sensing Sciences of China, College of Global and Earth System Sciences, Beijing Normal University, 19 Xinjiekou Street, Haidian, Beijing, 100875, China.
| | - Xiao Chen
- State Lab of Remote Sensing Sciences of China, College of Global and Earth System Sciences, Beijing Normal University, 19 Xinjiekou Street, Haidian, Beijing, 100875, China.
| | - Jing Yang
- State Lab of Remote Sensing Sciences of China, College of Global and Earth System Sciences, Beijing Normal University, 19 Xinjiekou Street, Haidian, Beijing, 100875, China.
| | - Chenghu Zhou
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China.
| | - Manchun Li
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
20
|
Wang C, Wang J, Zhang F, Yang Y, Luo F, Li Y, Li J. Stability response of alpine meadow communities to temperature and precipitation changes on the Northern Tibetan Plateau. Ecol Evol 2022; 12:e8592. [PMID: 35222964 PMCID: PMC8848471 DOI: 10.1002/ece3.8592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 11/24/2022] Open
Abstract
Biomass temporal stability plays a key role in maintaining sustainable ecosystem functions and services of grasslands, and climate change has exerted a profound impact on plant biomass. However, it remains unclear how the community biomass stability in alpine meadows responds to changes in some climate factors (e.g., temperature and precipitation). Long-term field aboveground biomass monitoring was conducted in four alpine meadows (Haiyan [HY], Henan [HN], Gande [GD], and Qumalai [QML]) on the Qinghai-Tibet Plateau. We found that climate factors and ecological factors together affected the community biomass stability and only the stability of HY had a significant decrease over the study period. The community biomass stability at each site was positively correlated with both the stability of the dominant functional group and functional groups asynchrony. The effect of dominant functional groups on community stability decreased with the increase of the effect of functional groups asynchrony on community stability and there may be a 'trade-off' relationship between the effects of these two factors on community stability. Climatic factors directly or indirectly affect community biomass stability by influencing the stability of the dominant functional group or functional groups asynchrony. Air temperature and precipitation indirectly affected the community stability of HY and HN, but air temperature in the growing season and nongrowing season had direct negative and direct positive effects on the community stability of GD and QML, respectively. The underlying mechanisms varied between community composition and local climate conditions. Our findings highlighted the role of dominant functional group and functional groups asynchrony in maintaining community biomass stability in alpine meadows and we highlighted the importance of the environmental context when exploring the stability influence mechanism. Studies of community stability in alpine meadows along with different precipitation and temperature gradients are needed to improve our comprehensive understanding of the mechanisms controlling alpine meadow stability.
Collapse
Affiliation(s)
- Chunyu Wang
- Northwest Institute of Plateau BiologyChinese Academy of ScienceXiningChina
- University of Chinese Academy of SciencesBeijingChina
| | - Junbang Wang
- Key Laboratory of Ecosystem Network Observation and ModelingInstitute of Geographic Sciences and Natural Resources ResearchNational Ecosystem Science Data CenterChinese Academy of SciencesBeijingChina
| | - Fawei Zhang
- Northwest Institute of Plateau BiologyChinese Academy of ScienceXiningChina
| | - Yongsheng Yang
- Northwest Institute of Plateau BiologyChinese Academy of ScienceXiningChina
| | - Fanglin Luo
- Northwest Institute of Plateau BiologyChinese Academy of ScienceXiningChina
| | - Yingnian Li
- Northwest Institute of Plateau BiologyChinese Academy of ScienceXiningChina
| | - Jiexia Li
- Northwest Institute of Plateau BiologyChinese Academy of ScienceXiningChina
| |
Collapse
|
21
|
Bai L, Wang Z, Lu Y, Tian J, Peng Y. Monthly rather than annual climate variation determines plant diversity change in four temperate grassland nature reserves. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:10357-10365. [PMID: 34523091 DOI: 10.1007/s11356-021-16473-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Plant diversity is changing in the world; climate variation at annual scale is believed to drive these changes; however, the effects of climate variation at month scale are still unknown. Anxi, West Ordos, Xilingol, and Tumuji grassland nature reserves, located in northern China, have been well protected from human disturbance, are ideal areas to identify the drive forces for plant diversity change. Using Landsat images from 1982 to 2017, we analyzed the evolution of month- and annual-climate variables and spectral plant diversity indices, and explored the effects of the variability of temperature and precipitation on plant diversity and their relationship. The results showed that the diversity of the four grasslands was decreasing. Climate variables, in particular temperature at month scale, significantly related to grassland plant diversity. These results enlarge our understanding in how climate change driving plant diversity during a long term. Measurements coping with plant diversity decreasing may be more effective and earlier based on monthly climate variables.
