1
|
Gooden A, Kelaher B, Niella Y, Butcher PA. Environmental factors drive differences in activity between sexes of a large marine predator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 980:179436. [PMID: 40300493 DOI: 10.1016/j.scitotenv.2025.179436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 04/10/2025] [Accepted: 04/12/2025] [Indexed: 05/01/2025]
Abstract
Fluctuations in environmental conditions can induce changes in animal behaviour, influence annual migrations for food or reproduction, and alter physiology. Additionally daily shifts in behaviour in response to short-term environmental change can vary across different spatial and temporal scales. Traditional acoustic tracking methods typically quantify the geographical movements of animals, without considering the changes in activity that can occur spatially, temporally, and in response to environmental conditions. We quantified spatial, temporal, and environmental factors that drive the acceleration of a top marine predator in a near-shore habitats. We deployed acoustic accelerometer tags on 504 white sharks (Carcharodon carcharias) between 2020 and 2023 in New South Wales, Australia. Generalised Additive Mixed Models were then used to assess the influence of spatial, temporal, and environmental factors on shark activity levels. Considerable individual variation was observed in both male and female sharks while male sharks exhibit higher acceleration than females. Male white sharks demonstrated higher acceleration equatorward of 33°S between 1000 and 1500 h, while female sharks had higher acceleration poleward of 33°S between 0900 and 1300 h, and 2100 and 0200 h. This research highlights the importance of moving beyond traditional acoustic tracking studies to explore the complex interplay of factors influencing animal behaviour and movement. Our findings will inform non-lethal shark management programs to better protect water users, helping reduce the risk of negative human-shark interactions.
Collapse
Affiliation(s)
- Adrienne Gooden
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW 2450, Australia.
| | - Brendan Kelaher
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW 2450, Australia
| | - Yuri Niella
- Integrated Marine Observing System (IMOS) Animal Tracking Facility, Sydney Institute of Marine Science, Mosman, NSW 2088, Australia
| | - Paul A Butcher
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW 2450, Australia; New South Wales Department of Primary Industries and Regional Development, National Marine Science Centre, Coffs Harbour, NSW, Australia
| |
Collapse
|
2
|
Matley JK, Meyer L, Barnett A, Scott M, Dinsdale EA, Doane MP, Harasti D, Hoopes LA, Huveneers C. Where giants roam: The importance of remote islands and seamount corridors to adult tiger sharks in the South Pacific Ocean. MARINE ENVIRONMENTAL RESEARCH 2025; 206:107026. [PMID: 40023078 DOI: 10.1016/j.marenvres.2025.107026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/31/2024] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
The movements of tiger sharks (Galeocerdo cuvier) across their global distribution are diverse and complex, and there remains a dearth of information about the cues that influence migrations of adults to and from offshore islands. We aimed to delineate broad-scale movements of a seasonally abundant tiger shark aggregation at Norfolk Island, a remote small island in the South Pacific Ocean, by identifying migratory pathways and important areas, as well as quantifying the association between space use and environmental factors. We satellite tracked 35 tiger sharks, consisting of some of the largest individuals ever monitored (median total length: 4.0 m), between February 2020 and April 2023. Tracking periods averaging 305 days (14 - 686 days) showed movements throughout large parts of the South Pacific Ocean including near New Caledonia, the Great Barrier Reef, Papua New Guinea, Chesterfield Islands, Vanuatu, Fiji, and New Zealand. The longest track was close to 17,000 km over 468 days. There was high seasonal fidelity to Norfolk Island with 88% of sharks tracked across multiple seasons returning at least once, mainly from New Caledonia. The median date of arrival and departure from Norfolk Island were in December and May, respectively. Coastal use of islands was the most important factor across monthly habitat suitability models, whereas sea surface temperature explained seasonal departures/arrivals from/to Norfolk Island. The findings of our study show diverse potential movement trajectories and cues used by tiger sharks, but importantly highlight the critical role of Norfolk Island and other nearshore areas in supporting large adult female tiger sharks.
Collapse
Affiliation(s)
- Jordan K Matley
- College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia.
| | - Lauren Meyer
- College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia; Georgia Aquarium, Atlantic, GA, USA
| | - Adam Barnett
- Biopixel Oceans Foundation, Cairns, 4878, Australia; Marine Data Technology Hub, College of Science and Engineering, James Cook University, Townsville City, QLD, Australia
| | - Mark Scott
- Norfolk Island National Park, Burnt Pine, Norfolk Island, 2899, Australia
| | - Elizabeth A Dinsdale
- College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Michael P Doane
- College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - David Harasti
- Fisheries Research, NSW DPIRD, Port Stephens Fisheries Institute. Taylors Beach, NSW, Australia
| | - Lisa A Hoopes
- IUCN Center for Species Survival, Georgia Aquarium, Atlanta, GA, USA
| | - Charlie Huveneers
- College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| |
Collapse
|
3
|
Niella Y, O'Hara D, Jonsen I, Slip D, Phillips L, Harcourt R, Carroll G. Spatial, environmental and trophic niche partitioning by seabirds in a climate change hotspot. J Anim Ecol 2025; 94:582-596. [PMID: 39865930 PMCID: PMC11962239 DOI: 10.1111/1365-2656.14245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/06/2025] [Indexed: 01/28/2025]
Abstract
For similar species to co-occur in places where resources are limited, they need to adopt strategies that partition resources to reduce competition. Our understanding of the mechanisms behind resource partitioning among sympatric marine predators is evolving, but we lack a clear understanding of how environmental change is impacting these dynamics. We investigated spatial and trophic resource partitioning among three sympatric seabirds with contrasting biological characteristics: greater crested terns Thalasseus bergii (efficient flyer, limited diver, and preference for high quality forage fish), little penguins Eudyptula minor (flightless, efficient diver, and preference for high quality forage fish) and silver gulls Chroicocephalus novaehollandiae (efficient flyer, limited diver and generalist diet). We investigated interannual variability in resource partitioning in relation to environmental variability in a climate change hotspot influenced by the warm and intensifying East Australian Current (EAC). Sampling was conducted from 2012 to 2014 during the austral summer breeding season of seabirds at Montague Island, Australia. Daily seabird movements were monitored using GPS trackers and feather tissues were collected and processed for stable isotope analysis (δ15N and δ13C). Generalised Linear Mixed Models were used to assess how changes in oceanographic conditions influenced space use for each species. Schoener's D and Bayesian mixing models were used to respectively investigate the levels of yearly inter-specific environmental and trophic niche overlaps. Crested terns and little penguins were less likely to be observed in warm, saline EAC waters and crested terns and silver gulls had smaller foraging areas on days when more than 30% of available habitat was classified as EAC origin. All species preferred areas with low variability in sea surface temperature (<0.5°C). Terns and penguins occupied similar marine trophic levels, with penguins having larger isotopic niche spaces in 2014 when the EAC was more dominant in the study area. Gulls occupied the lowest trophic level, with the widest niche and lowest interannual variability in niche area. As the EAC intensifies along the southeast coast of Australia under climate change, interspecific competition for resources may increase, with the greatest impacts on species like little penguins that have relatively restricted foraging ranges. This study suggests that species-specific biological traits and behavioural plasticity should be accounted for when predicting the effects of climate change on marine species.
