1
|
Gao R, Liu X, Xiong Z, Wang G, Ai L. Research progress on detection of foodborne pathogens: The more rapid and accurate answer to food safety. Food Res Int 2024; 193:114767. [PMID: 39160035 DOI: 10.1016/j.foodres.2024.114767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/21/2024]
Abstract
In recent years, foodborne diseases have posed a serious threat to human health, and rapid detection of foodborne pathogens is particularly crucial for the prevention and control of such diseases. This article offers a detailed overview of the development of detection techniques for foodborne pathogens, transitioning from traditional microbiological culture methods to the current array of techniques, including immunological, molecular biological, and biosensor-based methods. It summarizes the technical principles, advantages, disadvantages, and research progress of these diverse methods. Furthermore, the article demonstrates that the combination of different methods enhances the efficiency and accuracy of pathogens detection. Specifically, the article focuses on the application and advantages of combining CRISPR/Cas systems with other detection methods in the detection of foodborne pathogens. CRISPR/Cas systems, with their high specificity, sensitivity, and ease of operation, show great potential in the field of foodborne pathogens detection. When integrated with other detection techniques such as immunological detection techniques, molecular biology detection techniques, and biosensors, the accuracy and efficiency of detection can be further improved. By fully utilizing these tools, early detection and control of foodborne diseases can be achieved, enhancing public health and preventing disease outbreaks. This article serves as a valuable reference for exploring more convenient, accurate, and sensitive field detection methods for foodborne pathogens, promoting the application of rapid detection techniques, and ensuring food safety and human health.
Collapse
Affiliation(s)
- Ruoxuan Gao
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xinxin Liu
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
2
|
Guo M, Yi Z, Li H, Liu Y, Ding L, Babailov SP, Xiong C, Huang G, Zhang J. NMR Immunosensor Based on a Targeted Gadolinium Nanoprobe for Detecting Salmonella in Milk. Anal Chem 2024; 96:11334-11342. [PMID: 38943569 DOI: 10.1021/acs.analchem.4c01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
Detecting harmful pathogens in food is not only a crucial aspect of food quality management but also an effective way to ensure public health. In this paper, a complete nuclear magnetic resonance biosensor based on a novel gadolinium (Gd)-targeting molecular probe was developed for the detection of Salmonella in milk. First, streptavidin was conjugated to the activated macromolecular polyaspartic acid (PASP) via an amide reaction to generate SA-PASP. Subsequently, the strong chelating and adsorption properties of PASP toward the lanthanide metal gadolinium ions were exploited to generate the magnetic complex (SA-PASP-Gd). Finally, the magnetic complex was linked to biotinylated antibodies to obtain the bioprobe and achieve the capture of Salmonella. Under optimal experimental conditions, the sensor we have constructed can achieve a rapid detection of Salmonella within 1.5 h, with a detection limit of 7.1 × 103 cfu mL-1.
Collapse
Affiliation(s)
- Mengdi Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Zhibin Yi
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Huo Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Yang Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Liping Ding
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Sergey P Babailov
- A.V. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Avenue Lavrentyev 3, Novosibirsk 630090, Russian Federation
| | - Chunhong Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | - Ganhui Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China
| | | |
Collapse
|
3
|
Gradisteanu Pircalabioru G, Raileanu M, Dionisie MV, Lixandru-Petre IO, Iliescu C. Fast detection of bacterial gut pathogens on miniaturized devices: an overview. Expert Rev Mol Diagn 2024; 24:201-218. [PMID: 38347807 DOI: 10.1080/14737159.2024.2316756] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/06/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION Gut microbes pose challenges like colon inflammation, deadly diarrhea, antimicrobial resistance dissemination, and chronic disease onset. Development of early, rapid and specific diagnosis tools is essential for improving infection control. Point-of-care testing (POCT) systems offer rapid, sensitive, low-cost and sample-to-answer methods for microbe detection from various clinical and environmental samples, bringing the advantages of portability, automation, and simple operation. AREAS COVERED Rapid detection of gut microbes can be done using a wide array of techniques including biosensors, immunological assays, electrochemical impedance spectroscopy, mass spectrometry and molecular biology. Inclusion of Internet of Things, machine learning, and smartphone-based point-of-care applications is an important aspect of POCT. In this review, the authors discuss various fast diagnostic platforms for gut pathogens and their main challenges. EXPERT OPINION Developing effective assays for microbe detection can be complex. Assay design must consider factors like target selection, real-time and multiplex detection, sample type, reagent stability and storage, primer/probe design, and optimizing reaction conditions for accuracy and sensitivity. Mitigating these challenges requires interdisciplinary collaboration among scientists, clinicians, engineers, and industry partners. Future efforts are essential to enhance sensitivity, specificity, and versatility of POCT systems for gut microbe detection and quantification, advancing infectious disease diagnostics and management.
Collapse
Affiliation(s)
- Gratiela Gradisteanu Pircalabioru
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
- Division of Earth, Environmental and Life Sciences, The Research Institute of University of Bucharest (ICUB), Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
| | - Mina Raileanu
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, Magurele, Romania
| | - Mihai Viorel Dionisie
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
| | - Irina-Oana Lixandru-Petre
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
| | - Ciprian Iliescu
- eBio-hub Research Centre, National University of Science and Technology "Politehnica" Bucharest, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- Microsystems in Biomedical and Environmental Applications, National Research and Development Institute for Microtechnology, Bucharest, Romania
| |
Collapse
|
4
|
Jia X, Liu J, Zhang Y, Jiang X, Zhang J, Wu J. D-tartaric acid doping improves the performance of whole-cell bacteria imprinted polymer for sensing Vibrio parahaemolyticus. Anal Chim Acta 2023; 1275:341567. [PMID: 37524461 DOI: 10.1016/j.aca.2023.341567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 08/02/2023]
Abstract
Whole-cell bacteria imprinted polymer-based sensors still face challenges in the form of the difficulty of removing the template entirely, low affinity, and poor sensitivity. To further improve their performance, it is pivotal to modulate the morphology and chemical properties of imprintied polymer by taking advantage of doping engineering. Here we introduced D-tartaric acid (D-TA) as a dopant and employed pyrrole as a functional monomer to construct D-TA/polypyrrole (PPy)-based bacteria imprinted polymer (DPBIP) sensor for Vibrio parahaemolyticus (VP) detection. It is demonstrated that D-TA doping can synergistically accelerate the removal of template bacteria from imprinted polymers (1.5 h), improve bacteria affinity of imprinted sites (the recognition time of 30 min), and enhance the sensitivity of DPBIP sensor (a detection limit of 19 CFU mL-1). The DPBIP sensor had a linear range of 102∼106 CFU mL-1 and exhibited high selectivity and good repeatability. Moreover, a recovery of 94.8%-105.3% was achieved in drinking water and oyster samples. Therefore, small functional molecules doping opens a new avenue to engineering BIP-based sensors with high performance, holding potential applications in securing food safety.
Collapse
Affiliation(s)
- Xiaoyan Jia
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai Ocean University, Shanghai, 201306, China
| | - Jie Liu
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai Ocean University, Shanghai, 201306, China
| | - Yanan Zhang
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai Ocean University, Shanghai, 201306, China
| | - Xuyan Jiang
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai Ocean University, Shanghai, 201306, China
| | - Junling Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Collaborative Innovation Center for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 201306, China.
| | - Jikui Wu
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai Ocean University, Shanghai, 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
5
|
Boodoo C, Dester E, David J, Patel V, Kc R, Alocilja EC. Multi-Probe Nano-Genomic Biosensor to Detect S. aureus from Magnetically-Extracted Food Samples. BIOSENSORS 2023; 13:608. [PMID: 37366975 DOI: 10.3390/bios13060608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/18/2023] [Accepted: 05/10/2023] [Indexed: 06/28/2023]
Abstract
One of the most prevalent causes of foodborne illnesses worldwide is staphylococcal food poisoning. This study aimed to provide a robust method to extract the bacteria Staphylococcus aureus from food samples using glycan-coated magnetic nanoparticles (MNPs). Then, a cost-effective multi-probe genomic biosensor was designed to detect the nuc gene of S. aureus rapidly in different food matrices. This biosensor utilized gold nanoparticles and two DNA oligonucleotide probes combined to produce a plasmonic/colorimetric response to inform users if the sample was positive for S. aureus. In addition, the specificity and sensitivity of the biosensor were determined. For the specificity trials, the S. aureus biosensor was compared with the extracted DNA of Escherichia coli, Salmonella enterica serovar Enteritidis (SE), and Bacillus cereus. The sensitivity tests showed that the biosensor could detect as low as 2.5 ng/µL of the target DNA with a linear range of up to 20 ng/µL of DNA. With further research, this simple and cost-effective biosensor can rapidly identify foodborne pathogens from large-volume samples.
