1
|
Sharma S, Jain S, Chittora R, Chaudhry R, Nag TC, A. E, Radhakrishnan DM, Pandey S, Das S, Bamola VD, Kochhar KP. Long-term Probiotics Intervention Facilitates Recovery of Motor and Non-motor Functions by Regulating Inflammation and Modulating Gut-brain Axis in 6-OHDA Rat Model of Parkinson's Disease. Ann Neurosci 2025:09727531251335746. [PMID: 40376431 PMCID: PMC12075179 DOI: 10.1177/09727531251335746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 03/26/2025] [Indexed: 05/18/2025] Open
Abstract
Background Parkinson's disease (PD) is a neurodegenerative disorder that affects both motor and non-motor functions of the body. Recently, scientists have attributed that gut dysbiosis plays a crucial role in the development and progression of PD. Purpose In this study, we aim to determine the role of probiotic supplementation on gut dysbiosis, inflammatory responses at the systemic level, neurodegeneration and motor deficits. Methods To develop a rat model of PD, 6-hydroxydopamine was bilaterally injected into the striatum. Starting from the first week after surgery, probiotics were administered orally for a period of four weeks. In this study, 18 rats were randomly divided into three groups (n = 6 each): the sham group, the PD group and the PD + Probiotics group. Motor function was measured using paw print analysis, while non-motor function was assessed through gastric emptying. Neuronal survival was evaluated with cresyl violet staining, and blood-based biomarkers were measured to assess inflammation. General body conditions, including body weight, food intake and water intake, were monitored daily. Results Probiotic supplementation significantly improved body weight, food intake, water intake and gastric emptying, along with improving gait. Additionally, probiotic supplementation reduced neuronal loss in the brains of PD rats. There was also a reduction in inflammatory markers, such as interleukin-6 and glutaminase, along with an elevation in brain-derived neurotrophic factor levels in the serum. This study is the first to demonstrate the beneficial effects of probiotics in improving motor deficits and gastric emptying in a PD model. Conclusion Our findings suggest that probiotic supplementation has the potential to slow down PD progression by preventing gut dysbiosis and neurodegeneration.
Collapse
Affiliation(s)
- Shweta Sharma
- Department of Physiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Suman Jain
- Department of Physiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Reena Chittora
- Department of Physiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Rama Chaudhry
- Department of Microbiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Elavarasi A.
- Department of Neurology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Divya M Radhakrishnan
- Department of Neurology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Shivam Pandey
- Department of Biostatistics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Suman Das
- Department of Physiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - V. Deepak Bamola
- Department of Microbiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Kanwal Preet Kochhar
- Department of Physiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| |
Collapse
|
2
|
Mark JR, Titus AM, Staley HA, Alvarez S, Mahn S, McFarland NR, Wallings RL, Tansey MG. Peripheral immune cell response to stimulation stratifies Parkinson's disease progression from prodromal to clinical stages. Commun Biol 2025; 8:716. [PMID: 40341772 PMCID: PMC12062209 DOI: 10.1038/s42003-025-08088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/14/2025] [Indexed: 05/11/2025] Open
Abstract
The motor stage of Parkinson's disease (PD) can be preceded for years by a prodromal stage characterized by non-motor symptoms like REM sleep behavior disorder (RBD), hyposmia, and constipation. Here, we show that multiple stages of idiopathic PD, including the pre-motor prodromal stage, can be stratified according to the inflammatory responses to stimulation of peripheral blood mononuclear cells ex vivo. IFNγ stimulation of isolated monocytes reveals increased stimulation-dependent secretion of TNF, IL-1β, and IL-8 in prodromal PD relative to moderate stage PD. Additionally, T cells stimulated with CD3/CD28 co-stimulatory beads show diminished proinflammatory cytokine secretion in early-moderate PD relative to prodromal. Receiver operating characteristic curves demonstrate that several cytokines produced by stimulated monocytes show high predictive utility for distinguishing prodromal PD individuals from neurologically healthy controls. Moreover, immune stimulation reveals deficits in CD8+ T-cell mitochondrial health in moderate PD, with relative mitochondrial health in CD8+ T cells being positively correlated with stimulation-dependent secretion of IL-1β, IL-8, and IL-10 in T cells from prodromal PD subjects. Dysregulated mitochondrial health in immune cells may contribute to peripheral inflammation and PD progression, and ex vivo stimulation-based assays have the potential to reveal novel biomarkers for patient stratification and progression with immune endophenotypes.
Collapse
Affiliation(s)
- Julian R Mark
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | - Ann M Titus
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | - Hannah A Staley
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
| | - Stephan Alvarez
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, 32608, USA
| | - Savanna Mahn
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, 32608, USA
| | - Nikolaus R McFarland
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, 32608, USA
| | - Rebecca L Wallings
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL, 32610, USA.
- Department of Neurology and Stark Neuroscience Research Institute, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| | - Malú Gámez Tansey
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL, 32610, USA.
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, 32608, USA.
- Department of Neurology and Stark Neuroscience Research Institute, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
3
|
Boura I, Poplawska-Domaszewicz K, Limbachiya N, Trivedi D, Batzu L, Chaudhuri KR. Prodromal Parkinson's Disease: A Snapshot of the Landscape. Neurol Clin 2025; 43:209-228. [PMID: 40185519 DOI: 10.1016/j.ncl.2024.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Early observations of specific nonmotor and subtle motor symptoms preceding clinical diagnosis of Parkinson's disease (PD) have paved the way for prodromal PD research, significantly propelling our understanding of early, subclinical stages of neurodegeneration. Prodromal PD has emerged as a complex concept with some researchers suggesting that the period before PD onset is divided into the "at-risk," "preclinical," and "prodromal" phases. Advances in genetic, imaging, laboratory, and digital technologies have enabled the identification of pathophysiological patterns and the potential development of diagnostic, progressive, and therapeutic biomarkers, which could lead to early PD detection and intervention.
Collapse
Affiliation(s)
- Iro Boura
- School of Medicine, University of Crete, Heraklion, Greece; Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK.
| | - Karolina Poplawska-Domaszewicz
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK; Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland.
| | - Naomi Limbachiya
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Dhaval Trivedi
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Lucia Batzu
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | - Kallol Ray Chaudhuri
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| |
Collapse
|
4
|
Jiao X, Lu Y, Huang Y, Chen J, Gu Z, Gao X, Yuan L, Du B, Bi X. Plasma proteomic profiling reveals Parkinson's disease-associated proteins: A UK Biobank study. Parkinsonism Relat Disord 2025; 135:107851. [PMID: 40300504 DOI: 10.1016/j.parkreldis.2025.107851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/15/2025] [Accepted: 04/21/2025] [Indexed: 05/01/2025]
Abstract
INTRODUCTION The rapid advancement of proteomics has provided new insights into early detection and prediction of Parkinson's disease (PD), particularly in identifying risk factors for PD. This study aims to develop a proteomics-based model to predict the risk of PD in patients. METHODS We analyzed data from the UK Biobank cohort, including 52,851 PD-free participants at baseline, with a median follow-up of 15.3 years and 811 newly diagnosed PD cases. A prospective proteomic analysis was conducted to assess the predictive value of 2,923 plasma proteins, and LightGBM models were used to calculate protein importance, followed by an evaluation of the proteins' predictive performance. RESULTS The study found that higher levels of NEFL and MERTK were significantly associated with future PD events, while lower levels of ITGAV, BAG3, CLEC10A, ITGAM, HNMT, and TPK1 were identified as potential risk factors for PD. Notably, the axonal injury marker NEFL and the thiamine metabolism-related protein TPK1 ranked higher than other proteins in terms of importance. The combination of NEFL and TPK1 significantly enhanced the predictive accuracy of conventional clinical models, increasing the Area Under the Curve (AUC) of the full-cohort prediction model from 0.784 to 0.842 and the 5-year prediction model from 0.780 to 0.908. CONCLUSIONS This study provides a novel insight for screening high-risk PD populations and underscores the significant role of nutritional metabolism in PD development, offering valuable insights for precision prevention strategies.