Collapse
Affiliation(s)
- Lan Bai
- College of Life and Environmental Sciences, Minzu University of China, No. 27 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Zhaohua Wang
- College of Life and Environmental Sciences, Minzu University of China, No. 27 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Yitong Lu
- College of Life and Environmental Sciences, Minzu University of China, No. 27 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Jialing Tian
- College of Life and Environmental Sciences, Minzu University of China, No. 27 Zhongguancun South Street, Haidian District, Beijing, 100081, China
| | - Yu Peng
- College of Life and Environmental Sciences, Minzu University of China, No. 27 Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
22
|
Ma X, Chao L, Li J, Ding Z, Wang S, Li F, Bao Y. The Distribution and Turnover of Bacterial Communities in the Root Zone of Seven Stipa Species Across an Arid and Semi-arid Steppe. Front Microbiol 2022; 12:782621. [PMID: 35003012 PMCID: PMC8741278 DOI: 10.3389/fmicb.2021.782621] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/26/2021] [Indexed: 11/23/2022] Open
Abstract
The bacterial communities of the root-zone soil are capable of regulating vital biogeochemical cycles and the succession of plant growth. Stipa as grassland constructive species is restricted by the difference features of east–west humidity and north–south heat, which shows the population substituting distribution. The distribution, turnover, and potential driving factors and ecological significance of the root-zone bacterial community along broad spatial gradients of Stipa taxa transition remain unclear. This paper investigated seven Stipa species root-zone soils based on high-throughput sequencing combined with the measurements of multiple environmental parameters in arid and semi-arid steppe. The communities of soil bacteria in root zone had considerable turnover, and some regular variations in structure along the Stipa taxa transition are largely determined by climatic factors, vegetation coverage, and pH at a regional scale. Bacterial communities had a clear Stipa population specificity, but they were more strongly affected by the main annual precipitation, which resulted in a biogeographical distribution pattern along precipitation gradient, among which Actinobacteria, Acidobacteria, Proteobacteria, and Chloroflexi were the phyla that were most abundant. During the transformation of Stipa taxa from east to west, the trend of diversity shown by bacterial community in the root zone decreased first, and then increased sharply at S. breviflora, which was followed by continuous decreasing toward northwest afterwards. However, the richness and evenness showed an opposite trend, and α diversity had close association with altitude and pH. There would be specific and different bacterial taxa interactions in different Stipa species, in which S. krylovii had the simplest and most stable interaction network with the strongest resistance to the environment and S. breviflora had most complex and erratic. Moreover, the bacterial community was mainly affected by dispersal limitation at a certain period. These results are conducive to the prediction of sustainable ecosystem services and protection of microbial resources in a semi-arid grassland ecosystem.
Collapse
Affiliation(s)
- Xiaodan Ma
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China.,State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Lumeng Chao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China.,State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Jingpeng Li
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China.,State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Zhiying Ding
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China.,State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Siyu Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China.,State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Fansheng Li
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China.,State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Yuying Bao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China.,State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| |
Collapse
|
23
|
Zhang Z, Hautier Y, Bao T, Yang J, Qing H, Liu Z, Wang M, Li T, Yan M, Zhang G. Species richness and asynchrony maintain the stability of primary productivity against seasonal climatic variability. FRONTIERS IN PLANT SCIENCE 2022; 13:1014049. [PMID: 36388500 PMCID: PMC9650401 DOI: 10.3389/fpls.2022.1014049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/12/2022] [Indexed: 05/14/2023]
Abstract
The stability of grassland communities informs us about the ability of grasslands to provide reliable services despite environmental fluctuations. There is large evidence that higher plant diversity and asynchrony among species stabilizes grassland primary productivity against interannual climate variability. Whether biodiversity and asynchrony among species and functional groups stabilize grassland productivity against seasonal climate variability remains unknown. Here, using 29-year monitoring of a temperate grassland, we found lower community temporal stability with higher seasonal climate variability (temperature and precipitation). This was due to a combination of processes including related species richness, species asynchrony, functional group asynchrony and dominant species stability. Among those processes, functional group asynchrony had the strongest contribution to community compensatory dynamics and community stability. Based on a long-term study spanning 29 years, our results indicate that biodiversity and compensatory dynamics a key for the stable provision of grassland function against increasing seasonal climate variability.