Collapse
Affiliation(s)
- Chelsie Boodoo
- Nano-Biosensors Lab, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| | - Emma Dester
- Nano-Biosensors Lab, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| | - Jeswin David
- Nano-Biosensors Lab, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Human Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Vedi Patel
- Nano-Biosensors Lab, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Rabin Kc
- Statistical Consulting Center, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
| | - Evangelyn C Alocilja
- Nano-Biosensors Lab, Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
- Global Alliance for Rapid Diagnostics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Deng S, Tu Y, Fu L, Liu J, Jia L. A label-free biosensor for selective detection of Gram-negative bacteria based on the oxidase-like activity of cupric oxide nanoparticles. Mikrochim Acta 2022; 189:471. [DOI: 10.1007/s00604-022-05571-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/03/2022] [Indexed: 11/27/2022]
|
7
|
Islam MA, Karim A, Ethiraj B, Raihan T, Kadier A. Antimicrobial peptides: Promising alternatives over conventional capture ligands for biosensor-based detection of pathogenic bacteria. Biotechnol Adv 2022; 55:107901. [PMID: 34974156 DOI: 10.1016/j.biotechadv.2021.107901] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/19/2021] [Accepted: 12/25/2021] [Indexed: 02/07/2023]
Abstract
The detection of pathogenic bacteria using biosensing techniques could be a potential alternative to traditional culture based methods. However, the low specificity and sensitivity of conventional biosensors, critically related to the choice of bio-recognition elements, limit their practical applicability. Mammalian antibodies have been widely investigated as biorecognition ligands due to high specificity and technological advancement in antibody production. However, antibody-based biosensors are not considered as an efficient approach due to the batch-to-batch inconsistencies as well as low stability. In recent years, antimicrobial peptides (AMPs) have been increasingly investigated as ligands as they have demonstrated high stability and possessed multiple sites for capturing bacteria. The conjugation of chemo-selective groups with AMPs has allowed effective immobilization of peptides on biosensor surface. However, the specificity of AMPs is a major concern for consideration as an efficient ligand. In this article, we have reviewed the advances and concerns, particularly the selectivity of AMPs for specific detection of pathogenic bacteria. This review also focuses the state-of-the-art mechanisms, challenges and prospects for designing potential AMP conjugated biosensors. The application of AMP in different biosensing transducers such as electrochemical, optical and piezoelectric varieties has been widely discussed. We argue that this review would provide insights to design and construct AMP conjugated biosensors for the pathogenic bacteria detection.
Collapse
Affiliation(s)
- M Amirul Islam
- Interdisciplinary Institute for Technological Innovation (3IT), CNRS UMI-3463, Laboratory for Quantum Semiconductors and Photon-based BioNanotechnology, Department of Electrical and Computer Engineering, Université de Sherbrooke, 3000, boul. de l'Université, Sherbrooke, Québec J1K 0A5, Canada.
| | - Ahasanul Karim
- Department of Soil Sciences and Agri-Food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Baranitharan Ethiraj
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Topu Raihan
- Deapartment of Genetic Engineering and Biotechnology, Shahjalal, University of Science and Technology, Sylhet 3114, Bangladesh
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
8
|
Zhu Y, Liu S, Li M, Liu W, Wei Z, Zhao L, Liu Y, Xu L, Zhao G, Ma Y. Preparation of an AgNPs@Polydimethylsiloxane (PDMS) multi-hole filter membrane chip for the rapid identification of food-borne pathogens by surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120456. [PMID: 34653807 DOI: 10.1016/j.saa.2021.120456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 08/29/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
The consumption of food infected with food-borne pathogens has become a global public health problem. Therefore, it is monitor food-borne infections to avoid health and financial consequences. The rapid detection and differentiation of bacteria for biomedical and food safety applications continues to be a significant challenge. Herein, we present a label-free surface-enhanced Raman scattering approach for separating harmful bacteria from food. The method relies on the ascorbic acid reduction method to synthesize silver nanoparticles (AgNPs) and a polydimethylsiloxane (PDMS) multi-hole filter membrane chip (AgNPs@PDMS multi-hole filter membrane chip). Surface-enhanced Raman spectroscopy (SERS) was used, followed by multivariate statistical analysis to differentiate five important food-borne pathogens, including Staphylococcus aureus, Salmonella typhimurium, Listeria monocytogenes, Clostridium difficiles and Clostridium perfringens. The results demonstrated that compared to normal Raman signals, the intensity of the SERS signal was greatly enhanced with an analytical enhancement factor of 5.2 × 103. The spectral ranges of 400-1800 cm-1 were analyzed using principal component analysis (PCA) and stepwise linear discriminant analysis (SWLDA) were used to determine the optimal parameters for the discrimination of food-borne pathogens. The first three principal components (PC1, PC2, and PC3) accounted for 87.3% of the total variance in the spectra. The established SWLDA model had 100% accuracy and cross-validation accuracy, which accurately distinguished the SERS spectra of the five species. In conclusion, the SERS technology based on the AgNPs@PDMS multi-hole filter membrane chip was useful for the rapid identification of food-borne pathogens and can be employed for food quality management.
Collapse
Affiliation(s)
- Yaodi Zhu
- College of Food Science and Technology, Henan Agricultural University, No.63 Wenhua Rd, Zhengzhou 450002, PR China; Postdoctoral Workstation of Hengdu Food Co., LTD, Zhumadian 463700, PR China
| | - Shijie Liu
- College of Food Science and Technology, Henan Agricultural University, No.63 Wenhua Rd, Zhengzhou 450002, PR China
| | - Miaoyun Li
- College of Food Science and Technology, Henan Agricultural University, No.63 Wenhua Rd, Zhengzhou 450002, PR China.
| | - Weijia Liu
- College of Food Science and Technology, Henan Agricultural University, No.63 Wenhua Rd, Zhengzhou 450002, PR China
| | - Zhanyong Wei
- College of Veterinary Medicine, Henan Agricultural University, No.63 Wenhua Rd, Zhengzhou 450002, PR China
| | - Lijun Zhao
- College of Food Science and Technology, Henan Agricultural University, No.63 Wenhua Rd, Zhengzhou 450002, PR China
| | - Yanxia Liu
- College of Food Science and Technology, Henan Agricultural University, No.63 Wenhua Rd, Zhengzhou 450002, PR China
| | - Lina Xu
- College of Food Science and Technology, Henan Agricultural University, No.63 Wenhua Rd, Zhengzhou 450002, PR China
| | - Gaiming Zhao
- College of Food Science and Technology, Henan Agricultural University, No.63 Wenhua Rd, Zhengzhou 450002, PR China
| | - Yangyang Ma
- College of Food Science and Technology, Henan Agricultural University, No.63 Wenhua Rd, Zhengzhou 450002, PR China
| |
Collapse
|
9
|
Yu H, Yu J, Li L, Zhang Y, Xin S, Ni X, Sun Y, Song K. Recent Progress of the Practical Applications of the Platinum Nanoparticle-Based Electrochemistry Biosensors. Front Chem 2021; 9:677876. [PMID: 34012952 PMCID: PMC8128108 DOI: 10.3389/fchem.2021.677876] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/07/2021] [Indexed: 11/28/2022] Open
Abstract
The detection of biomolecules using various biosensors with excellent sensitivity, selectivity, stability, and reproducibility, is of great significance in the analytical and biomedical fields toward achieving their practical applications. Noble metal nanoparticles are favorable candidates due to their unique optical, surface electrical effect, and catalytic properties. Among these noble metal nanoparticles, platinum nanoparticles (Pt NPs) have been widely employed for the detection of bioactive substances such as glucose, glutamic acid, and hormones. However, there is still a long way to go before the potential challenges in the practical applications of biomolecules are fully overcome. Bearing this in mind, combined with our research experience, we summarized the recent progress of the Pt NP-based biosensors and highlighted the current problems that exist in their practical applications. The current review would provide fundamental guidance for future applications using the Pt NP-based biosensors in food, agricultural, and medical fields.
Collapse
Affiliation(s)
- Han Yu
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Jingbo Yu
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Linlin Li
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Yujia Zhang
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Shuquan Xin
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Xiuzhen Ni
- School of Life Sciences, Changchun Normal University, Changchun, China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin, China
| | - Kai Song
- School of Life Sciences, Changchun Normal University, Changchun, China
| |
Collapse
|
10
|
Zhang K, Li H, Wang W, Cao J, Gan N, Han H. Application of Multiplexed Aptasensors in Food Contaminants Detection. ACS Sens 2020; 5:3721-3738. [PMID: 33284002 DOI: 10.1021/acssensors.0c01740] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The existence of contaminants in food poses a serious threat to human health. In recent years, aptamer sensors (aptasensors) have been developed rapidly for the detection of food contaminants because of their high specificity, design flexibility, and high efficiency. However, the development of high-throughput, highly sensitive, on-site, and cost-effective methods for simultaneous detection of food contaminants is still restricted due to multiple signal overlap or mutual interference and cross-reaction between different analytes with similar molecular structures. To overcome these problems, this Review summarizes some effective strategies from the articles published in recent years about multiplexed aptasensors for the simultaneous detection of food contaminants. This work focuses on the application of multiplexed aptasensors to simultaneously detect antibiotics, pathogens, and mycotoxins in food. These aptasensors mainly contain fluorescent aptasensors, electrochemical aptasensors, surface-enhanced Raman scattering-based aptasensors, microfluidic chip aptasensors, and paper-based multiplexed aptasensors. In addition, this Review also covers the application of nucleic acid cycle amplification and nanomaterial amplification strategies to improve the detection sensitivity. Finally, the limitations and challenges in the design of multiplexed aptasensor are also taken into account.