Collapse
Affiliation(s)
- Xuehao Jiao
- Department of Neurology, Changhai Hospital, Naval Medical University, Shanghai, PR China
| | - Yue Lu
- Department of Neurology, Changhai Hospital, Naval Medical University, Shanghai, PR China
| | - Yuxin Huang
- Department of Neurology, Changhai Hospital, Naval Medical University, Shanghai, PR China
| | - Jingjing Chen
- Department of Neurology, Changhai Hospital, Naval Medical University, Shanghai, PR China
| | - Zhengsheng Gu
- Department of Neurology, Changhai Hospital, Naval Medical University, Shanghai, PR China
| | - Xin Gao
- Department of Neurology, Changhai Hospital, Naval Medical University, Shanghai, PR China
| | - Lei Yuan
- Department of Health Management, Faculty of Military Health Service, Naval Medical University, Shanghai, PR China.
| | - Bingying Du
- Institute for Translational Brain Research, Fudan University, Shanghai, PR China.
| | - Xiaoying Bi
- Department of Neurology, Changhai Hospital, Naval Medical University, Shanghai, PR China.
| |
Collapse
|
5
|
Serag I, Azzam AY, Hassan AK, Diab RA, Diab M, Hefnawy MT, Ali MA, Negida A. Multimodal diagnostic tools and advanced data models for detection of prodromal Parkinson's disease: a scoping review. BMC Med Imaging 2025; 25:103. [PMID: 40155878 PMCID: PMC11951780 DOI: 10.1186/s12880-025-01620-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/26/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Parkinson's Disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta. PD is diagnosed by a combination of motor symptoms including bradykinesia, resting tremors, rigidity and postural instability. Prodromal PD is the stage preceding the onset of classic motor symptoms of PD. The diagnosis of prodromal PD remains challenging despite many available diagnostic modalities. AIM This scoping review aims to investigate and explore the current diagnostic modalities used to detect prodromal PD, focusing particularly on multimodal imaging analysis and AI-based approaches. METHODS We adhered to the PRISMA-SR guidelines for scoping reviews. We conducted a comprehensive literature search at multiple databases such as PubMed, Scopus, Web of Science, and the Cochrane Library from inception to July 2024, using keywords related to prodromal PD and diagnostic modalities. We included studies based on predefined inclusion and exclusion criteria and performed data extraction using a standardized form. RESULTS The search included 9 studies involving 567 patients with prodromal PD and 35,643 control. Studies utilized various diagnostic approaches including neuroimaging techniques and AI-driven models. sensitivity ranging from 43 to 84% and specificity up to 96%. Neuroimaging and AI technologies showed promising results in identifying early pathological changes and predicting PD onset. The highest specificity was achieved by neuromelanin-sensitive imaging model, while highest sensitivity was achieved by standard 10-s electrocardiogram (ECG) + Machine learning model. CONCLUSION Advanced diagnostic modalities such as AI-driven models and multimodal neuroimaging revealed promising results in early detection of prodromal PD. However, their clinical application as screening tool for prodromal PD is limited because of the lack of validation. Future research should be directed towards using Multimodal imaging in diagnosing and screening for prodromal PD. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Ibrahim Serag
- Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Ahmed Y Azzam
- Faculty of Medicine, October 6 University, Giza, Egypt
| | - Amr K Hassan
- Medical Research Group of Egypt, Negida Academy, Arlington, MA, USA
- University of California, Irvine, CA, USA
| | | | - Mohamed Diab
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | | | - Ahmed Negida
- Medical Research Group of Egypt, Negida Academy, Arlington, MA, USA
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
6
|
Hong CT, Chung CC, Hsieh YC, Chan L. Plasma extracellular vesicle pathognomonic proteins as the biomarkers of the progression of Parkinson's disease. Biosci Trends 2025; 19:116-124. [PMID: 39924179 DOI: 10.5582/bst.2024.01369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder for which reliable blood biomarkers to predict disease progression remain elusive. Plasma extracellular vesicles (EVs) have gained attention as a promising biomarker platform due to their stability and ability to cross the blood-brain barrier. This study explored the potential of EV-cargo proteins, specifically α-synuclein, tau, and β-amyloid, as biomarkers of PD progression. A cohort of 55 people with PD (PwP) and 58 healthy controls (HCs) underwent annual assessments of plasma EV proteins, cognition, and motor symptoms. EVs were isolated and validated using standardized methods, with pathognomonic proteins quantified via immunomagnetic reduction assays. Associations between biomarker changes and clinical symptom progression were analyzed. Over an average of 3.96 visits for PwP and 2.25 visits for HCs, PwP exhibited a distinct pattern of plasma EV protein changes linked to motor symptom progression, particularly in the Unified PD Rating Scale (UPDRS) part II score. Notably, changes in plasma EV α-synuclein levels were significantly correlated with changes in motor and cognitive symptoms, suggesting its central role in disease progression. These findings highlight the potential of plasma EV biomarkers, especially α-synuclein, as indicators of ongoing pathogenesis and as candidates for evaluating α-synuclein-targeted therapies in PD.