Collapse
Affiliation(s)
- Ze Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan, Utrecht, Netherlands
| | - Tiejun Bao
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Jie Yang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Hua Qing
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- *Correspondence: Hua Qing,
| | - Zhongling Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Min Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Taoke Li
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Mei Yan
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Guanglin Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| |
Collapse
|
24
|
Grasslands Maintain Stability in Productivity Through Compensatory Effects and Dominant Species Stability Under Extreme Precipitation Patterns. Ecosystems 2021. [DOI: 10.1007/s10021-021-00706-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Zhang Y, Ren Z, Zhang Y. Winter nitrogen enrichment does not alter the sensitivity of plant communities to precipitation in a semiarid grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148264. [PMID: 34380248 DOI: 10.1016/j.scitotenv.2021.148264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Nitrogen (N) deposition often promotes aboveground net primary productivity (ANPP), but has adverse effects on terrestrial ecosystem biodiversity. It is unclear, however, whether biomass production and biodiversity are equally altered by seasonal N enrichment, as there is a temporal pattern to atmospheric N deposition. By adding N in autumn, winter, or growing season from October 2014 to May 2019 in a temperate grassland in China, we found that N addition promoted peak plant community ANPP, but tended to decrease plant richness. Regardless of seasonal N additions, precipitation was positively correlated with plant community ANPP, confirming that precipitation is the primary limiting factor in this semiarid grassland. Unexpectedly, N addition in autumn or growing season, but not in winter, increased the sensitivity of plant communities to precipitation (i.e., the slope of the positive relationship between community ANPP and precipitation), indicating that precipitation determines the influence of seasonal N enrichment on plant community biomass production. These findings suggest that previous studies in which N was added in a single season, e.g., the growing season, have likely overestimated the effects of N deposition on ecosystem primary productivity, especially during wet years. This study illustrates that multi-season N addition in agreement with predicted seasonal patterns of N deposition needs to be evaluated to precisely assess ecosystem responses.
Collapse
Affiliation(s)
- Yuqiu Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Zhengru Ren
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China
| | - Yunhai Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Yuquan Road, Beijing 100049, China.
| |
Collapse
|
26
|
Phytoplankton biodiversity is more important for ecosystem functioning in highly variable thermal environments. Proc Natl Acad Sci U S A 2021; 118:2019591118. [PMID: 34446547 PMCID: PMC8536371 DOI: 10.1073/pnas.2019591118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The 21st century has seen an acceleration of anthropogenic climate change and biodiversity loss, with both stressors deemed to affect ecosystem functioning. However, we know little about the interactive effects of both stressors and in particular about the interaction of increased climatic variability and biodiversity loss on ecosystem functioning. This should be remedied because larger climatic variability is one of the main features of climate change. Here, we demonstrated that temperature fluctuations led to changes in the importance of biodiversity for ecosystem functioning. We used microcosm communities of different phytoplankton species richness and exposed them to a constant, mild, and severe temperature-fluctuating environment. Wider temperature fluctuations led to steeper biodiversity-ecosystem functioning slopes, meaning that species loss had a stronger negative effect on ecosystem functioning in more fluctuating environments. For severe temperature fluctuations, the slope increased through time due to a decrease of the productivity of species-poor communities over time. We developed a theoretical competition model to better understand our experimental results and showed that larger differences in thermal tolerances across species led to steeper biodiversity-ecosystem functioning slopes. Species-rich communities maintained their ecosystem functioning with increased fluctuation as they contained species able to resist the thermally fluctuating environments, while this was on average not the case in species-poor communities. Our results highlight the importance of biodiversity for maintaining ecosystem functions and services in the context of increased climatic variability under climate change.
