1
|
Li P, Zhang T, Song Z, Chen D, Yang Y, He J, Lei X, Tian H, Zhang K. Biomass-based mineralized chitin microsheets for high-efficiency radiative cooling. Int J Biol Macromol 2025; 308:142360. [PMID: 40120917 DOI: 10.1016/j.ijbiomac.2025.142360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/05/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
The increasing frequency of extreme heat events under global climate change, combined with high energy consumption and CO2 emissions from conventional cooling systems, threatens both ecological sustainability and human health. While traditional passive radiative cooling materials offer a potential solution, they often lead to pollution and have complex designs with high costs. To address these limitations, we developed Mineralized Chitin-based Composite Microsheets (MCCM), a low-cost, eco-friendly radiative cooling material derived from shrimp shells. By leveraging the natural mineralized multiscale Bouligand structure of shrimp shells, we designed a simple chemical treatment to remove proteins, lipids, and pigments while preserving its multiscale structure. Under solar irradiation, MCCM enables sub-ambient radiative cooling, achieving an average temperature reduction of 4.5 °C, attributed to its high solar reflectance (90.0 %) and mid-infrared emissivity (96.0 %). When applied to building exteriors and rooftops, MCCM significantly enhances annual energy-saving performance (>80 GJ) and effectively reduces CO2 emissions. Additionally, it exhibits excellent thermal stability and flame retardancy and can be recycled as agricultural fertilizer, further enhancing its sustainability. This simple processing method for high-value utilization of waste shrimp shells offers a novel approach to developing low-cost functional materials and recycling biomass waste, demonstrating significant potential for building temperature management.
Collapse
Affiliation(s)
- Pengfei Li
- School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| | - Tao Zhang
- School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| | - Zerong Song
- School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| | - Dong Chen
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Yicheng Yang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Jiatong He
- School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiaojuan Lei
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Huafeng Tian
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, 100048, People's Republic of China.
| | - Kai Zhang
- School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Soft-Matter Material and Function Manufacturing, Chongqing 400715, People's Republic of China.
| |
Collapse
|
2
|
Shetranjiwalla S, Ononiwu A. Identifying barriers to scaled-up production and commercialization of chitin and chitosan using green technologies: A review and quantitative green chemistry assessment. Int J Biol Macromol 2025; 305:141062. [PMID: 39971074 DOI: 10.1016/j.ijbiomac.2025.141062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/05/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
Chitosan (CHT) production from Chitin (CH) is a billion-dollar industry but is constrained by multi-step chemical extractions that are energy and wastewater-intensive. Numerous green recovery technologies (GRT)s have paved the path for sustainable extraction, however, these have not been adopted for scale-up or mainstream commercialization. Therefore, this review critically evaluates the chemical, biological, combined biological-chemical and GRTs for CH/CHT recovery on commercially important criteria such as yields, molecular properties, cost/gram, water & energy use and wastewater & GHG emissions to identify barriers that hinder (i) the scaled-up, cost-effective commodity production of CH/CHT using GRTs (ii) the preparation of CH/CHT standards and (iii) the successful pathway from CH/CHT recovery to commercialization of chitosan-based products, supporting United Nations Sustainable Development Goals (UN SDG)s, particularly SDG 12. To arrive at the data-driven assessment, techno-economic and green chemistry metrics such as PMI and E-factor were calculated. The industry-developed quantitative green chemistry evaluator DOZN™ was used to assess resource & energy efficiency and human & environmental health hazards for CHT production. Mechanochemistry was identified as a viable GRT based on the limited literature available for quantitative assessment, and increasing the yield from GRT processes was identified as key to improving economic performance while also reducing environmental impacts.
Collapse
Affiliation(s)
- Shegufta Shetranjiwalla
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Newfoundland and Labrador A2H 5G4, Canada.
| | - Arlene Ononiwu
- School of Science and the Environment, Grenfell Campus, Memorial University of Newfoundland, Newfoundland and Labrador A2H 5G4, Canada
| |
Collapse
|
3
|
Rai S, Pokhrel P, Udash P, Chemjong M, Bhattarai N, Thuanthong A, Nalinanon S, Nirmal N. Chitin and chitosan from shellfish waste and their applications in agriculture and biotechnology industries. Crit Rev Biotechnol 2025:1-19. [PMID: 40090738 DOI: 10.1080/07388551.2025.2473576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 11/12/2024] [Accepted: 01/26/2025] [Indexed: 03/18/2025]
Abstract
A shellfish processing plant generates only 30-40% of edible meat, while 70-60% of portions are considered inedible or by-products. This large amount of byproduct or shellfish processing waste contains 20-40% chitin, that can be extracted using chemical or greener alternative extraction technologies. Chitin and its derivative (chitosan) are natural polysaccharides with nontoxicity, biocompatible, and biodegradable properties. Due to their versatile physicochemical, mechanical, and various bioactivities, these compounds find applications in various industries, including: biomedical, dental, cosmetics, food, textiles, agriculture, and biotechnology. In the agricultural sector, these compounds have been reported to promote: plant growth, plant defense system, slow release of nutrients in fertilizer, plant nutrition, and remediate soil conditions, etc. Whereas, biotechnology applications indicated: enhanced enzyme stability and efficacy, water purification and remediation, application in fuel cells and supercapacitors for energy conversion, acting as a catalyst in chemical synthesis, etc. This review provides a comprehensive discussion on the utilization of these biopolymers in agriculture (fertilizer, seed coating, soil treatment, and bioremediation) and biotechnology (enzyme immobilization, energy conversion, wastewater treatment, and chemical synthesis). Additionally, various extraction techniques including conventional and non-thermal techniques have been reported. Lastly, concluding remarks and future direction have been provided.