Collapse
Affiliation(s)
- Kai Zhang
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, P.R. China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Hongyang Li
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, Henan, P.R. China
| | - Wenjing Wang
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, P.R. China
| | - Jinxuan Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Ning Gan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Heyou Han
- The State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, P.R. China
| |
Collapse
|
11
|
Ajish JK, Abraham HM, Subramanian M, Kumar KSA. A Reusable Column Method Using Glycopolymer-Functionalized Resins for Capture-Detection of Proteins and Escherichia coli. Macromol Biosci 2020; 21:e2000342. [PMID: 33336880 DOI: 10.1002/mabi.202000342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/27/2020] [Indexed: 11/08/2022]
Abstract
The use of glycopolymer-functionalized resins (Resin-Glc), as a solid support, in column mode for bacterial/protein capture and quantification is explored. The Resin-Glc is synthesized from commercially available chloromethylated polystyrene resin and glycopolymer, and is characterized by fourier transform infrared spectroscopy, thermogravimetry, and elemental analysis. The percentage of glycopolymer functionalized on Resin-Glc is accounted to be 5 wt%. The ability of Resin-Glc to selectively capture lectin, Concanavalin A, over Peanut Agglutinin, reversibly, is demonstrated for six cycles of experiments. The bacterial sequestration study using SYBR (Synergy Brands, Inc.) Green I tagged Escherichia coli/Staphylococcus aureus reveals the ability of Resin-Glc to selectively capture E. coli over S. aureus. The quantification of captured cells in the column is carried out by enzymatic colorimetric assay using methylumbelliferyl glucuronide as the substrate. The E. coli capture studies reveal a consistent capture efficiency of 105 CFU (Colony Forming Units) g-1 over six cycles. Studies with spiked tap water samples show satisfactory results for E. coli cell densities ranging from 102 to 107 CFU mL-1 . The method portrayed can serve as a basis for the development of a reusable solid support in capture and detection of proteins and bacteria.
Collapse
Affiliation(s)
- Juby K Ajish
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Hephziba Maria Abraham
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kochi, 682020, India
| | - Mahesh Subramanian
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - K S Ajish Kumar
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| |
Collapse
|
12
|
Sun Y, Tao L, Ma Y, Yang S, Zhang X, Jin B, Zhang Z, Yang K. Development of an Approach of High Sensitive Chemiluminescent Assay for Cystatin C Using a Nanoparticle Carrier. Front Chem 2020; 8:802. [PMID: 33134263 PMCID: PMC7505105 DOI: 10.3389/fchem.2020.00802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/30/2020] [Indexed: 01/19/2023] Open
Abstract
Cystatin C is an important cysteine protease inhibitor in the human body and is proposed as a new indicator of glomerular filtration rate for the detection of kidney damage. In this article, we report an ultra-sensitive, simple, and rapid chemiluminescence immunoassay method for cystatin C detection using functionalized mesoporous silica nanoparticles. After a three step hydrolysis, the amino-functionalized MSN encapsulating dye resulted in a hydrophobic environment for fixing the dye and amino groups for biological modification. The NaIO4 immobilization method maintained the activity of the antibody notably well. The sandwich immunoassay using two monoclonal antibodies was chosen for its selectivity. The analysis demonstrated that the detection upper was 0.0029 ng/mL and linear relationship within the range of 0.0035-0.5 ng/mL (R 2 = 0.9936). The relative standard deviation (RSD) for 11 parallel measurements of 0.25 ng/mL CysC was 4.7%. The automated chemiluminescence analyzer could detect 96 wells continuously. The results demonstrated that this method is ultra-sensitive, simple, and rapid for detecting cystatin C.
Collapse
Affiliation(s)
- Yuanjie Sun
- Department of Immunology, The Fourth Military Medical University, Shaanxi, China
| | - Liang Tao
- Department of Immunology, The Fourth Military Medical University, Shaanxi, China.,Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Shaanxi, China
| | - Ying Ma
- Department of Immunology, The Fourth Military Medical University, Shaanxi, China
| | - Shuya Yang
- Department of Immunology, The Fourth Military Medical University, Shaanxi, China
| | - Xiyang Zhang
- Department of Immunology, The Fourth Military Medical University, Shaanxi, China
| | - Boquan Jin
- Department of Immunology, The Fourth Military Medical University, Shaanxi, China
| | - Zhujun Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Shaanxi, China
| | - Kun Yang
- Department of Immunology, The Fourth Military Medical University, Shaanxi, China
| |
Collapse
|
13
|
Li X, Dong S, Arul P, Liu H, Liu L, Wang H, Zhang Q, Gyimah E, Yakubu S, Zhang Z. A novel and facile immunosensor based on a barometer: Application for rapid analysis of Escherichia coli in waters. Talanta 2020; 214:120859. [PMID: 32278423 DOI: 10.1016/j.talanta.2020.120859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 10/25/2022]
Abstract
A facile immunosensor was constructed based on a barometer indicator using a double-antibody- sandwich method for rapid and sensitive detection of Escherichia coli (E. coli) from water samples. At the present study, Anti- E. coli DH-5 polyclonal antibody was modified through enriching carboxylated magnetic beads and catalase functionalized gold nanoparticles (AuNPs)- loaded nanospheres. The functionalized AuNPs-loaded nanospheres exhibited an excellent catalysis towards decomposition of hydrogen peroxide (H2O2), generating a large volume of oxygen (O2) into waters, increasing the pressure inside the glass vial, which in turn raised the water level in barometer. Under the optimized experimental conditions, the proposed method showed wide linear ranges (102- 107 cfu mL-1), good accuracy and precision (recoveries, 86.7- 107%; CV, 3.2- 8.1%) with a limit of detection (LOD, S/N = 3) and the limit of quantification (LOQ, S/N = 10) were 80 cfu mL-1and 267 cfu mL-1, respectively. Furthermore, the fabricated portable immunosensor device showed some distinct features in low cost and visibility, suggesting great potential for rapid and on-site analysis of this bacteria from waters in less developed areas of developing countries.
Collapse
Affiliation(s)
- Xuesong Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shuaibing Dong
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - P Arul
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Huizi Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Liyuan Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Honglei Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Qi Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Eric Gyimah
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Salome Yakubu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
14
|
G-quadruplex-based assay combined with aptamer and gold nanoparticles for Escherichia coli K88 determination. Mikrochim Acta 2020; 187:308. [PMID: 32356133 DOI: 10.1007/s00604-020-04291-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
A colorimetric method was developed using G-quadruplex and gold nanoparticles (AuNPs) for determination of Escherichia coli K88 (ETEC K88). It was composed of two modules: (1) an aptamer as biorecognizing element and (2) a capturing DNA (modified with AuNPs at 5') as a transducer. In the absence of target bacteria, the aptamer can form stable double strands with capturing DNA, preventing the binding of capturing DNA to the G-quadruplex. However, the double strands of capturing DNA and aptamer are untied due to the stronger binding of aptamers to bacteria in the presence of target bacteria. As a result, the G-quadruplex binds to capture DNA and leads to the aggregation and color change of AuNPs, which can be monitored by a spectrophotometer or visualization. The quantitative determination was achieved by monitoring the optical density change of AuNPs solution at 524 nm after target addition. Under optimal conditions, the method has a low detection limit (1.35 × 102 CFU mL-1) and a linear response in the range 102 to 106 CFU mL-1. Graphical abstract The manuscripts describe a colorimetric method for the detection of ETEC K88 by using intermolecular G-quadruplex to induce the agglomeration of gold nanoparticles, which can be directly used to determine the presence of bacteria with our naked eyes.
Collapse
|
15
|
Kim Y, Abafogi AT, Tran BM, Kim J, Lee J, Chen Z, Bae PK, Park K, Shin YB, van Noort D, Lee NY, Park S. Integrated Microfluidic Preconcentration and Nucleic Amplification System for Detection of Influenza A Virus H1N1 in Saliva. MICROMACHINES 2020; 11:E203. [PMID: 32079062 PMCID: PMC7074655 DOI: 10.3390/mi11020203] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/27/2022]
Abstract
Influenza A viruses are often present in environmental and clinical samples at concentrations below the limit of detection (LOD) of molecular diagnostics. Here we report an integrated microfluidic preconcentration and nucleic amplification system (μFPNAS) which enables both preconcentration of influenza A virus H1N1 (H1N1) and amplification of its viral RNA, thereby lowering LOD for H1N1. H1N1 virus particles were first magnetically preconcentrated using magnetic nanoparticles conjugated with an antibody specific for the virus. Their isolated RNA was amplified to cDNA through thermocycling in a trapezoidal chamber of the μFPNAS. A detection limit as low as 100 TCID50 (50% tissue culture infective dose) in saliva can be obtained within 2 hours. These results suggest that the LOD of molecular diagnostics for virus can be lowered by systematically combining immunomagnetic separation and reverse transcriptase-polymerase chain reaction (RT-PCR) in one microfluidic device.
Collapse
Affiliation(s)
- Yonghee Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (Y.K.); (A.T.A.); (J.K.); (J.L.); (Z.C.)
| | - Abdurhaman Teyib Abafogi
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (Y.K.); (A.T.A.); (J.K.); (J.L.); (Z.C.)
| | - Buu Minh Tran
- Department of BioNano Technology, College of BioNano Technology, Gachon University, Seongnam 13120, Korea; (B.M.T.); (N.Y.L.)
| | - Jaewon Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (Y.K.); (A.T.A.); (J.K.); (J.L.); (Z.C.)
| | - Jinyeop Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (Y.K.); (A.T.A.); (J.K.); (J.L.); (Z.C.)
| | - Zhenzhong Chen
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (Y.K.); (A.T.A.); (J.K.); (J.L.); (Z.C.)
| | - Pan Kee Bae
- BioNano Health Guard Research Center (H-GUARD), Daejeon 34141, Korea; (P.K.B.); (K.P.); (Y.-B.S.)
| | - Kyoungsook Park
- BioNano Health Guard Research Center (H-GUARD), Daejeon 34141, Korea; (P.K.B.); (K.P.); (Y.-B.S.)
| | - Yong-Beom Shin
- BioNano Health Guard Research Center (H-GUARD), Daejeon 34141, Korea; (P.K.B.); (K.P.); (Y.-B.S.)