Collapse
Affiliation(s)
- Yuri Niella
- School of Natural Sciences, Faculty of Science and EngineeringMacquarie UniversitySydneyNew South WalesAustralia
- Present address:
Integrated Marine Observing System (IMOS), Animal Tracking FacilitySydney Institute of Marine ScienceMosmanNew South WalesAustralia
| | - Dustin O'Hara
- School of Natural Sciences, Faculty of Science and EngineeringMacquarie UniversitySydneyNew South WalesAustralia
| | - Ian Jonsen
- School of Natural Sciences, Faculty of Science and EngineeringMacquarie UniversitySydneyNew South WalesAustralia
| | - David Slip
- School of Natural Sciences, Faculty of Science and EngineeringMacquarie UniversitySydneyNew South WalesAustralia
- Taronga Institute of Science and LearningTaronga Conservation Society AustraliaMosmanNew South WalesAustralia
| | - Lachlan Phillips
- School of Natural Sciences, Faculty of Science and EngineeringMacquarie UniversitySydneyNew South WalesAustralia
| | - Rob Harcourt
- School of Natural Sciences, Faculty of Science and EngineeringMacquarie UniversitySydneyNew South WalesAustralia
| | | |
Collapse
|
4
|
Viola B, Puskic P, Corney S, Barrett N, Davies B, Clausius E, Jutzeler M, Lea MA. A quantitative assessment of continuous versus structured methods for the detection of marine mammals and seabirds via opportunistic shipboard surveys. Sci Rep 2024; 14:18796. [PMID: 39138319 PMCID: PMC11322172 DOI: 10.1038/s41598-024-68512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
Marine monitoring efforts are increasingly supported by opportunistic shipboard surveys. However, opportunistic survey methods often require adaptation to suit the vessel and the operations being conducted onboard. Whilst best-practice techniques for surveying marine wildlife on vessels of opportunity are yet to be established, testing and development of alternative methods can provide means for capturing ecological information in otherwise under-surveyed areas. Explicitly, survey methods can be improved while baseline ecological data for new regions are gathered simultaneously. Herein, we tested different survey approaches on a vessel of opportunity in a remote offshore area where little is known about the community composition of top-order marine vertebrate predators: western and south-western Tasmania, Australia. We found that continuous surveys provide greater species counts than structured "snapshot" surveys over the course of a voyage, but that structured surveys can be more practical when managing factors such as observer fatigue. Moreover, we provide a baseline dataset on the marine vertebrate community encountered in western and south-western Tasmania. This information will be critically important for industry and conservation management objectives, and is key to our understanding of the offshore ecosystem around Tasmania.
Collapse
Affiliation(s)
- Benjamin Viola
- Institute for Marine and Antarctic Studies, University of Tasmania, Battery Point, TAS, 7004, Australia.
| | - Peter Puskic
- Institute for Marine and Antarctic Studies, University of Tasmania, Battery Point, TAS, 7004, Australia
- Centre for Marine Socioecology, University of Tasmania, Sandy Bay, TAS, 7005, Australia
| | - Stuart Corney
- Institute for Marine and Antarctic Studies, University of Tasmania, Battery Point, TAS, 7004, Australia
- Centre for Marine Socioecology, University of Tasmania, Sandy Bay, TAS, 7005, Australia
- Australian Antarctic Program Partnership, University of Tasmania, Sandy Bay, TAS, 7005, Australia
| | - Neville Barrett
- Institute for Marine and Antarctic Studies, University of Tasmania, Battery Point, TAS, 7004, Australia
| | - Bronwyn Davies
- School of Natural Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Ella Clausius
- Institute for Marine and Antarctic Studies, University of Tasmania, Battery Point, TAS, 7004, Australia
| | - Martin Jutzeler
- Centre for Ore Deposit and Earth Sciences, School of Natural Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Mary-Anne Lea
- Institute for Marine and Antarctic Studies, University of Tasmania, Battery Point, TAS, 7004, Australia
- Centre for Marine Socioecology, University of Tasmania, Sandy Bay, TAS, 7005, Australia
- Australian Centre for Excellence in Antarctic Science, University of Tasmania, Sandy Bay, TAS, 7005, Australia
| |
Collapse
|
5
|
Wang R, Yao B, Tan Z, Mao C, Ma Y, Qu J. Effect of Warming on Personality of Mosquitofish ( Gambusia affinis) and Medaka Fish ( Oryzias latipes). Animals (Basel) 2024; 14:2101. [PMID: 39061563 PMCID: PMC11273402 DOI: 10.3390/ani14142101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Global warming may accelerate the process of biological invasions, and invasive species that can quickly adapt to new environments will have a negative impact on native species. Animal personalities have significant implications for ecology and evolution. However, few studies have simultaneously examined the combined effects of climate warming and biological invasions on native species. In this study, we hypothesized that temperature was positively correlated with personality, and invasive species had stronger personalities than native species. Accordingly, we established control (20 °C) and warming groups (20 °C, 25 °C, and 30 °C) to rear mosquitofish and medaka fish, individuals acclimatized to rearing temperatures for 7 days, then measured their personalities (sociability, exploration, novelty, and boldness). The results showed that individuals exhibited repeatable variation along the four behavioral axes across all temperature conditions, providing evidence for the presence of personalities. Significant positive correlations were found between each pair of behaviors, indicating the presence of behavioral syndrome. Sociability and exploration were most affected by temperature, showing increasing trends in sociability, exploration, and novelty in both invasive and native species with rising temperatures. Compared to medaka fish, mosquitofish exhibited higher exploration and lower sociability at elevated temperatures, while showing little change in boldness. Our results provide evidence that increased temperatures may promote biological invasions and pose a potential threat to the survival of native species. These findings are significant for understanding the complex impacts of climate change on ecosystems and for formulating effective biodiversity preservation strategies.
Collapse
Affiliation(s)
- Rong Wang
- School of Life Science, Qinghai Normal University, Xining 810008, China; (R.W.); (Z.T.)