Collapse
|
27
|
Zhang Y, He N, Yu G. Opposing shifts in distributions of chlorophyll concentration and composition in grassland under warming. Sci Rep 2021; 11:15736. [PMID: 34344961 PMCID: PMC8333091 DOI: 10.1038/s41598-021-95281-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/15/2021] [Indexed: 12/03/2022] Open
Abstract
Global warming has significantly altered the distribution and productivity of vegetation owing to shifts in plant functional traits. However, chlorophyll adaptations-good representative of plant production-in grasslands have not been investigated on a large scale, hindering ecological predictions of climate change. Three grassland transects with a natural temperature gradient were designed in the Tibetan, Mongolian, and Loess Plateau to describe the changes in chlorophyll under different warming scenarios for 475 species. In the three plateaus, variations and distributions of species chlorophyll concentration and composition were compared. The results showed that the means of chlorophyll concentration and composition (chlorophyll a/b) increased with the mean annual temperature. Still, their distributions shifted in opposite manners: chlorophyll concentration was distributed in a broader but more differential manner, while chlorophyll composition was distributed in a narrower but more uniform manner. Compared to chlorophyll concentration, chlorophyll composition was more conservative, with a slight shift in distribution. At the regional level, the chlorophyll concentration and composition depend on the limitations of the local climate or resources. The results implied that warming might drive shifts in grassland chlorophyll distribution mainly by alternations in species composition. Large-scale chlorophyll investigations will be useful for developing prediction techniques.
Collapse
Affiliation(s)
- Yao Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
| | - Nianpeng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, 130024, China.
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
28
|
Yang X, Mariotte P, Guo J, Hautier Y, Zhang T. Suppression of arbuscular mycorrhizal fungi decreases the temporal stability of community productivity under elevated temperature and nitrogen addition in a temperate meadow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143137. [PMID: 33121784 DOI: 10.1016/j.scitotenv.2020.143137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Global change alters how terrestrial ecosystems function and makes them less stable over time. Global change can also suppress the development and effectiveness of arbuscular mycorrhizal fungi (AMF). This is concerning, as AMF have been shown to alleviate the negative influence of global changes on plant growth and maintain species coexistence. However, how AMF and global change interact and influence community temporal stability remains poorly understood. Here, we conducted a 4-year field experiment and used structural equation modeling (SEM) to explore the influence of elevated temperature, nitrogen (N) addition and AMF suppression on community temporal stability (quantified as the ratio of the mean community productivity to its standard deviation) in a temperate meadow in northern China. We found that elevated temperature and AMF suppression independently decreased the community temporal stability but that N addition had no impact. Community temporal stability was mainly driven by elevated temperature, N addition and AMF suppression that modulated the dominant species stability; to a lesser extent by the elevated temperature and AMF suppression that modulated AMF richness associated with community asynchrony; and finally by the N addition and AMF suppression that modulated mycorrhizal colonization. In addition, although N addition, AMF suppression and elevated temperature plus AMF suppression reduced plant species richness, there was no evidence that changes in community temporal stability were linked to changes in plant richness. SEM further showed that elevated temperature, N addition and AMF suppression regulated community temporal stability by influencing both the temporal mean and variation in community productivity. Our results suggest that global environmental changes may have appreciable consequences for the stability of temperate meadows while also highlighting the role of belowground AMF status in the responses of plant community temporal stability to global change.
Collapse
Affiliation(s)
- Xue Yang
- Institute of Gerassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China.
| | - Pierre Mariotte
- Grazing Systems, Agroscope, Route de Duillier 50, 1260 Nyon, Switzerland
| | - Jixun Guo
- Institute of Gerassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China.
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, the Netherlands.
| | - Tao Zhang
- Institute of Gerassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China.
| |
Collapse
|
29
|
Belovsky GE, Slade JB. Climate change and primary production: Forty years in a bunchgrass prairie. PLoS One 2020; 15:e0243496. [PMID: 33362217 PMCID: PMC7757809 DOI: 10.1371/journal.pone.0243496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/20/2020] [Indexed: 11/18/2022] Open
Abstract
Over the past 109 years, a Montana intermountain bunchgrass prairie annually became warmer (0.7°C) and drier (27%). The temperature and precipitation trends continued since 1978, as we studied nitrogen availability, annual aboveground primary production (ANPP), plant phenology and species composition. Given the annual increase in temperature and decrease in precipitation, ANPP might be expected to decline; however, it increased by 110%, as the period of greatest production (late-May-June) became wetter and cooler, counter to the annual pattern, and this was strongest at lower elevations. Grass production increased by 251%, while dicot production declined by 65%, which increased grass relative abundance by 54%. Summer temperatures increased 12.5% which increased plant senescence by 119% and decreased fall plant regrowth by 68%. More intense summer senescence changed plant species composition in favor of more drought tolerant species. The greater ANPP and summer senescence may increase susceptibility for fire, but fire tolerance of the plant species composition did not change. Invasive plant species increased 108% over the study with annual grasses accounting for >50% of this increase, which further increased summer plant senescence. Therefore, seasonal climate changes at a smaller geographical scale (local), rather than average annual climate changes over a larger geographical scale (regional), may better reflect plant community responses, and this makes ecological forecasting of climate change more difficult.