Collapse
Affiliation(s)
- Sampurna Rai
- Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand
| | - Prashant Pokhrel
- Department of Food Technology and Quality Control, Ministry of Agriculture and Livestock Development, Government of Nepal, Babar Mahal, Kathmandu, Nepal
| | - Pranaya Udash
- Faculty of Life Science, Campus Kulmbach, University of Bayreuth, Kulmbach, Germany
| | - Menjo Chemjong
- German Institute of Food Technologies-DIL e.V., Quakenbrück, Germany
| | - Namita Bhattarai
- School of Science, Western Sydney University, Richmond, NSW, Australia
| | | | - Sitthipong Nalinanon
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
4
|
Vakkachan AP, Gopakumar ST, Janardhanan RK, Pootholathil S, Surendran S, Nair AV, Raveendran RK, Suresh G, Subramanian S, Pananghat V. Degradation of marine crustacean shell wastes through single-stage co-fermentation using proteolytic and chitinolytic bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:62329-62345. [PMID: 37851246 DOI: 10.1007/s11356-023-30355-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/05/2023] [Indexed: 10/19/2023]
Abstract
Management of crustacean shell waste (SW) through an eco-friendly technique is an environmental obligation to control pollution. The present study showed a novel approach through the simultaneous application of proteolytic and chitinolytic bacteria to effectively degrade unprocessed crustacean SW. For this, the bacteria with concurrent chitinolytic and proteolytic activity (Bacillus subtilis, Priestia megaterium, or Bacillus amyloliquefaciens) were applied either alone or in combination with one proteolytic strain (Paenibacillus alvei) in the unprocessed lobster, crab, and shrimp SW. The method degraded the shells with high deproteinization (> 90%) and demineralization efficiency (> 90%). The degradation was confirmed through scanning electron microscopy. The highest weight loss achieved with shrimp, crab, and lobster shells was 93.67%, 82.60%, and 83.33%, respectively. B. amyloliquefaciens + P. alvei combination produced the highest weight loss in crab and lobster SW, whereas all combinations produced statistically similar weight loss in shrimp SW. There was a concurrent production of N-acetyl glucosamine (up to 532.89, 627.87, and 498.95 mg/g of shrimp, lobster, and crab shell, respectively, with P. megaterium + P. alvei and B. amyloliquefaciens + P. alvei in all SW) and amino acids (4553.8, 648.89, 957.27 μg/g of shrimp, lobster, and crab shells, respectively with B. subtilis + P. alvei in shrimp and B. amyloliquefaciens + P. alvei in crab and lobster). Therefore, it is concluded that, for the first time, efficient degradation of crustacean shell waste was observed using chitinolytic and proteolytic bacterial fermentation with the obtention of byproducts, providing a basis for further application in SW management.
Collapse
Affiliation(s)
- Amala Panaparambil Vakkachan
- Marine Biotechnology, Fish Nutrition, and Health Division, ICAR-Central Marine Fisheries Research Institute (ICAR-CMFRI), Post Box No. 1603, Ernakulam, Kochi, Kerala, 682018, India
- Cochin University of Science and Technology, Kochi, Kerala, 682022, India
| | - Sumithra Thangalazhy Gopakumar
- Marine Biotechnology, Fish Nutrition, and Health Division, ICAR-Central Marine Fisheries Research Institute (ICAR-CMFRI), Post Box No. 1603, Ernakulam, Kochi, Kerala, 682018, India.
| | - Reshma Kalarical Janardhanan
- Marine Biotechnology, Fish Nutrition, and Health Division, ICAR-Central Marine Fisheries Research Institute (ICAR-CMFRI), Post Box No. 1603, Ernakulam, Kochi, Kerala, 682018, India
| | - Sayooj Pootholathil
- Marine Biotechnology, Fish Nutrition, and Health Division, ICAR-Central Marine Fisheries Research Institute (ICAR-CMFRI), Post Box No. 1603, Ernakulam, Kochi, Kerala, 682018, India
| | - Sneha Surendran
- Marine Biotechnology, Fish Nutrition, and Health Division, ICAR-Central Marine Fisheries Research Institute (ICAR-CMFRI), Post Box No. 1603, Ernakulam, Kochi, Kerala, 682018, India
| | - Anusree Velappan Nair
- Marine Biotechnology, Fish Nutrition, and Health Division, ICAR-Central Marine Fisheries Research Institute (ICAR-CMFRI), Post Box No. 1603, Ernakulam, Kochi, Kerala, 682018, India
| | | | - Gayathri Suresh
- Marine Biotechnology, Fish Nutrition, and Health Division, ICAR-Central Marine Fisheries Research Institute (ICAR-CMFRI), Post Box No. 1603, Ernakulam, Kochi, Kerala, 682018, India
| | - Shinoj Subramanian
- Krishi Vigyan Kendra (Ernakulam), ICAR-CMFRI, Kochi, Kerala, 682505, India
| | - Vijayagopal Pananghat
- Marine Biotechnology, Fish Nutrition, and Health Division, ICAR-Central Marine Fisheries Research Institute (ICAR-CMFRI), Post Box No. 1603, Ernakulam, Kochi, Kerala, 682018, India
| |
Collapse
|
5
|
Gao M, Tang H, Zhu H. Advances in extraction, utilization, and development of chitin/chitosan and its derivatives from shrimp shell waste. Compr Rev Food Sci Food Saf 2024; 23:e70008. [PMID: 39223761 DOI: 10.1111/1541-4337.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Shrimp consumption is in great demand among the seafood used globally. However, this expansion has resulted in the substantial generation and disposal of shrimp shell waste. Through literature search, it has been observed that since 2020, global scholars have shown unprecedented interest in shrimp shell waste and its chitin/chitosan. However, these new insights lack corresponding and comprehensive summarization and analysis. Therefore, this article provides a detailed review of the extraction methods, applications, and the latest research developments on chitin/chitosan from shrimp shells, including micro-nano derivatives, from 2020 to the present. The results indicate that chemical extraction remains the primary technique for the extraction and preparation of chitin/chitosan from shrimp shells. With further refinement and development, adjusting parameters in the chemical extraction process or employing auxiliary techniques such as microwave and radiation enable the customization of target products with different characteristics (e.g., deacetylation degree, molecular weight, and degree of acetylation) according to specific needs. Additionally, in pursuit of environmentally friendly, efficient, and gentle extraction processes, recent research has shifted toward microbial fermentation and green solvent methods for chitin/chitosan extraction. Beyond the traditional antibacterial, film-forming, and encapsulation functionalities, research into the applications of chitosan in biomedical, food processing, new materials, water treatment, and adsorption fields is gradually deepening. Chitin/chitosan derivatives and their modified products have also been a focal point of research in recent years. However, with the rapid expansion, the future development of chitin/chitosan and its derivatives still faces challenges related to the unclear mechanism of action and the complexities associated with industrial scale-up.