Collapse
Affiliation(s)
- Chien-Tai Hong
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Chen-Chih Chung
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chen Hsieh
- Ph.D in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Lung Chan
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
7
|
Tenchov R, Sasso JM, Zhou QA. Evolving Landscape of Parkinson's Disease Research: Challenges and Perspectives. ACS OMEGA 2025; 10:1864-1892. [PMID: 39866628 PMCID: PMC11755173 DOI: 10.1021/acsomega.4c09114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/22/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that primarily affects movement. It occurs due to a gradual deficit of dopamine-producing brain cells, particularly in the substantia nigra. The precise etiology of PD is not fully understood, but it likely involves a combination of genetic and environmental factors. The therapies available at present alleviate symptoms but do not stop the disease's advancement. Research endeavors are currently directed at inventing disease-controlling therapies that aim at the inherent mechanisms of PD. PD biomarker breakthroughs hold enormous potential: earlier diagnosis, better monitoring, and targeted treatment based on individual response could significantly improve patient outcomes and ease the burden of this disease. PD research is an active and evolving field, focusing on understanding disease mechanisms, identifying biomarkers, developing new treatments, and improving care. In this report, we explore data from the CAS Content Collection to outline the research progress in PD. We analyze the publication landscape to offer perspective into the latest expertise advancements. Key emerging concepts are reviewed and strategies to fight disease evaluated. Pharmacological targets, genetic risk factors, as well as comorbid diseases are explored, and clinical usage of products against PD with their production pipelines and trials for drug repurposing are examined. This review aims to offer a comprehensive overview of the advancing landscape of the current understanding about PD, to define challenges, and to assess growth prospects to stimulate efforts in battling the disease.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a division of the American Chemical
Society, Columbus, Ohio 43210, United States
| | - Janet M. Sasso
- CAS, a division of the American Chemical
Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
8
|
Rangwala HS, Fatima H, Syed AM, Abbas SR, Rangwala BS. From Diagnosis to Treatment: A Comprehensive Review of Biomarkers and Therapeutic Advances in Parkinson's Disease. Ann Neurosci 2025; 32:51-57. [PMID: 40017568 PMCID: PMC11863227 DOI: 10.1177/09727531231200733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/08/2023] [Indexed: 03/01/2025] Open
Abstract
Background Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons, resulting in motor symptoms. Ongoing research shows promise for long-term solutions. Summary Studies highlight the dysregulation of Syt11 and α-synuclein (α-syn) in PD. Disrupted α-syn homeostasis due to palmitoylation of Syt11 contributes to its aggregation, potentially playing a role in PD pathology. α-synuclein aggregates in stool samples show promise as an early diagnostic biomarker. Vocal impairments in PD may be linked to α-syn-induced neuropathology. Irisin, produced after exercise, promotes the degradation of pathologic α-syn. Progress has been made in identifying PD biomarkers. Retinal thinning and abnormal protein aggregates in skin biopsies provide noninvasive diagnostic indicators. Blood-based biomarkers like α-syn, DJ-1, and LRRK2 hold promise but face limitations. Artificial intelligence (AI) models enhance mitophagy, detect PD through sleep-breathing signals, and improve survival. AI analysis aids noninvasive assessment and risk prediction. Further understanding of PD involves studying pathological seeds and genetic mutations. Adenosine receptor regulation relates to early-onset PD, and specific gene mutations impact patient survival. Differentiated-induced pluripotent stem cells offer the potential for cell replacement therapy. Autoimmune features and T-cell involvement suggest intervention targets. Stem cell-based therapies and neurostimulation strategies show promise for improving motor function. Imaging reveals increased central inflammation in PD, suggesting an inflammatory role. Machine learning algorithms and home gait speed monitoring aid in diagnosis and disease progression tracking. Abnormal putamen gradients reflect dopaminergic loss and motor dysfunction. Antiepileptic drug prescriptions are associated with an increased PD risk. Personalized medicine, gut-brain axis involvement, and vestibular stimulation therapy offer potential PD treatment avenues. Genetic engineering techniques and deep brain stimulation show promise for alleviating PD symptoms. Key Message Ongoing research and technological advancements promise to improve PD screening, diagnosis, and treatment, bringing hope to affected individuals.
Collapse
Affiliation(s)
| | - Hareer Fatima
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Sindh, Pakistan
| | - Aina Marzia Syed
- Department of Medicine, Jinnah Sindh Medical University, Karachi, Sindh, Pakistan
| | - Syed Raza Abbas
- Department of Medicine, Dow University of Health Sciences, Karachi, Sindh, Pakistan
| | | |
Collapse
|
9
|
Hwang JS, Kim SG, George NP, Kwon M, Jang YE, Lee SS, Lee G. Biological Function Analysis of MicroRNAs and Proteins in the Cerebrospinal Fluid of Patients with Parkinson's Disease. Int J Mol Sci 2024; 25:13260. [PMID: 39769025 PMCID: PMC11678473 DOI: 10.3390/ijms252413260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by alpha-synuclein aggregation into Lewy bodies in the neurons. Cerebrospinal fluid (CSF) is considered the most suited source for investigating PD pathogenesis and identifying biomarkers. While microRNA (miRNA) profiling can aid in the investigation of post-transcriptional regulation in neurodegenerative diseases, information on miRNAs in the CSF of patients with PD remains limited. This review combines miRNA analysis with proteomic profiling to explore the collective impact of CSF miRNAs on the neurodegenerative mechanisms in PD. We constructed separate networks for altered miRNAs and proteomes using a bioinformatics method. Altered miRNAs were poorly linked to biological functions owing to limited information; however, changes in protein expression were strongly associated with biological functions. Subsequently, the networks were integrated for further analysis. In silico prediction from the integrated network revealed relationships between miRNAs and proteins, highlighting increased reactive oxygen species generation, neuronal loss, and neurodegeneration and suppressed ATP synthesis, mitochondrial function, and neurotransmitter release in PD. The approach suggests the potential of miRNAs as biomarkers for critical mechanisms underlying PD. The combined strategy could enhance our understanding of the complex biochemical networks of miRNAs in PD and support the development of diagnostic and therapeutic strategies for precision medicine.
Collapse
Affiliation(s)
- Ji Su Hwang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (J.S.H.); (S.G.K.); (N.P.G.); (M.K.); (Y.E.J.)
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Seok Gi Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (J.S.H.); (S.G.K.); (N.P.G.); (M.K.); (Y.E.J.)
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Nimisha Pradeep George
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (J.S.H.); (S.G.K.); (N.P.G.); (M.K.); (Y.E.J.)
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Minjun Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (J.S.H.); (S.G.K.); (N.P.G.); (M.K.); (Y.E.J.)
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yong Eun Jang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (J.S.H.); (S.G.K.); (N.P.G.); (M.K.); (Y.E.J.)
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Sang Seop Lee
- Department of Pharmacology, Inje University College of Medicine, Busan 47392, Republic of Korea;
| | - Gwang Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (J.S.H.); (S.G.K.); (N.P.G.); (M.K.); (Y.E.J.)
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
10
|
Mark JR, Titus AM, Staley HA, Alvarez S, Mahn S, McFarland NR, Wallings RL, Tansey MG. Peripheral immune cell response to stimulation stratifies Parkinson's disease progression from prodromal to clinical stages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.625499. [PMID: 39677794 PMCID: PMC11643067 DOI: 10.1101/2024.12.05.625499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The motor stage of idiopathic Parkinson's disease (iPD) can be preceded for years by a prodromal stage characterized by non-motor symptoms like REM sleep behavior disorder (RBD). Here, we show that multiple stages of iPD, including the pre-motor prodromal stage, can be stratified according to the inflammatory and immunometabolic responses to stimulation of peripheral blood mononuclear cells ex vivo. We identified increased stimulation-dependent secretion of TNF, IL-1β, and IL-8 in monocytes from RBD patients and showed diminished proinflammatory cytokine secretion in monocytes and T cells in early and moderate stages of PD. Mechanistically, immune activation revealed deficits in CD8+ T-cell mitochondrial health in moderate PD, and relative mitochondrial health in CD8+ T cells was positively correlated with stimulation-dependent T-cell cytokine secretion across the PD spectrum. Dysregulated immunometabolism may drive peripheral inflammation and PD progression, and ex vivo stimulation-based assays have potential to reveal novel biomarkers for patient stratification and progression with immune endophenotypes.
