1
|
Plais N, Jiménez-Herrero E, Tomé-Bermejo F, Manzarbeitia F, Duart Clemente JM, Alvarez-Galovich L. Ceramic substitutes, failure to achieve solid fusion in posterolateral instrumented fusion: a surgical and histological evaluation. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2025; 34:156-162. [PMID: 39306612 DOI: 10.1007/s00586-024-08476-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/15/2024] [Accepted: 08/27/2024] [Indexed: 01/24/2025]
Abstract
PURPOSE As the number of instrumented fusions increases, so does the utilization of bone substitutes. However, controversies persist regarding the effectiveness of ceramics in promoting solid fusion. Few histological studies have been conducted on patients to address this issue. To contribute insights into this topic, we assessed bony fusion both intraoperatively and histologically in patients who underwent posterolateral instrumented fusions enhanced with a biphasic ceramic compound. METHODS We analyzed a series of 13 patients who underwent revision surgery due to adjacent segment disease following the initial use of ceramics as bone extenders in the index surgery. In each case, patients exhibited apparent radiological fusion in the instrumented posterolateral fusions. Follow-up exceeded 18 months. Bone fusion was assessed intraoperatively, and biopsies of the bone mass at the intertransverse area were examined under an optical microscope. RESULTS Surgical exploration of the fusion block at the intertransverse space did not indicate solid fusion. Moreover, histological analysis of the 13 biopsies revealed a lack of proper integration of the bone substitutes, incomplete resorption of hydroxyapatite granules, and substitution of ceramic particles by immature fibrous tissue lacking the structural competence to bear loads or add stability to spinal fusion. CONCLUSION The utilization of biphasic ceramics proved ineffective in attaining a proper fusion mass between the intertransverse space. Both surgical inspection and histological studies confirmed the absence of integration. Prudence should be exercised regarding the use of ceramics. While no clear instability was observed, neither was there any integration.
Collapse
Affiliation(s)
- Nicolas Plais
- Servicio de Cirugía Ortopédica y Traumatología. Hospital Universitario San Cecilio de Granada, Av. Del Conocimiento, s/n, Granada, 18016, Spain.
- Servicio de Cirugía Ortopédica y Traumatología. Hospital San Rafael de Granada, Granada, Spain.
| | - Enrique Jiménez-Herrero
- Servicio de Cirugía Ortopédica y Traumatología. Hospital San Rafael de Granada, Granada, Spain
| | | | | | | | | |
Collapse
|
2
|
Li Y, Tang Y, Chen L, Li H, Wang H, Wang J. Osteopontine-derived functional fragments coupled to RADA16 self-assembled peptide hydrogels promotes bone and vascular regeneration in vivo. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:657-674. [PMID: 38284324 DOI: 10.1080/09205063.2024.2304951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024]
Abstract
Biomaterial scaffolds have been widely used in tissue engineering. A functionalized self-assembled peptide scaffold named RADA16-OPD was designed by linking the short functional motif of osteopontine (OPN)-derived functional fragments SVVYGLR (OPD) to the C-terminus of the self-assembled peptide RADA16. Atomic force microscopy (AFM) was used to analyze the self-assembling peptide's structural composition. The live/dead staining results showed that RADA16-OPD is not toxic to rASC. After creating a rat skull defect model artificially, micro-CT results revealed that the defect area treated with RADA16-OPD hydrogel had higher bone volume/total volume (BV/TV), a higher trabecular number (TB.N.), and higher bone density (BMD) at different treatment time points. Histological evaluation found that there was more new bone and mature collagen production in the RADA16-OPD group. Meanwhile, the RADA16-OPD group had higher expression of alkaline phosphatase (ALP) and osteocalcin (OCN) than the other two groups. Additionally, immunofluorescence revealed that the RADA16-OPD group had higher levels of platelet/endothelial cell adhesion molecule 1 (CD31) expression than the other two groups. It demonstrated the potential for clinical use of the RADA16-OPD peptide scaffold by promoting bone regeneration and blood vessel development in vivo.
Collapse
Affiliation(s)
- Yong Li
- Department of trauma Orthopedics, Guizhou Hospital of The First Affiliated Hospital, Sun Yat-sen University, Guiyang, China
| | - Yao Tang
- Department of Geriatrics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - LiFu Chen
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - HaiTao Li
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hong Wang
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jian Wang
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
3
|
Griffoni C, Tedesco G, Canella V, Nataloni A, Zerbi A, Tosini G, Gasbarrini A, Barbanti-Brodano G. Ceramic bone graft substitute (Mg-HA) in spinal fusion: A prospective pilot study. Front Bioeng Biotechnol 2022; 10:1050495. [PMID: 36532576 PMCID: PMC9748738 DOI: 10.3389/fbioe.2022.1050495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/28/2022] [Indexed: 04/14/2024] Open
Abstract
Background: Iliac crest bone graft (ICBG) is considered the gold standard for spine surgical procedures to achieve a successful fusion due to its known osteoinductive and osteoconductive properties. However, complications related to harvesting procedure and donor site morbidity have been largely reported in the literature, favoring the development of a wide range of alternative products to be used as bone graft extenders or substitutes for spine fusion. Among all, ceramic-based biomaterials have been widely studied and employed in the last years as bone graft substitutes. Methods: We report here the results of a prospective pilot study aimed to evaluating the grade of ossification obtained by the use of an Mg-doped hydroxyapatite (HA) product to achieve postero-lateral fusion in degenerative spine diseases. Results: Results show a successful degree of fusion of about 62% at the 12-month follow-up and an improvement of quality of life and health status following surgery, as evaluated by clinical scores (ODI, VAS, and EQ-5L). No adverse events related to the material were reported. Conclusion: The present pilot study shows the effectiveness and the safety profile of an Mg-doped HA bone graft substitute used to achieve postero-lateral fusion in the treatment of degenerative spine diseases, laying down the basis for further larger clinical investigations.
Collapse
Affiliation(s)
- Cristiana Griffoni
- Department of Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giuseppe Tedesco
- Department of Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | | | - Alberto Zerbi
- Istituti Clinici Iseni, Fondazione Iseni y Nervi, Lonate Pozzolo, Italy
| | - Giovanni Tosini
- Department of Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | | |
Collapse
|
4
|
Li X, Zhou Q, Wu Y, Feng C, Yang X, Wang L, Xiao Y, Zhang K, Zhu X, Liu L, Song Y, Zhang X. Enhanced bone regenerative properties of calcium phosphate ceramic granules in rabbit posterolateral spinal fusion through a reduction of grain size. Bioact Mater 2021; 11:90-106. [PMID: 34938915 PMCID: PMC8665272 DOI: 10.1016/j.bioactmat.2021.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 02/05/2023] Open
Abstract
Osteoinductivity is a crucial factor to determine the success and efficiency of posterolateral spinal fusion (PLF) by employing calcium phosphate (Ca-P) bioceramics. In this study, three kinds of Ca-P ceramics with microscale to nanoscale gain size (BCP-control, BCP-micro and BCP-nano) were prepared and their physicochemical properties were characterized. BCP-nano had the spherical shape and nanoscale gain size, BCP-micro had the spherical shape and microscale gain size, and BCP-control (BAM®) had the irregular shape and microscale gain size. The obtained BCP-nano with specific nanotopography could well regulate in vitro protein adsorption and osteogenic differentiation of MC3T3 cells. In vivo rabbit PLF procedures further confirmed that nanotopography of BCP-nano might be responsible for the stronger bone regenerative ability comparing with BCP-micro and BCP-control. Collectedly, due to nanocrystal similarity with natural bone apatite, BCP-nano has excellent efficacy in guiding bone regeneration of PLF, and holds great potentials to become an alternative to standard bone grafts for future clinical applications. The nanocrystal of porous BCP ceramic spheres is similar to natural bone apatite. BCP nanoceramics is conducive to protein adsorption and osteogenic differentiation of MC3T3 cells. Osteoindutivity of BCP ceramics is a crucial factor to determine the sucess and efficiency of PLF. BCP ceramic spheres with nanotopography hold great potential in clinical PLF applications.
Collapse
Affiliation(s)
- Xiangfeng Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Quan Zhou
- Department of Orthopaedic Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yonghao Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Cong Feng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Xi Yang
- Department of Orthopaedic Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Linnan Wang
- Department of Orthopaedic Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yumei Xiao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Kai Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Limin Liu
- Department of Orthopaedic Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yueming Song
- Department of Orthopaedic Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
5
|
Walsh DP, Raftery RM, Murphy R, Chen G, Heise A, O'Brien FJ, Cryan SA. Gene activated scaffolds incorporating star-shaped polypeptide-pDNA nanomedicines accelerate bone tissue regeneration in vivo. Biomater Sci 2021; 9:4984-4999. [PMID: 34086016 DOI: 10.1039/d1bm00094b] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Increasingly, tissue engineering strategies such as the use of biomaterial scaffolds augmented with specific biological cues are being investigated to accelerate the regenerative process. For example, significant clinical challenges still exist in efficiently healing large bone defects which are above a critical size. Herein, we describe a cell-free, biocompatible and bioresorbable scaffold incorporating a novel star-polypeptide biomaterial as a gene vector. This gene-loaded scaffold can accelerate bone tissue repair in vivo in comparison to a scaffold alone at just four weeks post implantation in a critical sized bone defect. This is achieved via the in situ transfection of autologous host cells which migrate into the implanted collagen-based scaffold via gene-loaded, star-shaped poly(l-lysine) polypeptides (star-PLLs). In vitro, we demonstrate that star-PLL nanomaterials designed with 64 short poly(l-lysine) arms can be used to functionalise a range of collagen based scaffolds with a dual therapeutic cargo (pDual) of the bone-morphogenetic protein-2 plasmid (pBMP-2) and vascular endothelial growth factor plasmid (pVEGF). The versatility of this polymeric vector is highlighted in its ability to transfect Mesenchymal Stem Cells (MSCs) with both osteogenic and angiogenic transgenes in a 3D environment from a range of scaffolds with various macromolecular compositions. In vivo, we demonstrate that a bone-mimetic, collagen-hydroxyapatite scaffold functionalized with star-PLLs containing either 32- or 64- poly(l-lysine) arms can be used to successfully deliver this pDual cargo to autologous host cells. At the very early timepoint of just 4 weeks, we demonstrate the 64-star-PLL-pDual functionalised scaffold as a particularly efficient platform to accelerate bone tissue regeneration, with a 6-fold increase in new bone formation compared to a scaffold alone. Overall, this article describes for the first time the incorporation of novel star-polypeptide biomaterials carrying two therapeutic genes into a cell free scaffold which supports accelerated bone tissue formation in vivo.
Collapse
Affiliation(s)
- David P Walsh
- Drug Delivery & Advanced Materials Team, School of Pharmacy & Biomolecular Sciences, RCSI, Dublin, Ireland and Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, RCSI, Dublin, Ireland and Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland and SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland
| | - Rosanne M Raftery
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, RCSI, Dublin, Ireland and Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland and SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland
| | | | - Gang Chen
- Centre for the Study of Neurological Disorders, Microsurgical Research and Training Facility (MRTF), RCSI, Dublin, Ireland
| | - Andreas Heise
- SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland and Department of Chemistry, RCSI, Dublin, Ireland and SFI Centre for Research in Medical Devices (CURAM), RCSI, Dublin and National University of Ireland, Galway, Ireland
| | - Fergal J O'Brien
- Drug Delivery & Advanced Materials Team, School of Pharmacy & Biomolecular Sciences, RCSI, Dublin, Ireland and Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, RCSI, Dublin, Ireland and Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland and SFI Advanced Materials and Bioengineering Research (AMBER) Centre, RCSI & TCD, Ireland and SFI Centre for Research in Medical Devices (CURAM), RCSI, Dublin and National University of Ireland, Galway, Ireland
| | - Sally-Ann Cryan
- Drug Delivery & Advanced Materials Team, School of Pharmacy & Biomolecular Sciences, RCSI, Dublin, Ireland and Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, RCSI, Dublin, Ireland and Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland and SFI Centre for Research in Medical Devices (CURAM), RCSI, Dublin and National University of Ireland, Galway, Ireland
| |
Collapse
|
6
|
Abstract
BACKGROUND Back pain is a common chief complaint within the United States and is caused by a multitude of etiologies. There are many different treatment modalities for back pain, with a frequent option being spinal fusion procedures. The success of spinal fusion greatly depends on instrumentation, construct design, and bone grafts used in surgery. Bone allografts are important for both structural integrity and providing a scaffold for bone fusion to occur. METHOD Searches were performed using terms "allografts" and "bone" as well as product names in peer reviewed literature Pubmed, Google Scholar, FDA-510k approvals, and clinicaltrials.gov. RESULTS This study is a review of allografts and focuses on currently available products and their success in both animal and clinical studies. CONCLUSION Bone grafts used in surgery are generally categorized into 3 main types: autogenous (from patient's own body), allograft (from cadaveric or living donor), and synthetic. This paper focuses on allografts and provides an overview on the different subtypes with an emphasis on recent product development and uses in spinal fusion surgery.