- Sanjiangyuan Grassland Ecosystem National Observation and Research Station, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (B.Y.); (C.M.)
- Key Laboratory of Medicinal Animal and Plant Resources of Qinghai-Tibetan Plateau in Qinghai Province, Xining 810008, China
| | - Baohui Yao
- Sanjiangyuan Grassland Ecosystem National Observation and Research Station, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (B.Y.); (C.M.)
- Academy of Plateau Science and Sustainability, People’s Government of Qinghai Province and Beijing Normal University, Xining 810016, China
| | - Zhaoxian Tan
- School of Life Science, Qinghai Normal University, Xining 810008, China; (R.W.); (Z.T.)
- Sanjiangyuan Grassland Ecosystem National Observation and Research Station, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (B.Y.); (C.M.)
- Key Laboratory of Medicinal Animal and Plant Resources of Qinghai-Tibetan Plateau in Qinghai Province, Xining 810008, China
| | - Chengjie Mao
- Sanjiangyuan Grassland Ecosystem National Observation and Research Station, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (B.Y.); (C.M.)
- Academy of Plateau Science and Sustainability, People’s Government of Qinghai Province and Beijing Normal University, Xining 810016, China
| | - Yonggui Ma
- School of Life Science, Qinghai Normal University, Xining 810008, China; (R.W.); (Z.T.)
- Key Laboratory of Medicinal Animal and Plant Resources of Qinghai-Tibetan Plateau in Qinghai Province, Xining 810008, China
- Academy of Plateau Science and Sustainability, People’s Government of Qinghai Province and Beijing Normal University, Xining 810016, China
| | - Jiapeng Qu
- Sanjiangyuan Grassland Ecosystem National Observation and Research Station, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; (B.Y.); (C.M.)
- Academy of Plateau Science and Sustainability, People’s Government of Qinghai Province and Beijing Normal University, Xining 810016, China
| |
Collapse
|
6
|
Coghlan AR, Morales N. New shark in the park: Tiger shark Galeocerdo cuvier observations in the remote South Pacific. JOURNAL OF FISH BIOLOGY 2024; 104:2098-2101. [PMID: 38556875 DOI: 10.1111/jfb.15737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
We present the first photographic records of the tiger shark (Galeocerdo cuvier) at the remote Rapa Nui (Easter Island) in the south-east Pacific. Previous anecdotal sightings exist for tiger sharks in this region; however these records have not been reported within the scientific domain. The present sighting occurred in a period of unusually warm sea surface temperature, which has been shown to influence tiger shark range extensions elsewhere. Novel and historic species occurrence records are valuable for determining and predicting species' environmental tolerances, migratory routes, and distributional limits.
Collapse
Affiliation(s)
- Amy Rose Coghlan
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Naiti Morales
- Millennium Nucleus for Ecology and Sustainable Management of Oceanic Islands (ESMOI). Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile
- Instituto de Fomento Pesquero (IFOP), Valparaíso, Chile
| |
Collapse
|
7
|
Barnett A, Jaine FRA, Bierwagen SL, Lubitz N, Abrantes K, Heupel MR, Harcourt R, Huveneers C, Dwyer RG, Udyawer V, Simpfendorfer CA, Miller IB, Scott-Holland T, Kilpatrick CS, Williams SM, Smith D, Dudgeon CL, Hoey AS, Fitzpatrick R, Osborne FE, Smoothey AF, Butcher PA, Sheaves M, Fisher EE, Svaikauskas M, Ellis M, Kanno S, Cresswell BJ, Flint N, Armstrong AO, Townsend KA, Mitchell JD, Campbell M, Peddemors VM, Gustafson JA, Currey-Randall LM. From little things big things grow: enhancement of an acoustic telemetry network to monitor broad-scale movements of marine species along Australia's east coast. MOVEMENT ECOLOGY 2024; 12:31. [PMID: 38654348 DOI: 10.1186/s40462-024-00468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Acoustic telemetry has become a fundamental tool to monitor the movement of aquatic species. Advances in technology, in particular the development of batteries with lives of > 10 years, have increased our ability to track the long-term movement patterns of many species. However, logistics and financial constraints often dictate the locations and deployment duration of acoustic receivers. Consequently, there is often a compromise between optimal array design and affordability. Such constraints can hinder the ability to track marine animals over large spatial and temporal scales. Continental-scale receiver networks have increased the ability to study large-scale movements, but significant gaps in coverage often remain. METHODS Since 2007, the Integrated Marine Observing System's Animal Tracking Facility (IMOS ATF) has maintained permanent receiver installations on the eastern Australian seaboard. In this study, we present the recent enhancement of the IMOS ATF acoustic tracking infrastructure in Queensland to collect data on large-scale movements of marine species in the northeast extent of the national array. Securing a relatively small initial investment for expanding receiver deployment and tagging activities in Queensland served as a catalyst, bringing together a diverse group of stakeholders (research institutes, universities, government departments, port corporations, industries, Indigenous ranger groups and tourism operators) to create an extensive collaborative network that could sustain the extended receiver coverage into the future. To fill gaps between existing installations and maximise the monitoring footprint, the new initiative has an atypical design, deploying many single receivers spread across 2,100 km of Queensland waters. RESULTS The approach revealed previously unknown broad-scale movements for some species and highlights that clusters of receivers are not always required to enhance data collection. However, array designs using predominantly single receiver deployments are more vulnerable to data gaps when receivers are lost or fail, and therefore "redundancy" is a critical consideration when designing this type of array. CONCLUSION Initial results suggest that our array enhancement, if sustained over many years, will uncover a range of previously unknown movements that will assist in addressing ecological, fisheries, and conservation questions for multiple species.
Collapse
Affiliation(s)
- Adam Barnett
- Marine Data Technology Hub, James Cook University, Townsville, QLD, 4811, Australia.