Collapse
Affiliation(s)
- Mingyue Gao
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Hanqi Tang
- Personal Department, Shandong University, Qingdao, China
| | - Hongguang Zhu
- College of Life Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Davis D, Umesh M, Santhosh AS, Suresh S, Shanmugam S, Kikas T. Extraction of Fungal Chitosan by Leveraging Pineapple Peel Substrate for Sustainable Biopolymer Production. Polymers (Basel) 2024; 16:2455. [PMID: 39274088 PMCID: PMC11397891 DOI: 10.3390/polym16172455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/16/2024] Open
Abstract
The cost-effective production of commercially important biopolymers, such as chitosan, has gained momentum in recent decades owing to its versatile material properties. The seasonal variability in the availability of crustacean waste and fish waste, routinely used for chitosan extraction, has triggered a focus on fungal chitosan as a sustainable alternative. This study demonstrates a cost-effective strategy for cultivating an endophytic fungus isolated from Pichavaram mangrove soil in a pineapple peel-based medium for harvesting fungal biomass. Chitosan was extracted using alkali and acid treatment methods from various combinations of media. The highest chitosan yield (139 ± 0.25 mg/L) was obtained from the pineapple peel waste-derived medium supplemented with peptone. The extracted polymer was characterized by FTIR, XRD, DSC, and TGA analysis. The antioxidant activity of the fungal chitosan was evaluated using DPPH assay and showed an IC50 value of 0.22 mg/L. Subsequently, a transparent chitosan film was fabricated using the extracted fungal chitosan, and its biodegradability was assessed using a soil burial test for 50 days. Biodegradation tests revealed that, after 50 days, a degradation rate of 28.92 ± 0.75% (w/w) was recorded. Thus, this study emphasizes a cost-effective strategy for the production of biopolymers with significant antioxidant activity, which may have promising applications in food packaging if additional investigations are carried out in the future.
Collapse
Affiliation(s)
- Delwin Davis
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru 560029, Karnataka, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru 560029, Karnataka, India
| | - Adhithya Sankar Santhosh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru 560029, Karnataka, India
| | - Sreehari Suresh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru 560029, Karnataka, India
| | - Sabarathinam Shanmugam
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 56, 51014 Tartu, Estonia
| | - Timo Kikas
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi 56, 51014 Tartu, Estonia
| |
Collapse
|
7
|
Wani AK, Akhtar N, Mir TUG, Rahayu F, Suhara C, Anjli A, Chopra C, Singh R, Prakash A, El Messaoudi N, Fernandes CD, Ferreira LFR, Rather RA, Américo-Pinheiro JHP. Eco-friendly and safe alternatives for the valorization of shrimp farming waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38960-38989. [PMID: 37249769 PMCID: PMC10227411 DOI: 10.1007/s11356-023-27819-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
The seafood industry generates waste, including shells, bones, intestines, and wastewater. The discards are nutrient-rich, containing varying concentrations of carotenoids, proteins, chitin, and other minerals. Thus, it is imperative to subject seafood waste, including shrimp waste (SW), to secondary processing and valorization for demineralization and deproteination to retrieve industrially essential compounds. Although several chemical processes are available for SW processing, most of them are inherently ecotoxic. Bioconversion of SW is cost-effective, ecofriendly, and safe. Microbial fermentation and the action of exogenous enzymes are among the significant SW bioconversion processes that transform seafood waste into valuable products. SW is a potential raw material for agrochemicals, microbial culture media, adsorbents, therapeutics, nutraceuticals, and bio-nanomaterials. This review comprehensively elucidates the valorization approaches of SW, addressing the drawbacks of chemically mediated methods for SW treatments. It is a broad overview of the applications associated with nutrient-rich SW, besides highlighting the role of major shrimp-producing countries in exploring SW to achieve safe, ecofriendly, and efficient bio-products.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Tahir Ul Gani Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Farida Rahayu
- Research Center for Applied Microbiology, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Cece Suhara
- Research Center for Horticulture and Plantation, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Anjli Anjli
- HealthPlix Technologies Private Limited, Bengaluru, 560103, India
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, 80000, Agadir, Morocco
| | - Clara Dourado Fernandes
- Graduate Program in Process Engineering, Tiradentes University, Ave. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Ave. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil
- Institute of Technology and Research, Ave. Murilo Dantas, 300, Farolândia, Aracaju, SE, 49032-490, Brazil
| | - Rauoof Ahmad Rather
- Division of Environmental Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar 190025, Srinagar, Jammu and Kashmir, India
| | - Juliana Heloisa Pinê Américo-Pinheiro
- Department of Forest Science, Soils and Environment, School of Agronomic Sciences, São Paulo State University (UNESP), Ave. Universitária, 3780, Botucatu, SP, 18610-034, Brazil.
- Graduate Program in Environmental Sciences, Brazil University, Street Carolina Fonseca, 584, São Paulo, SP, 08230-030, Brazil.
| |
Collapse
|
8
|
Sheibani S, Jafarzadeh S, Qazanfarzadeh Z, Osadee Wijekoon MMJ, Mohd Rozalli NH, Mohammadi Nafchi A. Sustainable strategies for using natural extracts in smart food packaging. Int J Biol Macromol 2024; 267:131537. [PMID: 38608975 DOI: 10.1016/j.ijbiomac.2024.131537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
The growing demand for sustainable and eco-friendly food packaging has prompted research on innovative solutions to environmental and consumer health issues. To enhance the properties of smart packaging, the incorporation of bioactive compounds derived from various natural sources has attracted considerable interest because of their functional properties, including antioxidant and antimicrobial effects. However, extracting these compounds from natural sources poses challenges because of their complex chemical structures and low concentrations. Traditional extraction methods are often environmentally harmful, expensive and time-consuming. Thus, green extraction techniques have emerged as promising alternatives, offering sustainable and eco-friendly approaches that minimise the use of hazardous solvents and reduce environmental impact. This review explores cutting-edge research on the green extraction of bioactive compounds and their incorporation into smart packaging systems in the last 10 years. Then, an overview of bioactive compounds, green extraction techniques, integrated techniques, green extraction solvents and their application in smart packaging was provided, and the impact of bioactive compounds incorporated in smart packaging on the shelf lives of food products was explored. Furthermore, it highlights the challenges and opportunities within this field and presents recommendations for future research, aiming to contribute to the advancement of sustainable and efficient smart packaging solutions.