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of bioengineering, KRIBB School, University of science and Technology (UST), Daejeon 34141, Korea
| | - Danny van Noort
- Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden
- Chair of Micro Process Engineering and Technology (COMPETE), University of Ljubljana, 1000 Ljubljana, Slovenia
- Centro de Investigación en Bioingeniería -BIO, Universidad de Ingenieria y Tecnologia—UTEC, Barranco 15036, Peru
| | - Nae Yoon Lee
- Department of BioNano Technology, College of BioNano Technology, Gachon University, Seongnam 13120, Korea; (B.M.T.); (N.Y.L.)
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea; (Y.K.); (A.T.A.); (J.K.); (J.L.); (Z.C.)
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
16
|
Kang R, Park B, Chen K. Identifying non-O157 Shiga toxin-producing Escherichia coli (STEC) using deep learning methods with hyperspectral microscope images. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117386. [PMID: 31336320 DOI: 10.1016/j.saa.2019.117386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/03/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Non-O157 Shiga toxin-producing Escherichia coli (STEC) serogroups such as O26, O45, O103, O111, O121 and O145 often cause illness to people in the United States and the conventional identification of these "Big-Six" are complex. The label-free hyperspectral microscope imaging (HMI) method, which provides spectral "fingerprints" information of bacterial cells, was employed to classify serogroups at the cellular level. In spectral analysis, principal component analysis (PCA) method and stacked auto-encoder (SAE) method were conducted to extract principal spectral features for classification task. Based on these features, multiple classifiers including linear discriminant analysis (LDA), support vector machine (SVM) and soft-max regression (SR) methods were evaluated. Different sizes of datasets were also tested in search for the suitable classification models. Among the results, SAE-based classification models performed better than PCA-based models, achieving classification accuracy of SAE-LDA (93.5%), SAE-SVM (94.9%) and SAE-SR (94.6%), respectively. In contrast, classification results of PCA-based methods such as PCA-LDA, PCA-SVM and PCA-SR were only 75.5%, 85.7% and 77.1%, respectively. The results also suggested the increasing number of training samples have positive effects on classification models. Taking advantage of increasing dataset, the SAE-SR classification model finally performed better than others with average accuracy of 94.9% in classifying STEC serogroups. Specifically, O103 serogroup was classified with the highest accuracy of 97.4%, followed by O111 (96.5%), O26 (95.3%), O121 (95%), O145 (92.9%) and O45 (92.4%), respectively. Thus, the HMI technology coupled with SAE-SR classification model has the potential for "Big-Six" identification.
Collapse
Affiliation(s)
- Rui Kang
- College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu 210031, China; United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA 30605, USA
| | - Bosoon Park
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA 30605, USA.
| | - Kunjie Chen
- College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu 210031, China.
| |
Collapse
|
17
|
Specific PCR method for detection of species origin in biochemical drugs via primers for the ATPase 8 gene by electrophoresis. Mikrochim Acta 2019; 186:634. [PMID: 31428871 DOI: 10.1007/s00604-019-3738-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/02/2019] [Indexed: 01/18/2023]
Abstract
A PCR method is described to identify the species origin of various animal and human tissue-derived biochemical drugs. Four commercialized drugs, including spermary tablets, compound embryonic bovine liver extract tablets, spleen aminopeptide solution, and placenta polypeptide injection, were used as a proof-of-principle in this study. Primers were designed to amplify conservative regions of mitochondrial cytochrome b and ATPase 8 genes from beef, pork, lamb and human DNA, respectively. The specificity of primers for ATPase 8 gene is found to be higher than those for cytochrome b under the given experimental conditions. The amplicon sizes of ATPase 8 were 212, 271, 293 and 405 bp for pork, beef, lamb and human tissue, respectively. The minimum detectable concentration of DNA sample for species identification is 0.05-0.5 pg·μL-1. The species origin can be distinguished by this method in extremely low concentrations of template DNAs extracted. Conceivably, this PCR method for meat authentication may be extended to quality control of other biochemical drugs and raw materials. Graphical abstract A specific PCR method was developed for the detection of species origin in biochemical drugs via species-specific primers targeting mitochondrial ATPase 8 genes. The PCR products were separated by gel electrophoresis and species origins were indicated by comparison to references.
Collapse
|
18
|
Terracciano M, Rea I, Borbone N, Moretta R, Oliviero G, Piccialli G, De Stefano L. Porous Silicon-Based Aptasensors: The Next Generation of Label-Free Devices for Health Monitoring. Molecules 2019; 24:E2216. [PMID: 31200538 PMCID: PMC6630495 DOI: 10.3390/molecules24122216] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/04/2019] [Accepted: 06/12/2019] [Indexed: 12/12/2022] Open
Abstract
Aptamers are artificial nucleic acid ligands identified and obtained from combinatorial libraries of synthetic nucleic acids through the in vitro process SELEX (systematic evolution of ligands by exponential enrichment). Aptamers are able to bind an ample range of non-nucleic acid targets with great specificity and affinity. Devices based on aptamers as bio-recognition elements open up a new generation of biosensors called aptasensors. This review focuses on some recent achievements in the design of advanced label-free optical aptasensors using porous silicon (PSi) as a transducer surface for the detection of pathogenic microorganisms and diagnostic molecules with high sensitivity, reliability and low limit of detection (LoD).
Collapse
Affiliation(s)
- Monica Terracciano
- Institute for Microelectronics and Microsystems, Via P. Castellino 111, 80131 Naples, Italy.
| | - Ilaria Rea
- Institute for Microelectronics and Microsystems, Via P. Castellino 111, 80131 Naples, Italy.
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Rosalba Moretta
- Institute for Microelectronics and Microsystems, Via P. Castellino 111, 80131 Naples, Italy.
- Department of Chemical Sciences, University of Naples Federico II, Via Cynthia, 80126 Naples, Italy.
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Luca De Stefano
- Institute for Microelectronics and Microsystems, Via P. Castellino 111, 80131 Naples, Italy.
| |
Collapse
|
19
|
Poláchová V, Pastucha M, Mikušová Z, Mickert MJ, Hlaváček A, Gorris HH, Skládal P, Farka Z. Click-conjugated photon-upconversion nanoparticles in an immunoassay for honeybee pathogen Melissococcus plutonius. NANOSCALE 2019; 11:8343-8351. [PMID: 30984949 DOI: 10.1039/c9nr01246j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
European foulbrood (EFB) is an infectious disease affecting honeybee larvae caused by the bacterium Melissococcus plutonius. The enzyme-linked immunosorbent assay (ELISA) is the gold standard for antibody-based bacteria detection, however, its sensitivity is not high enough to reveal early-stage EFB infection. Photon-upconversion nanoparticles (UCNPs) are lanthanide-doped nanomaterials that emit light of shorter wavelength under near-infrared (NIR) excitation and thus avoid optical background interference. After conjugation with specific biorecognition molecules, UCNPs can be used as ultrasensitive labels in immunoassays. Here, we introduce a method for conjugation of UCNPs with streptavidin based on copper-free click chemistry, which involves surface modification of UCNPs with alkyne-modified bovine serum albumin (BSA) that prevents the non-specific binding and provides reactive groups for conjugation with streptavidin-azide. To develop a sandwich upconversion-linked immunosorbent assay (ULISA) for M. plutonius detection, we have prepared a rabbit polyclonal anti-Melissococcus antibody. The specific capture of the bacteria was followed by binding of biotinylated antibody and UCNP-BSA-streptavidin conjugate for a highly sensitive upconversion readout. The assay yielded an LOD of 340 CFU mL-1 with a wide working range up to 109 CFU mL-1, which is 400 times better than the LOD of the conventional ELISA. The practical applicability of the ULISA was successfully demonstrated by detecting M. plutonius in spiked real samples of bees, larvae and bottom hive debris. These results show a great potential of the assay for early diagnosis of EFB, which can prevent uncontrolled spreading of the infection and losses of honeybee colonies.
Collapse
|
20
|
Liu C, Shi C, Li M, Wang M, Ma C, Wang Z. Rapid and Simple Detection of Viable Foodborne Pathogen Staphylococcus aureus. Front Chem 2019; 7:124. [PMID: 30931298 PMCID: PMC6424009 DOI: 10.3389/fchem.2019.00124] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/18/2019] [Indexed: 12/27/2022] Open
Abstract
Staphylococcus aureus (S. aureus) contamination in food safety has become a worldwide health problem. In this work, we utilized RNA one-step detection of denaturation bubble-mediated Strand Exchange Amplification (SEA) method to realize the detection of viable foodborne pathogen S. aureus. A pair of S. aureus specific primers were designed for the SEA reaction by targeting hypervariable V2 region of 16S rDNA and the amplification reaction was finished about 1 h. The results of amplification reaction could be observed by the naked eyes with a significant color change from light yellow to red to realize the colorimetric detection of S. aureus. Therefore, there only required an isothermal water bath, which was very popular for areas with limited resources. In real sample testing, although the SEA detection was so time-saving compared with the traditional plating method, the SEA method showed great consistency with the traditional plating method. In view of the above-described advantages, we provided a simple, rapid and equipment-free detection method, which had a great potential on ponit-of-care testing (POCT) application. Our method reported here will also provide a POCT detection platform for other food-borne pathogens in food, even pathogenic bacteria from other fields.