Collapse
Affiliation(s)
- Julian R Mark
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Ann M Titus
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Hannah A Staley
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Stephan Alvarez
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL 32608, USA
| | - Savanna Mahn
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL 32608, USA
| | - Nikolaus R McFarland
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL 32608, USA
| | - Rebecca L Wallings
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, College of Medicine, Gainesville, FL 32610, USA
- Department of Neurology and Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL 32608, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
11
|
Wiersema AF, Rennenberg A, Smith G, Varderidou-Minasian S, Pasterkamp RJ. Shared and distinct changes in the molecular cargo of extracellular vesicles in different neurodegenerative diseases. Cell Mol Life Sci 2024; 81:479. [PMID: 39627617 PMCID: PMC11615177 DOI: 10.1007/s00018-024-05522-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/18/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024]
Abstract
Neurodegenerative disorders such as Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) affect millions of people worldwide. Curative treatment for these neurodegenerative disorders is still lacking and therefore a further understanding of their cause and progression is urgently needed. Extracellular vesicles (EVs) are nanosized vesicles loaded with cargo, such as proteins and miRNAs, that are released by cells and play an important role in intercellular communication. Intercellular communication through EVs can contribute to the spread of pathological proteins, such as amyloid-beta and tau, or cause pathogenesis through other mechanisms. In addition, EVs may serve as potential biomarkers for diagnosis and for monitoring disease progression. In this review, we summarize and discuss recent advances in our understanding of the role of EVs in AD, ALS an PD with an emphasis on dysregulated cargo in each disease. We highlight shared dysregulated cargo between these diseases, discuss underlying pathways, and outline future implications for therapeutic strategies.
Collapse
Affiliation(s)
- Anna F Wiersema
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Alyssa Rennenberg
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Grace Smith
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Suzy Varderidou-Minasian
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Brain Center, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
12
|
Hamidpour SK, Amiri M, Ketabforoush AHME, Saeedi S, Angaji A, Tavakol S. Unraveling Dysregulated Cell Signaling Pathways, Genetic and Epigenetic Mysteries of Parkinson's Disease. Mol Neurobiol 2024; 61:8928-8966. [PMID: 38573414 DOI: 10.1007/s12035-024-04128-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Parkinson's disease (PD) is a prevalent and burdensome neurodegenerative disorder that has been extensively researched to understand its complex etiology, diagnosis, and treatment. The interplay between genetic and environmental factors in PD makes its pathophysiology difficult to comprehend, emphasizing the need for further investigation into genetic and epigenetic markers involved in the disease. Early diagnosis is crucial for optimal management of the disease, and the development of novel diagnostic biomarkers is ongoing. Although many efforts have been made in the field of recognition and interpretation of the mechanisms involved in the pathophysiology of the disease, the current knowledge about PD is just the tip of the iceberg. By scrutinizing genetic and epigenetic patterns underlying PD, new avenues can be opened for dissecting the pathology of the disorder, leading to more precise and efficient diagnostic and therapeutic approaches. This review emphasizes the importance of studying dysregulated cell signaling pathways and molecular processes associated with genes and epigenetic alterations in understanding PD, paving the way for the development of novel therapeutic strategies to combat this devastating disease.
Collapse
Affiliation(s)
- Shayesteh Kokabi Hamidpour
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Mobina Amiri
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | | | - Saeedeh Saeedi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Abdolhamid Angaji
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.
- Department of Research and Development, Tavakol BioMimetic Technologies Company, Tehran, Iran.
| |
Collapse
|
13
|
Hopfner F, Buhmann C, Classen J, Holtbernd F, Klebe S, Koschel J, Kohl Z, Paus S, Pedrosa DJ. Tips and tricks in tremor treatment. J Neural Transm (Vienna) 2024; 131:1229-1246. [PMID: 39043978 PMCID: PMC11489236 DOI: 10.1007/s00702-024-02806-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/04/2024] [Indexed: 07/25/2024]
Abstract
Tremor, whether arising from neurological diseases, other conditions, or medication side effects, significantly impacts patients' lives. Treatment complexities necessitate clear algorithms and strategies. Levodopa remains pivotal for Parkinson's tremor, though response variability exists. Some dopamine agonists offer notable tremor reduction targeting D2 receptors. Propranolol effectively manages essential tremor and essential tremor plus (ET/ET +), sometimes with primidone for added benefits, albeit dose-dependent side effects. As reserve medications anticholinergics and clozapine are used for treatment of parkinsonian tremor, 1-Octanol and certain anticonvulsant drugs for tremor of other orign, especially ET. Therapies such as invasive deep brain stimulation and lesional focused ultrasound serve for resistant cases. A medication review is crucial for all forms of tremor, but it is particularly important if medication may have triggered the tremor. Sensor-based detection and non-drug interventions like wristbands and physical therapy broaden diagnostic and therapeutic horizons, promising future tremor care enhancements. Understanding treatment nuances is a key for tailored tremor management respecting patient needs and tolerability. Successful strategies integrate pharmacological, non-invasive, and technological modalities, aiming for optimal symptom control and improved quality of life.
Collapse
Affiliation(s)
- Franziska Hopfner
- Department of Neurology, Neurologische Klinik und Poliklinik mit Friedrich Baur Institut, Ludwig-Maximilians University, Campus Großhadern, Marchioninistraße 15, 81377, Munich, Germany.
| | - Carsten Buhmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joseph Classen
- Department of Neurology, Leipzig University Medical Center, Liebigstraße 20, 04103, Leipzig, Germany
| | - Florian Holtbernd
- Department of Neurology, RWTH Aachen University, Pauwelsstraße 30, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Juelich Research Center GmbH and RWTH Aachen University, Aachen, Germany
| | - Stephan Klebe
- Department of Neurology, Essen University Hospital, 45147, Essen, Germany
- Department of Neurology, Knappschaftskrankenhaus Recklinghausen, Recklinghausen, Germany
| | - Jiri Koschel
- Parkinson-Klinik Ortenau, GmbH & Co KG, Kreuzbergstraße 12-16, 77709, Wolfach, Germany
| | - Zacharias Kohl
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Sebastian Paus
- Department of Neurology, GFO Clinics Troisdorf, Troisdorf, Germany
| | - David J Pedrosa
- Department of Neurology, Philipps University Marburg, Marburg, Germany
- Centre for Mind, Brain and Behaviour, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
14
|
Kleinholdermann U, Thieken F, Ruppert-Junck MC, van Munster M, Pedrosa AJ, Stümpel J, Hammes V, Timmermann L, Woopen C, Schmitz-Luhn B, Storms A, Golla H, Nater UM, Skoluda N, Pfefferle PI, Pedrosa DJ. Study protocol of the HessenKohorte2042: a prospective, longitudinal cohort study characterising quality of life in people with Parkinson's disease and their caregivers using a bio-psycho-social approach. BMJ Open 2024; 14:e080475. [PMID: 39067880 PMCID: PMC11284865 DOI: 10.1136/bmjopen-2023-080475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/21/2024] [Indexed: 07/30/2024] Open
Abstract
INTRODUCTION Quality of life (QoL) is of paramount importance as an outcome to monitor and guide therapies for people with Parkinson's disease (PwPD). In particular, due to the heterogeneous symptoms that PwPD may experience during their disease course, QoL can deteriorate not only in patients but also in their caregivers, with a variety of psychosocial consequences. However, there is a lack of longitudinal studies that explore how QoL evolves over time and what factors are significant. Furthermore, holistic approaches that consider bio-psycho-social determinants are rare. In the worst cases, these gaps can lead to suboptimal care and therefore unmet needs for patients and their caregivers, resulting in unnecessary symptom burden and increased healthcare costs for society. METHODS AND ANALYSIS This prospective, longitudinal study will follow 1000 PwPD along with their caregivers for 20 years, with up to 40 semi-annual assessments. Patient data and sample collection will include clinical assessments, self-reported outcome measures focusing on QoL, biospecimen collection and MRI. Caregiver burden will be systematically assessed through self-administered questionnaires. The use of digitised surveys will allow efficient data collection and convenient assessment at home. Our primary objective is to attain a holistic understanding of QoL in PwPD and establish a tool to measure it. The secondary objective is to explore the psycho-social and biological variables associated with QoL of patients and caregivers over the progression of the disease. This will provide key information for diagnostic and prognostic prediction, therapeutic patient stratification and adaptation of therapy in the future. ETHICS AND DISSEMINATION The study was approved by the local ethics committee of the University Hospital of Marburg (study number: 209/19). The results will be disseminated by means of publication in peer-reviewed journals, international conference contributions, annual patient meetings and a dedicated website. TRIAL REGISTRATION NUMBER German Clinical Trials Register (DRKS00023598).