Collapse
Affiliation(s)
- Samira Sheibani
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Shima Jafarzadeh
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3216, Australia.
| | - Zeinab Qazanfarzadeh
- International Centre for Research on Innovative Biobased Materials (ICRI-BioM)-International Research Agenda, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - M M Jeevani Osadee Wijekoon
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | | | - Abdorreza Mohammadi Nafchi
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia; Department of Food Science and Technology, Damghan Branch, Islamic Azad University, Damghan, Iran; Green Biopolymer, Coatings & Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
9
|
Gawali PP, Toragall V, Madhurya L, Yannam SK, Ezhil Vendan S. Physicochemical comparison of chitin characteristics in three major stored-product beetle pests: Implications for biofumigant toxicity. Int J Biol Macromol 2024; 265:130759. [PMID: 38493810 DOI: 10.1016/j.ijbiomac.2024.130759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
The present study investigates the chitin properties of stored-product insect pests and their association with the fumigant toxicity of garlic essential oil. Chitin isolates of Callosobruchus maculatus, Sitophilus oryzae, and Tribolium castaneum adults were characterized using FT-IR, XRD, EA, SEM-EDS, and NMR techniques. Fumigant toxicity assay was performed under airtight condition in glass vial. The S. oryzae contains highest chitin content (19 %), followed by T. castaneum (10 %) and C. maculatus (8 %). The degree of crystallinity was lower in C. maculatus (67.13 %) than in S. oryzae (77.05 %) and T. castaneum (76.56 %). Morphologically, C. maculatus chitin displayed a flat lamellar surface with pores, while S. oryzae and T. castaneum exhibited densely arranged microfibrils based surfaces. Fumigant toxicity assays revealed varied susceptibility levels, C. maculatus exhibited higher susceptibility (0.27 μL/L air of LC50) compared to S. oryzae and T. castaneum (14.35 and 3.74 μL/L air of LC50, respectively) to garlic essential oil. The higher chitin content, greater crystallinity, and densely arranged structures in S. oryzae might contribute to its tolerance towards fumigant. Additionally, physico-chemical properties and penetration potentiality of the bioactive constituents might be linked to the toxicity in insects. Understanding these relations can enrich knowledge of chitin's role in fumigant toxicity mechanism.
Collapse
Affiliation(s)
- Pratiksha Prabhakar Gawali
- Traditional Foods and Applied Nutrition Department, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research, Ghaziabad 201 002, India
| | - Veeresh Toragall
- Academy of Scientific and Innovative Research, Ghaziabad 201 002, India; Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India
| | - Lokesh Madhurya
- Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute, Mysore 570 020, India
| | - Sudheer Kumar Yannam
- Traditional Foods and Applied Nutrition Department, CSIR-Central Food Technological Research Institute, Mysuru 570 020, India; Academy of Scientific and Innovative Research, Ghaziabad 201 002, India
| | - Subramanian Ezhil Vendan
- Academy of Scientific and Innovative Research, Ghaziabad 201 002, India; Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute, Mysore 570 020, India.
| |
Collapse
|
10
|
Rossi N, Grosso C, Delerue-Matos C. Shrimp Waste Upcycling: Unveiling the Potential of Polysaccharides, Proteins, Carotenoids, and Fatty Acids with Emphasis on Extraction Techniques and Bioactive Properties. Mar Drugs 2024; 22:153. [PMID: 38667770 PMCID: PMC11051396 DOI: 10.3390/md22040153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Shrimp processing generates substantial waste, which is rich in valuable components such as polysaccharides, proteins, carotenoids, and fatty acids. This review provides a comprehensive overview of the valorization of shrimp waste, mainly shrimp shells, focusing on extraction methods, bioactivities, and potential applications of these bioactive compounds. Various extraction techniques, including chemical extraction, microbial fermentation, enzyme-assisted extraction, microwave-assisted extraction, ultrasound-assisted extraction, and pressurized techniques are discussed, highlighting their efficacy in isolating polysaccharides, proteins, carotenoids, and fatty acids from shrimp waste. Additionally, the bioactivities associated with these compounds, such as antioxidant, antimicrobial, anti-inflammatory, and antitumor properties, among others, are elucidated, underscoring their potential in pharmaceutical, nutraceutical, and cosmeceutical applications. Furthermore, the review explores current and potential utilization avenues for these bioactive compounds, emphasizing the importance of sustainable resource management and circular economy principles in maximizing the value of shrimp waste. Overall, this review paper aims to provide insights into the multifaceted aspects of shrimp waste valorization, offering valuable information for researchers, industries, and policymakers interested in sustainable resource utilization and waste-management strategies.
Collapse
Affiliation(s)
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (N.R.); (C.D.-M.)
| | | |
Collapse
|
11
|
Ruangwicha J, Cheirsilp B, Suyotha W. Green biorefinery of shrimp shell waste for α-chitin and high-value co-products through successive fermentation by co-lactic acid bacteria and proteolytic fungus. BIORESOURCE TECHNOLOGY 2024; 393:130106. [PMID: 38008224 DOI: 10.1016/j.biortech.2023.130106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 11/28/2023]
Abstract
Green biorefinery process was conducted to extract α-chitin and high-value co-products from shrimp shell waste through microbial fermentation using mature coconut water (MCW) as a sole nutrient source. Symbiotic co-lactic acid fermentation (Co-LAF) by Lactobacillus plantarum and Streptococcus thermophilus produced higher levels of lactic acid (LA) and protease activity than their mono-cultures, which led to greater demineralization (DM) and deproteinization (DP) of shrimp shell powder (SSP). After optimizing Co-LAF through Response Surface Methodology and successive fermentation by an acid-active proteolytic fungus Rhizopus oligosporus, the highest DM of 94.0 ± 0.91 % and DP of 86.7 ± 0.1 % were achieved. Based on FT-IR, XRD, and SEM analysis, the bio-extracted chitin had similar structural characteristics to commercial α-chitin but with better quality. These strategies not only contribute to environmentally-friendly and cost-effective extraction of α-chitin (303 ± 18 mg/g-SSP), but also co-produce LA (57.18 ± 0.89 g/L), acid protease (4.33 ± 0.5 U/mL), bio-calcium (277 ± 12 mg-CaSO4/g-SSP), protein hydrolysate (268 ± 5 mg/g-SSP), and pigments (28.78 ± 1.56 µg/g-SSP).