Collapse
Affiliation(s)
- Caiyan Liu
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| | - Chao Shi
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| | - Mengzhe Li
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| | - Mengyuan Wang
- The Affiliated Hospital of Qingdao University Medical College, Qingdao, China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Zonghua Wang
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, College of Chemistry and Chemical Engineering, College of Life Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
21
|
Sai-Anand G, Sivanesan A, Benzigar MR, Singh G, Gopalan AI, Baskar AV, Ilbeygi H, Ramadass K, Kambala V, Vinu A. Recent Progress on the Sensing of Pathogenic Bacteria Using Advanced Nanostructures. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180280] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gopalan Sai-Anand
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Arumugam Sivanesan
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
- Metrohm Australia, 56 Buffalo Road, Gladesville, NSW 2111, Australia
| | - Mercy R Benzigar
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Anantha-Iyengar Gopalan
- Research Institute of Advanced Energy Technology, Kyungpook National University, Daegu 41566, Korea
| | - Arun Vijay Baskar
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Hamid Ilbeygi
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Kavitha Ramadass
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Venkata Kambala
- Hudson Marketing Pty Ltd, Level 2/131 Macquarie St, Sydney NSW 2000, Australia
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials, Faculty of Built Environment and Engineering, The University of Newcastle, Callaghan 2308, New South Wales, Australia
- Future Industries Institute, Division of Information Technology, Engineering and Environment, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
22
|
Zhang Y, Zhu L, He P, Zi F, Hu X, Wang Q. Sensitive assay of Escherichia coli in food samples by microchip capillary electrophoresis based on specific aptamer binding strategy. Talanta 2019; 197:284-290. [PMID: 30771937 DOI: 10.1016/j.talanta.2019.01.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 11/30/2022]
Abstract
The rapid and cost-effective detection of bacteria is of great importance to ensuring food safety, preventing food poisoning. Herein, we developed a sensitive detection of Escherichia coli (E. coli) using bacteria-specific aptamer in conjunction with microchip capillary electrophoresis-coupled laser-induced fluorescence (MCE-LIF). Based on the differences between charge to mass ratios of free aptamer and bacteria-aptamer complex, which influence their electrophoretic mobilities, the separation of free aptamers and complex peaks by MCE could be achieved. Under optimal conditions, the sensitive detection of E. coli was achieved with a detection limit of 3.7 × 102 CFU mL-1, at a fast response of 135 s and a short detection length of 2.3 cm. The spiked recovery experiment showed that E. coli could be recovered from spiked drinking water and milk samples with recovery rates of 94.7% and 92.8%, respectively. This work demonstrates that the established detection strategy can be a useful tool for the detection and/or monitoring of E. coli in food and environment.
Collapse
Affiliation(s)
- Yan Zhang
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China; School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Luqi Zhu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Pingang He
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Futing Zi
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Xianzhi Hu
- Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China.
| | - Qingjiang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| |
Collapse
|
23
|
Zhang Y, Xu CQ, Guo T, Hong L. An automated bacterial concentration and recovery system for pre-enrichment required in rapid Escherichia coli detection. Sci Rep 2018; 8:17808. [PMID: 30546076 PMCID: PMC6292886 DOI: 10.1038/s41598-018-35970-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022] Open
Abstract
One of the biggest challenges in rapid low concentration bacterial detection is the pre-concentration or pre-enrichment, which aims to increase bacteria concentration and reduce sample volume for easy bacterial detection. In practical bacterial detection, large-volume water samples with a pathogenic bacterial concentration of less than 1 CFU/mL have to be tested rapidly. The reported biosensors either have insufficient detection limit or have limited capability of handling a sufficiently large water sample. Therefore, a high-performance automated pre-enrichment process is strongly demanded in rapid practical bacterial detection. In this paper, a practical high performance automated bacterial concentration and recovery system (ABCRS) based on the combination of a ceramic membrane and tangential flow filtration technique was presented with short processing time (less than one hour), low pre-enrichment limit (≤0.005 CFU/mL), high concentration ratio (≥ 500), high recovery efficiency (~ 90%), and small final retentate volume (≤ 5 mL).
Collapse
Affiliation(s)
- Yushan Zhang
- Faculty of Engineering, McMaster University, Hamilton, Canada
| | - Chang-Qing Xu
- Faculty of Engineering, McMaster University, Hamilton, Canada.
| | - Tianyi Guo
- Forsee Instruments Ltd., Hamilton, Canada
| | - Lingcheng Hong
- Jiangsu Delin Environmental Protection Technology Co., Ltd., Jiangsu, China
| |
Collapse
|
24
|
Wei C, Li M, Zhao X. Surface-Enhanced Raman Scattering (SERS) With Silver Nano Substrates Synthesized by Microwave for Rapid Detection of Foodborne Pathogens. Front Microbiol 2018; 9:2857. [PMID: 30619101 PMCID: PMC6300495 DOI: 10.3389/fmicb.2018.02857] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 11/06/2018] [Indexed: 12/30/2022] Open
Abstract
Rapid and sensitive methods have been developed to detect foodborne pathogens, a development that is important for food safety. The aim of this study is to explore Surface-enhanced Raman scattering (SERS) with silver nano substrates to detect and identify the following three foodborne pathogens: Escherichia coli O157: H7, Staphylococcus aureus and Salmonella. All the cells were resuspended with 10 mL silver colloidal nanoparticles, making a concentration of 107 CFU/mL, and were then exposed to 785 nm laser excitation. In this study, the results showed that all the bacteria can be sensitively and reproducibly detected directly by SERS. The distinctive differences can be observed in the SERS spectral data of the three food-borne pathogens, and the silver colloidal nanoparticles can be used as highly sensitive SERS-active substrates. In addition, the assay time required only a few minutes, which indicated that SERS coupled with the silver colloidal nanoparticles is a promising method for the detection and characterization of food-borne pathogens. At the same time, principle component analysis (PCA) and hierarchical cluster analysis (HCA) made the different bacterial strains clearly differentiated based on the barcode spectral data reduction. Therefore, the SERS methods hold great promise for the detection and identification of food-borne pathogens and even for applications in food safety.
Collapse
Affiliation(s)
| | | | - Xihong Zhao
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Key Laboratory for Hubei Novel Reactor & Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
25
|
Jiang B, Lian L, Xing Y, Zhang N, Chen Y, Lu P, Zhang D. Advances of magnetic nanoparticles in environmental application: environmental remediation and (bio)sensors as case studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:30863-30879. [PMID: 30196461 DOI: 10.1007/s11356-018-3095-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
Nanotechnology is an emerging technique drawing increasing attentions in biomedical, electronic, environmental, and industrial application. Nanoparticles (NPs) possess unique optical, electrical, catalytic, and thermal properties, among which magnetic NPs (MNPs) are one of the most important groups with excellent superparamagnetism property, large surface area, and biocompatibility. In this review, methods for synthesizing and functionalizing MNPs are summarized and linked to their applications in environmental science as either adsorbents or catalysts for removing contaminants from environmental matrices, illustrating stronger reactivity, higher removal capacity, and fast kinetics. Additionally, we also comprehensively discuss the application of MNPs as (bio)sensors to selectively and sensitively detect the presence of environmental contaminants or pathogenic bacteria. This work summarizes the recent progresses of using MNPs as powerful tools in environmental science and engineering, raising their state-of-art application from environmental perspectives and benefiting researchers interested in NPs and environmental studies.
Collapse
Affiliation(s)
- Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Luning Lian
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China.
| | - Nana Zhang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Yating Chen
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Pei Lu
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China.
- State Key Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, 100084, People's Republic of China.
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, People's Republic of China.
| |
Collapse
|
26
|
Liang J, Zhou J, Tan J, Wang Z, Deng L. Aptamer-Based Fluorescent Determination of Salmonella paratyphi A Using Phi29-DNA Polymerase-Assisted Cyclic Amplification. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1505901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jingjing Liang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, People’s Republic of China
| | - Jiaqi Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, People’s Republic of China
| | - Jianxi Tan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, People’s Republic of China
| | - Zefeng Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, People’s Republic of China
| | - Le Deng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
27
|
Zhu F, Zhao G, Dou W. Electrochemical sandwich immunoassay for Escherichia coli O157:H7 based on the use of magnetic nanoparticles and graphene functionalized with electrocatalytically active Au@Pt core/shell nanoparticles. Mikrochim Acta 2018; 185:455. [PMID: 30215173 DOI: 10.1007/s00604-018-2984-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022]
Abstract
A highly sensitive electrochemical sandwich immunoassay is described for determination of Escherichia coli O157:H7 (E. coli O157:H7). Silica coated magnetite nanoparticles (Fe3O4) were modified with primary antibody to capture E. coli O157:H7. Gold-platinum core/shell nanoparticles (Au@Pt NPs) with different Pt shell thicknesses were prepared via changing the molar ratio of H2PtCl6 to HAuCl4 in the precursor solution. The optimized Au@Pt NPs exhibit enhanced activity in the electrocatalytic reduction of hydrogen peroxide (H2O2). The Au@Pt NPs were modified with graphene that was functionalized with Neutral Red, and then used as an electrochemical label for secondary antibodies and horseradish peroxidase (HRP). The sandwich immunocomplexes were magnetically absorbed on a 4-channel screen printed carbon electrode. Due to the catalysis of the Au@Pt NPs and HRP, the signal is strongly amplified in the presence of H2O2 when using thionine as the electron mediator. Under optimal conditions, the immunoassay has a linear response in the 4.0 × 102 to 4.0 × 108 CFU·mL-1 concentration range, with a limit of detection of 91 CFU·mL-1 (at an S/N ratio of 3). Graphical abstract Preparation of Au@Pt core/shell nanoparticles with different Pt shell thickness (A), rGO-NR (B), rGO-NR-Au@Pt-Ab2-HRP (C) and the preparation and the detection process of the immunoassay (D). rGO: reduced graphene oxide, GO: graphene oxide, NR: Neutral Red, HRP: horseradish peroxidase, AuNPs: gold nanoparticles, Fe3O4@SiO2: Silica coated magnetite nanoparticles, 4-SPCE: 4-channel screen printed carbon electrode.