Collapse
Affiliation(s)
- Justin D. Cohen
- Department of
Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Linda E. Kanim
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Andrew J. Tronits
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Hyun W. Bae
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
7
|
Everts PA, van Erp A, DeSimone A, Cohen DS, Gardner RD. Platelet Rich Plasma in Orthopedic Surgical Medicine. Platelets 2021; 32:163-174. [PMID: 33400591 DOI: 10.1080/09537104.2020.1869717] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is a global interest in optimizing post-surgical tissue repair strategies, leading to better patient outcomes and fewer complications, most ideally with reduced overall cost. In this regard, in recent years, the interest in autologous biological treatments in orthopedic surgery and sports medicine has increased greatly, and the addition of platelet-rich plasma (PRP) to the surgical armamentarium is of particular note. Unfortunately, the number of PRP preparation devices has also grown immensely over the recent decades, raising meaningful concern for the considerable variation in the qualities of currently available PRP preparations. The lack of consensus on the standardization of PRP preparation and of agreement on condition specific PRP formulations is largely responsible for the sometimes contradictory outcomes in the literature. Furthermore, the full potential of PRP technology, the concept of individualized treatment protocols based on bioformulation options, and platelet dosing, angiogenesis, and antimicrobial and painkilling effects of PRP relevant to orthopedic surgery have rarely been addressed. In this review, we will discuss recent developments regarding PRP preparations and potential therapeutic effects. Additionally, we present a synopsis of several published data regarding PRP applications in orthopedic surgery for treating tendon injuries, inducing bone repair, strengthening spinal fusion outcomes, and supporting major joint replacements.
Collapse
Affiliation(s)
- Peter A Everts
- Science and Research Department, Gulf Coast Biologics, Fort Myers, FL, USA
| | | | | | - Dan S Cohen
- Spine Care Institute of Miami Beach, Mt. Sinai Medical Center, Miami Beach, FL, USA
| | | |
Collapse
|
8
|
Castaño IM, Raftery RM, Chen G, Cavanagh B, Quinn B, Duffy GP, O'Brien FJ, Curtin CM. Rapid bone repair with the recruitment of CD206 +M2-like macrophages using non-viral scaffold-mediated miR-133a inhibition of host cells. Acta Biomater 2020; 109:267-279. [PMID: 32251781 DOI: 10.1016/j.actbio.2020.03.042] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/10/2020] [Accepted: 03/27/2020] [Indexed: 01/01/2023]
Abstract
microRNAs offer vast therapeutic potential for multiple disciplines. From a bone perspective, inhibition of miR-133a may offer potential to enhance Runx2 activity and increase bone repair. This study aims to assess the therapeutic capability of antagomiR-133a delivery from collagen-nanohydroxyapatite (coll-nHA) scaffolds following cell-free implantation in rat calvarial defects (7 mm diameter). This is, to the best of our knowledge, the first report of successful in vivo antagomiR uptake in host cells of fully immunocompetent animals without distribution to other off-target tissues. Our results demonstrate the localized release of antagomiR-133a to the implant site at 1 week post-implantation with increased calcium deposits already evident in the antagomiR-133a loaded scaffolds at this early timepoint. This was followed by an approximate 2-fold increase in bone volume versus antagomiR-free scaffolds and a significant 10-fold increase over the empty defect controls, after just 4 weeks. An increase in host CD206+ cells suggests an accelerated pro-remodeling response by M2-like macrophages accompanying bone repair with this treatment. Overall, this non-viral scaffold-mediated antagomiR-133a delivery platform demonstrates capability to accelerate bone repair in vivo - without the addition of exogenous cells - and underlines the role of M2 macrophage-like cells in directing accelerated bone repair. Expanding the repertoire of this platform to deliver alternative miRNAs offers exciting possibilities for a variety of therapeutic indications. STATEMENT OF SIGNIFICANCE: microRNAs, small non-coding RNA molecules involved in gene regulation, may have potential as a new class of bone healing therapeutics as they can enhance the regenerative capacity of bone-forming cells. We developed a collagen-nanohydroxyapatite-microRNA scaffold system to investigate whether miR133a inhibition can enhance osteogenesis in rat MSCs and ultimately accelerate endogenous bone repair by host cells in vivo without pre-seeding cells prior to implantation. Overall, this off-the-shelf, non-viral scaffold-mediated antagomiR-133a delivery platform demonstrates capability to accelerate bone repair in vivo - without the requirement of exogenous cells - and highlights the role of CD206+M2 macrophage-like cells in guiding accelerated bone repair. Translating the repertoire of this platform to deliver alternative miRNAs offers exciting possibilities for a vast myriad of therapeutic indications.
Collapse
|
9
|
Feng JT, Yang XG, Wang F, He X, Hu YC. Efficacy and safety of bone substitutes in lumbar spinal fusion: a systematic review and network meta-analysis of randomized controlled trials. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2020; 29:1261-1276. [PMID: 31872300 DOI: 10.1007/s00586-019-06257-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 09/21/2019] [Accepted: 12/16/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE A variety of alternative grafts to autologous iliac crest bone (ICBG) have been developed for lumbar spondylodesis, due to frequent complications following ICBG harvest. The optimal alternative graft to ICBG, however, remains elusive till now. The purpose of this study was to compare the efficacy and safety of fusion materials in lumbar degeneration diseases and to provide a ranking spectrum of the grafts. METHODS Randomized controlled trials (RCTs) comparing different bone grafts in lumbar arthrodesis were eligible for inclusion. A network meta-analysis was performed for endpoints including fusion rate and incidence of adverse events. RESULTS Twenty-seven RCTs involving 2488 patients and 13 available interventions were included. rhBMP-2 provided the highest fusion rate, being significantly superior to that of ICBG (OR = 0.21, p < 0.001), autograft local bone (ALB) (OR = 0.18, p = 0.022), rhBMP-7 (OR = 0.15, p < 0.001), allograft (OR = 0.13, p = 0.009), and DBM + ALB (OR = 0.07, p = 0.048). The treatment efficacy of allograft could be significantly enhanced by bone marrow concentrate (BMC) supplying (OR = 0.16, p = 0.010). ICBG ranks second on the frequency of complications, which is significantly higher than that of allograft (OR = 0.14, p = 0.041) and ALB (OR = 0.14, p = 0.030). All of the other comparisons showed similar efficacy and safety profiles between groups. CONCLUSION Ranking spectrums of the efficacy and safety for various bone grafts were provided graphically. Though rhBMP-2 was of the highest success rate, the application should be taken with proper caution because of the widely proposed life-threatening adverse events. ALB, ALB plus synthetic ceramic materials and allograft mixed with BMC were also proved to be potentially effective alternative graft to ICBG. These slides can be retrieved under Electronic Supplementary Material.
Collapse
Affiliation(s)
- Jiang-Tao Feng
- Graduate School, Tianjin Medical University, Tianjin, 300070, China
| | - Xiong-Gang Yang
- Graduate School, Tianjin Medical University, Tianjin, 300070, China
| | - Feng Wang
- Graduate School, Tianjin Medical University, Tianjin, 300070, China
| | - Xin He
- Department of Orthopedic Oncology, Tianjin Hospital, No. 406, Jiefang Southern Road, Hexi District, Tianjin, 300211, China
| | - Yong-Cheng Hu
- Department of Orthopedic Oncology, Tianjin Hospital, No. 406, Jiefang Southern Road, Hexi District, Tianjin, 300211, China.
| |
Collapse
|
10
|
Salamanna F, Tschon M, Borsari V, Pagani S, Martini L, Fini M. Spinal fusion procedures in the adult and young population: a systematic review on allogenic bone and synthetic grafts when compared to autologous bone. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:51. [PMID: 32451687 DOI: 10.1007/s10856-020-06389-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
This systematic review aims to compare clinical evidences related to autologous iliac crest bone graft (ICBG) and non-ICBG (local bone) with allografts and synthetic grafts for spinal fusion procedures in adult and young patients. A systematic search was carried out in three databases (PubMed, Scopus, Web of Science, Cochrane Central Register of Controlled Trials) to identify clinical studies in the last 10 years. The initial search retrieved 1085 studies, of which 24 were recognized eligible for the review. Twelve studies (4 RCTs, 5 prospective, 3 retrospective) were focused on lumbar spine, 9 (2 RCTs, 2 prospective, 4 retrospective, 1 case-series) on cervical spine and 3 (1 RCT, 2 retrospective) on spinal fusion procedures in young patients. Calcium phosphate ceramics, allografts, bioglasses, composites and polymers have been clinically investigated as substitutes of autologous bone in spinal fusion procedures. Of the 24 studies included in this review, only 1 RCT on cervical spine was classified with high level of evidence (Class I) and showed low risk of bias. This RCT demonstrated the safety and efficacy of the proposed treatment, a composite bone substitute, that results in similar and on some metrics superior outcomes compared with local autograft bone. Almost all other studies showed moderately or, more often, high incidence of bias (Class III), thus preventing ultimate conclusion on the hypothesized beneficial effects of allografts and synthetic grafts. This review suggests that users of allografts and synthetic grafting should carefully consider the scientific evidence concerning efficacy and safety of these bone substitutes, in order to select the best option for patient undergoing spinal fusion procedures.
Collapse
Affiliation(s)
- F Salamanna
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - M Tschon
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - V Borsari
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - S Pagani
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - L Martini
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - M Fini
- Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
11
|
Pairuchvej S, Muljadi JA, Arirachakaran A, Kongtharvonskul J. Efficacy of platelet-rich plasma in posterior lumbar interbody fusion: systematic review and meta-analysis. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2019; 30:583-593. [PMID: 31858260 DOI: 10.1007/s00590-019-02603-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/13/2019] [Indexed: 11/29/2022]
Abstract
INTRODUCTION We have conducted a systematic review and meta-analysis that aims to compare outcomes (pain VAS, fusion and adverse event) of PRP and placebo after posterolateral lumbar fusion (PLF) surgery. MATERIALS AND METHODS This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Relevant studies were identified from Medline and Scopus from inception to September 16, 2019 that reported visual analog scale back pain, postoperative complications and fusions of either group. RESULTS In a total of seven studies, two, two, three studies were RCT, prospective and retrospective studies, respectively. Overall, there were 270 patients (150 in the PRP group and 149 in the placebo group). Three, three, four, three, two, seven and four studies were reported for pain VAS back in 3 months, 6 months, 12 months, 24 months, period of fusion, postoperative fusion and adverse events, respectively. The unstandardized mean difference (UMD) VAS back in 3, 6, 6 and 24 months was - 0.41 (95% CI - 0.87, 0.05) score, - 0.97 (95% CI - 1.68, - 0.27) score, - 0.33 (95% CI - 0.61, - 0.59) score, - 0.19 (95% CI - 1.00, 0.62) scores lower than placebo after posterolateral lumbar fusion (PLF) patients. The UMD period of bone union were - 1.62 (95% CI - 1.85, - 1.39) months faster than placebo after PLF patients. A total of seven and four studies were reported fusion and adverse events between PRP and placebo group. No significant differences were noted for fusion and adverse events with the pooled RR of 1.03 (95% CI 0.48, 1.80) and 0.95 (95% CI 0.14, 6.56). CONCLUSIONS PRP with autologous bone graft had lower back pain and faster bone union time than bone graft alone. While, there have no difference in fusion rate and adverse events in both groups. Larger, prospective randomized controlled studies are needed to confirm these findings as the current literature is still insufficient. Further research including cost of operation, postoperative function and satisfaction, quality of life and cost-efficacy analysis is required to determine whether the PRP with autologous bone graft is superior to bone graft alone or not. LEVEL OF EVIDENCE Level II.
