1
|
Wei H, Mao J, Sun D, Zhang Q, Cheng L, Yang X, Li P. Strategies to control mycotoxins and toxigenic fungi contamination by nano-semiconductor in food and agro-food: a review. Crit Rev Food Sci Nutr 2023; 63:12488-12512. [PMID: 35880423 DOI: 10.1080/10408398.2022.2102579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mycotoxins are toxic secondary metabolites generated from toxigenic fungi in the contaminated food and agro-food, which have been regarded as a serious threat to the food safety and human health. Therefore, the control of mycotoxins and toxigenic fungi contamination is of great significance and has attracted the increasing attention of researchers. As we know, nano-semiconductors have many unique properties such as large surface area, structural stability, good biocompatibility, excellent photoelectrical properties, and low cost, which have been developed and applied in many research fields. Recently, nano-semiconductors have also been promisingly applied in mitigating or controlling mycotoxins and toxigenic fungi contaminations in food and agro-food. In this review, the type, occurrence, and toxicity of main mycotoxins in food and agro-food were introduced. Then, a variety of strategies to mitigate the mycotoxin contamination based on nano-semiconductors involving mycotoxins detection, inhibition of toxigenic fungi, and mycotoxins degradation were summarized. Finally, the outlook, opportunities, and challenges have prospected in the future for the mitigation of mycotoxins and toxigenic fungi based on nano-semiconductors.
Collapse
Affiliation(s)
- Hailian Wei
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jin Mao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Di Sun
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Ling Cheng
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Xianglong Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- National Reference Laboratory for Agricultural Testing P.R. China, Key Laboratory of Detection for Mycotoxins, Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
2
|
Chen R, Wang H, Sun C, Zhao Y, He Y, Nisar MS, Wei W, Kang H, Xie X, Du C, Luo Q, Yang L, Tang X, Xiong B. Au@SiO 2 SERS nanotags based lateral flow immunoassay for simultaneous detection of aflatoxin B 1 and ochratoxin A. Talanta 2023; 258:124401. [PMID: 36867957 DOI: 10.1016/j.talanta.2023.124401] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/03/2023]
Abstract
Agricultural products are frequently contaminated by mycotoxins. Multiplex, ultrasensitive, and rapid determination of mycotoxins is still a challenging problem, which is of great significance to food safety and public health. Herein, a surface-enhanced Raman scattering (SERS) based lateral flow immunoassay (LFA) for the simultaneous on-site determination of aflatoxin B1 (AFB1) and ochratoxin A (OTA) on the same test line (T line) was developed, in this study. In practice, two kinds of Raman reporters 4-mercaptobenzoic acid (4-MBA), and 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) encoded silica-encapsulated gold nanotags (Au4-MBA@SiO2 and AuDNTB@SiO2) were used as detection markers to identify the two different mycotoxins. Through systematic optimization of the experimental conditions, this biosensor has high sensitivity and multiplexing with the limits of detection (LODs) at 0.24 pg mL-1 for AFB1 and 0.37 pg mL-1 for OTA. These are far below the regulatory limits set by the European Commission, in which the minimum LODs for AFB1 and OTA are 2.0 and 3.0 μg kg-1. In the spiked experiment, the food matrix are corn, rice, and wheat, and the mean recoveries of the two mycotoxins ranged from 91.0% ± 6.3%-104.8% ± 5.6% for AFB1 and 87.0% ± 4.2%-112.0% ± 3.3% for OTA. These results demonstrate that the developed immunoassay has good stability, selectivity, and reliability, which can be used for routine monitoring of mycotoxin contamination.
Collapse
Affiliation(s)
- Ruipeng Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hui Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chaoqun Sun
- College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yiguang Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yue He
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Muhammad Shemyal Nisar
- Sino-British College, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Wensong Wei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Haiqi Kang
- College of Economics and Management, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiulan Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chunmei Du
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingyao Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liang Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
3
|
Han Z, Yang C, Xiao D, Lin Y, Wen R, Chen B, He X. A Rapid, Fluorescence Switch-On Biosensor for Early Diagnosis of Sorghum Mosaic Virus. BIOSENSORS 2022; 12:1034. [PMID: 36421152 PMCID: PMC9688095 DOI: 10.3390/bios12111034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
For the first time, a nanobiosensor was established for Sorghum mosaic virus (SrMV) detection. The biosensor consists of cadmium telluride quantum dots (CdTe QDs) conjugated to the specific antibody (Ab) against SrMV coat protein (CP) and carbon quantum dots (C QDs) labeled with SrMV coat protein. The formation of the fluorophore-quencher immunocomplex CdTe QDs-Ab+C QDs-CP led to a distinct decrease in the fluorescence intensity of CdTe QDs. Conversely, the emission intensity of CdTe QDs recovered upon the introduction of unlabeled CP. The developed biosensor showed a limit of detection of 44 nM in a linear range of 0.10-0.54 μM and exhibited the strongest fluorescence intensity (about 47,000 a.u.) at 552 nm. This strategy was applied to detect purified CP in plant sap successfully with a recovery rate between 93-103%. Moreover, the feasibility of the proposed method was further verified by the detection of field samples, and the results were consistent with an enzyme-linked immunosorbent assay (ELISA). Contrarily to ELISA, the proposed biosensor did not require excessive washing and incubation steps, thus the detection could be rapidly accomplished in a few minutes. The high sensitivity and short assay time of this designed biosensor demonstrated its potential application in situ and rapid detection. In addition, the fluorescence quenching of CdTe QDs was attributed to dynamic quenching according to the Stern-Volmer equation.