Collapse
Affiliation(s)
- Fanjun Zhu
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Guangying Zhao
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Wenchao Dou
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
28
|
Zhu F, Zhao G, Dou W. A non-enzymatic electrochemical immunoassay for quantitative detection of Escherichia coli O157:H7 using Au@Pt and graphene. Anal Biochem 2018; 559:34-43. [PMID: 30144412 DOI: 10.1016/j.ab.2018.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/17/2018] [Accepted: 08/18/2018] [Indexed: 10/28/2022]
Abstract
Herein, a non-enzymatic sandwich-type electrochemical immunoassay was fabricated for quantitative monitoring of Escherichia coli O157:H7 (E. coli O157:H7). Silica coated Fe3O4 magnetic nanoparticles (Fe3O4@SiO2) were modified with mouse anti-E. coli O157:H7 monoclonal antibody (Ab1) to act as capture probes to reduce detection time and increase the sensitivity of the immunoassay. The Au@Pt nanoparticles were loaded on neutral red (NR) functionalized graphene to form composite complex rGO-NR-Au@Pt. rGO-NR-Au@Pt has high specific surface area and good biocompatibility. rGO-NR-Au@Pt was used as the carriers of detection antibodies (Ab2). Au@Pt catalyzed the reduction of hydrogen peroxide (H2O2) to detection of E. coli O157:H7 with the thionine (TH) as electron mediator to effectually amply the current signal. Under the optimized conditions, a linear relationship between the reduction peak current change (ΔIpc) and the logarithm of the E. coli O157:H7 concentration is obtained in the range from 4.0 × 103 to 4.0 × 108 CFU mL-1 and the limit of detection (LOD) is 4.5 × 102 CFU mL-1 at a signal-to-noise ratio of 3. The immunoassay exhibits acceptable specificity, reproducibility and stability on the detection of E. coli O157:H7. Furthermore, the immunoassay showed good performance in pork and milk samples. The results suggest that this immunoassay will be promising in the food safety area.
Collapse
Affiliation(s)
- Fanjun Zhu
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Guangying Zhao
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Wenchao Dou
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
29
|
Ahn H, Batule BS, Seok Y, Kim MG. Single-Step Recombinase Polymerase Amplification Assay Based on a Paper Chip for Simultaneous Detection of Multiple Foodborne Pathogens. Anal Chem 2018; 90:10211-10216. [DOI: 10.1021/acs.analchem.8b01309] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Heeseop Ahn
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Gwangju 500-712, Republic of Korea
| | - Bhagwan Sahebrao Batule
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Gwangju 500-712, Republic of Korea
| | - Youngung Seok
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Gwangju 500-712, Republic of Korea
| | - Min-Gon Kim
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Gwangju 500-712, Republic of Korea
| |
Collapse
|
30
|
Li L, Li Q, Liao Z, Sun Y, Cheng Q, Song Y, Song E, Tan W. Magnetism-Resolved Separation and Fluorescence Quantification for Near-Simultaneous Detection of Multiple Pathogens. Anal Chem 2018; 90:9621-9628. [PMID: 30001487 DOI: 10.1021/acs.analchem.8b02572] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the modern era of molecular evidence-based medicine and advanced biomedical technologies, the rapid, sensitive and specific assay of multiple pathogens is critical to, but largely absent from, clinical practice. Therefore, to improve the current ordinary separation and collection method, we report herein a strategy of magnetism-resolved separation and fluorescence quantification for near-simultaneous detection of multiple pathogens, followed by the direct antimicrobial susceptibility testing (AST). To accomplish this strategy, we utilized aptamer-modified fluorescent-magnetic multifunctional nanoprobes (apt-FMNPs). FMNPs with intriguing different magnetic responses and excellent fluorescence quality were first self-assembled based on metal coordination interaction using (3-mercaptopropyl) trimethoxysilane, magnetic γ-Fe2O3, and fluorescent quantum dots as matrix components. Then, aptamers, which specific to target pathogens of Escherichia coli O157:H7 ( E. coli) and Salmonella typhimurium ( S. typ), were conjugated with FMNPs to yield apt-FMNPs nanoprobes for multiple pathogens assay. Based on the discrepant magnetic response of pathogen@nanoprobes complex under the identical external magnetic field, the model bacteria were fished out by magnetic adsorption at different time points and subjected to fluorescence quantification with good linear ranges and detection limits within 1h. Multiple pathogens spiked in real samples were also effectively detected by the apt-FMNPs and sequentially fished out for AST assay, which showed similar results to that for pure pathogens. The apt-FMNPs-based strategy of near-simultaneous detection of multiple pathogens shows promise for the potential application in the diagnosis and treatment of pathogen-related infectious diseases.
Collapse
Affiliation(s)
- Linyao Li
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing , 400715 , People's Republic of China
| | - Qingjin Li
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing , 400715 , People's Republic of China
| | - Ziyi Liao
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing , 400715 , People's Republic of China
| | - Yan Sun
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing , 400715 , People's Republic of China
| | - Quansheng Cheng
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing , 400715 , People's Republic of China
| | - Yang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing , 400715 , People's Republic of China
| | - Erqun Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry, Ministry of Education, College of Pharmaceutical Sciences , Southwest University , Chongqing , 400715 , People's Republic of China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Collaborative Research Center of Molecular Engineering for Theranostics , Hunan University , Changsha 410082 , People's Republic of China.,Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute , University of Florida , Gainesville , Florida 32611-7200 , United States
| |
Collapse
|
31
|
Leng X, Wang Y, Li R, Liu S, Yao J, Pei Q, Cui X, Tu Y, Tang D, Huang J. Circular exponential amplification of photoinduced electron transfer using hairpin probes, G-quadruplex DNAzyme and silver nanocluster-labeled DNA for ultrasensitive fluorometric determination of pathogenic bacteria. Mikrochim Acta 2018; 185:168. [PMID: 29594727 DOI: 10.1007/s00604-018-2698-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/20/2018] [Indexed: 01/17/2023]
Abstract
The authors describe a fluorometric strategy for the detection of pathogenic bacteria with ultrasensitivity and high specificity. This strategy relies on the combination of target-modulated photoinduced electron transfer (PET) between G-quadruplex DNAzyme and DNA (labeled with silver nanoclusters) along with hairpin probe-based circular exponential amplification. The reaction system involves three hairpin probes (H1, H2 and H3). Probe H1 contains an aptamer against S. Typhimurium and the recognition sequence for nicking endonuclease. It is used to recognize S. Typhimurium and participates in polymerase-catalyzed target recycle amplification and secondary-target recycle amplification. Probe H2 contains an aptamer against hemin and is used to form the G-quadruplex DNAzyme in the presence of hemin and potassium ion. It acts as the electron acceptor and quenches the fluorescence of the labeled DNA. Fluorescence is best measured at excitation/emission wavelengths of 567/650 nm. Probe H3 contains the template sequence for the synthesis of AgNCs and the H2-annealing sequence. Both H2 and H3 are utilized to perform a strand displacement reaction and to achieve PET between G-quadruplex DNAzyme and DNA/AgNCs. To the best of our knowledge, this is the first example of a PET between G-quadruplex DNAzyme and DNA/AgNCs coupled with circular exponential amplification. The assay has an ultra-low detection limit 8 cfu·mL-1 of S. Typhimurium. The assay is rapid, accurate, inexpensive and simple. Hence, the strategy may represent a useful platform for ultrasensitive and highly specific detection of pathogenic bacteria as encountered in food analysis and clinical diagnosis. Graphical abstract The reaction system includes three hairpin probes (H1, H2 and H3), primer probe (P), Phi 29 DNA ploymerase (Phi 29) and nicking endonuclease Nt.AlwI (Nt.AlwI). Phi 29 and Nt.AlwI -assisted signal amplification leads to the recycling of target and produces numerous single stranded-DNAs (S). Strand displacement amplification leads to photoinduced electron transfer (PET) between G-quadruplex DNAzyme and DNA/AgNCs. HAP-based circular exponential amplification of PET results in an ultrasensitive fluorometric assay.
Collapse
Affiliation(s)
- Xueqi Leng
- College of Resources and Environment, University of Jinan, Jinan, 250022, People's Republic of China
| | - Yu Wang
- College of Biological Sciences and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Rongguo Li
- Jinan Maternity and Child Care Hospital, Jinan, 250022, People's Republic of China
| | - Su Liu
- College of Resources and Environment, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Jianzhuang Yao
- College of Biological Sciences and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Qianqian Pei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, College of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Xuejun Cui
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, College of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Yuqin Tu
- College of Resources and Environment, University of Jinan, Jinan, 250022, People's Republic of China
| | - Dan Tang
- College of Biological Sciences and Technology, University of Jinan, Jinan, 250022, People's Republic of China
| | - Jiadong Huang
- College of Biological Sciences and Technology, University of Jinan, Jinan, 250022, People's Republic of China.,Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, College of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| |
Collapse
|
32
|
Farka Z, Čunderlová V, Horáčková V, Pastucha M, Mikušová Z, Hlaváček A, Skládal P. Prussian Blue Nanoparticles as a Catalytic Label in a Sandwich Nanozyme-Linked Immunosorbent Assay. Anal Chem 2018; 90:2348-2354. [PMID: 29314828 DOI: 10.1021/acs.analchem.7b04883] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Enzyme immunoassays are widely used for detection of analytes within various samples. However, enzymes as labels suffer several disadvantages such as high production cost and limited stability. Catalytic nanoparticles (nanozymes) can be used as an alternative label in immunoassays overcoming the inherent disadvantages of enzymes. Prussian blue nanoparticles (PBNPs) are nanozymes composed of the Fe4[Fe(CN)6]3-based coordination polymer. They reveal peroxidase-like activity and are capable of catalyzing the oxidation of colorless 3,3',5,5'-tetramethylbenzidine in the presence of H2O2 to form intensely blue product. Here, we introduce the method for conjugation of PBNPs with antibodies and their application in nanozyme-linked immunosorbent assay (NLISA). Sandwich NLISA for detection of human serum albumin in urine was developed with limit of detection (LOD) of 1.2 ng·mL-1 and working range up to 1 μg·mL-1. Furthermore, the microbial contamination of Salmonella Typhimurium in powdered milk was detected with LOD of 6 × 103 colony-forming units (cfu)·mL-1 and working range up to 106 cfu·mL-1. In both cases, a critical comparison with the same immunoassay but using native peroxidase as label was realized. The achieved results confirmed the suitability of PBNPs for universal and robust replacement of enzyme labels.