Collapse
Affiliation(s)
- Saran Pairuchvej
- Orthopedics Department, Queen Savang Vadhana Memorial Hospital, Sriracha, Cholburi, Thailand
| | | | | | | |
Collapse
|
12
|
Abstract
Bone augmentation is an extremely common procedure in implant dentistry today because of significant advancements with reactive biomaterials, a better understanding of the mechanism of action that is found with growth factors contained in platelets, and improvements in surgical techniques. The expectation is for the surgeon to place the dental implant in the position that best serves the requirements of the prosthetic restorations. With the increasing demands that patients have for ideal prosthetic results, surgeons are expected to predictably augment both hard and soft tissues to provide the anticipated esthetic and functional outcomes. Bone grafting can be performed before, during, and after the implant placement; however, these augmentation procedures come with increased cost, the risk of complications such as infection or failure, and lengthening of the total treatment time. In addition, a plethora of grafting materials are available commercially, where they are often inadequately studied, or there is minimal information regarding their predictability or long-term success, or ability to support dental implants. It is clear that although the surgical field has seen major progress since early implant surgical techniques in the 1980s, major challenges still exist with hard tissue augmentation procedures. This review will discuss these challenges that are increased and often specific to bone graft healing, and which are becoming more common as implant site development often requires bone augmentation to improve volume or contour deficiencies. The risk factors that patients may present with that will affect outcomes with bone augmentation procedures are identified, and recommendations for the prevention of complications or managing complications once they have occurred are provided.
Collapse
Affiliation(s)
- Peter K Moy
- Department of Oral & Maxillofacial Surgery, UCLA, School of Dentistry, Los Angeles, California, USA
| | - Tara Aghaloo
- Department of Oral & Maxillofacial Surgery, UCLA, School of Dentistry, Los Angeles, California, USA
| |
Collapse
|
13
|
Durham EL, Kishinchand R, Grey ZJ, Cray JJ. rhBMP2 alone does not induce macrophage polarization towards an increased inflammatory response. Mol Immunol 2019; 117:94-100. [PMID: 31759326 DOI: 10.1016/j.molimm.2019.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/07/2019] [Accepted: 10/29/2019] [Indexed: 12/22/2022]
Abstract
Once thought to have revolutionized therapeutic intervention in surgery, Recombinant Human Bone Morphogenic Protein 2 (rhBMP2) is now in its second decade of sustained controversy over the side effects associated with its use. Side effects associated with clinical use of rhBMP2 (Infuse, Medtronic Inc) include a marked inflammatory response, pain, therapeutic failures, ectopic bone, tissue degradation, and death. What is missing, despite the depth of literature on the subject, is a direct interrogation of rhBMP2, specifically for inflammation. Here we set out to determine if rhBMP2 alters traditional macrophage markers associated with pro-inflammatory responses, and pro-reparative responses to injury. Based on our previous work, we hypothesized there would be no direct effect of the peptide on macrophage polarization. Here we utilized commercially available murine macrophages, RAW 264.7, and treated these cells with rhBMP2 in standard growth media or macrophage polarizing media (M1 and M2) at several doses of the peptide. Our readouts were cell viability, apoptosis, gene expression of M1 and M2 markers, and ELISA for M1 marker iNOS, and M2 marker Arg1. Our data give very little evidence to support an alteration in macrophage phenotype by rhBMP2 alone, or alteration of the phenotype when cultured in enriched M1 or M2 media. These results further suggest that other factors associated with the clinical use of Infuse, likely supraphysiological rhBMP2 doses and off label usage, are more likely the culprit for poor outcomes. This further reinforces the utility of rhBMP2 and other peptides in tissue engineering therapies when conditions are tightly controlled.
Collapse
Affiliation(s)
- Emily L Durham
- Department of Oral Health Sciences, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Rajiv Kishinchand
- Division of Anatomy, College of Medicine, The Ohio State University, 279 Hamilton Hall, 1645 Neil Ave., Columbus, OH 43210, USA
| | - Zachary J Grey
- Department of Oral Health Sciences, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - James J Cray
- Division of Anatomy, College of Medicine, The Ohio State University, 279 Hamilton Hall, 1645 Neil Ave., Columbus, OH 43210, USA; Division of Biosciences, College of Dentistry, The Ohio State University, USA.
| |
Collapse
|
14
|
Park MS, Moon SH, Kim TH, Oh JK, Yoon WY, Chang HG. Platelet-rich plasma for the spinal fusion. J Orthop Surg (Hong Kong) 2019; 26:2309499018755772. [PMID: 29415616 DOI: 10.1177/2309499018755772] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
There has been a wide interest in using platelet-rich plasma (PRP) as a therapeutic agent to enhance spinal fusion. There are two review articles based only on clinical studies regarding the effect of PRP on spinal fusion. However, with regard to both animal model studies and clinical studies, there is no review studies regarding its effect on spinal fusion and no review studies focusing on the platelet count and the concentration of the growth factor in the PRP. The purpose is to review the literatures about the effect of PRP on spinal fusion according to the animal model studies and clinical studies, focusing on the effect of the platelet count and the concentration of the growth factor in the PRP. A PubMed search was performed for English-language articles. We identified 20 articles regarding the effect of PRP on fusion in animal model studies and clinical studies, of which 16 articles met the study criteria of case-control studies or prospective randomized studies for the spinal fusion. The articles were categorized into small-sized animal model, middle-sized animal model, and clinical studies. Studies have shown both beneficial and inhibitory effects. The conclusion that PRP has the stimulating effect on spinal fusion was not reached. However, PRP might promote the human spinal fusion if the platelet count or the concentration of growth factors in the PRP increases.
Collapse
Affiliation(s)
- Moon Soo Park
- 1 Department of Orthopaedic Surgery, Medical College of Hallym University, Gyeonggi-do, Republic of Korea
| | - Seong-Hwan Moon
- 2 Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae-Hwan Kim
- 1 Department of Orthopaedic Surgery, Medical College of Hallym University, Gyeonggi-do, Republic of Korea
| | - Jae Keun Oh
- 3 Department of Neurosurgery, Medical College of Hallym University, Gyeonggi-do, Republic of Korea
| | - Won Yong Yoon
- 1 Department of Orthopaedic Surgery, Medical College of Hallym University, Gyeonggi-do, Republic of Korea
| | - Ho Guen Chang
- 1 Department of Orthopaedic Surgery, Medical College of Hallym University, Gyeonggi-do, Republic of Korea
| |
Collapse
|
15
|
Modification of Titanium Implant and Titanium Dioxide for Bone Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1077:355-368. [PMID: 30357698 DOI: 10.1007/978-981-13-0947-2_19] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Bone tissue engineering using titanium (Ti) implant and titanium dioxide (TiO2) with their modification is gaining increasing attention. Ti has been adopted as an implant material in dental and orthopedic fields due to its superior properties. However, it still requires modification in order to achieve robust osteointegration between the Ti implant and surrounding bone. To modify the Ti implant, numerous methods have been introduced to fabricate porous implant surfaces with a variety of coating materials. Among these, plasma spraying of hydroxyapatite (HA) has been the most commonly used with commercial success. Meanwhile, TiO2 nanotubes have been actively studied as the coating material for implants, and promising results have been reported about improving osteogenic activity around implants recently. Also porous three-dimensional constructs based on TiO2 have been proposed as scaffolding material with high biocompatibility and osteoconductivity in large bone defects. However, the use of the TiO2 scaffolds in load-bearing environment is somewhat limited. In order to optimize the TiO2 scaffolds, studies have tried to combine various materials with TiO2 scaffolds including drug, mesenchymal stem cells, Al2O3-SiO2 solid and HA. This article will shortly introduce the properties of Ti and Ti-based implants with their modification, and review the progress of bone tissue engineering using the TiO2 nanotubes and scaffolds.
Collapse
|
16
|
Zhang YW, Deng L, Zhang XX, Yu XL, Ai ZZ, Mei YX, He F, Yu H, Zhang L, Xiao X, Xiao Y, Chen X, Zhang SL, Ge HY, Dong XP. Three-Dimensional Printing-Assisted Cervical Anterior Bilateral Pedicle Screw Fixation of Artificial Vertebral Body for Cervical Tuberculosis. World Neurosurg 2019; 127:25-30. [DOI: 10.1016/j.wneu.2019.03.238] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 11/28/2022]
|
17
|
Patel DV, Yoo JS, Karmarkar SS, Lamoutte EH, Singh K. Interbody options in lumbar fusion. JOURNAL OF SPINE SURGERY 2019; 5:S19-S24. [PMID: 31380489 DOI: 10.21037/jss.2019.04.04] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Interbody devices have revolutionized lumbar fusion surgery by enhancing mechanical stability, optimizing sagittal parameters, and maximizing fusion potential. There are several lumbar interbody fusion approaches available for varying pathologic etiologies, surgical index levels, or due to surgeon preference. With the advancement of spinal instrumentation and interbody devices, a variety of cage materials and dimensions have been engineered to accommodate various lumbar fusion approaches. The efficacy of a fusion is dependent on the shape, size, and material makeup of that interbody device. Since there are numerous cages available in today's market, it is important to find the optimal cage to best accommodate specific lumbar fusion cases. This review will explain the properties and future advancements of various interbody devices available for lumbar fusions.
Collapse
Affiliation(s)
- Dil V Patel
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Joon S Yoo
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Sailee S Karmarkar
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Eric H Lamoutte
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Kern Singh
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
18
|
In vivo study of microarc oxidation coated Mg alloy as a substitute for bone defect repairing: Degradation behavior, mechanical properties, and bone response. Colloids Surf B Biointerfaces 2019; 181:349-359. [PMID: 31158697 DOI: 10.1016/j.colsurfb.2019.05.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 11/20/2022]
Abstract
Large segmental bone defect healing remains a great challenge in clinic. Limited by the source of autograft, bone graft substitute tends to be the research focus. In the present study, we propose a strategy by using microarc oxidation (MAO) coated magnesium scaffold as a large segmental bone graft substitute, utilizing its combination of strength, degradability, and controllable corrosion rate. Bare substrate, 10 μm and 20 μm thick MAO coated Mg scaffolds were implanted into ulna bone of New Zealand white rabbits, employing a 15 mm wide bone defect model. The biocompatibility and in vivo degradation of the implants, the bone defect healing response, and mechanical properties of the injured bone were investigated. The surface cytocompatibility evaluation results show that the MAO coated Mg are more suitable for cell proliferation. Micro-CT results show that abundant new bone formed and initially bridged the 15 mm gap at 8 weeks. Histological results indicate the newly formed bone was full of maturation at 12 weeks. Three point bending tests reveal that the injured bone possessed sufficient mechanical strength after 12 weeks. A 3-step in vivo degradation mechanism was proposed for the implants. In summary, we observed an actual trial of 15 mm wide bone defect healing where the newly formed bone bridged the bone gap at 8 weeks successfully. These data suggest a great potential of MAO coated magnesium to be a bone graft substitute.
Collapse
|
19
|
Abjornson C, Brecevich A, Callanan T, Dowe C, Cammisa FP, Lorio MP. ISASS Recommendations and Coverage Criteria for Bone Graft Substitutes used in Spinal Surgery. Int J Spine Surg 2018; 12:757-771. [PMID: 30619681 DOI: 10.14444/5095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Autologous bone graft remains the gold standard by which bone graft substitutes are compared in spine fusion surgery. The utilization of bone graft substitutes, either as (1) an extender for spinal fusion constructs or (2) an alternative to minimize morbidity while maximizing outcomes, is changing. Moreover, current procedures technology (CPT) code 20939 became effective in 2018 defining bone marrow aspirate for bone grafting, spine surgery only. Changes in the complex landscape of grafting materials have prompted ISASS to provide category guidance for bone graft substitutes by comparing and contrasting US regulatory pathways, mechanisms of action, and supportive clinical evidence for these bone grafting materials.