Collapse
Affiliation(s)
- Jariya Ruangwicha
- International Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Benjamas Cheirsilp
- International Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| | - Wasana Suyotha
- International Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
12
|
Azelee NIW, Dahiya D, Ayothiraman S, Noor NM, Rasid ZIA, Ramli ANM, Ravindran B, Iwuchukwu FU, Selvasembian R. Sustainable valorization approaches on crustacean wastes for the extraction of chitin, bioactive compounds and their applications - A review. Int J Biol Macromol 2023; 253:126492. [PMID: 37634772 DOI: 10.1016/j.ijbiomac.2023.126492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/30/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
The unscientific disposal of the most abundant crustacean wastes, especially those derived from marine sources, affects both the economy and the environment. Strategic waste collection and management is the need of the hour. Sustainable valorization approaches have played a crucial role in solving those issues as well as generating wealth from waste. The shellfishery wastes are rich in valuable bioactive compounds such as chitin, chitosan, minerals, carotenoids, lipids, and other amino acid derivatives. These value-added components possessed pleiotropic applications in different sectors viz., food, nutraceutical, cosmeceutical, agro-industrial, healthcare, and pharmaceutical sectors. The manuscript covers the recent status, scope of shellfishery management, and different bioactive compounds obtained from crustacean wastes. In addition, both sustainable and conventional routes of valorization approaches were discussed with their merits and demerits along with their combinations. The utilization of nano and microtechnology was also included in the discussion, as they have become prominent research areas in recent years. More importantly, the future perspectives of crustacean waste management and other potential valorization approaches that can be implemented on a large scale.
Collapse
Affiliation(s)
- Nur Izyan Wan Azelee
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Johor, Malaysia; Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, UTM, 81310 Johor Bahru, Johor, Malaysia
| | - Digvijay Dahiya
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem 534101, West Godavari Dist, Andhra Pradesh, India
| | - Seenivasan Ayothiraman
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem 534101, West Godavari Dist, Andhra Pradesh, India.
| | - Norhayati Mohamed Noor
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, UTM, 81310 Johor Bahru, Johor, Malaysia; UTM Innovation & Commercialisation Centre, Industry Centre, UTM Technovation Park, 81310 Johor Bahru, Johor, Malaysia
| | - Zaitul Iffa Abd Rasid
- UTM Research Ethics Committee, Department of Vice-Chancellor (Research and Innovation), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Aizi Nor Mazila Ramli
- Faculty of Industrial Science and Technology, University Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia; Bio Aromatic Research Centre of Excellence, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea
| | - Felicitas U Iwuchukwu
- Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B 5025, Awka, Nigeria; Department of Industrial Engineering, Clemson University 29631, South Carolina USA
| | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India.
| |
Collapse
|
13
|
Rakhsit S, Pal K, Mondal S, Jana A, Mondal KC, Halder SK. Extraction of chitosan from biologically-derived chitin by bacterial chitin deacetylase: Process optimization and product quality assessment. Int J Biol Macromol 2023:125389. [PMID: 37331539 DOI: 10.1016/j.ijbiomac.2023.125389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Commercial chitosan manufacturing process relies on strong chemical treatment on chitin that generates chitosan with undesirable properties and leads to environmental pollution. To overcome the adverse consequences, enzymatic chitosan preparation from chitin was undertaken in the current study. A potent chitin deacetylase (CDA) producing bacterial strain was screened and subsequently identified as Alcaligens faecalis CS4. After optimization 40.69 U/ml of CDA production was achieved. By treating the organically extracted chitin with partially purified CDA chitosan yield of 19.04 % was attained having 71 % solubility, 74.9 % degree of deacetylation, 21.16 % crystallinity index, 246.4 kDa molecular weight and 298 °C highest-decomposition temperature. FTIR and XRD analysis revealed characteristics peaks respectively within 870-3425 cm-1 wavenumber and 10°-20°, for enzymatically and chemically extracted (commercial) chitosan that endorses their structural similarity which validated through electron microscopic study. At 10 mg/ml chitosan concentration 65.49 % DPPH radical scavenging activity endorsed its antioxidant potential. Minimum inhibitory concentration of chitosan was 0.675, 1.75, 0.33 and 0.75 mg/ml for Streptococcus mutans, Enterococcus faecalis, Escherichia coli and Vibrio sp., respectively. Mucoadhesiveness and cholesterol binding properties were also exhibited by extracted chitosan. The present study opens a new vista for eco-friendly extraction of chitosan from chitin that is proficient and sustainable in environmental perspective.
Collapse
Affiliation(s)
- Subham Rakhsit
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Kalyanbrata Pal
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Subhadeep Mondal
- Centre for Life Sciences, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Arijit Jana
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, India; Department of Microbiology, Raja N.L. Khan Women's College, Midnapore, West Bengal 721102, India
| | - Keshab Chandra Mondal
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal 721102, India
| | - Suman Kumar Halder
- Department of Microbiology, Vidyasagar University, Midnapore, West Bengal 721102, India.
| |
Collapse
|
14
|
Gharibzadeh M, Osfouri S, Jamekhorshid A, Jafari SA. Microbial chitin extraction and characterization from green tiger shrimp waste: A comparative study of culture mediums along with bioprocess optimization. Int J Biol Macromol 2023:125213. [PMID: 37276906 DOI: 10.1016/j.ijbiomac.2023.125213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
This research aims to introduce a low-cost, non-commercial culture medium and optimize the operating conditions for biological chitin extraction from green tiger shrimp waste in the Persian Gulf zone. For this purpose, the two most commonly used microorganisms, Bacillus licheniformis and Lactobacillus plantarum, were obtained to deproteinize and demineralize the shrimp shells within both culture mediums using a successive two-stage process. It was found that the proposed non-commercial culture medium was more efficient than the purchased and ready-to-use commercial medium and increased deproteinization and demineralization efficiency by 9 % and 11 %, respectively. According to the optimization, which was performed using a response surface methodology based on a central composite design, the demineralization model is more complicated than the deproteinization model. The presented model predicted deproteinization and demineralization yields with good accuracy. The FTIR results revealed that shrimp shells and chitin have similar main functional groups, while the degree of acetylation of the extracted chitin was 62.26 %. SEM results illustrated the formation of microfibrils and the chitin structure's porosity. The XRD data showed that the crystallinity index of chitin was 93.9 %. Besides, the thermal stability of the extracted chitin, with a maximum degradation temperature of 380 °C is comparable with the literature data.