Collapse
Affiliation(s)
- Zhenlong Han
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Congyuan Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Dan Xiao
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yinfu Lin
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Ronghui Wen
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Baoshan Chen
- College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Xipu He
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| |
Collapse
|
4
|
Pei J, Ren T, Huang Y, Chen R, Jin W, Shang S, Wang J, Liu Z, Liang Y, Abd El-Aty AM. Application of Graphene and its Derivatives in Detecting Hazardous Substances in Food: A Comprehensive Review. Front Chem 2022; 10:894759. [PMID: 35864869 PMCID: PMC9295186 DOI: 10.3389/fchem.2022.894759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/04/2022] [Indexed: 12/02/2022] Open
Abstract
Graphene and its derivatives have been a burning issue in the last 10 years. Although many reviews described its application in electrochemical detection, few were focused on food detection. Herein, we reviewed the recent progress in applying graphene and composite materials in food detection during the past 10 years. We pay attention to food coloring materials, pesticides, antibiotics, heavy metal ion residues, and other common hazards. The advantages of graphene composites in electrochemical detection are described in detail. The differences between electrochemical detection involving graphene and traditional inherent food detection are analyzed and compared in depth. The results proved that electrochemical food detection based on graphene composites is more beneficial. The current defects and deficiencies in graphene composite modified electrode development are discussed, and the application prospects and direction of graphene in future food detection are forecasted.
Collapse
Affiliation(s)
- Jinjin Pei
- Shaanxi Province Key Laboratory of Bio-resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
- *Correspondence: Jinjin Pei, ; Yinku Liang, ; A. M. Abd El-Aty,
| | - Ting Ren
- Shaanxi Province Key Laboratory of Bio-resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Yigang Huang
- Shaanxi Province Key Laboratory of Bio-resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Rui Chen
- Shaanxi Province Key Laboratory of Bio-resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Wengang Jin
- Shaanxi Province Key Laboratory of Bio-resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Shufeng Shang
- Shaanxi Province Key Laboratory of Bio-resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Jinze Wang
- Shaanxi Province Key Laboratory of Bio-resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Zhe Liu
- Shaanxi Province Key Laboratory of Bio-resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
| | - Yinku Liang
- Shaanxi Province Key Laboratory of Bio-resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong, China
- *Correspondence: Jinjin Pei, ; Yinku Liang, ; A. M. Abd El-Aty,
| | - A. M. Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
- *Correspondence: Jinjin Pei, ; Yinku Liang, ; A. M. Abd El-Aty,
| |
Collapse
|
5
|
Bhardwaj H, Rajesh, Sumana G. Recent advances in nanomaterials integrated immunosensors for food toxin detection. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:12-33. [PMID: 35068548 PMCID: PMC8758883 DOI: 10.1007/s13197-021-04999-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 01/03/2023]
Abstract
For the management and prevention of many chronic and acute diseases, the rapid quantification of toxicity in food and feed products have become a significant concern. Technology advancements in the area of biosensors, bioelectronics, miniaturization techniques, and microfluidics have shown a significant impact than conventional methods which have given a boost to improve the sensing performance towards food analyte detection. In this article, recent literature of Aflatoxin B1 (AFB1), worldwide permissible limits, major outbreaks and severe impact on healthy life have been discussed. An improvement achieved in detection range, limit of detection, shelf-life of the biosensor by integrated dimensional nanomaterials such as zero-dimension, one-dimension and two-dimension for AFB1 detection using electrical and optical transduction mechanism has been summarized. A critical overview of the latest trends using paper-based and micro-spotted array integrated with the anisotropic shape of nanomaterials, portable microfluidic devices have also been described together with future perspectives for further advancements.
Collapse
Affiliation(s)
- Hema Bhardwaj
- CSIR-National Physical Laboratory, Dr. KS Krishnan Marg, New Delhi, 110012 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Rajesh
- CSIR-National Physical Laboratory, Dr. KS Krishnan Marg, New Delhi, 110012 India
| | - Gajjala Sumana
- CSIR-National Physical Laboratory, Dr. KS Krishnan Marg, New Delhi, 110012 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
6
|
Singh AK, Lakshmi GBVS, Dhiman TK, Kaushik A, Solanki PR. Bio-Active Free Direct Optical Sensing of Aflatoxin B1 and Ochratoxin A Using a Manganese Oxide Nano-System. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2020.621681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aflatoxins-B1 (AFB1) and Ochratoxin-A (OchA) are the two types of major mycotoxin produced by Aspergillus flavus, Aspergillus parasiticus fungi, Aspergillus carbonarius, Aspergillus niger, and Penicillium verrocusumv. These toxins are mainly found in metabolite cereals, corn, coffee beans, and other oil-containing food items. Excessive consumption of these toxins can be carcinogenic and lead to cancer. Thus, their rapid testing became essential for food quality control. Herein, manganese oxide nanoparticles (MnO2 nps) have been proposed to explore the interaction with AFB1 and OchA using UV-visible spectroscopy. MnO2 nps were synthesized using the co-precipitation method. They were pure and crystalline with an average crystallite size of 5–6 nm. In the UV-vis study, the maximum absorbance for MnO2 nps was observed around 260 nm. The maximum absorbance for AFB1 and OchA was observed at 365 and 380 nm, respectively, and its intensity enhanced with the addition of MnO2 nps. Sequential changes were observed with varying the concentration of AFB1 and OchA with a fixed concentration of MnO2 nps, resulting in proper interaction. The binding constant (kb) and Gibbs free energy for MnO2 nps-AFB1 and OchA were observed as 1.62 × 104 L g−1 and 2.67 × 104 L g−1, and −24.002 and −25.256 kJ/mol, respectively. The limit of detection for AFB1 and OchA was measured as 4.08 and 10.84 ng/ml, respectively. This bio‐active free direct sensing approach of AFB1 and OchA sensing can be promoted as a potential analytical tool to estimate food quality rapidly and affordable manner at the point of use.
Collapse
|
7
|
Fabrication, Characterization, and Antifungal Assessment of Jasmine Essential Oil-Loaded Chitosan Nanomatrix Against Aspergillus flavus in Food System. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02592-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Zha YH, Zhou Y. Functional nanomaterials based immunological detection of aflatoxin B1: a review. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aflatoxin B1 (AFB1) is highly carcinogenic, mutagenic and teratogenic. Accordingly, sensitive, rapid and cost-effective techniques for detection of AFB1 is in urgent demand for food safety and the health of consumers. In this review, we report the current state of immunoassay formats and development, mainly based on nanomaterials for determination of AFB1. Following an introduction of the field, the microplate-, membrane- and microelectrode-based immunoassays are described. The relevant mechanisms, sensitivities, superiorities and deficiencies of each format are discussed. Finally, perspectives on the future development of nanomaterials-based immunoassays for AFB1 are provided.