Collapse
Affiliation(s)
- Gary E. Belovsky
- Environmental Research Center and Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- * E-mail: ,
| | - Jennifer B. Slade
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
| |
Collapse
|
30
|
Li Q, Hou J, Yan P, Xu L, Chen Z, Yang H, He N. Regional response of grassland productivity to changing environment conditions influenced by limiting factors. PLoS One 2020; 15:e0240238. [PMID: 33064720 PMCID: PMC7567387 DOI: 10.1371/journal.pone.0240238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/22/2020] [Indexed: 11/18/2022] Open
Abstract
Regional differences and regulatory mechanisms of vegetation productivity response to changing environmental conditions constitute a core issue in macroecological researches. To verify the main limiting factors of different macrosystems [temperature-limited Tibetan Plateau (TP), precipitation-limited Mongolian Plateau (MP), and nutrient-limited Loess Plateau (LP)], we conducted a comparative survey of the east-west grassland transects on the three plateaus and explored the factors limiting regional productivity and their underlying mechanisms. The results showed that aboveground net primary productivity (ANPP) of LP (109.10 ± 16.76 g m-2 yr-1) was significantly higher than that of MP (66.71 ± 11.11 g m-2 yr-1) and TP (57.02 ± 10.59 g m-2 yr-1). The response rate of ANPP with environmental changes was different among different plateaus, being closely related to the main limiting factors. On MP, this was precipitation, on LP it was temperature and nutrients, and on TP, it was non-specific, reflecting restriction by the extremely low temperature. After autocorrelation screening of environmental factors, different regions exhibited different productivity response mechanisms. MP was mainly influenced by temperature and precipitation, LP was influenced by temperature and nutrient, and TP was influenced by nutrient, reflecting the modifying effect of the main limiting factors. The effect of each regional environment on ANPP was 72.56% on average and only 27.18% after simple regional integration. The regional model could optimize the simulation error of the integrated model, and the relative deviations in MP, LP, and TP were reduced by 31.76%, 17.22%, and 2.23%, respectively. These findings indicate that the grasslands on the three plateaus may have different or even the opposite mechanisms to control productivity.
Collapse
Affiliation(s)
- Qiuyue Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Jihua Hou
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Pu Yan
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Li Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, China
| | - Zhi Chen
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, China
| | - Hao Yang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, China
| | - Nianpeng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, China
| |
Collapse
|
31
|
Arenas‐Navarro M, Téllez‐Valdés O, López‐Segoviano G, Murguía‐Romero M, Tello JS. Environmental correlates of leguminosae species richness in Mexico: Quantifying the contributions of energy and environmental seasonality. Biotropica 2019. [DOI: 10.1111/btp.12735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Maribel Arenas‐Navarro
- Posgrado en Ciencias Biológicas Unidad de Posgrado, Coordinación del Posgrado en Ciencias Biológicas Universidad Nacional Autónoma de México Ciudad de México México
- Laboratorio de Recursos Naturales Facultad de Estudios Superiores Iztacala Universidad Nacional Autónoma de México Estado de México México
| | - Oswaldo Téllez‐Valdés
- Laboratorio de Recursos Naturales Facultad de Estudios Superiores Iztacala Universidad Nacional Autónoma de México Estado de México México
| | - Gabriel López‐Segoviano
- Escuela Nacional de Estudios Superiores (ENES) Unidad Morelia Universidad Nacional Autónoma de México (UNAM) Michoacán México
| | - Miguel Murguía‐Romero
- Departamento de Botánica Instituto de Biología Universidad Nacional Autónoma de México Ciudad de México México
| | - J. Sebastián Tello
- Center for Conservation and Sustainable Development Missouri Botanical Garden St. Louis MO USA
- Escuela de Biología Pontificia Universidad Católica del Ecuador Quito Ecuador
| |
Collapse
|
32
|
Chi Y, Xu Z, Zhou L, Yang Q, Zheng S, Li S. Differential roles of species richness versus species asynchrony in regulating community stability along a precipitation gradient. Ecol Evol 2019; 9:14244-14252. [PMID: 31938515 PMCID: PMC6953564 DOI: 10.1002/ece3.5857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 11/29/2022] Open
Abstract
Plant community may provide products and services to humans. However, patterns and drivers of community stability along a precipitation gradient remain unclear. A regional-scale transect survey was conducted over a 3-year period from 2013 to 2015, along a precipitation gradient from 275 to 555 mm and spanning 440 km in length from west to east in a temperate semiarid grassland of northern China, a central part of the Eurasian steppe. Our study provided regional-scale evidence that the community stability increased with increasing precipitation in the semiarid ecosystem. The patterns of community stability along a precipitation gradient were ascribed to community composition and community dynamics, such as species richness and species asynchrony, rather than the abiotic effect of precipitation. Species richness regulated the temporal mean (μ) of aboveground net primary productivity (ANPP), while species asynchrony regulated the temporal standard deviation (σ) of ANPP, which in turn contributed to community stability. Our findings highlight the crucial role of community composition and community dynamics in regulating community stability under climate change.