Collapse
Affiliation(s)
- Mahsa Gharibzadeh
- Department of Chemical Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran
| | - Shahriar Osfouri
- Department of Chemical Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran.
| | - Ahmad Jamekhorshid
- Department of Chemical Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran
| | - Seyed Ali Jafari
- Department of Chemical Engineering, Faculty of Petroleum, Gas, and Petrochemical Engineering, Persian Gulf University, Bushehr, Iran
| |
Collapse
|
15
|
Mondal S, Rakhshit S, Pal K, Santra S, Goswami D, Mondal SP, Halder SK, Mondal KC. Production of glutathione from probiotic Bacillus amyloliquefaciens KMH10 using banana peel extract. BIORESOURCE TECHNOLOGY 2023; 376:128910. [PMID: 36940875 DOI: 10.1016/j.biortech.2023.128910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Glutathione, a tri-peptide (glutamate-cysteine-glycine) with the thiol group (-SH), is most efficient antioxidative agent in eukaryotic cells. The present study aimed to isolate an efficient probiotic bacterium having the potential to produce glutathione. The isolated strain Bacillus amyloliquefaciens KMH10 showed antioxidative activity (77.7 ± 2.56) and several other essential probiotic attributes. Banana peel, a waste of banana fruit, is chiefly composed of hemicellulose with various minerals and amino acids. A consortium of lignocellulolytic enzyme was used for the saccharifying banana peel to produce 65.71 g/L sugar to support the optimal glutathione production of 181 ± 4.56 mg/L; i.e., 1.6 folds higher than the control. So, the studied probiotic bacteria could be an effective resource for glutathione; therefore, the stain could be used as natural therapeutics for the prevention/treatment of different inflammation-related gastric ailments and as an effective producer of glutathione using valorized banana waste that has excellent industrial relevance.
Collapse
Affiliation(s)
- Subhadeep Mondal
- Centre for Life Sciences, Vidyasagar University, Midnapore 721 102, West Bengal, India
| | - Shubham Rakhshit
- Department of Microbiology, Vidyasagar University, Midnapore 721 102, West Bengal, India
| | - Kalyanbrata Pal
- Department of Microbiology, Vidyasagar University, Midnapore 721 102, West Bengal, India
| | - Sourav Santra
- Department of Microbiology, Vidyasagar University, Midnapore 721 102, West Bengal, India
| | - Debabrata Goswami
- Department of Microbiology, Vidyasagar University, Midnapore 721 102, West Bengal, India
| | - Saswati Parua Mondal
- Department of Physiology, Bajkul Milani Mahavidyalaya, West Bengal 721626, India
| | - Suman Kumar Halder
- Department of Microbiology, Vidyasagar University, Midnapore 721 102, West Bengal, India
| | - Keshab Chandra Mondal
- Department of Microbiology, Vidyasagar University, Midnapore 721 102, West Bengal, India.
| |
Collapse
|
16
|
Sulthan R, Reghunadhan A, Sambhudevan S. A new era of chitin synthesis and dissolution using Deep Eutectic Solvents- Comparison with Ionic Liquids. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
17
|
Saravanan A, Kumar PS, Yuvaraj D, Jeevanantham S, Aishwaria P, Gnanasri PB, Gopinath M, Rangasamy G. A review on extraction of polysaccharides from crustacean wastes and their environmental applications. ENVIRONMENTAL RESEARCH 2023; 221:115306. [PMID: 36682444 DOI: 10.1016/j.envres.2023.115306] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Disposal of biodegradable waste of seashells leads to an environmental imbalance. A tremendous amount of wastes produced from flourishing shell fish industries while preparing crustaceans for human consumption can be directed towards proper utilization. The review of the present study focuses on these polysaccharides from crustaceans and a few important industrial applications. This review aimed to emphasize the current research on structural analyses and extraction of polysaccharides. The article summarises the properties of chitin, chitosan, and chitooligosaccharides and their derivatives that make them non-toxic, biodegradable, and biocompatible. Different extraction methods of chitin, chitosan, and chitooligosaccharides have been discussed in detail. Additionally, this information outlines possible uses for derivatives of chitin, chitosan, and chitooligosaccharides in the environmental, pharmaceutical, agricultural, and food industries. Additionally, it is essential to the textile, cosmetic, and enzyme-immobilization industries. This review focuses on new, insightful suggestions for raising the value of crustacean shell waste by repurposing a highly valuable material.
Collapse
Affiliation(s)
- A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - D Yuvaraj
- Department of Biotechnology, Vel Tech High Tech Dr. Rangaragan Dr. Sakunthala Engineering College, Chennai, Tamil Nadu, 600062, India
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - P Aishwaria
- Department of Biotechnology, Vel Tech High Tech Dr. Rangaragan Dr. Sakunthala Engineering College, Chennai, Tamil Nadu, 600062, India
| | - P B Gnanasri
- Department of Biotechnology, Vel Tech High Tech Dr. Rangaragan Dr. Sakunthala Engineering College, Chennai, Tamil Nadu, 600062, India
| | - M Gopinath
- Department of Biotechnology, Vel Tech High Tech Dr. Rangaragan Dr. Sakunthala Engineering College, Chennai, Tamil Nadu, 600062, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
18
|
Sixto-Berrocal AM, Vázquez-Aldana M, Miranda-Castro SP, Martínez-Trujillo MA, Cruz-Díaz MR. Chitin/chitosan extraction from shrimp shell waste by a completely biotechnological process. Int J Biol Macromol 2023; 230:123204. [PMID: 36634792 DOI: 10.1016/j.ijbiomac.2023.123204] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Two lactic bacteria were used in sequential co-cultures to demineralize (DM) and deproteinize (DP) shrimp shells (SS) to obtain chitin. During the first 24 h, Lactobacillus delbrueckii performed the DM in a minimal medium containing 100 g/L SS and 50 g/L glucose. Then, three different conditions were assayed to complete DM and perform the DP stage: 1) Bifidobacterium lactis was added with 35 g/L of glucose (Ld-G → Bl-G); 2) only B. lactis was added (Ld-G → Bl); and 3) a 35 g/L pulse of glucose was added, and at 48 h, B. lactis was inoculated (Ld-G → G → Bl). The highest DM (98.63 %) and DP (88 %) were obtained using a glucose pulse in the DM step and controlling the pH value above 6.0 in the DP step. Finally, a deacetylases cocktail produced by Aspergillus niger catalyzed the deacetylation of the resulting chitin. The chitosan samples had a deacetylation degree higher than 78 % and a solubility of 25 % in 1.0 N acetic acid. The deacetylation yield was 74 % after a mild chemical treatment, with a molecular weight of 71.31 KDa. This work reports an entirely biological process to get chitin and chitosan from SS with high yields.