Collapse
Affiliation(s)
- Y.-H. Zha
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China P.R
| | - Y. Zhou
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China P.R
- College of Animal Sciences, Yangtze University, Jingzhou 434023, China P.R
| |
Collapse
|
9
|
Xue Z, Zhang Y, Yu W, Zhang J, Wang J, Wan F, Kim Y, Liu Y, Kou X. Recent advances in aflatoxin B1 detection based on nanotechnology and nanomaterials-A review. Anal Chim Acta 2019; 1069:1-27. [DOI: 10.1016/j.aca.2019.04.032] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/22/2019] [Accepted: 04/15/2019] [Indexed: 02/02/2023]
|
10
|
Zhao X, Chen LJ, Zhao KC, Liu YS, Liu JL, Yan XP. Autofluorescence-free chemo/biosensing in complex matrixes based on persistent luminescence nanoparticles. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Electrochemiluminescence "turn-off" detection of curcumin via energy transfer using luminol-doped silica nanoparticles. Mikrochim Acta 2019; 186:409. [PMID: 31183618 DOI: 10.1007/s00604-019-3556-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/24/2019] [Indexed: 10/26/2022]
Abstract
A method is presented for electrochemiluminescent (ECL) detection of the food additive curcumin via an energy transfer strategy and by using luminol-doped silica nanoparticles (luminol-NPs). The ECL emission of the luminol-NPs (peaking at 425 nm) is reduced in the presence of curcumin due to spectral overlap. The assay can be performed within 1 min, response is linear in the 0.1 to 100 µM curcumin concentration range, and the limit of detection is 32 nM. The method is selective over many ions, adenosine triphosphate, ascorbic acid, cysteine and folic acid. It was successfully applied to the determination of curcumin in spiked human serum and urine. The average recoveries range from 99.0 to 102.6%. Graphical abstract Electrochemiluminescence (ECL) "turn-off" detection of curcumin at levels as low as 32 nM via energy transfer using luminol-doped silica nanoparticles. No hydrogen peroxide (H2O2) is used in ECL detection which makes the luminol-NPs ECL system more stable than the conventional luminol-H2O2 ECL system.
Collapse
|
12
|
Mekawey AAI, El-Metwally MM. Impact of nanoencapsulated natural bioactive phenolic metabolites on chitosan nanoparticles as aflatoxins inhibitor. J Basic Microbiol 2019; 59:599-608. [PMID: 30900741 DOI: 10.1002/jobm.201800481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/28/2018] [Accepted: 01/25/2019] [Indexed: 12/20/2022]
Abstract
Aflatoxins are part of fungal secondary metabolites which become serious health, environmental, and economic problems and can cause corruption of many crops and agricultural grains that used as food and feed for human and animal. Aflatoxins mainly produce by Aspergillus spp. especially Aspergillus flavus and Aspergillus parasiticus. The present work aimed to study the effect of nanoencapsulation of chitosan (CS) nanoparticles with two phenolic compounds 1-(2-ethyl,6-heptyl)phenol (EHP) extracted from Cuminum cyminum and 5-ethyl-2-(methoxymethyl)phenol (EMMP) extracted from black pepper on growth and aflatoxins production of A. flavus and A. parasiticus. A. flavus growth was completely inhibited by 0.6 mg/ml of EHP and EMMP as well as A. parasiticus which showed the same minimal inhibition concentration with the first compound and 0.8 mg/ml with the second one. CS nanoparticles inhibited the growth of the tested organisms more than CS especially with A. parasiticus and this potency became much better when nanoencapsulated with the two extracted phenolic compounds. In inhibition of aflatoxins production, EHP reduced the production of aflatoxin B1 and B2 of A. flavus by 68.6% and 69.7%, respectively. In the same manner EMMP reduce the production of the two toxins by 87.3% and 82.6%, respectively. The reduction effect of CS nanoparticles is much more than that of CS as it record in most cases about twofold increase. Nanoencapsulation of CS nanoparticles by the extracted phenolic compounds is much more effective with complete inhibition of aflatoxin B1 of both fungi and aflatoxin G1 of A. parasiticus.
Collapse
Affiliation(s)
- Amal A I Mekawey
- Fungal Identification Unit, The Regional Center of Mycology and Biotechnology, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohammad M El-Metwally
- Department of Botany and Microbiology, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
13
|
Sun L, Zhao Q. A simple fluorescent aptamer based assay coupled with fluorescence scanning capillary array for aflatoxin B1. Analyst 2019; 143:4600-4605. [PMID: 30191220 DOI: 10.1039/c8an01093e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We developed a simple aptamer fluorescence assay for aflatoxin B1 (AFB1) detection by using an array of capillaries. The 34-nt aptamer having a single fluorescein (FAM) label on the 24th T nucleotide generated a remarkable fluorescence increase upon AFB1 binding. The use of fluorescence scanning capillary array allowed for the analysis of multiple samples with low sample consumption, showing advantages of simplicity, rapidity and high throughput analysis. The detection limit of AFB1 reached 0.5 nM. This assay has great potential for analysis in food safety and environmental monitoring.
Collapse
Affiliation(s)
- Linlin Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | | |
Collapse
|
14
|
Sabzehparvar F, Rahmani Cherati T, Mohsenifar A, Roodbar Shojaei T, Tabatabaei M. Immobilization of gold nanoparticles with rhodamine to enhance the fluorescence resonance energy transfer between quantum dots and rhodamine; new method for downstream sensing of infectious bursal disease virus. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 212:173-179. [PMID: 30639602 DOI: 10.1016/j.saa.2018.12.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/13/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
Infectious bursal disease virus is a causative agent of one of the most important disease which causes frequent tragic disaster in the poultry industry all over the world. Therefore, in the present study a new fluorescence resonance energy transfer-based technique was developed to detect VP2 gene of infectious bursal disease virus using two oligonucleotide probes labeled with quantum dots and rhodamine- immobilized gold nanoparticles (AuNPs-Rh). Quantum dots labeled with an amino-modified first oligonucleotide, and AuNPs-Rh labeled with thiol-modified second oligonucleotides were added to the DNA targets upon which hybridization occurred. In the presence of target the AuNPs-Rh will be located in the vicinity of the quantum dots and leads to the fluorescence resonance energy transfer to be occurred and subsequently the fluorescence intensity of quantum dots was stimulated. The immobilization of rhodamine to the surface of AuNPs increased the fluorescence intensity of rhodamine. The maximum fluorescence resonance energy transfer efficiency for the developed sensor is monitored at a quantum dots-PA/AuNPs-Rh-PT molar ratio of 1:10. Moreover, the feasibility of the developed nanobiosensor was demonstrated by the detection of a synthetic 49-mer nucleotide derived from infectious bursal disease virus and the limit of detection was estimated as 3 × 10-8 M. The developed DNA detection scheme is a simple, rapid and efficient technique which does not need excessive washing and separation steps.