Collapse
Affiliation(s)
| | | | - Marina Christine Ruppert-Junck
- Philipps-Universitat Marburg, Marburg, Germany
- Center of Mind, Brain and Behaviour, Philipps-Universitat Marburg, Marburg, Germany
| | - Marlena van Munster
- Philipps-Universitat Marburg, Marburg, Germany
- Care and Public Health Research Institute, Maastricht University, Maastricht, Netherlands
| | | | - Johanne Stümpel
- Philipps-Universitat Marburg, Marburg, Germany
- Center for Life Ethics, University of Bonn, Bonn, Germany
| | | | - Lars Timmermann
- Philipps-Universitat Marburg, Marburg, Germany
- Center of Mind, Brain and Behaviour, Philipps-Universitat Marburg, Marburg, Germany
| | | | | | - Anna Storms
- Katholische Akademie Die Wolfsburg, Diocese of Essen, Mülheim an der Ruhr, Germany
| | - Heidrun Golla
- Department of Palliative Medicine, University Hospital Cologne, Cologne, Germany
| | - Urs M Nater
- Department of Psychology, University of Vienna, Vienna, Austria
| | - Nadine Skoluda
- Department of Psychology, University of Vienna, Vienna, Austria
| | - Petra Ina Pfefferle
- Comprehensive Biobank Marburg (CBBMR), Philipps-Universität Marburg, Marburg, Germany
| | - David José Pedrosa
- Philipps-Universitat Marburg, Marburg, Germany
- Center of Mind, Brain and Behaviour, Philipps-Universitat Marburg, Marburg, Germany
| |
Collapse
|
15
|
Schröter N, Arnold PG, Hosp JA, Reisert M, Rijntjes M, Kellner E, Jost WH, Weiller C, Urbach H, Rau A. Complemental Value of Microstructural and Macrostructural MRI in the Discrimination of Neurodegenerative Parkinson Syndromes. Clin Neuroradiol 2024; 34:411-420. [PMID: 38289378 PMCID: PMC11130007 DOI: 10.1007/s00062-023-01377-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/24/2023] [Indexed: 05/29/2024]
Abstract
PURPOSE Various MRI-based techniques were tested for the differentiation of neurodegenerative Parkinson syndromes (NPS); the value of these techniques in direct comparison and combination is uncertain. We thus compared the diagnostic performance of macrostructural, single compartmental, and multicompartmental MRI in the differentiation of NPS. METHODS We retrospectively included patients with NPS, including 136 Parkinson's disease (PD), 41 multiple system atrophy (MSA) and 32 progressive supranuclear palsy (PSP) and 27 healthy controls (HC). Macrostructural tissue probability values (TPV) were obtained by CAT12. The microstructure was assessed using a mesoscopic approach by diffusion tensor imaging (DTI), neurite orientation dispersion and density imaging (NODDI), and diffusion microstructure imaging (DMI). After an atlas-based read-out, a linear support vector machine (SVM) was trained on a training set (n = 196) and validated in an independent test cohort (n = 40). The diagnostic performance of the SVM was compared for different inputs individually and in combination. RESULTS Regarding the inputs separately, we observed the best diagnostic performance for DMI. Overall, the combination of DMI and TPV performed best and correctly classified 88% of the patients. The corresponding area under the receiver operating characteristic curve was 0.87 for HC, 0.97 for PD, 1.0 for MSA, and 0.99 for PSP. CONCLUSION We were able to demonstrate that (1) MRI parameters that approximate the microstructure provided substantial added value over conventional macrostructural imaging, (2) multicompartmental biophysically motivated models performed better than the single compartmental DTI and (3) combining macrostructural and microstructural information classified NPS and HC with satisfactory performance, thus suggesting a complementary value of both approaches.
Collapse
Affiliation(s)
- Nils Schröter
- Department of Neurology and Clinical Neuroscience, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp G Arnold
- Department of Neuroradiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
- Department of Diagnostic and Interventional Radiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jonas A Hosp
- Department of Neurology and Clinical Neuroscience, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Reisert
- Department of Medical Physics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Stereotactic and Functional Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michel Rijntjes
- Department of Neurology and Clinical Neuroscience, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elias Kellner
- Department of Medical Physics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Cornelius Weiller
- Department of Neurology and Clinical Neuroscience, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Alexander Rau
- Department of Neuroradiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany.
- Department of Diagnostic and Interventional Radiology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
16
|
Deng HW, Li BR, Zhou SD, Luo C, Lv BH, Dong ZM, Qin C, Hu RT. Revealing Novel Genes Related to Parkinson's Disease Pathogenesis and Establishing an associated Model. Neuroscience 2024; 544:64-74. [PMID: 38458535 DOI: 10.1016/j.neuroscience.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/10/2024]
Abstract
Parkinson's disease (PD) represents a multifaceted neurological disorder whose genetic underpinnings warrant comprehensive investigation. This study focuses on identifying genes integral to PD pathogenesis and evaluating their diagnostic potential. Initially, we screened for differentially expressed genes (DEGs) between PD and control brain tissues within a dataset comprising larger number of specimens. Subsequently, these DEGs were subjected to weighted gene co-expression network analysis (WGCNA) to discern relevant gene modules. Notably, the yellow module exhibited a significant correlation with PD pathogenesis. Hence, we conducted a detailed examination of the yellow module genes using a cytoscope-based approach to construct a protein-protein interaction (PPI) network, which facilitated the identification of central hub genes implicated in PD pathogenesis. Employing two machine learning techniques, including XGBoost and LASSO algorithms, along with logistic regression analysis, we refined our search to three pertinent hub genes: FOXO3, HIST2H2BE, and HDAC1, all of which demonstrated a substantial association with PD pathogenesis. To corroborate our findings, we analyzed two PD blood datasets and clinical plasma samples, confirming the elevated expression levels of these genes in PD patients. The association of the genes with PD, as reflected by the area under the curve (AUC) values for FOXO3, HIST2H2BE, and HDAC1, were moderate for each gene. Collectively, this research substantiates the heightened expression of FOXO3, HIST2H2BE, and HDAC1 in both PD brain and blood samples, underscoring their pivotal contribution to the pathogenesis of PD.