Collapse
|
20
|
|
21
|
Jain N, Himed K, Toth JM, Briley KC, Phillips FM, Khan SN. Opioids delay healing of spinal fusion: a rabbit posterolateral lumbar fusion model. Spine J 2018; 18:1659-1668. [PMID: 29680509 DOI: 10.1016/j.spinee.2018.04.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/14/2018] [Accepted: 04/09/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Opioid use is prevalent in the management of pre- and postoperative pain in patients undergoing spinal fusion. There is evidence that opioids downregulate osteoblasts in vitro, and a previous study found that morphine delays the maturation and remodeling of callus in a rat femur fracture model. However, the effect of opioids on healing of spinal fusion has not been investigated before. Isolating the effect of opioid exposure in humans would be limited by the numerous confounding factors that affect fusion healing. Therefore, we have used a well-established rabbit model to study the process of spinal fusion healing that closely mimics humans. PURPOSE The objective of this work was to study the effect of systemic opioids on the process of healing of spinal fusion in a rabbit posterolateral spinal fusion model. STUDY DESIGN/SETTING This is a preclinical animal study. MATERIALS AND METHODS Twenty-four adult New Zealand white rabbits were studied in two groups after approval from the Institutional Animal Care and Use Committee (IACUC). The opioid group (n=12) received 4 weeks' preoperative and 6 weeks' postoperative transdermal fentanyl. Serum fentanyl levels were measured just before surgery and 4 weeks postoperatively to ensure adequate levels. The control group (n=12) received only perioperative pain control as necessary. All animals underwent a bilateral L5-L6 posterolateral spinal fusion using iliac crest autograft. Animals were euthanized at the 6-week postoperative time point, and assessment of fusion was done by manual palpation, plain radiographs, microcomputed tomography (microCT), and histology. RESULTS Twelve animals in the control group and 11 animals in the opioid group were available for analysis at the end of 6 weeks. The fusion scores on manual palpation, radiographs, and microCT were not statistically different. Three-dimensional microCT morphometry found that the fusion mass in the opioid group had a lower bone volume (p=.09), a lower trabecular number (p=.02), and a higher trabecular separation (p=.02) compared with the control group. Histologic analysis found areas of incorporation of autograft and unincorporated graft fragments in both groups. In the control group, there was remodeling of de novo woven bone to lamellar organization with incorporation of osteocytes, formation of mature marrow, and relative paucity of hypertrophied osteoblasts lining new bone. Sections from the opioid group showed formation of de novo woven bone, and hypertrophied osteoblasts were seen lining the new bone. There were no sections showing lamellar organization and development of mature marrow elements in the opioid group. Less dense trabeculae on microCT correlated with histologic findings of relatively immature fusion mass in the opioid group. CONCLUSIONS Systemic opioids led to an inferior quality fusion mass with delay in maturation and remodeling at 6 weeks in this rabbit spinal fusion model. These preliminary results lay the foundation for further research to investigate underlying cellular mechanisms, the temporal fusion process, and the dose-duration relationship of opioids responsible for our findings.
Collapse
Affiliation(s)
- Nikhil Jain
- Department of Orthopaedics, The Ohio State University Wexner Medical Center, 376 W 10th Ave, Columbus, OH 43210, USA
| | - Khaled Himed
- The Ohio State University School of Medicine, 376 W 10th Ave, Columbus, OH 43210, USA
| | - Jeffrey M Toth
- Department of Orthopaedics, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Karen C Briley
- Department of Radiology, Wright Center for Innovation and Biomedical Imaging, The Ohio State University Wexner Medical Center, 395 W 12th Ave, Columbus, OH 43210, USA
| | - Frank M Phillips
- Midwest Orthopaedics at Rush, Rush University Medical Center, 1611 W Harrison St, Chicago, IL 60612, USA
| | - Safdar N Khan
- Department of Orthopaedics, The Ohio State University Wexner Medical Center, 376 W 10th Ave, Columbus, OH 43210, USA.
| |
Collapse
|
22
|
Duan R, Barbieri D, de Groot F, de Bruijn JD, Yuan H. Modulating Bone Regeneration in Rabbit Condyle Defects with Three Surface-Structured Tricalcium Phosphate Ceramics. ACS Biomater Sci Eng 2018; 4:3347-3355. [PMID: 30221192 PMCID: PMC6134343 DOI: 10.1021/acsbiomaterials.8b00630] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023]
Abstract
![]()
Tricalcium phosphate (TCP) ceramics
are used as bone void fillers
because of their bioactivity and resorbability, while their performance
in bone regeneration and material resorption vary with their physical
properties (e.g., the dimension of the crystal grain). Herein, three
TCP ceramic bone substitutes (TCP-S, TCP-M, and TCP-L) with gradient
crystal grain size (0.77 ± 0.21 μm for TCP-S, 1.21 ±
0.35 μm for TCP-M and 4.87 ± 1.90 μm for TCP-L),
were evaluated in a well-established rabbit lateral condylar defect
model (validated with sham) with respect to bone formation and material
resorption up to 26 weeks. Surface structure-dependent bone regeneration
was clearly shown after 4 weeks implantation with TCP-S having most
mineralized bone (20.2 ± 3.4%), followed by TCP-M (14.0 ±
3.5%), sham (8.1 ± 4.2%), and TCP-L (6.6 ± 2.6%). Afterward,
the amount of mineralized bone was similar in all the three groups,
but bone marrow and material resorption varied. After 26 weeks, TCP-S
induced most bone tissue formation (mineralized bone + bone marrow)
(61.6 ± 7.8%) and underwent most material resorption (80.1 ±
9.0%), followed by TCP-M (42.9 ± 5.2% and 61.4 ± 8.0% respectively),
TCP-L (28.3 ± 5.5% and 45.6 ± 9.7% respectively), and sham
(25.7 ± 4.2%). Given the fact that the three ceramics are chemically
identical, the results indicate that the surface structure (especially,
the crystal grain size) of TCP ceramics can greatly tune their bone
regeneration potential and the material resorption in rabbit condyle
defect model, with the submicron surface structured TCP ceramic performing
the best.
Collapse
Affiliation(s)
- Rongquan Duan
- Biomaterial Science and Technology, MIRA, University of Twente, 7522 NB Enschede, The Netherlands.,Kuros Biosciences BV, 3723 MB Bilthoven, The Netherlands
| | - Davide Barbieri
- Biomaterial Science and Technology, MIRA, University of Twente, 7522 NB Enschede, The Netherlands.,Kuros Biosciences BV, 3723 MB Bilthoven, The Netherlands
| | | | - Joost D de Bruijn
- Biomaterial Science and Technology, MIRA, University of Twente, 7522 NB Enschede, The Netherlands.,Kuros Biosciences BV, 3723 MB Bilthoven, The Netherlands.,School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, U.K
| | - Huipin Yuan
- Kuros Biosciences BV, 3723 MB Bilthoven, The Netherlands.,MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, 6200 MD Maastricht, The Netherlands.,College of Physical Science and Technology, Sichuan University, Chengdu 610064, China
| |
Collapse
|
23
|
Buser Z, Brodke DS, Youssef JA, Rometsch E, Park JB, Yoon ST, Wang JC, Meisel HJ. Allograft Versus Demineralized Bone Matrix in Instrumented and Noninstrumented Lumbar Fusion: A Systematic Review. Global Spine J 2018; 8:396-412. [PMID: 29977726 PMCID: PMC6022962 DOI: 10.1177/2192568217735342] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
STUDY DESIGN Systematic review. OBJECTIVES The aim was to determine the fusion efficacy of allograft and demineralized bone matrix (DBM) in lumbar instrumented and noninstrumented fusion procedures for degenerative lumbar disorders. METHODS A literature search was conducted using the PubMed and Cochrane databases. To be considered, publications had to meet 4 criteria: patients were treated for a degenerative lumbar disorder, a minimum group size of 10 patients, use of allograft or DBM, and at least a 2-year follow-up. Data on the study population, follow-up time, surgery type, grafting material, fusion rates, and its definition were collected. RESULTS The search yielded 692 citations with 17 studies meeting the criteria including 4 retrospective and 13 prospective studies. Six studies used DBM and 11 employed allograft alone or in the combination with autograft. For the allograft, fusion rates ranged from 58% to 68% for noninstrumented and from 68% to 98% for instrumented procedures. For DBM, fusion rates were 83% for noninstrumented and between 60% and 100% for instrumented lumbar fusion procedures. CONCLUSIONS Both allograft and DBM appeared to provide similar fusion rates in instrumented fusions. On the other hand, in noninstrumented procedures DBM was superior. However, a large variation in the type of surgery, outcomes collection, lack of control groups, and follow-up time prevented any significant conclusions. Thus, studies comparing the performance of allograft and DBM to adequate controls in large, well-defined patient populations and with a sufficient follow-up time are needed to establish the efficacy of these materials as adjuncts to fusion.
Collapse
Affiliation(s)
- Zorica Buser
- University of Southern California, Los Angeles, CA, USA,Zorica Buser, Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1450 Biggy Street, NRT-2509N, Los Angeles, CA 90033, USA.
| | | | | | | | - Jong-Beom Park
- Uijongbu St. Mary’s Hospital, The Catholic University of Korea, Uijongbu, Korea
| | | | | | | |
Collapse
|
24
|
Efficacy of Platelet-Rich Plasma for Bone Fusion in Transforaminal Lumbar Interbody Fusion. Asian Spine J 2018; 12:112-118. [PMID: 29503690 PMCID: PMC5821915 DOI: 10.4184/asj.2018.12.1.112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/30/2017] [Accepted: 06/08/2017] [Indexed: 12/01/2022] Open
Abstract
Study Design Retrospective case series. Purpose To examine the efficacy of platelet-rich plasma (PRP) for bone fusion in transforaminal lumbar interbody fusion (TLIF) using local bone grafting. Overview of Literature Several authors have reported the efficacy of PRP for bone union in animal models. However, the use of PRP for bone fusion in TLIF surgery has not been fully explored. Methods Twenty patients underwent single-level TLIF surgery because of L4 spondylolisthesis. An interbody fusion cage and local bone were used in nine patients (control group) and an interbody fusion cage, local bone, and PRP were used in 11 patients (PRP group). PRP was prepared from the patients' blood samples (400 mL) immediately before surgery. The duration of bone union and postoperative bone fusion rate were assessed using plain radiography at every 3 months postoperatively and computed tomography at 12 or 24 months postoperatively, respectively. Lower back pain, leg pain, and leg numbness were evaluated using the visual analog scale preoperatively and at 3, 6, 12, and 24 months postoperatively. Results The platelet count was 8.7 times higher in PRP than in blood. The bone union rate was significantly superior in the PRP group than in the control group (91% and 77%, respectively; p=0.035), whereas the average duration of bone union was not significantly different between the groups (7.7±0.74 and 10.0±2.00 months, respectively; p=0.131). There was no significant difference in lower back pain, leg pain, and leg numbness in both groups during follow-up (p>0.05). Conclusions Our study suggests that the use of PRP in TLIF surgery increases bone fusion rate.
Collapse
|
25
|
Ke X, Zhang L, Yang X, Wang J, Zhuang C, Jin Z, Liu A, Zhao T, Xu S, Gao C, Gou Z, Yang G. Low-melt bioactive glass-reinforced 3D printing akermanite porous cages with highly improved mechanical properties for lumbar spinal fusion. J Tissue Eng Regen Med 2018; 12:1149-1162. [PMID: 29222837 DOI: 10.1002/term.2624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 11/02/2017] [Accepted: 11/27/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Xiurong Ke
- Rui'an People's Hospital & the 3rd Hospital Affiliated to Wenzhou Medical University; Rui'an China
| | - Lei Zhang
- Rui'an People's Hospital & the 3rd Hospital Affiliated to Wenzhou Medical University; Rui'an China
| | - Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division; Zhejiang-California International Nanosystem Institute, Zhejiang University; Hangzhou China
| | - Juncheng Wang
- Rui'an People's Hospital & the 3rd Hospital Affiliated to Wenzhou Medical University; Rui'an China
| | - Chen Zhuang
- Bio-nanomaterials and Regenerative Medicine Research Division; Zhejiang-California International Nanosystem Institute, Zhejiang University; Hangzhou China
| | - Zhouwen Jin
- Bio-nanomaterials and Regenerative Medicine Research Division; Zhejiang-California International Nanosystem Institute, Zhejiang University; Hangzhou China
| | - An Liu
- Department of Orthopaedic Surgery; Second Affiliated Hospital, School of Medicine, Zhejiang University; Hangzhou China
| | - Tengfei Zhao
- Department of Orthopaedic Surgery; Second Affiliated Hospital, School of Medicine, Zhejiang University; Hangzhou China
| | - Sanzhong Xu
- Department of Orthopaedic Surgery; First Affiliated hospital, School of Medicine, Zhejiang University; Hangzhou China
| | - Changyou Gao
- Bio-nanomaterials and Regenerative Medicine Research Division; Zhejiang-California International Nanosystem Institute, Zhejiang University; Hangzhou China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division; Zhejiang-California International Nanosystem Institute, Zhejiang University; Hangzhou China
| | - Guojing Yang
- Rui'an People's Hospital & the 3rd Hospital Affiliated to Wenzhou Medical University; Rui'an China
| |
Collapse
|
26
|
Translating the role of osteogenic-angiogenic coupling in bone formation: Highly efficient chitosan-pDNA activated scaffolds can accelerate bone regeneration in critical-sized bone defects. Biomaterials 2017; 149:116-127. [DOI: 10.1016/j.biomaterials.2017.09.036] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/12/2017] [Accepted: 09/27/2017] [Indexed: 12/31/2022]
|
27
|
Comparison of Clinical and Radiological Outcomes of Lumbar Interbody Fusion Using a Combination of Hydroxyapatite and Demineralized Bone Matrix and Autografts for Lumbar Degenerative Spondylolisthesis. Asian Spine J 2017; 11:706-714. [PMID: 29093779 PMCID: PMC5662852 DOI: 10.4184/asj.2017.11.5.706] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/14/2017] [Accepted: 03/12/2017] [Indexed: 12/13/2022] Open
Abstract
Study Design Prospective, cohort, non-inferiority study. Purpose This study evaluated the clinical and radiological outcomes of interbody fusion using a combination of demineralized bone matrix (DBM) and hydroxyapatite (HA). Overview of Literature The use of autografts remains a gold standard in lumbar interbody fusion, but the limited availability and donor site morbidity encourages the use of bone substitutes. In addition to autografts, a combination of HA and DBM is being increasingly use for lumbar interbody fusion. However, there are no data on the clinical and radiological outcomes of this procedure. Methods We examined 35 patients with lumbar degenerative spondylolisthesis who underwent transforaminal interbody fusion. Autografts were used in 18 patients, and 17 patients received a combination of HA and DBM. Clinical outcomes were evaluated using the visual analog scale (VAS) for back and leg pain, Oswestry disability index (ODI), and Japanese Orthopaedic Association (JOA) scores at 3, 6, and 12 months postoperatively. Fusion was evaluated using computed tomography images obtained at 12 months postoperatively. Results The mean ODI, JOA, and back and leg pain VAS scores increased significantly in both groups. However, the VAS, JOA, and ODI scores did not differ significantly between the two groups (p=0.599, p=0.543, and p=0.780, respectively). The fusion rates at 1 year postoperatively were 77.8% and 76.5% in the autograft and HA+DBM groups, respectively (p=0.99). Conclusions The clinical and radiological outcomes of using a combination of HA and DBM in lumbar interbody fusion were not inferior to those of using autografts. A combination of HA and DBM can be considered as an alternative in patients with lumbar degenerative spondylolisthesis requiring surgery.