Collapse
Affiliation(s)
- Fatemeh Sabzehparvar
- Department of Agriculture, University of Zanjan, Zanjan, Iran; Research and Development Department, Nanozino, Tehran, Iran
| | | | | | - Taha Roodbar Shojaei
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Meisam Tabatabaei
- Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran; Nanosystems Research Team (NRTeam), Karaj, Iran.
| |
Collapse
|
15
|
Zhou Y, Li P, Fan N, Wang X, Liu X, Wu L, Zhang W, Zhang W, Ma C, Tang B. In situ visualization of peroxisomal peroxynitrite in the livers of mice with acute liver injury induced by carbon tetrachloride using a new two-photon fluorescent probe. Chem Commun (Camb) 2019; 55:6767-6770. [DOI: 10.1039/c9cc02483b] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In situ visualization of peroxisomal peroxynitrite in the livers of mice with acute liver injury using a new two-photon fluorescent probe.
Collapse
Affiliation(s)
- Yongqing Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University
- Jinan 250014
- People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University
- Jinan 250014
- People's Republic of China
| | - Nannan Fan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University
- Jinan 250014
- People's Republic of China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University
- Jinan 250014
- People's Republic of China
| | - Xiaoning Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University
- Jinan 250014
- People's Republic of China
| | - Lijie Wu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University
- Jinan 250014
- People's Republic of China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University
- Jinan 250014
- People's Republic of China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University
- Jinan 250014
- People's Republic of China
| | - Changle Ma
- College of Life Sciences, Shandong Normal University
- Jinan 250014
- P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University
- Jinan 250014
- People's Republic of China
| |
Collapse
|
16
|
Developing liquid crystal-based immunoassay for melamine detection. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3625-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Liu X, Fan N, Wu L, Wu C, Zhou Y, Li P, Tang B. Lighting up alkaline phosphatase in drug-induced liver injury using a new chemiluminescence resonance energy transfer nanoprobe. Chem Commun (Camb) 2018; 54:12479-12482. [PMID: 30338324 DOI: 10.1039/c8cc07211f] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We present a new nanoprobe based on chemiluminescence resonance energy transfer for in vivo imaging of drug-induced alkaline phosphatase (ALP). This probe exhibits the perfect degrees of high sensitivity and specificity for real-time monitoring of ALP levels to directly evaluate drug-induced liver injury.
Collapse
Affiliation(s)
- Xueting Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China.
| | - Nannan Fan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China.
| | - Lijie Wu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China.
| | - Chuanchen Wu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yongqing Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China.
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
18
|
Yang Y, Zhang Y, He C, Xie M, Luo H, Wang Y, Zhang J. Rapid screen of aflatoxin-contaminated peanut oil using Fourier transform infrared spectroscopy combined with multivariate decision tree. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yu Yang
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes; Jinan University; 601 Huangpu Ave. West Guangzhou 510632 China
| | - Yanan Zhang
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes; Jinan University; 601 Huangpu Ave. West Guangzhou 510632 China
| | - Caiyan He
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes; Jinan University; 601 Huangpu Ave. West Guangzhou 510632 China
| | - Mengyuan Xie
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes; Jinan University; 601 Huangpu Ave. West Guangzhou 510632 China
| | - Huitai Luo
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals; Guangdong Provincial Public Laboratory of Analysis and Testing Technology; Guangdong Institute of Analysis; Building 34, 100 Xianlie Middle Road Guangzhou 510070 China
| | - Ying Wang
- Department of Food Science and Engineering; College of Science and Engineering; Jinan University; 601 Huangpu Ave. West Guangzhou 510632 China
| | - Jun Zhang
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes; Jinan University; 601 Huangpu Ave. West Guangzhou 510632 China
- State Key Laboratory of Applied Optics; Changchun Institute of Optics; Fine Mechanics and Physics; Chinese Academy of Sciences; Changchun 130033 China
| |
Collapse
|
19
|
Sharma A, Khan R, Catanante G, Sherazi TA, Bhand S, Hayat A, Marty JL. Designed Strategies for Fluorescence-Based Biosensors for the Detection of Mycotoxins. Toxins (Basel) 2018; 10:toxins10050197. [PMID: 29751687 PMCID: PMC5983253 DOI: 10.3390/toxins10050197] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/08/2018] [Accepted: 05/08/2018] [Indexed: 12/22/2022] Open
Abstract
Small molecule toxins such as mycotoxins with low molecular weight are the most widely studied biological toxins. These biological toxins are responsible for food poisoning and have the potential to be used as biological warfare agents at the toxic dose. Due to the poisonous nature of mycotoxins, effective analysis techniques for quantifying their toxicity are indispensable. In this context, biosensors have been emerged as a powerful tool to monitors toxins at extremely low level. Recently, biosensors based on fluorescence detection have attained special interest with the incorporation of nanomaterials. This review paper will focus on the development of fluorescence-based biosensors for mycotoxin detection, with particular emphasis on their design as well as properties such as sensitivity and specificity. A number of these fluorescent biosensors have shown promising results in food samples for the detection of mycotoxins, suggesting their future potential for food applications.
Collapse
Affiliation(s)
- Atul Sharma
- BAE: Biocapteurs-Analyses-Environnement, Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan CEDEX, France.