Collapse
Affiliation(s)
- Yonggang Chi
- College of Geography and Environmental SciencesZhejiang Normal UniversityJinhuaChina
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of BotanyChinese Academy of SciencesBeijingChina
- State Key Laboratory of Resources and Environmental Information SystemInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
| | - Zhuwen Xu
- School of Ecology and EnvironmentInner Mongolia UniversityHohhotChina
| | - Lei Zhou
- College of Geography and Environmental SciencesZhejiang Normal UniversityJinhuaChina
- Key Laboratory of Ecosystem Network Observation and ModelingInstitute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingChina
| | - Qingpeng Yang
- Key Laboratory of Forest Ecology and ManagementInstitute of Applied EcologyChinese Academy of SciencesShenyangChina
| | - Shuxia Zheng
- State Key Laboratory of Vegetation and Environmental ChangeInstitute of BotanyChinese Academy of SciencesBeijingChina
| | - Shao‐peng Li
- Zhejiang Tiantong Forest Ecosystem National Observation and Research StationSchool of Ecological and Environmental SciencesEast China Normal UniversityShanghaiChina
- Institute of Eco‐Chongming (IEC)ShanghaiChina
| |
Collapse
|
33
|
Wang J, Gao Y, Zhang Y, Yang J, Smith MD, Knapp AK, Eissenstat DM, Han X. Asymmetry in above- and belowground productivity responses to N addition in a semi-arid temperate steppe. GLOBAL CHANGE BIOLOGY 2019; 25:2958-2969. [PMID: 31152626 DOI: 10.1111/gcb.14719] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 05/18/2019] [Accepted: 05/29/2019] [Indexed: 05/28/2023]
Abstract
Nitrogen (N) enrichment often increases aboveground net primary productivity (ANPP) of the ecosystem, but it is unclear if belowground net primary productivity (BNPP) track responses of ANPP. Moreover, the frequency of N inputs may affect primary productivity but is rarely studied. To assess the response patterns of above- and belowground productivity to rates of N addition under different addition frequencies, we manipulated the rate (0-50 g N m-2 year-1 ) and frequency (twice vs. monthly additions per year) of NH4 NO3 inputs for six consecutive years in a temperate grassland in northern China and measured ANPP and BNPP from 2012 to 2014. In the low range of N addition rates, BNPP showed the greatest negative response and ANPP showed the greatest positive responses with increases in N addition (<10 g N m-2 year-1 ). As N addition increased beyond 10 g N m-2 year-1 , increases in ANPP dampened and decreases in BNPP ceased altogether. The response pattern of net primary productivity (combined above- and belowground; NPP) corresponded more closely to ANPP than to BNPP. The N effects on BNPP and BNPP/NPP (fBNPP ) were not dependent on N addition frequency in the range of N additions typically associated with N deposition. BNPP was more sensitive to N addition frequency than ANPP, especially at low rates of N addition. Our findings provide new insights into how plants regulate carbon allocation to different organs with increasing N rates and changing addition frequencies. These root response patterns, if incorporated into Earth system models, may improve the predictive power of C dynamics in dryland ecosystems in the face of global atmospheric N deposition.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, Pennsylvania
| | - Yingzhi Gao
- Key Laboratory of Vegetation Ecology, Institute of Grassland Science, Northeast Normal University, Changchun, China
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Northeast Normal University, Changchun, China
| | - Yunhai Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia
| | - Junjie Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Melinda D Smith
- Graduate Degree Program in Ecology, Department of Biology, Colorado State University, Fort Collins, Colorado
| | - Alan K Knapp
- Graduate Degree Program in Ecology, Department of Biology, Colorado State University, Fort Collins, Colorado
| | - David M Eissenstat
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, Pennsylvania
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
34
|
Chen H, Huang Y, He K, Qi Y, Li E, Jiang Z, Sheng Z, Li X. Temporal intraspecific trait variability drives responses of functional diversity to interannual aridity variation in grasslands. Ecol Evol 2019; 9:5731-5742. [PMID: 31160994 PMCID: PMC6540671 DOI: 10.1002/ece3.5156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 01/10/2019] [Accepted: 03/19/2019] [Indexed: 11/21/2022] Open
Abstract