Collapse
|
28
|
Abstract
BACKGROUND Nonhealing bone defects represent an immense biomedical burden. Despite recent advances in protein-based bone regeneration, safety concerns over bone morphogenetic protein-2 have prompted the search for alternative factors. Previously, the authors examined the additive/synergistic effects of hedgehog and Nel-like protein-1 (NELL-1) on the osteogenic differentiation of mesenchymal stem cells in vitro. In this study, the authors sought to leverage their previous findings by applying the combination of Smoothened agonist (SAG), hedgehog signal activator, and NELL-1 to an in vivo critical-size bone defect model. METHODS A 4-mm parietal bone defect was created in mixed-gender CD-1 mice. Treatment groups included control (n = 6), SAG (n = 7), NELL-1 (n = 7), and SAG plus NELL-1 (n = 7). A custom fabricated poly(lactic-co-glycolic acid) disk with hydroxyapatite coating was used as an osteoinductive scaffold. RESULTS Results at 4 and 8 weeks showed increased bone formation by micro-computed tomographic analyses with either stimulus alone (SAG or NELL-1), but significantly greater bone formation with both components combined (SAG plus NELL-1). This included greater bone healing scores and increased bone volume and bone thickness. Histologic analyses confirmed a significant increase in new bone formation with the combination therapy SAG plus NELL-1, accompanied by increased defect vascularization. CONCLUSIONS In summary, the authors' results suggest that combining the hedgehog signaling agonist SAG and NELL-1 has potential as a novel therapeutic strategy for the healing of critical-size bone defects. Future directions will include optimization of dosage and delivery strategy for an SAG and NELL-1 combination product.
Collapse
|
29
|
A new bioinspired collagen-hydroxyapatite bone graft substitute in adult scoliosis surgery: results at 3-year follow-up. J Appl Biomater Funct Mater 2017; 15:e262-e270. [PMID: 28604992 PMCID: PMC6379889 DOI: 10.5301/jabfm.5000366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2017] [Indexed: 12/11/2022] Open
Abstract
Background Spinal fusion is a common procedure used for surgical treatment of spinal
deformity. In recent years, many bone graft substitutes (BGS) have been
developed to provide good arthrodesis when the available autologous bone
harvested from the patient is not enough. The aim of this study was to
analyze the use of a new-generation composite material (RegenOss) made of
Mg-hydroxyapatite nanoparticles nucleated on type I collagen to obtain long
posterolateral fusion in adult scoliosis surgery. Methods A total of 41 patients who underwent spinal fusion for the treatment of adult
scoliosis were retrospectively analyzed. According to Lenke classification,
visual analog scale (VAS) score and Oswestry Disability Index (ODI) score,
radiographic rates of bone union were evaluated before surgery and at 6, 12
and 36 months of follow-up. Fusion was considered to be successful when
criteria for Lenke grade A or B were satisfied. Patient-related risk factors
were considered for the evaluation of the final outcome. Results At 36-month follow-up, radiographic evidence of spinal fusion was present in
the majority of patients (95.1%). A time-dependent statistically significant
improvement was evidenced after surgery for all clinical outcomes evaluated.
Based on the demographic data collected, there were no statistically
significant factors determining fusion. The correction of deformity was
maintained at different time points. No intraoperative or postoperative
complications were recorded. Conclusions The present study demonstrated that RegenOss can safely be used to achieve
good arthrodesis when associated with autologous bone graft to obtain long
spinal fusion in the treatment of adult scoliosis.
Collapse
|
30
|
Histologic and Histomorphometric Comparison of Bone Regeneration Between Bone Morphogenetic Protein-2 and Platelet-Derived Growth Factor-BB in Experimental Groups. J Craniofac Surg 2017; 27:805-9. [PMID: 27092911 DOI: 10.1097/scs.0000000000002560] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Efficacy of recombinant human bone morphogenetic protein-2 (rhBMP-2) and recombinant human platelet-derived growth factor-BB (rhPDGF-BB) delivered via absorbable collagen sponge (ACS) on bone formation was evaluated in guinea pig tibias. Three-millimeter-circular bone tibia defects were created in 24 guinea pigs assigned randomly to 4 groups according to the following defect filling materials: ACS only, rhBMP-2+ACS, rhPDGF-BB+ACS, or empty. New bone formation was evaluated histologically and histomorphometrically at 15 (early healing) and 45 days (late healing). Mean new bone per total defect area ratio was 0.73, 0.57, 0.43, and 0.42 in rhBMP-2+ACS, rhPDGF-BB+ACS, ACS only, and empty groups at early healing, respectively. During early healing, significantly more new bone formation was observed in rhBMP-2+ACS and rhPDGF-BB+ACS groups than in the control groups. New bone formation was significantly higher with rhBMP-2+ACS than with rhPDGF-BB+ACS. Mean new bone per total defect area ratio was 0.81, 0.86, 0.74, and 0.75 in the rhBMP-2+ACS, rhPDGF-BB+ACS, ACS only, and empty groups at late healing, respectively. During late healing, new bone formation was significantly higher in the rhPDGF-BB+ACS group relative to both control groups, but the results did not differ significantly from those in the rhBMP-2+ACS group. New bone formation in the rhBMP-2+ACS group did not change significantly between the healing periods. In the rhPDGF-BB+ACS group, however, new bone formation was significantly higher in the late healing period. Both growth factors accelerated new bone formation in the early healing period. Although rhBMP-2 was more effective in the early healing period, the effects of rhPDGF-BB were longer lasting.
Collapse
|
31
|
Does Discontinuing Teriparatide Treatment and Replacing It with Bisphosphonate Maintain the Volume of the Bone Fusion Mass after Lumbar Posterolateral Fusion in Women with Postmenopausal Osteoporosis? Asian Spine J 2017; 11:272-277. [PMID: 28443172 PMCID: PMC5401842 DOI: 10.4184/asj.2017.11.2.272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/01/2016] [Accepted: 10/05/2016] [Indexed: 12/03/2022] Open
Abstract
Study Design Retrospective case series. Purpose The purpose of this study was to determine whether discontinuing teriparatide treatment and replacing it with bisphosphonate treatment maintains the volume of the fusion mass after posterolateral fusion (PLF) in women with postmenopausal osteoporosis. Overview of Literature Clinical data support the efficacy of parathyroid hormone (PTH) for lumbar PLF. However, the use of PTH is limited to 2 years. Methods We treated 19 women diagnosed with osteoporosis and degenerative spondylolisthesis with teriparatide (20 µg daily subcutaneously). All patients underwent one-level instrumented PLF. Teriparatide was used during 2 months prior to surgery and more than 8 months after surgery. After discontinuing teriparatide treatment, all patients used bisphosphonate (17.5 mg risedronate weekly, oral administration). Area of the fusion mass across the transverse processes at one segment was determined on an anteroposterior radiograph at 1, 2, and 3 years after surgery. Results We followed 19 patients for 3 years. The average duration of teriparatide treatment was 11.5 months. The bone union rate was 95%. The average area of the bone fusion mass was not significantly different between the right and left sides at 1, 2, or 3 years after surgery (p>0.05). Conclusions This study showed that replacing teriparatide treatment with bisphosphonate maintained the bone fusion mass volume after PLF in women with postmenopausal osteoporosis.
Collapse
|
32
|
Patel N, Kim B, Zaid W, Spagnoli D. Tissue Engineering for Vertical Ridge Reconstruction. Oral Maxillofac Surg Clin North Am 2016; 29:27-49. [PMID: 27890226 DOI: 10.1016/j.coms.2016.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This article provides an overview of basic tissue engineering principles as they are applied to vertical ridge defects and reconstructive techniques for these types of deficiencies. Presented are multiple clinical cases ranging from office-based dentoalveolar procedures to the more complex reconstruction of postresection mandibular defects. Several different types of regenerative tissue constructs are presented; either used alone or in combination with traditional reconstructive techniques and procedures, such as maxillary sinus augmentation, Le Fort I osteotomy, and microvascular free tissue transfer. The goal is to also familiarize the reconstructive surgeon to potential future strategies in vertical alveolar ridge augmentation.
Collapse
Affiliation(s)
- Neel Patel
- Department of Oral and Maxillofacial Surgery, Louisiana State University Health Sciences Center, 1100 Florida Ave, Box 220, Room 5303, New Orleans, LA 70119, USA.
| | - Beomjune Kim
- Department of Oral and Maxillofacial Surgery, Louisiana State University Health Sciences Center, 1100 Florida Avenue, Box 220, Room 5303, New Orleans, LA, USA
| | - Waleed Zaid
- Department of Oral and Maxillofacial Surgery, Louisiana State University Health Sciences Center, 1100 Florida Avenue, Box 220, Room 5303, New Orleans, LA, USA
| | - Daniel Spagnoli
- Private Practice, Brunswick Oral and Maxillofacial Surgery, 621-B North Fodale Avenue, Southport, NC 28461, USA
| |
Collapse
|
33
|
Duan R, Barbieri D, Luo X, Weng J, de Bruijn JD, Yuan H. Submicron-surface structured tricalcium phosphate ceramic enhances the bone regeneration in canine spine environment. J Orthop Res 2016; 34:1865-1873. [PMID: 26896645 DOI: 10.1002/jor.23201] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/15/2016] [Indexed: 02/04/2023]
Abstract
Calcium phosphate ceramics with submicron-scaled surface structure can trigger bone formation in non-osseous sites and are expected to enhance bone formation in spine environment. In this study, two tricalcium phosphate ceramics having either a submicron-scaled surface structure (TCP-S) or a micron-scaled one (TCP-B) were prepared and characterized regarding their physicochemical properties. Granules (size 1-2 mm) of both materials were implanted on either left or right side of spinous process, between the two lumbar vertebrae (L3-L4), and in paraspinal muscle of eight beagles. After 12 weeks of implantation, ectopic bone was observed in muscle in TCP-S explants (7.7 ± 3.7%), confirming their ability to inductively form bone in non-osseous sites. In contrast, TCP-B implants did not lead to bone formation in muscle. Abundant bone (34.1 ± 6.6%) was formed within TCP-S implants beside the two spinous processes, while limited bone (5.1 ± 4.5%) was seen in TCP-B. Furthermore, the material resorption of TCP-S was more pronounced than that of TCP-B in both the muscle and spine environments. The results herein indicate that the submicron-scaled surface structured tricalcium phosphate ceramic could enhance bone regeneration as compared to the micron-scaled one in spine environment. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1865-1873, 2016.