- Biosensor Lab, Department of Chemistry, Birla Institute of Technology and Science, Pilani K. K. Birla Goa Campus, Zuarinagar, Goa 403726, India.
- School of Pharmaceutical Sciences, MVN University-Palwal, Haryana-121105, India.
| | - Reem Khan
- BAE: Biocapteurs-Analyses-Environnement, Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan CEDEX, France.
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan.
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore 54000, Pakistan.
| | - Gaelle Catanante
- BAE: Biocapteurs-Analyses-Environnement, Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan CEDEX, France.
| | - Tauqir A Sherazi
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan.
| | - Sunil Bhand
- Biosensor Lab, Department of Chemistry, Birla Institute of Technology and Science, Pilani K. K. Birla Goa Campus, Zuarinagar, Goa 403726, India.
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS Institute of Information Technology, Lahore 54000, Pakistan.
| | - Jean Louis Marty
- BAE: Biocapteurs-Analyses-Environnement, Universite de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan CEDEX, France.
| |
Collapse
|
20
|
Evtugyn G, Subjakova V, Melikishvili S, Hianik T. Affinity Biosensors for Detection of Mycotoxins in Food. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 85:263-310. [PMID: 29860976 DOI: 10.1016/bs.afnr.2018.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This chapter reviews recent achievements in methods of detection of mycotoxins in food. Special focus is on the biosensor technology that utilizes antibodies and nucleic acid aptamers as receptors. Development of biosensors is based on the immobilization of antibodies or aptamers onto various conventional supports like gold layer, but also on nanomaterials such as graphene oxide, carbon nanotubes, and quantum dots that provide an effective platform for achieving high sensitivity of detection using various physical methods, including electrochemical, mass sensitive, and optical. The biosensors developed so far demonstrate high sensitivity typically in subnanomolar limit of detection. Several biosensors have been validated in real samples. The sensitivity of biosensors is similar and, in some cases, even better than traditional analytical methods such as ELISA or chromatography. We believe that future trends will be focused on improving biosensor properties toward practical application in food industry.
Collapse
Affiliation(s)
- Gennady Evtugyn
- Analytical Chemistry Department, Chemistry Institute of Kazan Federal University, Kazan, Russian Federation
| | - Veronika Subjakova
- Department of Nuclear Physics and Biophysics, Comenius University, Bratislava, Slovakia
| | - Sopio Melikishvili
- Department of Nuclear Physics and Biophysics, Comenius University, Bratislava, Slovakia
| | - Tibor Hianik
- Department of Nuclear Physics and Biophysics, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
21
|
|
22
|
Kumar Y. V. V. A, R. M. R, J. A, Mudili V, Poda S. Development of a FRET-based fluorescence aptasensor for the detection of aflatoxin B1 in contaminated food grain samples. RSC Adv 2018; 8:10465-10473. [PMID: 35540493 PMCID: PMC9078933 DOI: 10.1039/c8ra00317c] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/15/2018] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to develop an aptamer-based FRET detection strategy for the specific and sensitive detection of AFB1 in contaminated food grains.
Collapse
Affiliation(s)
| | - Renuka R. M.
- DRDO-BU-CLS
- Bharathiar University Campus
- Coimbatore
- India
| | - Achuth J.
- DRDO-BU-CLS
- Bharathiar University Campus
- Coimbatore
- India
| | | | - Sudhakar Poda
- Department of Biotechnology
- Acharya Nagarjuna University
- Guntur
- India
| |
Collapse
|
23
|
Liu JM, Yuan XY, Liu HL, Cheng D, Wang S. Fabrication of an activatable hybrid persistent luminescence nanoprobe for background-free bioimaging-guided investigation of food-borne aflatoxin in vivo. RSC Adv 2018; 8:28414-28420. [PMID: 35542489 PMCID: PMC9084300 DOI: 10.1039/c8ra05555f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/25/2018] [Indexed: 01/18/2023] Open
Abstract
The development of in situ and real-time analytical methods for specifically probing food-borne hazardous substances is promising for clarifying their harmful behaviors and related disease mechanisms inside the living body through in situ investigation of their in vivo behaviors. Herein, optical nanoimaging with the ability of in situ non-damage detection and real-time monitoring was introduced for specific recognition of aflatoxin in cellular levels and in vivo via the fluorescence resonance energy transfer (FRET) protocol. Persistent luminescence nanophosphors (PLNPs) with distinct advantages of improved sensitivity and signal-to-noise ratio were employed in in vivo bioimaging as photoluminescence nanoprobes, while copper sulfide nanoparticles were utilized as the quencher. Due to their long-lasting afterglow, PLNPs do not require external illumination before imaging, effectively eliminating the scattering light and autofluorescence from the biological matrix that can occur during in situ excitation. The proposed FRET imaging assay achieved high sensitivity and specificity as well as improved imaging resolution for the target aflatoxin present in vivo. This study will provide insights towards advanced methodology for the applications of bioimaging in food safety, and could potentially provide an advisory roadmap for bioimaging-guided exploration and mediation of food-borne hazards to human health. Construction of persistent luminescence nanophosphor-copper sulfide hybrid FRET nanoprobes for background-free bioimaging-guided investigation of food-borne aflatoxin in vivo.![]()