Collapse
Affiliation(s)
| | | | | | | | | | - Antonín Hlaváček
- Institute of Analytical Chemistry, Czech Academy of Sciences , 602 00 Brno, Czech Republic
| | | |
Collapse
|
33
|
A dextran mediated multicolor immunochromatographic rapid test strip for visual and instrumental simultaneous detection of Vibrio cholera O1 (Ogawa) and Clostridium botulinum toxin A. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2527-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Integrated microfluidic platform for rapid antimicrobial susceptibility testing and bacterial growth analysis using bead-based biosensor via fluorescence imaging. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2492-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Ganesh I, Tran BM, Kim Y, Kim J, Cheng H, Lee NY, Park S. An integrated microfluidic PCR system with immunomagnetic nanoparticles for the detection of bacterial pathogens. Biomed Microdevices 2017; 18:116. [PMID: 27975186 DOI: 10.1007/s10544-016-0139-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
There is growing interest in rapid microbial pre-concentration methods to lower the detection limit of bacterial pathogens of low abundance in samples. Here, we report an integrated microfluidic PCR system that enables bacterial cells of interest in samples to be concentrated prior to PCR. It consists of two major compartments: a preconcentration chamber for the immunomagnetic separation of bacterial cells, and a PCR chamber for the DNA amplification of the concentrated cells. We demonstrate the feasibility of the system for the detection of microbial pathogens by preconcentrating the human pathogen Escherichia coli O157:H7, and also amplifying its DNA. The detection limit of E. coli O157:H7 in the PCR system is 1 × 103 CFU (colony forming unit)/mL. On-chip processing steps, including preconcentration and PCR steps, take less than two hours. Our system can serve as a rapid, specific, and quantitative platform for the detection of microbial pathogens in samples of large volume.
Collapse
Affiliation(s)
- Irisappan Ganesh
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Korea
| | - Buu Minh Tran
- Department of BioNano Technology, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi-do, 13120, Korea
| | - Yonghee Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Korea
| | - Jaewon Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Korea
| | - Hua Cheng
- Department of Chemistry and Nano Sciences (BK21 plus), Ewha Womans University, Seoul, 03760, Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi-do, 13120, Korea.
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
36
|
Wen T, Wang R, Sotero A, Li Y. A Portable Impedance Immunosensing System for Rapid Detection of Salmonella Typhimurium. SENSORS 2017; 17:s17091973. [PMID: 28846643 PMCID: PMC5621372 DOI: 10.3390/s17091973] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/13/2017] [Accepted: 08/22/2017] [Indexed: 11/16/2022]
Abstract
SalmonellaTyphimurium is one of the most dangerous foodborne pathogens and poses a significant threat to human health. The objective of this study was to develop a portable impedance immunosensing system for rapid and sensitive detection of S. Typhimurium in poultry. The developed portable impedance immunosensing system consisted of a gold interdigitated array microelectrode (IDAM), a signal acquisitive interface and a laptop computer with LabVIEW software. The IDAM was first functionalized with 16-Mercaptohexadecanoic acid, and streptavidin was immobilized onto the electrode surface through covalent bonding. Then, biotin-labelled S. Typhimurium-antibody was immobilized onto the IDAM surface. Samples were dropped on the surface of the IDAM and the S. Typhimurium cells in the samples were captured by the antibody on the IDAM. This resulted in impedance changes that were measured and displayed with the LabVIEW software. An equivalent circuit of the immunosensor demonstrated that the largest change in impedance was due to the electron-transfer resistance. The equivalent circuit showed an increase of 35% for the electron-transfer resistance value compared to the negative control. The calibration result indicated that the portable impedance immunosensing system could be used to measure the standard impedance elements, and it had a maximum error of measurement of approximately 13%. For pure culture detection, the system had a linear relationship between the impedance change and the logarithmic value of S. Typhimurium cells ranging from 76 to 7.6 × 106 CFU (colony-forming unit) (50 μL)−1. The immunosensor also had a correlation coefficient of 0.98, and a high specificity for detection of S. Typhimurium cells with a limit of detection (LOD) of 102 CFU (50 μL)−1. The detection time from the moment a sample was introduced to the display of the results was 1 h. To conclude, the portable impedance immunosensing system for detection of S. Typhimurium achieved an LOD that is comparable with commercial electrochemical impedance instruments. The developed impedance immunosensor has advantages in portability, low cost, rapid detection and label-free features showing a great potential for in-field detection of foodborne pathogens.
Collapse
Affiliation(s)
- Tao Wen
- School of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Ronghui Wang
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| | - America Sotero
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
37
|
Mirasoli M, Gotti R, Di Fusco M, Basaglia G, Fiori J, Roda A. Efficacy of a titanium dioxide nanoparticles - based indoor anti-odor product as assessed by electronic nose and gaschromatography-mass spectrometry. J Pharm Biomed Anal 2017; 144:236-241. [PMID: 28336003 DOI: 10.1016/j.jpba.2017.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/15/2017] [Accepted: 03/07/2017] [Indexed: 01/18/2023]
Abstract
Indoor air pollutants and odorants may have psychological and physical impact on exposed individuals and the unpleasant room air is considered as one of the factors associated with sick building syndrome comprising general symptoms such as headache and lethargy. Approaches for improving the quality of indoor air are thus important as support for human health and well-being. Photo-oxidation catalyzed by titanium dioxide (TiO2), is one of the methods used for elimination of volatile organic compounds, which are the cause of odor nuisance in indoor and outdoor air. In the present investigation, the efficacy of an experimental anti-odor air freshener based on TiO2 nanoparticles was estimated by testing its ability in removing from a small air chamber (200mL) the odor of triethylamine solutions (50μL at concentrations between 0.700 to 700mM), used as a model volatile molecule for simulating fish-like unpleasant indoor environment. The evaluation was performed by electronic nose which provided a holistic and objective data on the efficacy of the product, demonstrating that the effects of triethylamine even at the highest tested concentrations can be completely removed by application of 3.0g of the product at 25% TiO2 nanoparticles concentration. The obtained results were confirmed by gaschromatography-mass spectrometry (GC-MS) analysis addressed to the quantitative determination of residual triethylamine in the environment after treatment by the anti-odor product.
Collapse
Affiliation(s)
- Mara Mirasoli
- Department of Chemistry "Giacomo Ciamician", University of Bologna, via Selmi 2, 40126 Bologna, Italy; Interdepartmental Center for Industrial Research-Advanced Applications in Mechanical Engineering and Materials Technology (CIRI-MAM), University of Bologna, Bologna, Italy.
| | - Roberto Gotti
- Interdepartmental Center for Industrial Research-Advanced Applications in Mechanical Engineering and Materials Technology (CIRI-MAM), University of Bologna, Bologna, Italy; Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Massimo Di Fusco
- Interdepartmental Center for Industrial Research-Advanced Applications in Mechanical Engineering and Materials Technology (CIRI-MAM), University of Bologna, Bologna, Italy
| | - Giulia Basaglia
- Interdepartmental Center for Industrial Research-Advanced Applications in Mechanical Engineering and Materials Technology (CIRI-MAM), University of Bologna, Bologna, Italy
| | - Jessica Fiori
- Interdepartmental Center for Industrial Research-Advanced Applications in Mechanical Engineering and Materials Technology (CIRI-MAM), University of Bologna, Bologna, Italy; Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Aldo Roda
- Department of Chemistry "Giacomo Ciamician", University of Bologna, via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
38
|
Liebsch C, Rödiger S, Böhm A, Nitschke J, Weinreich J, Fruth A, Roggenbuck D, Lehmann W, Schedler U, Juretzek T, Schierack P. Solid-phase microbead array for multiplex O-serotyping of Escherichia coli. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2088-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Guo Y, Wang Y, Liu S, Yu J, Wang H, Liu X, Huang J. Simultaneous voltammetric determination of E. coli and S. typhimurium based on target recycling amplification using self-assembled hairpin probes on a gold electrode. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2017-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Zhang B, Li H, Pan W, Chen Q, Ouyang Q, Zhao J. Dual-Color Upconversion Nanoparticles (UCNPs)-Based Fluorescent Immunoassay Probes for Sensitive Sensing Foodborne Pathogens. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0758-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Park C, Lee J, Kim Y, Kim J, Lee J, Park S. 3D-printed microfluidic magnetic preconcentrator for the detection of bacterial pathogen using an ATP luminometer and antibody-conjugated magnetic nanoparticles. J Microbiol Methods 2016; 132:128-133. [PMID: 27923650 DOI: 10.1016/j.mimet.2016.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 11/16/2022]
Abstract
Various types of microfluidic systems have been developed to detect bacterial pathogens. However, most of these require enrichment steps that take at least several hours when detecting bacteria that are present with a low number of cells and, in addition, fabrication requires complicated assembly steps. In this study, we report the development of 3D microfluidic magnetic preconcentrator (3DμFMP) made of plastic via 3D printing without the need for any assembly. 3DμFMP could selectively preconcentrate enterohemorrhagic Escherichia coli O157:H7 in 100mL by a factor of 700 within 1h using antibody-conjugated magnetic nanoparticles (Ab-MNPs). With the combined use of an ATP luminometer, as low as 10 E. coli O157:H7 CFU (colony forming unit)/mL could be detected in blood. These results demonstrate the feasibility of 3DμFMP as a preconcentrator to improve the detection limit of existing bacterial detection systems.