Collapse
Affiliation(s)
- Hao-Wei Deng
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Bin-Ru Li
- Department of Neurology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning 530001, China
| | - Shao-Dan Zhou
- Department of Neurology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning 530001, China
| | - Chun Luo
- Department of Neurology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning 530001, China
| | - Bing-Hua Lv
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zi-Mei Dong
- Department of Neurology, People's Hospital of Chuxiong, Yi Autonomous Prefecture, Chuxiong, Yunnan, China
| | - Chao Qin
- Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Rui-Ting Hu
- Department of Neurology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning 530001, China.
| |
Collapse
|
17
|
Wang X, Dong T, Li X, Yu W, Jia Z, Liu Y, Yang J. Global biomarker trends in Parkinson's disease research: A bibliometric analysis. Heliyon 2024; 10:e27437. [PMID: 38501016 PMCID: PMC10945172 DOI: 10.1016/j.heliyon.2024.e27437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/11/2023] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
As the second most common neurodegenerative disease globally, Parkinson's disease (PD) affects millions of people worldwide. In recent years, the scientific publications related to PD biomarker research have exploded, reflecting the growing interest in unraveling the complex pathophysiology of PD. In this study, we aim to use various bibliometric tools to identify key scientific concepts, detect emerging trends, and analyze the global trends and development of PD biomarker research.The research encompasses various stages of biomarker development, including exploration, identification, and multi-modal research. MOVEMENT DISORDERS emerged as the leading journal in terms of publications and citations. Key authors such as Mollenhauer and Salem were identified, while the University of Pennsylvania and USA stood out in collaboration and research output. NEUROSCIENCES emerged as the most important research direction. Key biomarker categories include α-synuclein-related markers, neurotransmitter-related markers, inflammation and immune system-related markers, oxidative stress and mitochondrial function-related markers, and brain imaging-related markers. Furthermore, future trends in PD biomarker research focus on exosomes and plasma biomarkers, miRNA, cerebrospinal fluid biomarkers, machine learning applications, and animal models of PD. These trends contribute to early diagnosis, disease progression monitoring, and understanding the pathological mechanisms of PD.
Collapse
Affiliation(s)
- Xingxin Wang
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Tiantian Dong
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xuhao Li
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wenyan Yu
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhixia Jia
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuanxiang Liu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jiguo Yang
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| |
Collapse
|
18
|
Wang X, Dong T, Li X, Yu W, Jia Z, Liu Y, Yang J. Global biomarker trends in Parkinson's disease research: A bibliometric analysis. Heliyon 2024; 10:e27437. [PMID: 38501016 DOI: 10.1016/j.heliyon.2024.e27437if:] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/11/2023] [Accepted: 02/28/2024] [Indexed: 07/25/2024] Open
Abstract
As the second most common neurodegenerative disease globally, Parkinson's disease (PD) affects millions of people worldwide. In recent years, the scientific publications related to PD biomarker research have exploded, reflecting the growing interest in unraveling the complex pathophysiology of PD. In this study, we aim to use various bibliometric tools to identify key scientific concepts, detect emerging trends, and analyze the global trends and development of PD biomarker research.The research encompasses various stages of biomarker development, including exploration, identification, and multi-modal research. MOVEMENT DISORDERS emerged as the leading journal in terms of publications and citations. Key authors such as Mollenhauer and Salem were identified, while the University of Pennsylvania and USA stood out in collaboration and research output. NEUROSCIENCES emerged as the most important research direction. Key biomarker categories include α-synuclein-related markers, neurotransmitter-related markers, inflammation and immune system-related markers, oxidative stress and mitochondrial function-related markers, and brain imaging-related markers. Furthermore, future trends in PD biomarker research focus on exosomes and plasma biomarkers, miRNA, cerebrospinal fluid biomarkers, machine learning applications, and animal models of PD. These trends contribute to early diagnosis, disease progression monitoring, and understanding the pathological mechanisms of PD.
Collapse
Affiliation(s)
- Xingxin Wang
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Tiantian Dong
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xuhao Li
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wenyan Yu
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhixia Jia
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuanxiang Liu
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jiguo Yang
- School of Acupuncture-Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| |
Collapse
|
19
|
de Lope EG, Loo RTJ, Rauschenberger A, Ali M, Pavelka L, Marques TM, Gomes CPC, Krüger R, Glaab E. Comprehensive blood metabolomics profiling of Parkinson's disease reveals coordinated alterations in xanthine metabolism. NPJ Parkinsons Dis 2024; 10:68. [PMID: 38503737 PMCID: PMC10951366 DOI: 10.1038/s41531-024-00671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Parkinson's disease (PD) is a highly heterogeneous disorder influenced by several environmental and genetic factors. Effective disease-modifying therapies and robust early-stage biomarkers are still lacking, and an improved understanding of the molecular changes in PD could help to reveal new diagnostic markers and pharmaceutical targets. Here, we report results from a cohort-wide blood plasma metabolic profiling of PD patients and controls in the Luxembourg Parkinson's Study to detect disease-associated alterations at the level of systemic cellular process and network alterations. We identified statistically significant changes in both individual metabolite levels and global pathway activities in PD vs. controls and significant correlations with motor impairment scores. As a primary observation when investigating shared molecular sub-network alterations, we detect pronounced and coordinated increased metabolite abundances in xanthine metabolism in de novo patients, which are consistent with previous PD case/control transcriptomics data from an independent cohort in terms of known enzyme-metabolite network relationships. From the integrated metabolomics and transcriptomics network analysis, the enzyme hypoxanthine phosphoribosyltransferase 1 (HPRT1) is determined as a potential key regulator controlling the shared changes in xanthine metabolism and linking them to a mechanism that may contribute to pathological loss of cellular adenosine triphosphate (ATP) in PD. Overall, the investigations revealed significant PD-associated metabolome alterations, including pronounced changes in xanthine metabolism that are mechanistically congruent with alterations observed in independent transcriptomics data. The enzyme HPRT1 may merit further investigation as a main regulator of these network alterations and as a potential therapeutic target to address downstream molecular pathology in PD.
Collapse
Affiliation(s)
- Elisa Gómez de Lope
- Biomedical Data Science, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rebecca Ting Jiin Loo
- Biomedical Data Science, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Armin Rauschenberger
- Biomedical Data Science, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Muhammad Ali
- Biomedical Data Science, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Lukas Pavelka
- Parkinson's Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Tainá M Marques
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Clarissa P C Gomes
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rejko Krüger
- Parkinson's Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Enrico Glaab
- Biomedical Data Science, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
20
|
Wang H, Liu YT, Ren YL, Guo XY, Wang Y. Association of peripheral immune activation with amyotrophic lateral sclerosis and Parkinson's disease: A systematic review and meta-analysis. J Neuroimmunol 2024; 388:578290. [PMID: 38301596 DOI: 10.1016/j.jneuroim.2024.578290] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/19/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Recent studies have revealed the link between immune activation and neurodegenerative diseases. METHODS By employing meta-analysis, we estimated the standardized mean difference (SMD) and their corresponding 95% confidence intervals (CIs) between the groups. RESULTS According to the pre-set criteria, a total of 21 published articles including 2377 ALS patients and 1244 HCs, as well as 60 articles including 5111 PD patients and 4237 HCs, were identified. This study provided evidence of peripheral immune activation in the pathogenesis of ALS and PD. CONCLUSION Our results suggested monitoring changes in peripheral blood immune cell populations, particularly lymphocyte subsets, will benefit understanding the developments and exploring reliable and specific biomarkers of these two diseases.