Collapse
Affiliation(s)
- Rongquan Duan
- Biomaterial Science and Technology, MIRA Institute, University of Twente, Enschede, The Netherlands.,Xpand Biotechnology BV, Bilthoven, The Netherlands.,Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | | | - Xiaoman Luo
- Biomaterial Science and Technology, MIRA Institute, University of Twente, Enschede, The Netherlands.,Xpand Biotechnology BV, Bilthoven, The Netherlands
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Joost D de Bruijn
- Biomaterial Science and Technology, MIRA Institute, University of Twente, Enschede, The Netherlands.,Xpand Biotechnology BV, Bilthoven, The Netherlands.,Department of Materials Science, Queen Marry University of London, London, United Kingdom
| | - Huipin Yuan
- Xpand Biotechnology BV, Bilthoven, The Netherlands.,College of Physical Science and Technology, Sichuan University, Chengdu, China.,Department of Complex Tissue Regeneration, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
34
|
Fusion rate and clinical outcome in anterior lumbar interbody fusion with beta-tricalcium phosphate and bone marrow aspirate as a bone graft substitute. A prospective clinical study in fifty patients. INTERNATIONAL ORTHOPAEDICS 2016; 41:333-339. [PMID: 27770186 DOI: 10.1007/s00264-016-3297-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/15/2016] [Indexed: 10/20/2022]
Abstract
PURPOSE Bone graft substitutes have been successfully used in posterolateral lumbar fusion, anterior cervical fusion and animal studies. This study has been conducted to assess the safety and efficacy of β-tricalcium phosphate (β-TCP) in instrumented anterior lumbar interbody fusion (ALIF) procedure. METHODS In a prospective clinical study, ALIF cages were prefilled with β-TCP and additionally fixated with posterior pedicle screw. Computed tomography (CT) and X-rays were performed one year after surgery. Fusion was assessed and functional status was evaluated before and one year after surgery. RESULTS X-ray evaluation showed a definite fusion in 85.48 % of treated levels. CT assessment showed anterior and posterior intersegemental bone bridging in 77.78 % of treated levels. CONCLUSIONS The X-ray fusion rate presented is comparable with those published for ALIF procedures with bone graft. Fusion rates β-TCP are similar to autologous bone. ALIF with β-TCP and additional posterior fixation is a safe and effective procedure.
Collapse
|
35
|
Tuchman A, Brodke DS, Youssef JA, Meisel HJ, Dettori JR, Park JB, Yoon ST, Wang JC. Iliac Crest Bone Graft versus Local Autograft or Allograft for Lumbar Spinal Fusion: A Systematic Review. Global Spine J 2016; 6:592-606. [PMID: 27556001 PMCID: PMC4993607 DOI: 10.1055/s-0035-1570749] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/17/2015] [Indexed: 01/08/2023] Open
Abstract
STUDY DESIGN Systematic review. OBJECTIVE To compare the effectiveness and safety between iliac crest bone graft (ICBG) and local autologous bone and allograft in the lumbar spine. METHODS A systematic search of multiple major medical reference databases identified studies evaluating spinal fusion in patients with degenerative joint disease using ICBG, local autograft, or allograft in the thoracolumbar spine. RESULTS Six comparative studies met our inclusion criteria. A "low" strength of the overall body of evidence suggested no difference in fusion percentages in the lumbar spine between local autograft and ICBG. We found no difference in fusion percentages based on low evidence comparing allograft with ICBG autograft. There were no differences in pain or functional results comparing local autograft or allograft with ICBG autograft. Donor site pain and hematoma/seroma occurred more frequently in ICBG autograft group for lumbar fusion procedures. There was low evidence around the estimate of patients with donor site pain following ICBG harvesting, ranging from 16.7 to 20%. With respect to revision, low evidence demonstrated no difference between allograft and ICBG autograft. There was no evidence comparing patients receiving allograft with local autograft for fusion, pain, functional, and safety outcomes. CONCLUSION In the lumbar spine, ICBG, local autograft, and allograft have similar effectiveness in terms of fusion rates, pain scores, and functional outcomes. However, ICBG is associated with an increased risk for donor site-related complications. Significant limitations exist in the available literature when comparing ICBG, local autograft, and allograft for lumbar fusion, and thus ICBG versus other fusion methods necessitates further investigation.
Collapse
Affiliation(s)
- Alexander Tuchman
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States,Address for correspondence Alexander Tuchman, MD Department of Neurological Surgery, Keck School of MedicineUniversity of Southern California1200 N. State Street, Suite 3300, Los Angeles, CA 90033United States
| | - Darrel S. Brodke
- Department of Orthopedics, University of Utah, School of Medicine, Salt Lake City, Utah, United States
| | - Jim A. Youssef
- Durango Orthopedic Associates, P.C./Spine Colorado, Durango, Colorado, United States
| | - Hans-Jörg Meisel
- Department of Neurosurgery, Bergmannstrost Hospital, Halle, Germany
| | | | - Jong-Beom Park
- Department of Orthopaedic Surgery, Uijeongbu St. Mary's Hospital, The Catholic University of Korea School of Medicine, Uijeongbu, Korea
| | - S. Tim Yoon
- Department of Orthopedics, Emory Spine Center, Atlanta, Georgia, United States
| | - Jeffrey C. Wang
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States
| |
Collapse
|
36
|
Allogeneic mesenchymal precursor cells (MPCs) combined with an osteoconductive scaffold to promote lumbar interbody spine fusion in an ovine model. Spine J 2016; 16:389-99. [PMID: 26291397 DOI: 10.1016/j.spinee.2015.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 06/22/2015] [Accepted: 08/11/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND Advances in immunomagnetic cell sorting have enabled isolation and purification of pleuripotent stem cells from marrow aspirates and have expanded stem cell therapies to include allogeneic sources. PURPOSE This study aimed to determine the safety and efficacy of allogeneic mesenchymal precursor cells (MPCs) combined with an osteoconductive scaffold in lumbar interbody spinal fusion using an ovine model. STUDY DESIGN Thirty-two skeletally mature ewes underwent a single-level interbody fusion procedure using a Polyetheretherketone fusion cage supplemented with either iliac crest autograft (AG) or an osteconductive scaffold (Mastergraft Matrix, Medtronic, Memphis, TN, USA) with 2.5×10(6) MPCs, 6.25×10(6) MPCs, or 12.5×10(6) MPCs. METHODS Plain radiographs and computed tomography scans were scored for bridging bone at multiple points during healing and at necropsy. The biomechanical competency of fusion was scored by manual palpation and quantified using functional radiographs at necropsy. Postnecropsy histopathology and histomorphometric analysis assessed the local response to MPC treatment and quantified the volume and connectivity of newly formed bridging bone. Safety was assessed by serum biochemistry, hematology, and organ histopathology. RESULTS Mesenchymal precursor cell treatment caused no adverse systemic or local tissue responses. All analyses indicated MPCs combined with an osteoconductive scaffold achieved similar or better fusion success as AG treatment after 16 weeks, and increasing the MPC dose did not enhance fusion. Manual palpation of the fusion site indicated more than 75% of MPC-treated and 65% of AG-treated animals achieved rigid fusion, which was corroborated with functional radiography. Computed tomography fusion scores indicated all animals in the MPC- and AG-treatment groups were fused at 16 weeks, yet X-ray scores indicated only 67% of the AG-treated animals were fused. Histomorphometry analyses showed equivalent outcomes for fusion connectivity and bony fusion area for MPC- and AG-treated groups. Approximately 6% residual graft material remained in the MPC-treated fusion sites at 16 weeks. CONCLUSIONS Adult allogeneic MPCs delivered using an osteoconductive scaffold were both safe and efficacious in this ovine spine interbody fusion model. These results support the use ofallogeneic MPCs as an alternative to AG for lumbar interbody spinal fusion procedures.
Collapse
|
37
|
McAnany SJ, Ahn J, Elboghdady IM, Marquez-Lara A, Ashraf N, Svovrlj B, Overley SC, Singh K, Qureshi SA. Mesenchymal stem cell allograft as a fusion adjunct in one- and two-level anterior cervical discectomy and fusion: a matched cohort analysis. Spine J 2016; 16:163-7. [PMID: 25725368 DOI: 10.1016/j.spinee.2015.02.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 02/09/2015] [Accepted: 02/18/2015] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Live mesenchymal stem cell (MSC) allograft-containing allogeneic bone grafts have recently gained popularity and currently account for greater than 17% of all bone grafts and bone graft substitutes used in spinal surgery. Although the claim of cellular bone matrices containing osteogenic cells with osteoinductive properties is attractive, little is known about their clinical success when used in anterior cervical discectomy and fusion (ACDF). PURPOSE The objective of this study was to report on the radiographic fusion rates in one- and two-level instrumented ACDF using an MSC. STUDY DESIGN/SETTING This was a retrospective review of prospectively matched cohort of patients with radiologic assessment of fusion as the primary end point. PATIENT SAMPLE Two matched cohorts of adult patients who underwent ACDF with MSC or standard allograft were included. OUTCOMES MEASURES The outcome measures included radiographic and clinical evidence of healing at 1 year. METHODS A consecutive series of 57 patients who underwent a one- or two-level instrumented ACDF procedure between 2010 and 2012 were retrospectively analyzed. All fusion constructs comprised an interbody allograft, an anterior plate, and Osteocel (NuVasive, San Diego, CA, USA). These patients were matched to a control group of 57 patients. RESULTS Of the 57 cases in both cohorts, 29 (50.9%) were single-level, and 28 (49.1%) were two-level instrumented ACDFs. There were no significant differences in patient age (p=.71), gender, comorbidity burden (Charlson Comorbidity Index [CCI]: 1.95; 2.42, p=.71) or body mass index (p=.79). At the 1-year follow-up, 50 of 57 (87.7%) patients in the Osteocel cohort demonstrated a solid fusion compared with 54 of 57 (94.7%) in the control group (p=.19). Seven (12.3%) patients in the Osteocel cohort were reported as having a failed fusion at 1 year. CONCLUSIONS This is the first non-industry sponsored study to analyze a matched cohort assessing the 1-year arthrodesis rates associated with a nonstructural MSC allograft in one- and two-level ACDF procedures. Although not statistically significant, patients treated with MSC allografts demonstrated lower fusion rates compared with a matched non-MSC cohort.
Collapse
Affiliation(s)
- Steven J McAnany
- Department of Orthopaedic Surgery, Mount Sinai Medical Center, 5 E. 98th St, New York, NY 10029, USA
| | - Junyoung Ahn
- Department of Orthopaedic Surgery, Rush University Medical Center, 1611 W. Harrison St Suite 300, Chicago, IL 60612, USA
| | - Islam M Elboghdady
- Department of Orthopaedic Surgery, Rush University Medical Center, 1611 W. Harrison St Suite 300, Chicago, IL 60612, USA
| | - Alejandro Marquez-Lara
- Department of Orthopaedic Surgery, Rush University Medical Center, 1611 W. Harrison St Suite 300, Chicago, IL 60612, USA
| | - Nomaan Ashraf
- Department of Orthopaedic Surgery, Mount Sinai Medical Center, 5 E. 98th St, New York, NY 10029, USA
| | - Branko Svovrlj
- Department of Orthopaedic Surgery, Mount Sinai Medical Center, 5 E. 98th St, New York, NY 10029, USA
| | - Samuel C Overley
- Department of Orthopaedic Surgery, Mount Sinai Medical Center, 5 E. 98th St, New York, NY 10029, USA
| | - Kern Singh
- Department of Orthopaedic Surgery, Rush University Medical Center, 1611 W. Harrison St Suite 300, Chicago, IL 60612, USA
| | - Sheeraz A Qureshi
- Department of Orthopaedic Surgery, Mount Sinai Medical Center, 5 E. 98th St, New York, NY 10029, USA.
| |
Collapse
|
38
|
Lee S, Zhang X, Shen J, James AW, Chung CG, Hardy R, Li C, Girgius C, Zhang Y, Stoker D, Wang H, Wu BM, Peault B, Ting K, Soo C. Brief Report: Human Perivascular Stem Cells and Nel-Like Protein-1 Synergistically Enhance Spinal Fusion in Osteoporotic Rats. Stem Cells 2015; 33:3158-63. [PMID: 26173400 DOI: 10.1002/stem.2103] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/26/2015] [Accepted: 06/01/2015] [Indexed: 01/09/2023]
Abstract
Autologous bone grafts (ABGs) are considered as the gold standard for spinal fusion. However, osteoporotic patients are poor candidates for ABGs due to limited osteogenic stem cell numbers and function of the bone microenvironment. There is a need for stem cell-based spinal fusion of proven efficacy under either osteoporotic or nonosteoporotic conditions. The purpose of this study is to determine the efficacy of human perivascular stem cells (hPSCs), a population of mesenchymal stem cells isolated from adipose tissue, in the presence and absence of NELL-1, an osteogenic protein, for spinal fusion in the osteoporosis. Osteogenic differentiation of hPSCs with and without NELL-1 was tested in vitro. The results indicated that NELL-1 significantly increased the osteogenic potential of hPSCs in both osteoporotic and nonosteoporotic donors. Next, spinal fusion was performed by implanting scaffolds with regular or high doses of hPSCs, with or without NELL-1 in ovariectomized rats (n = 41). Regular doses of hPSCs or NELL-1 achieved the fusion rates of only 20%-37.5% by manual palpation. These regular doses had previously been shown to be effective in nonosteoporotic rat spinal fusion. Remarkably, the high dose of hPSCs+NELL-1 significantly improved the fusion rates among osteoporotic rats up to approximately 83.3%. Microcomputed tomography imaging and quantification further confirmed solid bony fusion with high dose hPSCs+NELL-1. Finally, histologically, direct in situ involvement of hPSCs in ossification was shown using undecalcified samples. To conclude, hPSCs combined with NELL-1 synergistically enhances spinal fusion in osteoporotic rats and has great potential as a novel therapeutic strategy for osteoporotic patients.