- Biopixel Oceans Foundation, Cairns, QLD, 4878, Australia.
| | - Fabrice R A Jaine
- Integrated Marine Observing System (IMOS) Animal Tracking Facility, Sydney Institute of Marine Science, Mosman, NSW, 2088, Australia
- School of Natural Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Stacy L Bierwagen
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
| | - Nicolas Lubitz
- Marine Data Technology Hub, James Cook University, Townsville, QLD, 4811, Australia
- Biopixel Oceans Foundation, Cairns, QLD, 4878, Australia
| | - Kátya Abrantes
- Marine Data Technology Hub, James Cook University, Townsville, QLD, 4811, Australia
- Biopixel Oceans Foundation, Cairns, QLD, 4878, Australia
| | - Michelle R Heupel
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
- Integrated Marine Observing System, University of Tasmania, Hobart, Tas, 7001, Australia
| | - Rob Harcourt
- Integrated Marine Observing System (IMOS) Animal Tracking Facility, Sydney Institute of Marine Science, Mosman, NSW, 2088, Australia
- School of Natural Sciences, Macquarie University, North Ryde, Sydney, NSW, 2109, Australia
| | - Charlie Huveneers
- College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Ross G Dwyer
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, 4556, Australia
| | - Vinay Udyawer
- Australian Institute of Marine Science, Darwin, NT, 0810, Australia
| | - Colin A Simpfendorfer
- University of Tasmania, Hobart, Tas, 7001, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Ingo B Miller
- Marine Data Technology Hub, James Cook University, Townsville, QLD, 4811, Australia
- Biopixel Oceans Foundation, Cairns, QLD, 4878, Australia
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
| | - Tracey Scott-Holland
- Queensland Department of Agriculture and Fisheries, Brisbane, QLD, 4000, Australia
| | - Carley S Kilpatrick
- Queensland Government, Department of Environment and Science, Queensland Parks and Wildlife Service, Manly, QLD, 4000, Australia
| | - Samuel M Williams
- Queensland Department of Agriculture and Fisheries, Brisbane, QLD, 4000, Australia
| | - Daniel Smith
- Queensland Department of Agriculture and Fisheries, Brisbane, QLD, 4000, Australia
| | - Christine L Dudgeon
- Biopixel Oceans Foundation, Cairns, QLD, 4878, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, 4556, Australia
| | - Andrew S Hoey
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Richard Fitzpatrick
- Biopixel Oceans Foundation, Cairns, QLD, 4878, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Felicity E Osborne
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, 4556, Australia
| | - Amy F Smoothey
- Department of Primary Industries, Fisheries Research, Sydney Institute of Marine Science, New South Wales, Mosman, NSW, 2088, Australia
| | - Paul A Butcher
- Department of Primary Industries, New South Wales, National Marine Science Center, Southern Cross University, Coffs Harbour, NSW, 2450, Australia
| | - Marcus Sheaves
- Marine Data Technology Hub, James Cook University, Townsville, QLD, 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Eric E Fisher
- GBR Biology, Experience Co., Cairns, QLD, 4870, Australia
| | - Mark Svaikauskas
- Dalrymple Bay Coal Terminal, Haypoint, Mackay, QLD, 4740, Australia
| | - Megan Ellis
- Gladstone Ports Corporation Limited, Gladstone, QLD, 4680, Australia
| | - Shiori Kanno
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Benjamin J Cresswell
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Nicole Flint
- Coastal Marine Ecosystems Research Centre, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Asia O Armstrong
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, 4556, Australia
| | - Kathy A Townsend
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, 4556, Australia
| | - Jonathan D Mitchell
- Queensland Department of Agriculture and Fisheries, Brisbane, QLD, 4000, Australia
| | - Matthew Campbell
- Queensland Department of Agriculture and Fisheries, Brisbane, QLD, 4000, Australia
| | - Victor M Peddemors
- Department of Primary Industries, Fisheries Research, Sydney Institute of Marine Science, New South Wales, Mosman, NSW, 2088, Australia
| | - Johan A Gustafson
- Coastal and Marine Research Centre, Griffith University, Gold Coast, QLD, 4215, Australia
| | - Leanne M Currey-Randall
- Australian Institute of Marine Science, Townsville, QLD, 4810, Australia
- AIMS@JCU, Division of Research and Innovation, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
8
|
Salton M, Raoult V, Jonsen I, Harcourt R. Niche partitioning and individual specialisation in resources and space use of sympatric fur seals at their range margin. Oecologia 2024; 204:815-832. [PMID: 38568471 PMCID: PMC11062968 DOI: 10.1007/s00442-024-05537-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/03/2024] [Indexed: 05/02/2024]
Abstract
Ecological theory predicts niche partitioning between high-level predators living in sympatry as a mechanism to minimise the selective pressure of competition. Accordingly, male Australian fur seals Arctocephalus pusillus doriferus and New Zealand fur seals A. forsteri that live in sympatry should exhibit partitioning in their broad niches (in habitat and trophic dimensions) in order to coexist. However, at the northern end of their distributions in Australia, both are recolonising their historic range after a long absence due to over-exploitation, and their small population sizes suggest competition should be weak and may allow overlap in niche space. We found some niche overlap, yet clear partitioning in diet trophic level (δ15N values from vibrissae), spatial niche space (horizontal and vertical telemetry data) and circadian activity patterns (timing of dives) between males of each species, suggesting competition may remain an active driver of niche partitioning amongst individuals even in small, peripheral populations. Consistent with individual specialisation theory, broad niches of populations were associated with high levels of individual specialisation for both species, despite putative low competition. Specialists in isotopic space were not necessarily specialists in spatial niche space, further emphasising their diverse individual strategies for niche partitioning. Males of each species displayed distinct foraging modes, with Australian fur seals primarily benthic and New Zealand fur seals primarily epipelagic, though unexpectedly high individual specialisation for New Zealand fur seals might suggest marginal populations provide exceptions to the pattern generally observed amongst other fur seals.
Collapse
Affiliation(s)
- Marcus Salton
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2109, Australia.
- Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, Kingston, TAS, 7050, Australia.
| | - Vincent Raoult
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, 2258, Australia
| | - Ian Jonsen
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Robert Harcourt
- School of Natural Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| |
Collapse
|
9
|
Butcher PA, Lee KA, Brand CP, Gallen CR, Green M, Smoothey AF, Peddemors VM. Capture Response and Long-Term Fate of White Sharks ( Carcharodon carcharias) after Release from SMART Drumlines. BIOLOGY 2023; 12:1329. [PMID: 37887039 PMCID: PMC10603847 DOI: 10.3390/biology12101329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 10/28/2023]
Abstract
Human-shark conflict has been managed through catch-and-kill policies in most parts of the world. More recently, there has been a greater demand for shark bite mitigation measures to improve protection for water users whilst minimizing harm to non-target and target species, particularly White Sharks (Carcharodon carcharias), given their status as a Threatened, Endangered, or Protected (TEP) species. A new non-lethal shark bite mitigation method, known as the Shark-Management-Alert-in-Real-Time (SMART) drumline, alerts responders when an animal takes the bait and thereby provides an opportunity for rapid response to the catch and potentially to relocate, tag, and release sharks. Thirty-six White Sharks were caught on SMART drumlines in New South Wales, Australia, and tagged with dorsal fin-mounted satellite-linked radio transmitters (SLRTs) and acoustic tags before release. Thirty-one sharks were located within 10 days, 22 of which provided high-quality locations (classes 1 to 3) suitable for analysis. Twenty-seven percent and 59% of these sharks were first detected within 10 and 50 h of release, respectively. For the first three days post-release, sharks moved and mostly remained offshore (>3.5 km from the coast), irrespective of shark sex and length. Thereafter, tagged sharks progressively moved inshore; however, 77% remained more than 1.9 km off the coast and an average of 5 km away from the tagging location, 10 days post-release. Sharks were acoustically detected for an average of 591 days post-release (ranging from 45 to 1075 days). Although five of the 36 sharks were not detected on acoustic receivers, SLRT detections for these five sharks ranged between 43 and 639 days post-release, indicating zero mortality associated with capture. These results highlight the suitability of SMART drumlines as a potential non-lethal shark bite mitigation tool for TEP species such as White Sharks, as they initially move away from the capture site, and thereby this bather protection tool diminishes the immediate risk of shark interactions at that site.