Interannual climate variation alters functional diversity through intraspecific trait variability and species turnover. We examined these diversity elements in three types of grasslands in northern China, including two temperate steppes and an alpine meadow. We evaluated the differences in community-weighted means (CWM) of plant traits and functional dispersion (FDis) between 2 years with contrasting aridity in the growing season. Four traits were measured: specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen concentration (LNC), and the maximum plant height (H). CWM for SLA of the alpine meadow increased in the dry year while that of the temperate steppe in Qinghai showed opposing trends. CWM of LDMC in two temperate steppes became higher and CWM of LNC in all grasslands became lower in the dry year. Compared with the wet year, FDis of LDMC in the alpine meadow and FDis of LNC in the temperate steppe in Qinghai decreased in the dry year. FDis of H was higher in the dry year for two temperate steppes. Only in the temperate steppe in Qinghai did the multi-FDis of all traits experience a significant increase in the dry year. Most of the changes in CWM and FDis between 2 years were explained by intraspecific trait variation rather than shifts in species composition. This study highlights that temporal intraspecific trait variation contributes to functional responses to environmental changes. Our results also suggest it would be necessary to consider habitat types when modeling ecosystem responses to climate changes, as different grasslands showed different response patterns.
Collapse
Affiliation(s)
- Huiying Chen
- Faculty of Geographical Science, State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural ResourcesBeijing Normal UniversityBeijingChina
| | - Yongmei Huang
- Faculty of Geographical Science, State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural ResourcesBeijing Normal UniversityBeijingChina
| | - Kejian He
- School of Resource Environment and Earth ScienceYunnan UniversityKunmingChina
| | - Yu Qi
- Inner Mongolia Environment Sciences AcademyHohhotChina
| | - Engui Li
- Faculty of Geographical Science, State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural ResourcesBeijing Normal UniversityBeijingChina
| | - Zhiyun Jiang
- School of GeographySouth China Normal UniversityGuangzhouChina
| | - Zhilu Sheng
- Faculty of Geographical Science, State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural ResourcesBeijing Normal UniversityBeijingChina
| | - Xiaoyan Li
- Faculty of Geographical Science, State Key Laboratory of Earth Surface Processes and Resource Ecology, School of Natural ResourcesBeijing Normal UniversityBeijingChina
| |
Collapse
|
35
|
van der Plas F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol Rev Camb Philos Soc 2019; 94:1220-1245. [PMID: 30724447 DOI: 10.1111/brv.12499] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 01/10/2023]
Abstract
Approximately 25 years ago, ecologists became increasingly interested in the question of whether ongoing biodiversity loss matters for the functioning of ecosystems. As such, a new ecological subfield on Biodiversity and Ecosystem Functioning (BEF) was born. This subfield was initially dominated by theoretical studies and by experiments in which biodiversity was manipulated, and responses of ecosystem functions such as biomass production, decomposition rates, carbon sequestration, trophic interactions and pollination were assessed. More recently, an increasing number of studies have investigated BEF relationships in non-manipulated ecosystems, but reviews synthesizing our knowledge on the importance of real-world biodiversity are still largely missing. I performed a systematic review in order to assess how biodiversity drives ecosystem functioning in both terrestrial and aquatic, naturally assembled communities, and on how important biodiversity is compared to other factors, including other aspects of community composition and abiotic conditions. The outcomes of 258 published studies, which reported 726 BEF relationships, revealed that in many cases, biodiversity promotes average biomass production and its temporal stability, and pollination success. For decomposition rates and ecosystem multifunctionality, positive effects of biodiversity outnumbered negative effects, but neutral relationships were even more common. Similarly, negative effects of prey biodiversity on pathogen and herbivore damage outnumbered positive effects, but were less common than neutral relationships. Finally, there was no evidence that biodiversity is related to soil carbon storage. Most BEF studies focused on the effects of taxonomic diversity, however, metrics of functional diversity were generally stronger predictors of ecosystem functioning. Furthermore, in most studies, abiotic factors and functional composition (e.g. the presence of a certain functional group) were stronger drivers of ecosystem functioning than biodiversity per se. While experiments suggest that positive biodiversity effects become stronger at larger spatial scales, in naturally assembled communities this idea is too poorly studied to draw general conclusions. In summary, a high biodiversity in naturally assembled communities positively drives various ecosystem functions. At the same time, the strength and direction of these effects vary highly among studies, and factors other than biodiversity can be even more important in driving ecosystem functioning. Thus, to promote those ecosystem functions that underpin human well-being, conservation should not only promote biodiversity per se, but also the abiotic conditions favouring species with suitable trait combinations.