Collapse
Affiliation(s)
- Chanyong Park
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jinyeop Lee
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yonghee Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jaewon Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jinkee Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
42
|
Porous Silicon-Based Biosensors: Towards Real-Time Optical Detection of Target Bacteria in the Food Industry. Sci Rep 2016; 6:38099. [PMID: 27901131 PMCID: PMC5128872 DOI: 10.1038/srep38099] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/04/2016] [Indexed: 01/06/2023] Open
Abstract
Rapid detection of target bacteria is crucial to provide a safe food supply and to prevent foodborne diseases. Herein, we present an optical biosensor for identification and quantification of Escherichia coli (E. coli, used as a model indicator bacteria species) in complex food industry process water. The biosensor is based on a nanostructured, oxidized porous silicon (PSi) thin film which is functionalized with specific antibodies against E. coli. The biosensors were exposed to water samples collected directly from process lines of fresh-cut produce and their reflectivity spectra were collected in real time. Process water were characterized by complex natural micro-flora (microbial load of >107 cell/mL), in addition to soil particles and plant cell debris. We show that process water spiked with culture-grown E. coli, induces robust and predictable changes in the thin-film optical interference spectrum of the biosensor. The latter is ascribed to highly specific capture of the target cells onto the biosensor surface, as confirmed by real-time polymerase chain reaction (PCR). The biosensors were capable of selectively identifying and quantifying the target cells, while the target cell concentration is orders of magnitude lower than that of other bacterial species, without any pre-enrichment or prior processing steps.
Collapse
|
43
|
Roda B, Mirasoli M, Zattoni A, Casale M, Oliveri P, Bigi A, Reschiglian P, Simoni P, Roda A. A new analytical platform based on field-flow fractionation and olfactory sensor to improve the detection of viable and non-viable bacteria in food. Anal Bioanal Chem 2016; 408:7367-77. [PMID: 27520323 DOI: 10.1007/s00216-016-9836-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/20/2016] [Accepted: 07/26/2016] [Indexed: 01/03/2023]
Abstract
An integrated sensing system is presented for the first time, where a metal oxide semiconductor sensor-based electronic olfactory system (MOS array), employed for pathogen bacteria identification based on their volatile organic compound (VOC) characterisation, is assisted by a preliminary separative technique based on gravitational field-flow fractionation (GrFFF). In the integrated system, a preliminary step using GrFFF fractionation of a complex sample provided bacteria-enriched fractions readily available for subsequent MOS array analysis. The MOS array signals were then analysed employing a chemometric approach using principal components analysis (PCA) for a first-data exploration, followed by linear discriminant analysis (LDA) as a classification tool, using the PCA scores as input variables. The ability of the GrFFF-MOS system to distinguish between viable and non-viable cells of the same strain was demonstrated for the first time, yielding 100 % ability of correct prediction. The integrated system was also applied as a proof of concept for multianalyte purposes, for the detection of two bacterial strains (Escherichia coli O157:H7 and Yersinia enterocolitica) simultaneously present in artificially contaminated milk samples, obtaining a 100 % ability of correct prediction. Acquired results show that GrFFF band slicing before MOS array analysis can significantly increase reliability and reproducibility of pathogen bacteria identification based on their VOC production, simplifying the analytical procedure and largely eliminating sample matrix effects. The developed GrFFF-MOS integrated system can be considered a simple straightforward approach for pathogen bacteria identification directly from their food matrix. Graphical abstract An integrated sensing system is presented for pathogen bacteria identification in food, in which field-flow fractionation is exploited to prepare enriched cell fractions prior to their analysis by electronic olfactory system analysis.
Collapse
Affiliation(s)
- Barbara Roda
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, 40126, Bologna, Italy.,Interuniversity Consortium INBB-Viale delle Medaglie d'Oro, 305, 00136, Rome, Italy
| | - Mara Mirasoli
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, 40126, Bologna, Italy. .,Interuniversity Consortium INBB-Viale delle Medaglie d'Oro, 305, 00136, Rome, Italy.
| | - Andrea Zattoni
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, 40126, Bologna, Italy.,Interuniversity Consortium INBB-Viale delle Medaglie d'Oro, 305, 00136, Rome, Italy
| | - Monica Casale
- Department of Pharmacy-DIFAR, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Paolo Oliveri
- Department of Pharmacy-DIFAR, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy
| | - Alessandro Bigi
- Department of Engineering Enzo Ferrari (DIEF), University of Modena and Reggio Emilia, Via Vivarelli 10, 41125, Modena, Italy
| | - Pierluigi Reschiglian
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, 40126, Bologna, Italy.,Interuniversity Consortium INBB-Viale delle Medaglie d'Oro, 305, 00136, Rome, Italy
| | - Patrizia Simoni
- Department of Medical and Surgical Science-DIMEC, S. Orsola-Malpighi Hospital, University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Aldo Roda
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, 40126, Bologna, Italy.,Interuniversity Consortium INBB-Viale delle Medaglie d'Oro, 305, 00136, Rome, Italy
| |
Collapse
|
44
|
Tenenbaum E, Segal E. Optical biosensors for bacteria detection by a peptidomimetic antimicrobial compound. Analyst 2016; 140:7726-33. [PMID: 26456237 DOI: 10.1039/c5an01717c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In this work we present a label-free optical biosensor for rapid bacteria detection using a novel peptide-mimetic compound, as the recognition element. The biosensor design is based on an oxidized porous silicon (PSiO2) nanostructure used as the optical transducer, functionalized with the sequence K-[C12K]7 (referred to as K-7α12), which is a synthetic antimicrobial peptide. This compound is a member of a family of oligomers of acylated lysines (OAKs), mimicking the hydrophobicity and charge of natural antimicrobial peptides. The OAK is tethered to the PSiO2 film and the changes in the reflectivity spectrum are monitored upon exposure to Escherichia coli (E. coli) bacterial suspensions and their lysates. We show that capture of bacterial cell fragments induces predictable changes in the reflectivity spectrum, proportional to E. coli concentrations, thereby enabling rapid, sensitive and reproducible detection of E. coli at concentrations as low as 10(3) cells per mL. While for intact bacterial cells, the K-7α12-tethered PSiO2 shows a poor capturing ability, resulting in an insignificant optical response. The biosensor performance is also studied upon exposure to model Gram positive and negative bacterial lysates, suggesting preferential capture of E. coli cell fragments in the presented scheme. These OAK-based biosensors offer significant advantages in comparison with conventional antibody-based assays, in terms of their simple and cost-effective production, while providing numerous possible sequence combinations for designing new detection schemes.
Collapse
Affiliation(s)
- Elena Tenenbaum
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel. and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
45
|
Tao L, Zhang C, Zhang J, Sun Y, Li X, Yan K, Jin B, Zhang Z, Yang K. Sensitive chemiluminescence immunoassay for staphylococcal enterotoxin C1 based on the use of dye-encapsulated mesoporous silica nanoparticles. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1849-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
46
|
Jiang T, Song Y, Du D, Liu X, Lin Y. Detection of p53 Protein Based on Mesoporous Pt–Pd Nanoparticles with Enhanced Peroxidase-like Catalysis. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00019] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tao Jiang
- Key
Laboratory of Animal Virology of Ministry of Agriculture, State Key
Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research
Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | | | - Dan Du
- Key
Laboratory of Pesticides and Chemical Biology, Ministry of Education,
College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiangtao Liu
- Key
Laboratory of Animal Virology of Ministry of Agriculture, State Key
Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research
Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | | |
Collapse
|
47
|
Farka Z, Juřík T, Pastucha M, Kovář D, Lacina K, Skládal P. Rapid Immunosensing ofSalmonellaTyphimurium Using Electrochemical Impedance Spectroscopy: the Effect of Sample Treatment. ELECTROANAL 2016. [DOI: 10.1002/elan.201600093] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zdeněk Farka
- CEITEC MU; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
| | - Tomáš Juřík
- CEITEC MU; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
| | - Matěj Pastucha
- CEITEC MU; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
| | - David Kovář
- CEITEC MU; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
| | - Karel Lacina
- CEITEC MU; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
| | - Petr Skládal
- CEITEC MU; Masaryk University; Kamenice 5 625 00 Brno Czech Republic
- Department of Biochemistry, Faculty of Science; Masaryk University; Kotlářská 2 611 37 Brno Czech Republic
| |
Collapse
|
48
|
Yang Z, Liu Y, Lei C, Sun XC, Zhou Y. Ultrasensitive detection and quantification of E. coli O157:H7 using a giant magnetoimpedance sensor in an open-surface microfluidic cavity covered with an antibody-modified gold surface. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1818-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
49
|
Li X, Fu H, He Y, Zhai Q, Guo J, Qing K, Yi G. Electrochemical Aptasensor for Rapid and Sensitive Determination ofSalmonellaBased on Target-Induced Strand Displacement and Gold Nanoparticle Amplification. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1151888] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
50
|
Ultra-sensitive chemiluminescent detection of Staphylococcus aureus based on competitive binding of Staphylococcus protein A-modified magnetic beads to immunoglobulin G. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1769-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|