Collapse
Affiliation(s)
- Paul A. Butcher
- NSW Department of Primary Industries, Fisheries Research, National Marine Science Centre, Coffs Harbour, NSW 2450, Australia; (C.P.B.); (C.R.G.)
- National Marine Science Centre, Southern Cross University, Coffs Harbour, NSW 2450, Australia
| | - Kate A. Lee
- Sydney Institute of Marine Science, Mosman, NSW 2088, Australia;
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Craig P. Brand
- NSW Department of Primary Industries, Fisheries Research, National Marine Science Centre, Coffs Harbour, NSW 2450, Australia; (C.P.B.); (C.R.G.)
| | - Christopher R. Gallen
- NSW Department of Primary Industries, Fisheries Research, National Marine Science Centre, Coffs Harbour, NSW 2450, Australia; (C.P.B.); (C.R.G.)
| | - Marcel Green
- NSW Department of Primary Industries, Sydney Institute of Marine Science, Mosman, NSW 2088, Australia; (M.G.); (A.F.S.); (V.M.P.)
| | - Amy F. Smoothey
- NSW Department of Primary Industries, Sydney Institute of Marine Science, Mosman, NSW 2088, Australia; (M.G.); (A.F.S.); (V.M.P.)
| | - Victor M. Peddemors
- NSW Department of Primary Industries, Sydney Institute of Marine Science, Mosman, NSW 2088, Australia; (M.G.); (A.F.S.); (V.M.P.)
| |
Collapse
|
10
|
Welch H, Savoca MS, Brodie S, Jacox MG, Muhling BA, Clay TA, Cimino MA, Benson SR, Block BA, Conners MG, Costa DP, Jordan FD, Leising AW, Mikles CS, Palacios DM, Shaffer SA, Thorne LH, Watson JT, Holser RR, Dewitt L, Bograd SJ, Hazen EL. Impacts of marine heatwaves on top predator distributions are variable but predictable. Nat Commun 2023; 14:5188. [PMID: 37669922 PMCID: PMC10480173 DOI: 10.1038/s41467-023-40849-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/11/2023] [Indexed: 09/07/2023] Open
Abstract
Marine heatwaves cause widespread environmental, biological, and socio-economic impacts, placing them at the forefront of 21st-century management challenges. However, heatwaves vary in intensity and evolution, and a paucity of information on how this variability impacts marine species limits our ability to proactively manage for these extreme events. Here, we model the effects of four recent heatwaves (2014, 2015, 2019, 2020) in the Northeastern Pacific on the distributions of 14 top predator species of ecological, cultural, and commercial importance. Predicted responses were highly variable across species and heatwaves, ranging from near total loss of habitat to a two-fold increase. Heatwaves rapidly altered political bio-geographies, with up to 10% of predicted habitat across all species shifting jurisdictions during individual heatwaves. The variability in predicted responses across species and heatwaves portends the need for novel management solutions that can rapidly respond to extreme climate events. As proof-of-concept, we developed an operational dynamic ocean management tool that predicts predator distributions and responses to extreme conditions in near real-time.
Collapse
Affiliation(s)
- Heather Welch
- NOAA, Southwest Fisheries Science Center, Environmental Research Division, Monterey, CA, USA.
- Institute of Marine Science, UC Santa Cruz, Santa Cruz, CA, USA.
| | - Matthew S Savoca
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Stephanie Brodie
- NOAA, Southwest Fisheries Science Center, Environmental Research Division, Monterey, CA, USA
- Institute of Marine Science, UC Santa Cruz, Santa Cruz, CA, USA
| | - Michael G Jacox
- NOAA, Southwest Fisheries Science Center, Environmental Research Division, Monterey, CA, USA
- Institute of Marine Science, UC Santa Cruz, Santa Cruz, CA, USA
- NOAA, Physical Sciences Laboratory, Boulder, CO, USA
| | - Barbara A Muhling
- Institute of Marine Science, UC Santa Cruz, Santa Cruz, CA, USA
- NOAA Southwest Fisheries Science Center, Fisheries Resources Division, San Diego, CA, USA
| | - Thomas A Clay
- NOAA, Southwest Fisheries Science Center, Environmental Research Division, Monterey, CA, USA
- Institute of Marine Science, UC Santa Cruz, Santa Cruz, CA, USA
- People and Nature, Environmental Defense Fund, Monterey, CA, USA
| | - Megan A Cimino
- NOAA, Southwest Fisheries Science Center, Environmental Research Division, Monterey, CA, USA
- Institute of Marine Science, UC Santa Cruz, Santa Cruz, CA, USA
| | - Scott R Benson
- NOAA, Southwest Fisheries Science Center, Marine Mammal and Turtle Division, Moss Landing, CA, USA
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, CA, USA
| | - Barbara A Block
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Melinda G Conners
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Daniel P Costa
- Institute of Marine Science, UC Santa Cruz, Santa Cruz, CA, USA
- Department of Ecology and Evolutionary Biology, UC Santa Cruz, Santa Cruz, CA, USA
| | - Fredrick D Jordan
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Andrew W Leising
- NOAA, Southwest Fisheries Science Center, Environmental Research Division, Monterey, CA, USA
| | - Chloe S Mikles
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Daniel M Palacios
- Marine Mammal Institute, Oregon State University, Newport, OR, USA
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, OR, USA
| | - Scott A Shaffer
- Department of Biological Sciences, San Jose State University, San Jose, CA, USA
| | - Lesley H Thorne
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Jordan T Watson
- NOAA, Alaska Fisheries Science Center, Auke Bay Laboratory, Juneau, AK, USA
- Pacific Islands Ocean Observing System, University of Hawai'i Mānoa, Honolulu, HI, USA
| | - Rachel R Holser
- Institute of Marine Science, UC Santa Cruz, Santa Cruz, CA, USA
| | - Lynn Dewitt
- NOAA, Southwest Fisheries Science Center, Environmental Research Division, Monterey, CA, USA
| | - Steven J Bograd
- NOAA, Southwest Fisheries Science Center, Environmental Research Division, Monterey, CA, USA