Collapse
Affiliation(s)
- Fons van der Plas
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Johannisallee 21-23, 04103 Leipzig, Germany
| |
Collapse
|
36
|
Burggren WW. Inadequacy of typical physiological experimental protocols for investigating consequences of stochastic weather events emerging from global warming. Am J Physiol Regul Integr Comp Physiol 2019; 316:R318-R322. [PMID: 30698987 DOI: 10.1152/ajpregu.00307.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Increasingly variable, extreme, and nonpredictable weather events are predicted to accompany climate change, and such weather events will especially affect temperate, terrestrial environments. Yet, typical protocols in comparative physiology that examine environmental change typically employ simple step-wise changes in the experimental stressor of interest (e.g., temperature, water availability, oxygen, nutrition). Such protocols fall short of mimicking actual natural environments and may be inadequate for fully exploring the physiological effects of stochastic, extreme weather events. Indeed, numerous studies from the field of thermal biology, especially, indicate nonlinear and sometimes counterintuitive findings associated with variable and fluctuating (but rarely truly stochastic) protocols for temperature change. This Perspective article suggests that alternative experimental protocols should be employed that go beyond step-wise protocols and even beyond variable protocols employing circadian rhythms, for example, to those that actually embrace nonpredictable elements. Such protocols, though admittedly more difficult to implement, are more likely to reveal the capabilities (and, importantly, the limitations) of animals experiencing weather, as distinct from climate. While some possible protocols involving stochasticity are described as examples to stimulate additional thought on experimental design, the overall goal of this Perspective article is to encourage comparative physiologists to entertain incorporation of nonpredictable experimental conditions as they design future experimental protocols.
Collapse
Affiliation(s)
- Warren W Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas , Denton, Texas
| |
Collapse
|
37
|
Zhang Y, Feng J, Loreau M, He N, Han X, Jiang L. Nitrogen addition does not reduce the role of spatial asynchrony in stabilising grassland communities. Ecol Lett 2019; 22:563-571. [PMID: 30632243 DOI: 10.1111/ele.13212] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/13/2018] [Accepted: 11/22/2018] [Indexed: 11/28/2022]
Abstract
While nitrogen (N) amendment is known to affect the stability of ecological communities, whether this effect is scale-dependent remains an open question. By conducting a field experiment in a temperate grassland, we found that both plant richness and temporal stability of community biomass increased with spatial scale, but N enrichment reduced richness and stability at the two scales considered. Reduced local-scale stability under N enrichment arose from N-induced reduction in population stability, which was partly attributable to the decline in local species richness, as well as reduction in asynchronous local population dynamics across species. Importantly, N enrichment did not alter spatial asynchrony among local communities, which provided similar spatial insurance effects at the larger scale, regardless of N enrichment levels. These results suggest that spatial variability among local communities, in addition to local diversity, may help stabilise ecosystems at larger spatial scales even in the face of anthropogenic environmental changes.
Collapse
Affiliation(s)
- Yunhai Zhang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA.,State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jinchao Feng
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing, 100091, China
| | - Michel Loreau
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS and Paul Sabatier University, Moulis, 09200, France
| | - Nianpeng He
- Synthesis Research Center of Chinese Ecosystem Research Network, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| |
Collapse
|