Collapse
Affiliation(s)
- Ana María Sixto-Berrocal
- División de Ingeniería Química y Bioquímica, Tecnológico de Estudios Superiores de Ecatepec, Av. Tecnológico S/N, Valle de Anáhuac, Ecatepec de Morelos, Estado de México 55210, Mexico; Departamento de Ingeniería y Tecnología, Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán-Campo Uno, Av. 1° de mayo s/n Colonia Santa Ma. Las Torres, Cuautitlán Izcalli, Estado de México C.P. 54740, Mexico
| | - Marlenne Vázquez-Aldana
- División de Ingeniería Química y Bioquímica, Tecnológico de Estudios Superiores de Ecatepec, Av. Tecnológico S/N, Valle de Anáhuac, Ecatepec de Morelos, Estado de México 55210, Mexico
| | - Susana Patricia Miranda-Castro
- Área de las Ciencias Biológicas, Químicas y de la Salud, Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán-Campo Uno, Av. 1° de mayo s/n Colonia Santa Ma. Las Torres, Cuautitlán Izcalli, Estado de México C.P. 54740, Mexico
| | - M Aurora Martínez-Trujillo
- División de Ingeniería Química y Bioquímica, Tecnológico de Estudios Superiores de Ecatepec, Av. Tecnológico S/N, Valle de Anáhuac, Ecatepec de Morelos, Estado de México 55210, Mexico.
| | - Martín R Cruz-Díaz
- División de Ingeniería Química y Bioquímica, Tecnológico de Estudios Superiores de Ecatepec, Av. Tecnológico S/N, Valle de Anáhuac, Ecatepec de Morelos, Estado de México 55210, Mexico; Departamento de Ingeniería y Tecnología, Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán-Campo Uno, Av. 1° de mayo s/n Colonia Santa Ma. Las Torres, Cuautitlán Izcalli, Estado de México C.P. 54740, Mexico.
| |
Collapse
|
19
|
Chitin and chitin-based biomaterials: A review of advances in processing and food applications. Carbohydr Polym 2023; 299:120142. [PMID: 36876773 DOI: 10.1016/j.carbpol.2022.120142] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022]
Abstract
Chitin is the most abundant natural amino polysaccharide, showing various practical applications owing to its functional properties. However, there are barriers in the development due to the difficulty of chitin extraction and purification, regarding its high crystallinity and low solubility. In recent years, some novel technologies such as microbial fermentation, ionic liquid, electrochemical extraction have emerged for the green extraction of chitin from new sources. Furthermore, nanotechnology, dissolution systems and chemical modification were applied to develop a variety of chitin-based biomaterials. Remarkably, chitin was used in delivering active ingredients and developing functional foods for weight loss, lipid reduction, gastrointestinal health, and anti-aging. Moreover, the application of chitin-based materials was expanded into medicine, energy and the environment. This review outlined the emerging extraction methods and processing routes of different chitin sources and advances in applying chitin-based materials. We aimed to provide some direction for the multi-disciplinary production and application of chitin.
Collapse
|
20
|
Islam N, Hoque M, Taharat SF. Recent advances in extraction of chitin and chitosan. World J Microbiol Biotechnol 2023; 39:28. [DOI: 10.1007/s11274-022-03468-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022]
|
21
|
Abdelgalil SA, Abo-Zaid GA. Bioprocess development as a sustainable platform for eco-friendly alkaline phosphatase production: an approach towards crab shells waste management. Microb Cell Fact 2022; 21:141. [PMID: 35842620 PMCID: PMC9287919 DOI: 10.1186/s12934-022-01868-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/03/2022] [Indexed: 11/23/2022] Open
Abstract
Background There are substantial environmental and health risks associated with the seafood industry's waste of crab shells. In light of these facts, shellfish waste management is critical for environmental protection against hazardous waste produced from the processing industries. Undoubtedly, improved green production strategies, which are based on the notion of "Green Chemistry," are receiving a lot of attention. Therefore, this investigation shed light on green remediation of the potential hazardous crab shell waste for eco-friendly production of bacterial alkaline phosphatase (ALP) through bioprocessing development strategies. Results It was discovered that by utilizing sequential statistical experimental designs, commencing with Plackett–Burman design and ending with spherical central composite design, and then followed by pH-uncontrolled cultivation conditions in a 7 L bench-top bioreactor, an innovative medium formulation could be developed that boosted ALP production from Bacillus licheniformis strain ALP3 to 212 U L−1. The highest yield of ALP was obtained after 22 h of incubation time with yield coefficient Yp/s of 795 U g−1, which was 4.35-fold higher than those obtained in the shake-flask system. ALP activity has a substantial impact on the volatilization of crab shell particles, as shown by the results of several analytical techniques such as atomic absorption spectrometry, TGA, DSC, EDS, FTIR, and XRD. Conclusions We highlighted in the current study that the biovalorization of crab shell waste and the production of cost-effective ALP were being combined and that this was accomplished via the use of a new and innovative medium formulation design for seafood waste management as well as scaling up production of ALP on the bench-top scale.
Collapse
Affiliation(s)
- Soad A Abdelgalil
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Universities and Research Institutes Zone, New Borg El-Arab City, 21934, Alexandria, Egypt.
| | - Gaber A Abo-Zaid
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), Universities and Research Institutes Zone, New Borg El-Arab City, 21934, Alexandria, Egypt
| |
Collapse
|
22
|
Green and eco-friendly approaches for the extraction of chitin and chitosan: A review. Carbohydr Polym 2022; 287:119349. [DOI: 10.1016/j.carbpol.2022.119349] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 12/20/2022]
|
23
|
Pellis A, Guebitz GM, Nyanhongo GS. Chitosan: Sources, Processing and Modification Techniques. Gels 2022; 8:gels8070393. [PMID: 35877478 PMCID: PMC9322947 DOI: 10.3390/gels8070393] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/11/2022] [Accepted: 06/19/2022] [Indexed: 02/07/2023] Open
Abstract
Chitosan, a copolymer of glucosamine and N-acetyl glucosamine, is derived from chitin. Chitin is found in cell walls of crustaceans, fungi, insects and in some algae, microorganisms, and some invertebrate animals. Chitosan is emerging as a very important raw material for the synthesis of a wide range of products used for food, medical, pharmaceutical, health care, agriculture, industry, and environmental pollution protection. This review, in line with the focus of this special issue, provides the reader with (1) an overview on different sources of chitin, (2) advances in techniques used to extract chitin and converting it into chitosan, (3) the importance of the inherent characteristics of the chitosan from different sources that makes them suitable for specific applications and, finally, (4) briefly summarizes ways of tailoring chitosan for specific applications. The review also presents the influence of the degree of acetylation (DA) and degree of deacetylation (DDA), molecular weight (Mw) on the physicochemical and biological properties of chitosan, acid-base behavior, biodegradability, solubility, reactivity, among many other properties that determine processability and suitability for specific applications. This is intended to help guide researchers select the right chitosan raw material for their specific applications.