- Institute of Marine Science, UC Santa Cruz, Santa Cruz, CA, USA
| | - Elliott L Hazen
- NOAA, Southwest Fisheries Science Center, Environmental Research Division, Monterey, CA, USA
- Institute of Marine Science, UC Santa Cruz, Santa Cruz, CA, USA
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| |
Collapse
|
11
|
Smoothey AF, Niella Y, Brand C, Peddemors VM, Butcher PA. Bull Shark ( Carcharhinus leucas) Occurrence along Beaches of South-Eastern Australia: Understanding Where, When and Why. BIOLOGY 2023; 12:1189. [PMID: 37759589 PMCID: PMC10526001 DOI: 10.3390/biology12091189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023]
Abstract
Unprovoked shark bites have increased over the last three decades, yet they are still relatively rare. Bull sharks are globally distributed throughout rivers, estuaries, nearshore areas and continental shelf waters, and are capable of making long distance movements between tropical and temperate regions. As this species is implicated in shark bites throughout their range, knowledge of the environmental drivers of bull shark movements are important for better predicting the likelihood of their occurrence at ocean beaches and potentially assist in reducing shark bites. Using the largest dataset of acoustically tagged bull sharks in the world, we examined the spatial ecology of 233 juvenile and large (including sub-adult and adult) bull sharks acoustically tagged and monitored over a 5.5-year period (2017-2023) using an array of real-time acoustic listening stations off 21 beaches along the coast of New South Wales, Australia. Bull sharks were detected more in coastal areas of northern NSW (<32° S) but they travelled southwards during the austral summer and autumn. Juveniles were not detected on shark listening stations until they reached 157 cm and stayed north of 31.98° S (Old Bar). Intra-specific diel patterns of occurrence were observed, with juveniles exhibiting higher nearshore presence between 20:00 and 03:00, whilst the presence of large sharks was greatest from midday through to 04:00. The results of generalised additive models revealed that large sharks were more often found when water temperatures were higher than 20 °C, after >45 mm of rain and when swell heights were between 1.8 and 2.8 m. Understanding the influence that environmental variables have on the occurrence of bull sharks in the coastal areas of NSW will facilitate better education and could drive shark smart behaviour amongst coastal water users.
Collapse
Affiliation(s)
- Amy F. Smoothey
- NSW Department of Primary Industries, Fisheries Research, Sydney Institute of Marine Science, Mosman, NSW 2088, Australia;
| | - Yuri Niella
- Department of Biological Sciences, Macquarie University, North Ryde, Sydney, NSW 2113, Australia;
| | - Craig Brand
- NSW Department of Primary Industries, Fisheries Research, National Marine Science Centre, Coffs Harbour, NSW 2450, Australia; (C.B.); (P.A.B.)
| | - Victor M. Peddemors
- NSW Department of Primary Industries, Fisheries Research, Sydney Institute of Marine Science, Mosman, NSW 2088, Australia;
| | - Paul A. Butcher
- NSW Department of Primary Industries, Fisheries Research, National Marine Science Centre, Coffs Harbour, NSW 2450, Australia; (C.B.); (P.A.B.)
| |
Collapse
|
12
|
Lubitz N, Daly R, Filmalter JD, Sheaves M, Cowley PD, Naesje TF, Barnett A. Context drives movement patterns in a mobile marine predator. MOVEMENT ECOLOGY 2023; 11:28. [PMID: 37226200 DOI: 10.1186/s40462-023-00390-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/06/2023] [Indexed: 05/26/2023]
Abstract
Intra-specific variability in movement behaviour occurs in all major taxonomic groups. Despite its common occurrence and ecological consequences, individual variability is often overlooked. As a result, there is a persistent gap in knowledge about drivers of intra-specific variability in movement and its role in fulfilling life history requirements. We apply a context-focused approach to bull sharks (Carcharhinus leucas), a highly mobile marine predator, incorporating intra-specific variability to understand how variable movement patterns arise and how they might be altered under future change scenarios. Spatial analysis of sharks, acoustically tagged both at their distributional limit and the centre of distribution in southern Africa, was combined with spatial analysis of acoustically tagged teleost prey and remote-sensing of environmental variables. The objective was to test the hypothesis that varying resource availability and magnitude of seasonal environmental change in different locations interact to produce variable yet predictable movement behaviours across a species' distribution. Sharks from both locations showed high seasonal overlap with predictable prey aggregations. Patterns were variable in the centre of distribution, where residency, small- and large-scale movements were all recorded. In contrast, all animals from the distributional limit performed 'leap-frog migrations', making long-distance migrations bypassing conspecifics in the centre of distribution. By combining multiple variables related to life history requirements for animals in different environments we identified combinations of key drivers that explain the occurrence of differing movement behaviours across different contexts and delineated the effects of environmental factors and prey dynamics on predator movement. Comparisons with other taxa show striking similarities in patterns of intra-specific variability across terrestrial and marine species, suggesting common drivers.
Collapse
Affiliation(s)
- Nicolas Lubitz
- Marine Data Technology Hub, College of Science and Engineering, James Cook University, Townsville City, QLD, Australia.
- Biopixel Oceans Foundation, Cairns, QLD, Australia.