Collapse
Affiliation(s)
- Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health
- School of Medicine
- Nankai University
- Tianjin 300071
- China
| | - Xin-Yue Yuan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Technology & Business University (BTBU)
- Beijing
- China
| | - Hui-Lin Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Technology & Business University (BTBU)
- Beijing
- China
| | - Dai Cheng
- Tianjin Key Laboratory of Food Science and Health
- School of Medicine
- Nankai University
- Tianjin 300071
- China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health
- School of Medicine
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
24
|
Matabaro E, Ishimwe N, Uwimbabazi E, Lee BH. Current Immunoassay Methods for the Rapid Detection of Aflatoxin in Milk and Dairy Products. Compr Rev Food Sci Food Saf 2017; 16:808-820. [DOI: 10.1111/1541-4337.12287] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/11/2017] [Accepted: 06/14/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Emmanuel Matabaro
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology; Jiangnan Univ.; Wuxi Jiangsu 214122 China
| | - Nestor Ishimwe
- Hefei Natl. Laboratory for Physical Sciences at Microscale and School of Life Sciences; Univ. of Science and Technology of China; Hefei Anhui 230027 China
- the Dept. of Chemistry, College of Science and Technology; Univ. of Rwanda; Rwanda
| | - Eric Uwimbabazi
- School of Food Science; Jiangnan Univ.; Wuxi Jiangsu 214122 China
| | - Byong H. Lee
- Dept. of Microbiology and Immunology; McGill Univ.; Montreal QC H3A 2B4 Canada
- Dept. of Food Science and Biotechnology; Kangwon Natl. Univ.; Chuncheon 200701 South Korea
| |
Collapse
|
25
|
Elakkiya V, Menon MP, Nataraj D, Biji P, Selvakumar R. Optical detection of CA 15.3 breast cancer antigen using CdS quantum dot. IET Nanobiotechnol 2017; 11:268-276. [PMID: 28476984 PMCID: PMC8676341 DOI: 10.1049/iet-nbt.2016.0012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 04/19/2016] [Accepted: 06/24/2016] [Indexed: 12/29/2023] Open
Abstract
The present study focus on optical sensing of breast cancer antigen 15.3 (CA 15.3) using cadmium sulphide quantum dot (CdS-QD) in saline and serum samples spiked with antigen. The surface of CdS-QD was modified by cysteamine capping followed by tagging of CA 15.3 antibody. The samples were characterised using UV-visible absorption spectroscopy (UV-VIS Spectroscopy), Fourier transform infrared spectroscopy (FTIR), high-resolution transmission electron microscopy (HRTEM) attached with energy-dispersive X-ray spectroscopy, phase contrast inverted epi-fluorescence microscopy and photoluminescence (PL) spectrophotometry (EDS). The CdS-QD showed a mean diameter of 3.02 ± 0.6 nm. The complex formed after antigen-antibody interaction resulted in distinguishable optical and fluorescence intensity with respect to varying concentration of antigen. The PL study revealed that CA 15.3 antibody labelled CdS QD can detect CA 15.3 tumour marker even at very low concentration of 0.002 KU/L with a constant response time of 15 min. This study clearly indicates that detection of CA 15.3 at low concentration is possible using surface modified CdS QD in serum samples and can find immense applications in biosensor development for detection of breast cancer marker similar to various automated detection kits available in market.
Collapse
Affiliation(s)
- Venugopal Elakkiya
- Nanobiotechnology Laboratory, PSG Institute of Advanced Studies, Peelamedu, Coimbatore 641004, India
| | - Mridula Prakash Menon
- Nanobiotechnology Laboratory, PSG Institute of Advanced Studies, Peelamedu, Coimbatore 641004, India
| | - Devaraj Nataraj
- Department of Physics, Bharathiar University, Coimbatore 641046, India
| | - Pullithadathil Biji
- Nanosensor Laboratory, PSG Institute of Advanced Studies, Peelamedu, Coimbatore 641004, India
| | - Rajendran Selvakumar
- Nanobiotechnology Laboratory, PSG Institute of Advanced Studies, Peelamedu, Coimbatore 641004, India.
| |
Collapse
|
26
|
Recent advances in Nanomaterial-mediated Bio and immune sensors for detection of aflatoxin in food products. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2016.12.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Shojaei TR, Salleh MAM, Sijam K, Rahim RA, Mohsenifar A, Safarnejad R, Tabatabaei M. Detection of Citrus tristeza virus by using fluorescence resonance energy transfer-based biosensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 169:216-22. [PMID: 27380305 DOI: 10.1016/j.saa.2016.06.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 06/12/2016] [Accepted: 06/28/2016] [Indexed: 05/11/2023]
Abstract
Due to the low titer or uneven distribution of Citrus tristeza virus (CTV) in field samples, detection of CTV by using conventional detection techniques may be difficult. Therefore, in the present work, the cadmium-telluride quantum dots (QDs) was conjugated with a specific antibody against coat protein (CP) of CTV, and the CP were immobilized on the surface of gold nanoparticles (AuNPs) to develop a specific and sensitive fluorescence resonance energy transfer (FRET)-based nanobiosensor for detecting CTV. The maximum FRET efficiency for the developed nano-biosensor was observed at 60% in AuNPs-CP/QDs-Ab ratio of 1:8.5. The designed system showed higher sensitivity and specificity over enzyme linked immunosorbent assay (ELISA) with a limit of detection of 0.13μgmL(-1) and 93% and 94% sensitivity and specificity, respectively. As designed sensor is rapid, sensitive, specific and efficient in detecting CTV, this could be envisioned for diagnostic applications, surveillance and plant certification program.