Collapse
Affiliation(s)
- Alessandro Pellis
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy;
| | - Georg M. Guebitz
- Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Ressources and Life Sciences, 1180 Vienna, Austria;
| | - Gibson Stephen Nyanhongo
- Department of Agrobiotechnology, IFA-Tulln, Institute of Environmental Biotechnology, University of Natural Ressources and Life Sciences, 1180 Vienna, Austria;
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg P.O. Box 17011, South Africa
- Correspondence:
| |
Collapse
|
24
|
Mondal S, Biswal D, Pal K, Rakshit S, Kumar Halder S, Mandavgane SA, Bera D, Hossain M, Chandra Mondal K. Biodeinking of waste papers using combinatorial fungal enzymes and subsequent production of butanol from effluent. BIORESOURCE TECHNOLOGY 2022; 353:127078. [PMID: 35395367 DOI: 10.1016/j.biortech.2022.127078] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
The present study aimed to enzymatic deinking of waste papers and to valorize the effluent for biobutanol production. Application of fungal enzymatic cocktail (cellulase, amylase, xylanase, pectinase, lipase, and ligninase) on office used paper, newspaper, and ballpen written paper leading to improvement in brightness (84.91, 72.51, 76.69 % ISO), InKd (82.89, 68.95, 76.49%), κ-number (12.9, 13.6, and 13.1), opacity (27.91, 30.07, and 2.85%), tensile strength (49.24, 45.31, and 46.98 Nm/g), respectively and indices were consistent with chemical treated pulps. The quality of effluent generated during enzymatic deinking in respect to BOD and COD level was eco-friendlier than the chemical process. The enzyme-treated effluent was employed as supporting substrate for butanol (18.4 g/l) production by Clostridium acetobutylicum ATCC824. Material balance and life cycle assessment of the whole processes were evaluated to validate its industrial and environmental relevance.
Collapse
Affiliation(s)
- Subhadeep Mondal
- Center for Life Sciences, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Divyajyoti Biswal
- Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India
| | - Kalyanbrata Pal
- Department of Microbiology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Subham Rakshit
- Department of Microbiology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Suman Kumar Halder
- Department of Microbiology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Sachin A Mandavgane
- Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India
| | - Debabrata Bera
- Food Technology & Bio-Chemical Engineering, Jadavpur University 700032, Kolkata, India
| | - Maidul Hossain
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Keshab Chandra Mondal
- Department of Microbiology, Vidyasagar University, Midnapore 721102, West Bengal, India.
| |
Collapse
|
25
|
Feng M, He B, Chen X, Xu J, Lu X, Jia C, Sun J. Separation of chitin from shrimp shells enabled by transition metal salt aqueous solution and ionic liquid. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.01.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Mondal S, Santra S, Rakshit S, Kumar Halder S, Hossain M, Chandra Mondal K. Saccharification of lignocellulosic biomass using an enzymatic cocktail of fungal origin and successive production of butanol by Clostridium acetobutylicum. BIORESOURCE TECHNOLOGY 2022; 343:126093. [PMID: 34624476 DOI: 10.1016/j.biortech.2021.126093] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
A multistep approach was undertaken for biobutanol production targeting valorization of agricultural waste. Optimum production of lignocellulolytic enzymes [CMCase (3822.93U/mg), FPase (3640.93U/mg), β-glucosidase (3873.92U/mg), xylanase (3460.24U/mg), pectinase (3359.57U/mg), α-amylase (4136.54U/mg), and laccase (3863.16U/mg)] was accomplished through solid-substrate fermentation of pretreated mixed substrates (wheat bran, sugarcane bagasse and orange peel) by Aspergillus niger SKN1 and Trametes hirsuta SKH1. Partially purified enzyme cocktail was employed for saccharification of the said substrate mixture into fermentable sugar (69.23 g/L, product yield of 24% w/w). The recovered sugar with vegetable extract supplements was found as robust fermentable medium that supported 16.51 g/L biobutanol production by Clostridium acetobutylicum ATCC824. The sequential bioprocessing of low-priced substrates and exploitation of vegetable extract as growth factor for microbial butanol production will open a new vista in biofuel research.
Collapse
Affiliation(s)
- Subhadeep Mondal
- Center for Life Sciences, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Sourav Santra
- Department of Microbiology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Subham Rakshit
- Department of Microbiology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Suman Kumar Halder
- Department of Microbiology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Maidul Hossain
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Keshab Chandra Mondal
- Department of Microbiology, Vidyasagar University, Midnapore 721102, West Bengal, India.
| |
Collapse
|
27
|
Sustainability in Heritage Wood Conservation: Challenges and Directions for Future Research. FORESTS 2021. [DOI: 10.3390/f13010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Conserving the world’s cultural and natural heritage is considered a key contributor to achieving the targets set out in the United Nation’s Sustainable Development Goals, yet how much attention do we pay to the methods we use to conserve and protect this heritage? With a specific focus on wooden objects of cultural heritage, this review discusses the current state-of-the-art in heritage conservation in terms of sustainability, sustainable alternatives to currently used consolidants, and new research directions that could lead to more sustainable consolidants in the future. Within each stage a thorough discussion of the synthesis mechanisms and/or extraction protocols, particularly for bio-based resources is provided, evaluating resource usage and environmental impact. This is intended to give the reader a better understanding of the overall sustainability of each different approach and better evaluate consolidant choices for a more sustainable approach. The challenges facing the development of sustainable consolidants and recent research that is likely to lead to highly sustainable new consolidant strategies in the future are also discussed. This review aims to contribute to the ongoing discussion of sustainable conservation and highlight the role that consolidants play in truly sustainable heritage conservation.
Collapse
|