Collapse
Affiliation(s)
- Han Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yi-Ti Liu
- Department of Neurology, Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yan-Ling Ren
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiao-Yan Guo
- Department of Neurology, Neurological Diseases and Brain Function Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
21
|
Blokhin V, Pavlova EN, Katunina EA, Nodel MR, Kataeva GV, Moskalets ER, Pronina TS, Ugrumov MV. Dopamine Synthesis in the Nigrostriatal Dopaminergic System in Patients at Risk of Developing Parkinson's Disease at the Prodromal Stage. J Clin Med 2024; 13:875. [PMID: 38337569 PMCID: PMC10856030 DOI: 10.3390/jcm13030875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Parkinson's disease (PD) is diagnosed by the onset of motor symptoms and treated long after its onset. Therefore, the development of the early diagnosis of PD is a priority for neurology. Advanced methodologies for this include (1) searching for patients at risk of developing prodromal PD based on premotor symptoms; (2) searching for changes in the body fluids in these patients as diagnostic biomarkers; (3) verifying the diagnosis of prodromal PD and diagnostic-value biomarkers using positron emission tomography (PET); (4) anticipating the development of motor symptoms. According to our data, the majority of patients (n = 14) at risk of developing PD selected in our previous study show pronounced interhemispheric asymmetry in the incorporation of 18F-DOPA into dopamine synthesis in the striatum. This was assessed for the caudate nucleus and putamen separately using the specific binding coefficient, asymmetry index, and putamen/caudate nucleus ratio. Interhemispheric asymmetry in the incorporation of 18F-DOPA into the striatum provides strong evidence for its dopaminergic denervation and the diagnostic value of previously identified blood biomarkers. Of the 17 patients at risk of developing prodromal PD studied using PET, 3 patients developed motor symptoms within a year. Thus, our study shows the promise of using the described methodology for the development of early diagnosis of PD.
Collapse
Affiliation(s)
- Victor Blokhin
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (V.B.); (E.N.P.); (T.S.P.)
| | - Ekaterina N. Pavlova
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (V.B.); (E.N.P.); (T.S.P.)
| | - Elena A. Katunina
- Federal Center of Brain Research and Neurotechnologies of the Russian Federal Medical and Biological Agency, Moscow 117513, Russia;
- Faculty of Medicine, Department of Neurology, Neurosurgery and Medical Genetics, N.I. Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, Moscow 117997, Russia
| | - Marina R. Nodel
- Department of Nervous Diseases and Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia;
| | - Galina V. Kataeva
- Federal State Budget Institution Granov Russian Research Center of Radiology and Surgical Technologies Ministry of Health of the Russian Federation (RRCRST) 70, Leningradskaya Street, Pesochny, St. Petersburg 197758, Russia;
| | | | - Tatiana S. Pronina
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (V.B.); (E.N.P.); (T.S.P.)
| | - Michael V. Ugrumov
- Laboratory of Neural and Neuroendocrine Regulations, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia; (V.B.); (E.N.P.); (T.S.P.)
| |
Collapse
|
22
|
Casciano F, Zauli E, Celeghini C, Caruso L, Gonelli A, Zauli G, Pignatelli A. Retinal Alterations Predict Early Prodromal Signs of Neurodegenerative Disease. Int J Mol Sci 2024; 25:1689. [PMID: 38338966 PMCID: PMC10855697 DOI: 10.3390/ijms25031689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Neurodegenerative diseases are an increasingly common group of diseases that occur late in life with a significant impact on personal, family, and economic life. Among these, Alzheimer's disease (AD) and Parkinson's disease (PD) are the major disorders that lead to mild to severe cognitive and physical impairment and dementia. Interestingly, those diseases may show onset of prodromal symptoms early after middle age. Commonly, the evaluation of these neurodegenerative diseases is based on the detection of biomarkers, where functional and structural magnetic resonance imaging (MRI) have shown a central role in revealing early or prodromal phases, although it can be expensive, time-consuming, and not always available. The aforementioned diseases have a common impact on the visual system due to the pathophysiological mechanisms shared between the eye and the brain. In Parkinson's disease, α-synuclein deposition in the retinal cells, as well as in dopaminergic neurons of the substantia nigra, alters the visual cortex and retinal function, resulting in modifications to the visual field. Similarly, the visual cortex is modified by the neurofibrillary tangles and neuritic amyloid β plaques typically seen in the Alzheimer's disease brain, and this may reflect the accumulation of these biomarkers in the retina during the early stages of the disease, as seen in postmortem retinas of AD patients. In this light, the ophthalmic evaluation of retinal neurodegeneration could become a cost-effective method for the early diagnosis of those diseases, overcoming the limitations of functional and structural imaging of the deep brain. This analysis is commonly used in ophthalmic practice, and interest in it has risen in recent years. This review will discuss the relationship between Alzheimer's disease and Parkinson's disease with retinal degeneration, highlighting how retinal analysis may represent a noninvasive and straightforward method for the early diagnosis of these neurodegenerative diseases.
Collapse
Affiliation(s)
- Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Claudio Celeghini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Lorenzo Caruso
- Department of Environment and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Arianna Gonelli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 12329, Saudi Arabia
| | - Angela Pignatelli
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44124 Ferrara, Italy
| |
Collapse
|
23
|
Whittle BJ, Izuogu OG, Lowes H, Deen D, Pyle A, Coxhead J, Lawson RA, Yarnall AJ, Jackson MS, Santibanez-Koref M, Hudson G. Early-stage idiopathic Parkinson's disease is associated with reduced circular RNA expression. NPJ Parkinsons Dis 2024; 10:25. [PMID: 38245550 PMCID: PMC10799891 DOI: 10.1038/s41531-024-00636-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Neurodegeneration in Parkinson's disease (PD) precedes diagnosis by years. Early neurodegeneration may be reflected in RNA levels and measurable as a biomarker. Here, we present the largest quantification of whole blood linear and circular RNAs (circRNA) in early-stage idiopathic PD, using RNA sequencing data from two cohorts (PPMI = 259 PD, 161 Controls; ICICLE-PD = 48 PD, 48 Controls). We identified a replicable increase in TMEM252 and LMNB1 gene expression in PD. We identified novel differences in the expression of circRNAs from ESYT2, BMS1P1 and CCDC9, and replicated trends of previously reported circRNAs. Overall, using circRNA as a diagnostic biomarker in PD did not show any clear improvement over linear RNA, minimising its potential clinical utility. More interestingly, we observed a general reduction in circRNA expression in both PD cohorts, accompanied by an increase in RNASEL expression. This imbalance implicates the activation of an innate antiviral immune response and suggests a previously unknown aspect of circRNA regulation in PD.