| | - Ryan Daly
- Oceanographic Research Institute, Marine Parade, PO Box 10712, 4056, Durban, South Africa
- South African Institute for Aquatic Biodiversity (SAIAB), Private Bag, 1015, 6140, Makhanda, South Africa
| | - John D Filmalter
- South African Institute for Aquatic Biodiversity (SAIAB), Private Bag, 1015, 6140, Makhanda, South Africa
| | - Marcus Sheaves
- Marine Data Technology Hub, College of Science and Engineering, James Cook University, Townsville City, QLD, Australia
| | - Paul D Cowley
- South African Institute for Aquatic Biodiversity (SAIAB), Private Bag, 1015, 6140, Makhanda, South Africa
| | - Tor F Naesje
- Norwegian Institute for Nature Research, P.O. Box 5685, NO- 7485, Torgarden, Trondheim, Norway
| | - Adam Barnett
- Marine Data Technology Hub, College of Science and Engineering, James Cook University, Townsville City, QLD, Australia
- Biopixel Oceans Foundation, Cairns, QLD, Australia
| |
Collapse
|
13
|
Danylchuk AJ, Griffin LP, Ahrens R, Allen MS, Boucek RE, Brownscombe JW, Casselberry GA, Danylchuk SC, Filous A, Goldberg TL, Perez AU, Rehage JS, Santos RO, Shenker J, Wilson JK, Adams AJ, Cooke SJ. Cascading effects of climate change on recreational marine flats fishes and fisheries. ENVIRONMENTAL BIOLOGY OF FISHES 2022; 106:381-416. [PMID: 36118617 PMCID: PMC9465673 DOI: 10.1007/s10641-022-01333-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Tropical and subtropical coastal flats are shallow regions of the marine environment at the intersection of land and sea. These regions provide myriad ecological goods and services, including recreational fisheries focused on flats-inhabiting fishes such as bonefish, tarpon, and permit. The cascading effects of climate change have the potential to negatively impact coastal flats around the globe and to reduce their ecological and economic value. In this paper, we consider how the combined effects of climate change, including extremes in temperature and precipitation regimes, sea level rise, and changes in nutrient dynamics, are causing rapid and potentially permanent changes to the structure and function of tropical and subtropical flats ecosystems. We then apply the available science on recreationally targeted fishes to reveal how these changes can cascade through layers of biological organization-from individuals, to populations, to communities-and ultimately impact the coastal systems that depend on them. We identify critical gaps in knowledge related to the extent and severity of these effects, and how such gaps influence the effectiveness of conservation, management, policy, and grassroots stewardship efforts.
Collapse
Affiliation(s)
- Andy J. Danylchuk
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
| | - Lucas P. Griffin
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
| | - Robert Ahrens
- Fisheries Research and Monitoring Division, NOAA Pacific Islands Fisheries Science Center, 1845 Wasp Blvd., Bldg 176, Honolulu, HI 96818 USA
| | - Micheal S. Allen
- Nature Coast Biological Station, School of Forest, Fisheries and Geomatics Sciences, The University of Florida, 552 First Street, Cedar Key, FL 32625 USA
| | - Ross E. Boucek
- Bonefish & Tarpon Trust, 2937 SW 27th Ave, Suite 203, Miami, FL 33133 USA
- Earth and Environment Department, Florida International University, Miami, FL 33199 USA
| | - Jacob W. Brownscombe
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| | - Grace A. Casselberry
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
| | - Sascha Clark Danylchuk
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
- Keep Fish Wet, 11 Kingman Road, Amherst, MA 01002 USA
| | - Alex Filous
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706 USA
| | - Addiel U. Perez
- Bonefish & Tarpon Trust, 2937 SW 27th Ave, Suite 203, Miami, FL 33133 USA
| | - Jennifer S. Rehage
- Earth and Environment Department, Florida International University, Miami, FL 33199 USA
| | - Rolando O. Santos
- Department of Biological Sciences, Florida International University, Miami, FL 33181 USA
| | - Jonathan Shenker
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32904 USA
| | - JoEllen K. Wilson
- Bonefish & Tarpon Trust, 2937 SW 27th Ave, Suite 203, Miami, FL 33133 USA
| | - Aaron J. Adams
- Bonefish & Tarpon Trust, 2937 SW 27th Ave, Suite 203, Miami, FL 33133 USA
- Florida Atlantic University Harbor Branch Oceanographic Institute, 5600 US 1 North, Fort Pierce, FL 34946 USA
| | - Steven J. Cooke
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| |
Collapse
|
14
|
Barnett A, Fitzpatrick R, Bradley M, Miller I, Sheaves M, Chin A, Smith B, Diedrich A, Yick JL, Lubitz N, Crook K, Mattone C, Bennett MB, Wojtach L, Abrantes K. Scientific response to a cluster of shark bites. PEOPLE AND NATURE 2022. [DOI: 10.1002/pan3.10337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Adam Barnett
- Biopixel Oceans Foundation Cairns Qld Australia
- College of Science and Engineering James Cook University Cairns Qld Australia
- Marine Data Technology Hub James Cook University Townsville Qld Australia
| | - Richard Fitzpatrick
- Biopixel Oceans Foundation Cairns Qld Australia
- College of Science and Engineering James Cook University Cairns Qld Australia
| | - Michael Bradley
- College of Science and Engineering James Cook University Cairns Qld Australia
- Marine Data Technology Hub James Cook University Townsville Qld Australia
| | - Ingo Miller
- College of Science and Engineering James Cook University Cairns Qld Australia
- Environmental Biochemistry, Institute for Chemistry and Biology of the Marine Environment Carl‐von‐Ossietzky University of Oldenburg Wilhelmshaven Germany
| | - Marcus Sheaves
- College of Science and Engineering James Cook University Cairns Qld Australia
- Marine Data Technology Hub James Cook University Townsville Qld Australia
| | - Andrew Chin
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering James Cook University Townsville Qld Australia
| | - Bethany Smith
- College of Science and Engineering James Cook University Cairns Qld Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering James Cook University Townsville Qld Australia
| | - Amy Diedrich
- College of Science and Engineering James Cook University Cairns Qld Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering James Cook University Townsville Qld Australia
| | | | - Nicolas Lubitz
- College of Science and Engineering James Cook University Cairns Qld Australia
- Marine Data Technology Hub James Cook University Townsville Qld Australia
| | - Kevin Crook
- College of Science and Engineering James Cook University Cairns Qld Australia
- Marine Data Technology Hub James Cook University Townsville Qld Australia
| | - Carlo Mattone
- College of Science and Engineering James Cook University Cairns Qld Australia
- Marine Data Technology Hub James Cook University Townsville Qld Australia
| | - Mike B. Bennett
- School of Biomedical Sciences The University of Queensland St Lucia Qld Australia
| | - Leah Wojtach
- College of Science and Engineering James Cook University Cairns Qld Australia
| | - Kátya Abrantes
- Biopixel Oceans Foundation Cairns Qld Australia
- College of Science and Engineering James Cook University Cairns Qld Australia
- Marine Data Technology Hub James Cook University Townsville Qld Australia
| |
Collapse
|
15
|
Manuzzi A, Jiménez-Mena B, Henriques R, Holmes BJ, Pepperell J, Edson J, Bennett MB, Huveneers C, Ovenden JR, Nielsen EE. Retrospective genomics highlights changes in genetic composition of tiger sharks (Galeocerdo cuvier) and potential loss of a south-eastern Australia population. Sci Rep 2022; 12:6582. [PMID: 35449439 PMCID: PMC9023511 DOI: 10.1038/s41598-022-10529-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/06/2022] [Indexed: 11/08/2022] Open
Abstract
Over the last century, many shark populations have declined, primarily due to overexploitation in commercial, artisanal and recreational fisheries. In addition, in some locations the use of shark control programs also has had an impact on shark numbers. Still, there is a general perception that populations of large ocean predators cover wide areas and therefore their diversity is less susceptible to local anthropogenic disturbance. Here we report on temporal genomic analyses of tiger shark (Galeocerdo cuvier) DNA samples that were collected from eastern Australia over the past century. Using Single Nucleotide Polymorphism (SNP) loci, we documented a significant change in genetic composition of tiger sharks born between ~1939 and 2015. The change was most likely due to a shift over time in the relative contribution of two well-differentiated, but hitherto cryptic populations. Our data strongly indicate a dramatic shift in the relative contribution of these two populations to the overall tiger shark abundance on the east coast of Australia, possibly associated with differences in direct or indirect exploitation rates.