Collapse
Affiliation(s)
- Taha Roodbar Shojaei
- Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohamad Amran Mohd Salleh
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Kamaruzaman Sijam
- Department of Plant Protection, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Afshin Mohsenifar
- Research and Development Department, Nanozino, 16536-43181 Tehran, Iran
| | - Reza Safarnejad
- Department of Plant Viruses, Iranian Institute of Plant Protection, Tehran, Iran
| | - Meisam Tabatabaei
- Nanosystems Research Team (NRTeam), Microbial Biotechnology and Biosafety Dept., Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran
| |
Collapse
|
28
|
Competitive immunoassay for Ochratoxin a based on FRET from quantum dot-labeled antibody to rhodamine-coated magnetic silica nanoparticles. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1951-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
29
|
Shojaee Sadi B, Bayat M, Tajik P, Hashemi SJ. Citrinin detection by intensified fluorescence signal of a FRET-based immunosensor using magnetic/silica core-shell. Saudi J Biol Sci 2016; 25:171-177. [PMID: 29379376 PMCID: PMC5775076 DOI: 10.1016/j.sjbs.2016.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/13/2016] [Accepted: 08/21/2016] [Indexed: 12/01/2022] Open
Abstract
The specific immune-reaction between the anti-citrinin antibody immobilized on the surface of magnetic/silica core–shell (MSCS) and the citrinin–Rho123–BSA conjugate brings the Rho123 fluorophore as an acceptor and the QDs as a donor in close spatial proximity and causes FRET for occurring upon photo-excitation of the QDs. The novelties of this study include: (1) immobilization of the MSCS; (2) large amount of the immobilized QDs, and (3) immobilization of a large amount of Rho123 on the BSA macromolecule. Cd/Te QDs were synthesized by the simultaneous reduction of cadmium chloride and tellurium in the presence of sodium borohydride. Magnetic nanoparticles were synthesized using FeSO4 and FeCl3. The prepared magnetic nanoparticles shelled by silica using tetraethoxysilane in the presence of ammonia. Transmission electron microscopy (TEM) analysis was used for investigating shape and monodispersity of the nanoparticles. EDC/NHS was used as a cross linking agent for immobilization of the QDs, conjugation of citrinin to amino groups of BSA, labeling of BSA with Rho123 and also for immobilization of the amino-functionalized MSCS on the immobilized QDs. Immobilization of the anti-citrinin antibody on the surface of the amino-functionalized MSCS was performed by Schiff-base mechanism. By using these three effective strategies, sensitivity of the designed nanobiosensor was incredibly enhanced as a very low limit of detection (up to 0.1 pM). The feasibility of this technique was tested by the detection of citrinin in the spiked human serum. Results showed that there was a linear correlation between the decreased fluorescence intensity of the Rho123 and increased fluorescence intensity of the QDs with increasing concentration of citrinin in the spiked samples in the range of 1–6 pM. According to obtained results, we conclude that this highly sensitive detection scheme is a easy, quick and impressive method that can be used in optical-based nanosensors.
Collapse
Affiliation(s)
- Behrooz Shojaee Sadi
- Department of Microbiology, Faculty of Veterinary Specialized Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mansour Bayat
- Department of Microbiology, Faculty of Veterinary Specialized Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parviz Tajik
- Department of Clinical Sciences, School of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Seyed Jamal Hashemi
- Department of Medical Parasitology and Mycology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Tayebi M, Tavakkoli Yaraki M, Ahmadieh M, Tahriri M, Vashaee D, Tayebi L. Determination of total aflatoxin using cysteamine-capped CdS quantum dots as a fluorescence probe. Colloid Polym Sci 2016. [DOI: 10.1007/s00396-016-3903-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Shojaei TR, Salleh MAM, Sijam K, Rahim RA, Mohsenifar A, Safarnejad R, Tabatabaei M. Fluorometric immunoassay for detecting the plant virus Citrus tristeza using carbon nanoparticles acting as quenchers and antibodies labeled with CdTe quantum dots. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1867-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
32
|
Kong W, Yang X, Yang M, Zhou H, Ouyang Z, Zhao M. Photoluminescent nanosensors capped with quantum dots for high-throughput determination of trace contaminants: Strategies for enhancing analytical performance. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.07.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Wang X, Niessner R, Tang D, Knopp D. Nanoparticle-based immunosensors and immunoassays for aflatoxins. Anal Chim Acta 2016; 912:10-23. [DOI: 10.1016/j.aca.2016.01.048] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 12/21/2022]
|
34
|
Simple and sensitive detection of aflatoxin B1 within five minute using a non-conventional competitive immunosensing mode. Biosens Bioelectron 2015. [DOI: 10.1016/j.bios.2015.07.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
35
|
Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application. Biosens Bioelectron 2015; 74:562-74. [DOI: 10.1016/j.bios.2015.06.076] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 01/02/2023]
|
36
|
Kalarestaghi A, Bayat M, Hashemi SJ, Razavilar V. Highly Sensitive FRET-Based Fluorescence Immunoassay for Detecting of Aflatoxin B1 Using Magnetic/Silica Core-Shell as a Signal Intensifier. IRANIAN JOURNAL OF BIOTECHNOLOGY 2015; 13:25-31. [PMID: 28959296 DOI: 10.15171/ijb.1170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Recently, some new nanobiosensors using different nanoparticles or microarray systems for detection of mycotoxins have been designed . However, rapid, sensitive and early detection of aflatoxicosis would be very helpful to distinguish high-risk persons. OBJECTIVES We report a highly sensitive competitive immunoassay using magnetic/silica core shell as a signal intensifier for the determination of aflatoxin B1 using fluorescence resonance energy transfer (FRET) from Cd/Te quantum dots (antiaflatoxin B1 antibody immobilized on the surface of Cd/Te quantum dots) to Rhodamine 123 (Rho 123-labeled aflatoxin B1 bound to albumin). The specific immune-reaction between the anti-aflatoxin B1 antibody on the QDs and the labeledaflatoxin B1 brings the Rho 123 fluorophore (acting as the acceptor) and the QDs (acting as the donor) in close spatial proximity and causes FRET to occur upon photo-excitation of the QDs. Using magnetic/silica core shell to intensify the obtained signal is the novelty of this study. MATERIALS AND METHODS Cd/Te QDs were synthesized by the simultaneous reduction of cadmium chloride and tellurium in the presence of sodium borohydride under nitrogen atmosphere. Magnetic nanoparticles were synthesized using FeSO4 and FeCl3 (1:2 molar ratio) and ammonia as an oxidizing agent under nitrogen atmosphere. The prepared magnetic nanoparticles shelled by silica using tetraethoxysilane in the presence of ammonia. Nanoparticles synthesis and monodispersity confirmed by TEM. Immobilization of Cd/Te QDs to antibodies and labeling of aflatoxin B1-albumin by Rho 123 were performed by EDC/NHS reaction in reaction mixture buffer, pH 6, at room temperature. RESULTS By using the magnetic/silica core shell sensitivity of the system changed from 2×10-11 in our previous study to 2×10-12 in this work. The feasibility of the method established by the detection of aflatoxin B1 in spiked human serum. There is a linear relationship between the decreased fluorescence intensity of Rho 123 with increasing concentration of aflatoxin B1 in spiked samples, over the range of 0.01-0.06 μmol.mL-1. CONCLUSIONS This homogeneous competitive detection scheme is simple, rapid and efficient, and does not require multiple separation steps and excessive washing.