Collapse
Affiliation(s)
- Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, Gyeonggi-do, Republic of Korea.,UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, California, USA
| | - Xinli Zhang
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, California, USA
| | - Jia Shen
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, California, USA
| | - Aaron W James
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, California, USA
| | - Choon G Chung
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, California, USA
| | - Reef Hardy
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, California, USA
| | - Chenshuang Li
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, California, USA
| | - Caroline Girgius
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, California, USA
| | - Yulong Zhang
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - David Stoker
- Marina Plastic Surgery Associates, Marina del Rey, California, USA
| | - Huiming Wang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, People's Republic of China
| | - Benjamin M Wu
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA.,Department of Materials Science and Engineering, and Division of Advanced Prosthodontics, University of California, Los Angeles, California, USA
| | - Bruno Peault
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, California, USA.,Center For Cardiovascular Science and MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Kang Ting
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, California, USA.,Division of Growth and Development, School of Dentistry, University of California, Los Angeles, California, USA
| | - Chia Soo
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, California, USA.,UCLA Division of Plastic Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, California, USA
| |
Collapse
|
39
|
Pan H, Li X, Wang J, Zhang K, Yang H, Li Z, Zheng Z, Liu H. LIM Mineralization Protein-1 Enhances Bone Morphogenetic Protein-2-Mediated Osteogenesis Through Activation of ERK1/2 MAPK Pathway and Upregulation of Runx2 Transactivity. J Bone Miner Res 2015; 30:1523-35. [PMID: 25677945 DOI: 10.1002/jbmr.2481] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/31/2015] [Accepted: 02/10/2015] [Indexed: 12/16/2022]
Abstract
LIM mineralization protein-1 (LMP-1) is an intracellular regulator of bone formation. Upregulation of bone morphogenetic proteins (BMPs) and stabilization of BMP/Smad signaling have been proven to be the key mechanisms through which LMP-1 enhances osteogenesis. However, how LMP-1 regulates BMPs expression and related bone formation remains unclear. In this study, a LMP-1-induced osteogenesis cell model was used to study the molecular action of LMP-1 on BMP-2 expression and bone formation. The results show that overexpression of LMP-1 significantly increases, whereas downregulation of endogenous LMP-1 decreases BMP-2 expression and bone formation. Antagonism of BMP-2 with noggin or short hairpin BMP-2 significantly attenuates the osteoinductive effect of LMP-1, suggesting that the osteoinductive effect of LMP-1 is mediated by BMP-2. LMP-1 regulation of BMP-2 is found to occur at the transcription level using a luciferase reporter assay with a reporter construct containing a BMP-2 promoter. A promoter deletion assay reveals that -1000/-500 bp is the key regulated region by LMP-1. A Runx2-binding site is then located at -934/-920 bp and confirmed by luciferase assay using a reporter construct containing repeats of this Runx2-binding site and the site-directed mutagenesis analysis. Overexpression of LMP-1 significantly increases Runx2 expression. Downregulation of Runx2 expression significantly decreases BMP-2 promoter activity and BMP-2 expression. A ChIP assay demonstrates that LMP-1 increases the interaction between Runx2 and BMP-2 promoter. A luciferase reporter assay using the OSE2 promoter containing a Runx2-binding site confirms that Runx2 transactivity can be upregulated by LMP-1. Moreover, inhibiting the activation of different pathways with specific pathway inhibitors reveals that ERK1/2 MAPK activation is essential for LMP-1-induced upregulation of Runx2 transactivity and subsequent BMP-2 expression. In conclusion, our novel findings describe a positive regulatory effect of LMP-1 on BMP-2 expression and BMP-2-mediated osteogenesis. This effect occurs through activation of ERK1/2 pathway and subsequent upregulation of Runx2 transactivity.
Collapse
Affiliation(s)
- Hehai Pan
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianru Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kuibo Zhang
- Department of Orthopedics, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Yang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zemin Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaomin Zheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Liu
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
40
|
More than 6 Months of Teriparatide Treatment Was More Effective for Bone Union than Shorter Treatment Following Lumbar Posterolateral Fusion Surgery. Asian Spine J 2015; 9:573-80. [PMID: 26240717 PMCID: PMC4522448 DOI: 10.4184/asj.2015.9.4.573] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 04/14/2015] [Indexed: 12/23/2022] Open
Abstract
Study Design Retrospective case series. Purpose To examine the most effective duration of teriparatide use for spinal fusion in women with postmenopausal osteoporosis. Overview of Literature We reported that daily subcutaneous injection of teriparatide (parathyroid hormone) significantly improved bone union after instrumented lumbar posterolateral fusion (PLF) in women with postmenopausal osteoporosis when compared with oral administration of bisphosphonate. However, the most effective duration of teriparatide use for spinal fusion has not been explored. Methods Forty-five women with osteoporosis diagnosed with degenerative spondylolisthesis from one of the three treatment groups were evaluated based on: short-duration treatment (average, 5.5 months; n=15; daily subcutaneous injection of 20 µg teriparatide), long-duration treatment (average, 13.0 months; n=15; daily subcutaneous injection of 20 µg teriparatide), and bisphosphonate treatment (average, 13.0 months; n=15; weekly oral administration of 17.5 mg risedronate). All patients underwent PLF with a local bone graft. Fusion rate and duration of bone union were evaluated 1.5 years after surgery. Results Bone union rate and average duration for bone union were 92% and 7.5 months in the long-duration treatment group, 80% and 8.5 months in the short-duration treatment group, and 70% and 10.0 months in the bisphosphonate treatment group, respectively. Results of bone union rate and average duration for bone union in the teriparatide treatment groups were significantly superior to those in the bisphosphonate treatment group (p<0.05); whereas, significantly superior results were observed in long-duration treatment group when compared with short-duration treatment group (p<0.05). Conclusions Daily injection of teriparatide for bone union was more effective than oral administration of bisphosphonate. Furthermore, a longer period of teriparatide treatment for bone union was more effective than a shorter period of same treatment.
Collapse
|
41
|
Raftery RM, Tierney EG, Curtin CM, Cryan SA, O'Brien FJ. Development of a gene-activated scaffold platform for tissue engineering applications using chitosan-pDNA nanoparticles on collagen-based scaffolds. J Control Release 2015; 210:84-94. [PMID: 25982680 DOI: 10.1016/j.jconrel.2015.05.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 12/21/2022]
Abstract
Biomaterial scaffolds that support cell infiltration and tissue formation can also function as platforms for the delivery of therapeutics such as drugs, proteins, and genes. As burst release of supraphysiological quantities of recombinant proteins can result in adverse side effects, the objective of this study was to explore the potential of a series of collagen-based scaffolds, developed in our laboratory, as gene-activated scaffold platforms with potential in a range of tissue engineering applications. The potential of chitosan, a biocompatible material derived from the shells of crustaceans, as a gene delivery vector was assessed using mesenchymal stem cells (MSCs). A transfection efficiency of >45% is reported which is similar to what is achieved with polyethyleneimine (PEI), a non-viral gold standard vector, without causing cytotoxic side effects. When the optimised chitosan nanoparticles were incorporated into a series of collagen-based scaffolds, sustained transgene expression from MSCs seeded on the scaffolds was maintained for up to 28days and interestingly the composition of the scaffold had an effect on transfection efficiency. These results demonstrate that by simply varying the scaffold composition and the gene (or combinations thereof) chosen; the system has potential for a myriad of therapeutic applications.
Collapse
Affiliation(s)
- Rosanne M Raftery
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Erica G Tierney
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Caroline M Curtin
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Sally-Ann Cryan
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Dublin, Ireland; School of Pharmacy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Dublin, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland.
| |
Collapse
|
42
|
Elder BD, Holmes C, Goodwin CR, Lo SF, Puvanesarajah V, Kosztowski TA, Locke JE, Witham TF. A systematic assessment of the use of platelet-rich plasma in spinal fusion. Ann Biomed Eng 2015; 43:1057-70. [PMID: 25794962 DOI: 10.1007/s10439-015-1300-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 03/11/2015] [Indexed: 12/19/2022]
Abstract
Spinal fusion is one of the most commonly performed procedures for the treatment of spinal instability caused by a multitude of pathologies. However, despite significant advances in spinal instrumentation, failed fusion, or pseudoarthrosis, remains a significant challenge. Therefore, other additives such as bone graft extenders and growth factors have been explored as a method to augment fusion rates. Platelet-rich plasma (PRP) represents an additional approach, as it has shown some promise in bone regeneration. While the general use of PRP in orthopedic applications has been reviewed previously, its use in spinal fusion has not been systematically analyzed. The objective of this review is to systematically discuss the role of PRP in augmentation of bone regeneration for the purpose of spinal fusion. Background information on PRP, including a discussion of its preparation, activation, and growth factors, is included. Additionally, data from in vitro studies utilizing PRP in bone tissue engineering strategies is analyzed, and the available animal and clinical studies are systematically reviewed in order to provide guidance on future research pathways as well as the potential role of PRP in spinal fusion surgery.
Collapse
Affiliation(s)
- Benjamin D Elder
- Department of Neurosurgery, The Johns Hopkins Hospital, 1800 Orleans St., Room 6007, Baltimore, MD, 21287, USA,
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Cuenca-López MD, Andrades JA, Gómez S, Zamora-Navas P, Guerado E, Rubio N, Blanco J, Becerra J. Evaluation of posterolateral lumbar fusion in sheep using mineral scaffolds seeded with cultured bone marrow cells. Int J Mol Sci 2014; 15:23359-76. [PMID: 25522168 PMCID: PMC4284771 DOI: 10.3390/ijms151223359] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 10/25/2014] [Accepted: 11/24/2014] [Indexed: 12/29/2022] Open
Abstract
The objective of this study is to investigate the efficacy of hybrid constructs in comparison to bone grafts (autograft and allograft) for posterolateral lumbar fusion (PLF) in sheep, instrumented with transpedicular screws and bars. Hybrid constructs using cultured bone marrow (BM) mesenchymal stem cells (MSCs) have shown promising results in several bone healing models. In particular, hybrid constructs made by calcium phosphate-enriched cells have had similar fusion rates to bone autografts in posterolateral lumbar fusion in sheep. In our study, four experimental spinal fusions in two animal groups were compared in sheep: autograft and allograft (reference group), hydroxyapatite scaffold, and hydroxyapatite scaffold seeded with cultured and osteoinduced bone marrow MSCs (hybrid construct). During the last three days of culture, dexamethasone (dex) and beta-glycerophosphate (β-GP) were added to potentiate osteoinduction. The two experimental situations of each group were tested in the same spinal segment (L4–L5). Spinal fusion and bone formation were studied by clinical observation, X-ray, computed tomography (CT), histology, and histomorphometry. Lumbar fusion rates assessed by CT scan and histology were higher for autograft and allograft (70%) than for mineral scaffold alone (22%) and hybrid constructs (35%). The quantity of new bone formation was also higher for the reference group, quite similar in both (autograft and allograft). Although the hybrid scaffold group had a better fusion rate than the non-hybrid scaffold group, the histological analysis revealed no significant differences between them in terms of quantity of bone formation. The histology results suggested that mineral scaffolds were partly resorbed in an early phase, and included in callus tissues. Far from the callus area the hydroxyapatite alone did not generate bone around it, but the hybrid scaffold did. In nude mice, labeled cells were induced to differentiate in vivo and monitored by bioluminescence imaging (BLI). Although the cultured MSCs had osteogenic potential, their contribution to spinal fusion when seeded in mineral scaffolds, in the conditions disclosed here, remains uncertain probably due to callus interference with the scaffolds. At present, bone autografts are better than hybrid constructs for posterolateral lumbar fusion, but we should continue to seek better conditions for efficient tissue engineering.