Collapse
Affiliation(s)
- Alice Manuzzi
- National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600, Silkeborg, Denmark.
| | - Belen Jiménez-Mena
- National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600, Silkeborg, Denmark
| | - Romina Henriques
- National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600, Silkeborg, Denmark
| | - Bonnie J Holmes
- School of Science, Technology & Engineering, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Julian Pepperell
- Pepperell Research and Consulting, PO Box 1475, Noosaville DC, QLD, 4566, Australia
| | - Janette Edson
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mike B Bennett
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Charlie Huveneers
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Jennifer R Ovenden
- Molecular Fisheries Laboratory, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Einar E Nielsen
- National Institute of Aquatic Resources, Technical University of Denmark, Vejlsøvej 39, 8600, Silkeborg, Denmark
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
16
|
Drone Observations of Marine Life and Human–Wildlife Interactions off Sydney, Australia. DRONES 2022. [DOI: 10.3390/drones6030075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Drones have become popular with the general public for viewing and filming marine life. One amateur enthusiast platform, DroneSharkApp, films marine life in the waters off Sydney, Australia year-round and posts their observations on social media. The drone observations include the behaviours of a variety of coastal marine wildlife species, including sharks, rays, fur seals, dolphins and fish, as well as migratory species such as migrating humpback whales. Given the extensive effort and multiple recordings of the presence, behaviour and interactions of various species with humans provided by DroneSharkApp, we explored its utility for providing biologically meaningful observations of marine wildlife. Using social media posts from the DroneSharkApp Instagram page, a total of 678 wildlife videos were assessed from 432 days of observation collected by a single observer. This included 94 feeding behaviours or events for fur seals (n = 58) and dolphins (n = 33), two feeding events for white sharks and one feeding event for a humpback whale. DroneSharkApp documented 101 interactions with sharks and humans (swimmers and surfers), demonstrating the frequent, mainly innocuous human–shark overlap off some of Australia’s busiest beaches. Finally, DroneSharkApp provided multiple observations of humpback and dwarf minke whales with calves travelling north, indicating calving occurring well south of traditional northern Queensland breeding waters. Collaboration between scientists and citizen scientists such as those involved with DroneSharkApp can greatly and quantitatively increase the biological understanding of marine wildlife data.
Collapse
|
17
|
Hammerschlag N, McDonnell LH, Rider MJ, Street GM, Hazen EL, Natanson LJ, McCandless CT, Boudreau MR, Gallagher AJ, Pinsky ML, Kirtman B. Ocean warming alters the distributional range, migratory timing, and spatial protections of an apex predator, the tiger shark (Galeocerdo cuvier). GLOBAL CHANGE BIOLOGY 2022; 28:1990-2005. [PMID: 35023247 PMCID: PMC9305416 DOI: 10.1111/gcb.16045] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/14/2021] [Accepted: 12/12/2021] [Indexed: 05/07/2023]
Abstract
Given climate change threats to ecosystems, it is critical to understand the responses of species to warming. This is especially important in the case of apex predators since they exhibit relatively high extinction risk, and changes to their distribution could impact predator-prey interactions that can initiate trophic cascades. Here we used a combined analysis of animal tracking, remotely sensed environmental data, habitat modeling, and capture data to evaluate the effects of climate variability and change on the distributional range and migratory phenology of an ectothermic apex predator, the tiger shark (Galeocerdo cuvier). Tiger sharks satellite tracked in the western North Atlantic between 2010 and 2019 revealed significant annual variability in the geographic extent and timing of their migrations to northern latitudes from ocean warming. Specifically, tiger shark migrations have extended farther poleward and arrival times to northern latitudes have occurred earlier in the year during periods with anomalously high sea-surface temperatures. A complementary analysis of nearly 40 years of tiger shark captures in the region revealed decadal-scale changes in the distribution and timing of shark captures in parallel with long-term ocean warming. Specifically, areas of highest catch densities have progressively increased poleward and catches have occurred earlier in the year off the North American shelf. During periods of anomalously high sea-surface temperatures, movements of tracked sharks shifted beyond spatial management zones that had been affording them protection from commercial fishing and bycatch. Taken together, these study results have implications for fisheries management, human-wildlife conflict, and ecosystem functioning.
Collapse
Affiliation(s)
- Neil Hammerschlag
- Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFloridaUSA
- Leonard & Jayne Abess Center for Ecosystem Science and PolicyUniversity of MiamiCoral GablesFloridaUSA
| | - Laura H. McDonnell
- Leonard & Jayne Abess Center for Ecosystem Science and PolicyUniversity of MiamiCoral GablesFloridaUSA
| | - Mitchell J. Rider
- Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFloridaUSA
| | - Garrett M. Street
- Department of Wildlife, Fisheries, and AquacultureMississippi State UniversityStarkvilleMississippiUSA
- Quantitative Ecology and Spatial Technologies LaboratoryMississippi State UniversityStarkvilleMississippiUSA
| | - Elliott L. Hazen
- Environmental Research DivisionNOAA Southwest Fisheries Science CenterMontereyCaliforniaUSA
| | - Lisa J. Natanson
- National Marine Fisheries ServiceNarragansett LaboratoryNOAA Northeast Fisheries Science CenterNarragansettRhode IslandUSA
| | - Camilla T. McCandless
- National Marine Fisheries ServiceNarragansett LaboratoryNOAA Northeast Fisheries Science CenterNarragansettRhode IslandUSA
| | - Melanie R. Boudreau
- Department of Wildlife, Fisheries, and AquacultureMississippi State UniversityStarkvilleMississippiUSA
- Quantitative Ecology and Spatial Technologies LaboratoryMississippi State UniversityStarkvilleMississippiUSA
| | | | - Malin L. Pinsky
- Department of Ecology, Evolution, and Natural ResourcesRutgers, The State University of New JerseyNew BrunswickNew JerseyUSA
| | - Ben Kirtman
- Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiFloridaUSA
| |
Collapse
|