Collapse
Affiliation(s)
- Alireza Kalarestaghi
- Department of Pathobiology, Faculty of Veterinary Specialized Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mansour Bayat
- Department of Pathobiology, Faculty of Veterinary Specialized Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Jamal Hashemi
- Food Microbiology Research center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vadood Razavilar
- Department of Food Higiene, Faculty of Veterinary Specialized Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
37
|
An Organophosphorus Hydrolase-Based Biosensor for Direct Detection of Paraoxon Using Silica-Coated Magnetic Nanoparticles. Appl Biochem Biotechnol 2015; 176:359-71. [DOI: 10.1007/s12010-015-1579-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/12/2015] [Indexed: 01/08/2023]
|
38
|
Tang G, Wang J, Li Y, Su X. Determination of arsenic(iii) based on the fluorescence resonance energy transfer between CdTe QDs and Rhodamine 6G. RSC Adv 2015. [DOI: 10.1039/c4ra16789a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The schematic illustration for the As(iii) detection based on fret between CdTe QDs and Rhodamine 6G.
Collapse
Affiliation(s)
- Guangchao Tang
- Department of Analytical Chemistry
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Jilin Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Yang Li
- Department of Analytical Chemistry
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Xingguang Su
- Department of Analytical Chemistry
- College of Chemistry
- Jilin University
- Changchun
- China
| |
Collapse
|
39
|
Visual and microplate detection of aflatoxin B2 based on NaCl-induced aggregation of aptamer-modified gold nanoparticles. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1420-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
40
|
Simultaneous detection of pathogenic bacteria using an aptamer based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1406-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Shojaei TR, Mohd Salleh MA, Tabatabaei M, Ekrami A, Motallebi R, Rahmani-Cherati T, Hajalilou A, Jorfi R. Development of sandwich-form biosensor to detect Mycobacterium tuberculosis complex in clinical sputum specimens. Braz J Infect Dis 2014; 18:600-8. [PMID: 25181404 PMCID: PMC9425227 DOI: 10.1016/j.bjid.2014.05.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/06/2014] [Accepted: 05/19/2014] [Indexed: 10/29/2022] Open
Abstract
Mycobacterium tuberculosis, the causing agent of tuberculosis, comes second only after HIV on the list of infectious agents slaughtering many worldwide. Due to the limitations behind the conventional detection methods, it is therefore critical to develop new sensitive sensing systems capable of quick detection of the infectious agent. In the present study, the surface modified cadmium-telluride quantum dots and gold nanoparticles conjunct with two specific oligonucleotides against early secretory antigenic target 6 were used to develop a sandwich-form fluorescence resonance energy transfer-based biosensor to detect M. tuberculosis complex and differentiate M. tuberculosis and M. bovis Bacille Calmette-Guerin simultaneously. The sensitivity and specificity of the newly developed biosensor were 94.2% and 86.6%, respectively, while the sensitivity and specificity of polymerase chain reaction and nested polymerase chain reaction were considerably lower, 74.2%, 73.3% and 82.8%, 80%, respectively. The detection limits of the sandwich-form fluorescence resonance energy transfer-based biosensor were far lower (10 fg) than those of the polymerase chain reaction and nested polymerase chain reaction (100 fg). Although the cost of the developed nanobiosensor was slightly higher than those of the polymerase chain reaction-based techniques, its unique advantages in terms of turnaround time, higher sensitivity and specificity, as well as a 10-fold lower detection limit would clearly recommend this test as a more appropriate and cost-effective tool for large scale operations.
Collapse
Affiliation(s)
- Taha Roodbar Shojaei
- Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohamad Amran Mohd Salleh
- Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Meisam Tabatabaei
- Nanosystems Research Team (NRTeam), Microbial Biotechnology and Biosafety Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran
| | - Alireza Ekrami
- Infectious and Tropical Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Roya Motallebi
- Department of Plant Breeding and Biotechnology, College of Agriculture, Shahrekord University, P.O. Box 115, Shahrekord, Iran
| | | | - Abdollah Hajalilou
- Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Raheleh Jorfi
- Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
42
|
Speranskaya ES, Beloglazova NV, Abé S, Aubert T, Smet PF, Poelman D, Goryacheva IY, De Saeger S, Hens Z. Hydrophilic, bright CuInS2 quantum dots as Cd-free fluorescent labels in quantitative immunoassay. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:7567-7575. [PMID: 24892375 DOI: 10.1021/la501268b] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report on the synthesis of core-shell CuInS2/ZnS quantum dots (QDs) in organic solution, their encapsulation with a PEG-containing amphiphilic polymer, and the application of the resulting water-soluble QDs as fluorescent label in quantitative immunoassay. By optimizing the methods for core synthesis and shell growth, CuInS2/ZnS QDs were obtained with a quantum yield of 50% on average after hydrophilization. After conjugation with an aflatoxin B1-protein derivative, the obtained QDs were used as fluorescent labels in microplate immunoassay for the quantitative determination of the mycotoxin aflatoxin B1. QDs-based immunoassay showed higher sensitivity compared to enzyme-based immunoassay.
Collapse
Affiliation(s)
- Elena S Speranskaya
- Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University , Harelbekestraat 72, 9000 Gent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Graphene Oxide-Based Biosensor for Food Toxin Detection. Appl Biochem Biotechnol 2014; 174:960-70. [DOI: 10.1007/s12010-014-0965-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 05/15/2014] [Indexed: 01/07/2023]
|
44
|
Xu W, Xiong Y, Lai W, Xu Y, Li C, Xie M. A homogeneous immunosensor for AFB1 detection based on FRET between different-sized quantum dots. Biosens Bioelectron 2014; 56:144-50. [DOI: 10.1016/j.bios.2014.01.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/24/2013] [Accepted: 01/03/2014] [Indexed: 10/25/2022]
|
45
|
Anfossi L, Calza P, Sordello F, Giovannoli C, Di Nardo F, Passini C, Cerruti M, Goryacheva IY, Speranskaya ES, Baggiani C. Multi-analyte homogenous immunoassay based on quenching of quantum dots by functionalized graphene. Anal Bioanal Chem 2014; 406:4841-9. [DOI: 10.1007/s00216-014-7885-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/02/2014] [Accepted: 05/08/2014] [Indexed: 10/25/2022]
|