Collapse
Affiliation(s)
- María D Cuenca-López
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, Campus de Teatinos, Málaga 29071, Spain.
| | - José A Andrades
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, Campus de Teatinos, Málaga 29071, Spain.
| | - Santiago Gómez
- Department of Pathological Anatomy, Faculty of Medicine, University of Cádiz, Cádiz 11003, Spain.
| | - Plácido Zamora-Navas
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.
| | - Enrique Guerado
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.
| | - Nuria Rubio
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.
| | - Jerónimo Blanco
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.
| | - José Becerra
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, University of Málaga, Campus de Teatinos, Málaga 29071, Spain.
| |
Collapse
|
44
|
Xie Y, Li H, Yuan J, Fu L, Yang J, Zhang P. A prospective randomized comparison of PEEK cage containing calcium sulphate or demineralized bone matrix with autograft in anterior cervical interbody fusion. INTERNATIONAL ORTHOPAEDICS 2014; 39:1129-36. [PMID: 25432324 DOI: 10.1007/s00264-014-2610-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 11/14/2014] [Indexed: 11/25/2022]
Abstract
PURPOSE A variety of bone substitutes have been successfully used to fill PEEK cages in cervical interbody fusion in order to avoid the complications related to bone harvesting from the donor site. However, no controlled study has previously been conducted to compare the effectiveness of PEEK interbody cages containing calcium sulphate/ demineralized bone matrix (CS/DBM) with autogenous cancellous bone for the treatment of cervical spondylosis. The objective of this prospective, randomized clinical study was to evaluate the effectiveness of implanting PEEK cages containing CS/DBM for the treatment of cervical radiculopathy and/or myelopathy. METHODS Sixty-eight patients with cervical radiculopathy and/or myelopathy were randomly assigned to receive one- or two-level discectomy and fusion with PEEK interbody cages containing CS/DBM or autogenous iliac cancellous bone (AIB). The patients were followed up for two years postoperatively. The radiological and clinical outcomes were assessed during a two-year follow-up. RESULTS The mean blood loss was 75 ± 18.5 ml in the CS/DBM group and 100 ± 19.6 ml (P < 0.01) in the AIB group. The fusion rate was 94.3 % in the CS/DBM group and 100 % in the AIB group at 12-month follow-up. The fusion rate was 100 % at final follow-up in both groups. No significant difference (P > 0.05) was found regarding improvement of JOA score and segmental lordosis as well as neck and arm pain at all time intervals between the two groups. The total complication rate was significantly higher (P < 0.05) in the AIB group than in the CS/DBM group, but there was no significant difference between the two groups (P > 0.05) when comparing the complications in the neck. CONCLUSIONS In conclusion, the PEEK interbody fusion cage containing CS/DBM or AIB following one- or two-level discectomy had a similar outcome for cervical spondylotic radiculopathy and/or myelopathy. The rate of fusion and the recovery rate of JOA score between the two groups were the same. The filling of CS/DBM in the PEEK cage instead of AIB has the advantage of less operative blood loss and fewer complications at the donor site.
Collapse
Affiliation(s)
- Youzhuan Xie
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, People's Republic of China
| | | | | | | | | | | |
Collapse
|
45
|
Sferopoulos NK. Autograft transfer from the ipsilateral femoral condyle in depressed tibial plateau fractures. Open Orthop J 2014; 8:310-5. [PMID: 25317215 PMCID: PMC4192835 DOI: 10.2174/1874325001408010310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/31/2014] [Accepted: 09/03/2014] [Indexed: 11/24/2022] Open
Abstract
Introduction : The rationale for operative treatment of depressed tibial plateau fractures is anatomic reduction, stable fixation and grafting. Grafting options include autogenous bone graft or bone substitutes. Methods : The autograft group included 18 patients with depressed tibial plateau fractures treated with autogenous bone grafting from the ipsilateral femoral condyle following open reduction and internal fixation. According to Schatzker classification, there were 9 type II, 4 type III, 2 type IV and 3 type V lesions. The average time to union and the hospital charges were compared with the bone substitute group. The latter included 17 patients who had an excellent outcome following treatment of split and/or depressed lateral plateau fractures, using a similar surgical technique but grafting with bone substitutes (allografts). Results : Excellent clinical and radiological results were detected in the autograft group after an average follow-up of 28 months (range 12-37). The average time to union in the autograft group was 14 weeks (range 12-16), while in the bone substitute group it was 18 weeks (range 16-20). The mean total cost was 1276 Euros for the autograft group and 2978 Euros for the bone substitute group. Discussion : The use of autogenous graft from the ipsilateral femoral condyle following open reduction and internal fixation of depressed tibial plateau fractures provided enough bone to maintain the height of the tibial plateau and was not associated with any donor site morbidity. Using this method, the surgical time was not significantly elongated and the rehabilitation was not affected. It also exhibited faster fracture healing without postoperative loss of reduction and it was less expensive than the use of bone substitutes.
Collapse
Affiliation(s)
- N K Sferopoulos
- 2 Department of Orthopaedic Surgery, Aristotle University of Thessaloniki, "G. Gennimatas" Hospital, 54635 Thessaloniki, Greece
| |
Collapse
|
46
|
Nickoli MS, Hsu WK. Ceramic-based bone grafts as a bone grafts extender for lumbar spine arthrodesis: a systematic review. Global Spine J 2014; 4:211-6. [PMID: 25083364 PMCID: PMC4111951 DOI: 10.1055/s-0034-1378141] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/25/2014] [Indexed: 01/28/2023] Open
Abstract
Study Design Systematic review. Objective Ceramic-based bone grafts have been widely utilized to reduce the need for iliac crest bone grafting given the complications associated with the harvest of iliac crest autograft. As a family, ceramics vary widely based on differences in composition, manufacturing, porosity, and structure, which may ultimately affect their efficacy. This article reviews the current data of ceramics used in different environments in the lumbar spine to achieve arthrodesis. Methods Medline, EMBASE, and Cochrane Central Register of Controlled Trials were searched for publications from 1980 to 2013 involving ceramic-based bone grafts in the lumbar spine. Variables such as age of patients, volume of ceramic, procedure, time to evaluation, method of evaluation, specific composition of ceramic, adjuncts used with ceramic products, type of fusion, and fusion rate were compared using a multivariate logistic regression model. Results Thirty studies with 1,332 patients met the final inclusion criteria. The overall fusion rate for all ceramic products as a bone graft extender in the lumbar spine was 86.4%. Age, gender, method of evaluation (plain radiographs, computed tomography, or combination), or specific ceramic product did not significantly affect fusion rate. Ceramics used in combination with local autograft resulted in significantly higher fusion rates compared with all other adjuncts, and bone marrow aspirate and platelet concentrates resulted in significantly lower fusion rates. Conclusions Ceramic-based bone grafts represent a promising bone graft extender in lumbar spine fusion when an osteoinductive stimulus, such as local bone graft is available.
Collapse
Affiliation(s)
- Michael S. Nickoli
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States,Address for correspondence Michael Nickoli, MD 676 N. Saint ClairSuite 1350, Chicago, IL 60611United States
| | - Wellington K. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States
| |
Collapse
|
47
|
Abstract
The choice among the many options of approach and adjunct techniques in planning a posterior lumbar fusion can be problematic. Debates remain as to whether solid fusion has an advantage over pseudarthrosis regarding long-term symptom deterioration and whether an instrumented or a noninstrumented approach will best serve clinically and/or cost effectively, particularly in elderly patients. Increased motion resulting in higher rates of nonunion and the use of nonsteroidal anti-inflammatory drugs have been studied in animal models and are presumed risk factors, despite the lack of clinical investigation. Smoking is a proven risk factor for pseudarthrosis in both animal models and level III clinical studies. Recent long-term studies and image/clinical assessment of lumbar fusions and pseudarthrosis show that, although imaging remains a key area of difficulty in assessment, including an instrumented approach and a well-selected biologic adjunct, as well as achieving a solid fusion, all carry important long-term clinical advantages in avoiding revision surgery for nonunion.
Collapse
|
48
|
Demineralized bone matrix, as a graft enhancer of auto-local bone in posterior lumbar interbody fusion. Asian Spine J 2014; 8:129-37. [PMID: 24761193 PMCID: PMC3996335 DOI: 10.4184/asj.2014.8.2.129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 04/15/2013] [Accepted: 05/10/2013] [Indexed: 12/04/2022] Open
Abstract
Study Design A case controlled study with prospective data collection. Purpose To evaluate the early influence and the final consequence of demineralized bone matrix (DBM) on auto-local bone as a graft enhancer in posterior lumbar interbody fusion (PLIF). Overview of Literature DBM is known as an osteoinductive material; however, it has not been clearly recognized to enhance auto-local bone with a small amount. Methods Patients who had a PLIF were allocated into two groups. Group I (70 cases) used auto-local bone chips and group II (44 cases) used DBM as an additive to auto-local bone, 1 mL per a segment. Group selection was alternated. Early assessment was performed by computed tomography at 6 months and final assessment was done by simple radiography after 24 months at least. The degree of bone formation was assessed by 4 grade scale. Results The subjects of both groups were homogenous and had similar Oswestry Disability Index at final assessment. The ratio of auto-local bone chips and DBM was 6:1. The degree of bone formation at 6 months after surgery was superior in group II. However, there was no significant difference between the two groups at the final assessment. Conclusions DBM was not recognized to enhance auto-local bone with small amount.
Collapse
|
49
|
Werner BC, Li X, Shen FH. Stem cells in preclinical spine studies. Spine J 2014; 14:542-51. [PMID: 24246748 DOI: 10.1016/j.spinee.2013.08.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 07/05/2013] [Accepted: 08/23/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT The recent identification and characterization of mesenchymal stem cells have introduced a shift in the research focus for future technologies in spinal surgery to achieve spinal fusion and treat degenerative disc disease. Current and past techniques use allograft to replace diseased tissue or rely on host responses to recruit necessary cellular progenitors. Adult stem cells display long-term proliferation, efficient self-renewal, and multipotent differentiation. PURPOSE This review will focus on two important applications of stem cells in spinal surgery: spine fusion and the management of degenerative disc disease. STUDY DESIGN Review of the literature. METHODS Relevant preclinical literature regarding stem cell sources, growth factors, scaffolds, and animal models for both osteogenesis and chondrogenesis will be reviewed, with an emphasis on those studies that focus on spine applications of these technologies. RESULTS In both osteogenesis and chondrogenesis, adult stem cells derived from bone marrow or adipose show promise in preclinical studies. Various growth factors and scaffolds have also been shown to enhance the properties and eventual clinical potential of these cells. Although its utility in clinical applications has yet to be proven, gene therapy has also been shown to hold promise in preclinical studies. CONCLUSIONS The future of spine surgery is constantly evolving, and the recent advancements in stem cell-based technologies for both spine fusion and the treatment of degenerative disc disease is promising and indicative that stem cells will undoubtedly play a major role clinically. It is likely that these stem cells, growth factors, and scaffolds will play a critical role in the future for replacing diseased tissue in disease processes such as degenerative disc disease and in enhancing host tissue to achieve more reliable spine fusion.
Collapse
Affiliation(s)
- Brian C Werner
- Department of Orthopaedic Surgery, University of Virginia, PO Box 800159, Charlottesville, VA 22908-0159 USA
| | - Xudong Li
- Department of Orthopaedic Surgery, University of Virginia, PO Box 800159, Charlottesville, VA 22908-0159 USA
| | - Francis H Shen
- Department of Orthopaedic Surgery, University of Virginia, PO Box 800159, Charlottesville, VA 22908-0159 USA.
| |
Collapse
|
50
|
Regenerative Spinal Therapies for Low Back Pain. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2014. [DOI: 10.1007/s40141-014-0043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|