Collapse
Affiliation(s)
- Benjamin J Whittle
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Osagie G Izuogu
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Hannah Lowes
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Dasha Deen
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jon Coxhead
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Rachael A Lawson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Alison J Yarnall
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Michael S Jackson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
24
|
Lee KH, Hsu MH, Chen HH, Yang SY. Analyzer-to-Analyzer Variations in Assaying Ultralow Concentrated Biomarkers Associated with Neurodegenerative Diseases Using Immunomagnetic Reduction. ACS MEASUREMENT SCIENCE AU 2023; 3:488-495. [PMID: 38145030 PMCID: PMC10740117 DOI: 10.1021/acsmeasuresciau.3c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 12/26/2023]
Abstract
By utilizing a high-temperature superconducting quantum interference device (high-Tc SQUID) magnetometer, an alternating current (AC) magnetosusceptometer, referred to as an analyzer, was developed for ultrasensitive immunoassays. The analyzer has been applied to assay biomarkers in human plasma associated with Alzheimer's disease (AD) and Parkinson's disease (PD). The involved assay methodology is the so-called immunomagnetic reduction (IMR). Such an analyzer has been approved for clinical use in Taiwan and Europe. The mass production of the analyzer is needed for clinical utilities. The issue of exploring analyzer-to-analyzer variations in the performances becomes critical. Unfortunately, there is no standard characterization to determine the variations in performances among analyzers. In this study, key characterizations, such as output signal stability, signal-to-noise ratio, measured concentrations of a control sample, etc., are proposed. In total, three analyzers are characterized in this work. The detected biomarkers include amyloid peptides, total tau protein, phosphorylated tau protein, and α-synuclein protein for AD and PD. Through one-way ANOVA for any of the characterizations among the three analyzers, it was found that there was no significant difference in any of these characterizations among the analyzers (p > 0.05). Furthermore, the three analyzers are applied to assay biomolecules for AD and PD in reference samples. High correlations (r > 0.8) in measured concentrations of any of these biomarkers in reference samples were obtained among the three analyzers. The results demonstrate that the proposed characterizations are feasible for achieving consistent performance among high-Tc SQUID-based AC magnetosusceptometers for assaying biomolecules.
Collapse
|
25
|
Song Z, Ding Q, Yang Y. Orchestration of a blood-derived and ADARB1-centred network in Alzheimer's and Parkinson's disease. Cell Signal 2023; 110:110845. [PMID: 37544632 DOI: 10.1016/j.cellsig.2023.110845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
The peripheral immune system is thought to influence the pathogenesis of the central nervous system in Alzheimer's disease (AD) and Parkinson's disease (PD). This study aimed to investigate the characteristics of peripheral leukocytes in AD and PD by comprehensively analyzing the transcriptomic and metabolic features in the blood (NCONTROL = 15; NAD = 11; NPD = 13). The study found an ADARB1-centered module that was associated with diagnosis, phenethylamine, and glutamate. The module consisted of ADARB1, a vital RNA-editing enzyme, LINC02960, and 109 miRNAs. The study also predicted that the ADARB1 and involved regulators were targeted by miRNAs in the ADARB1 module. The integrated analysis of transcriptome and metabolic panel revealed a central role of ADARB1, miR-199b-5p, miR-26a, miR-450b-5p, miR-34c-5p, glutamate and phenethylamine in the regulatory relationships. The study highlights a set of synergetic non-coding RNA related to ADARB1 in the blood ecosystem of AD and PD with dynamic glutamate and phenethylamine, providing new insights into the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Zhijie Song
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Ding
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining 272000, China
| | - Yan Yang
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining 272000, China.
| |
Collapse
|
26
|
Uysal A, Guntel M, Demetgül Ö, Çiçek U. Ultrasonographic Evaluation of the Distal Femoral Cartilage Thickness in Parkinson's Patients. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2023; 23:328-337. [PMID: 37654218 PMCID: PMC10483812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 09/02/2023]
Abstract
OBJECTIVES Both Parkinson's disease (PD) and osteoarthritis (OA) are characterized by chronic inflammation and tissue degeneration. The aim of this study is to investigate the relationship between PD and distal femoral cartilage thickness (DFCT). Our study is the first in the literature to measure DFCT in PD. METHODS 68 patients with PD and 30 healthy individuals participated. The patient group was divided into three subgroups, according to the Hoehn Yahr stages (HYS): mild, moderate and severe. Patient subgroups and the control group were compared with each other in terms of neutrophil-lymphocyte ratio (NLR), C-reactive protein (CRP), and DFCT. RESULTS The NLR and CRP levels of the PD patients were higher than the values of the healthy people. The DFCT values of the mild PD subgroup were significantly higher than those of the control group, except for one value. The DFCT values of the moderate PD subgroup and the healthy group were similar. The DFCT values of the severe PD subgroup were lower than the values of the healthy group. CONCLUSIONS Our study showed the presence of ultrasonographic evidence consistent with early signs of cartilage destruction in early-stage PD disease. As the PD stage progressed, the cartilage thickness decreased accordingly.
Collapse
Affiliation(s)
- Alper Uysal
- Physical Medicine and Rehabilitation Clinic, Hatay Training and Research Hospital, Hatay, Turkey
- Physical Medicine and Rehabilitation Clinic, Mersin City Hospital, Mersin, Turkey
| | - Murat Guntel
- Neurology Department, Medicine Faculty, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Özcan Demetgül
- Neurology Clinic, Hatay Training and Research Hospital, Hatay, Turkey
| | - Ulaş Çiçek
- Neurology Clinic, Hatay Training and Research Hospital, Hatay, Turkey
| |
Collapse
|
27
|
Buhmann C, Magnus T, Choe CU. Blood neurofilament light chain in Parkinson's disease. J Neural Transm (Vienna) 2023; 130:755-762. [PMID: 37067597 PMCID: PMC10199845 DOI: 10.1007/s00702-023-02632-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/01/2023] [Indexed: 04/18/2023]
Abstract
Blood neurofilament light chain (NfL) is an easily accessible, highly sensitive and reliable biomarker for neuroaxonal damage. Currently, its role in Parkinson's disease (PD) remains unclear. Here, we demonstrate that blood NfL can distinguish idiopathic PD from atypical parkinsonian syndromes (APS) with high sensitivity and specificity. In cross-sectional studies, some found significant correlations between blood NfL with motor and cognitive function, whereas others did not. In contrast, prospective studies reported very consistent associations between baseline blood NfL with motor progression and cognitive worsening. Amongst PD subtypes, especially postural instability and gait disorder (PIGD) subtype, symptoms and scores are reliably linked with blood NfL. Different non-motor PD comorbidities have also been associated with high blood NfL levels suggesting that the neuroaxonal damage of the autonomic nervous system as well as serotonergic, cholinergic and noradrenergic neurons is quantifiable. Numerous absolute NfL cutoff levels have been suggested in different cohort studies; however, validation across cohorts remains weak. However, age-adjusted percentiles and intra-individual blood NfL changes might represent more valid and consistent parameters compared with absolute NfL concentrations. In summary, blood NfL has the potential as biomarker in PD patients to be used in clinical practice for prediction of disease severity and especially progression.
Collapse
Affiliation(s)
- Carsten Buhmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chi-Un Choe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Department of Neurology, Klinikum Itzehoe, Robert-Koch-Straße 2, 25524, Itzehoe, Germany.
| |
Collapse
|
28
|
LeWitt PA, Li J, Wu KH, Lu M. Diagnostic metabolomic profiling of Parkinson's disease biospecimens. Neurobiol Dis 2023; 177:105962. [PMID: 36563791 DOI: 10.1016/j.nbd.2022.105962] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Reliable and sensitive biomarkers are needed for enhancing and predicting Parkinson's disease (PD) diagnosis. OBJECTIVE To investigate comprehensive metabolomic profiling of biochemicals in CSF and serum for determining diagnostic biomarkers of PD. METHODS Fifty subjects, symptomatic with PD for ≥5 years, were matched to 50 healthy controls (HCs). We used ultrahigh-performance liquid chromatography linked to tandem mass spectrometry (UHPLC-MS/MS) for measuring relative concentrations of ≤1.5 kDalton biochemicals. A reference library created from authentic standards facilitated chemical identifications. Analytes underwent univariate analysis for PD association, with false discovery rate-adjusted p-value (≤0.05) determinations. Multivariate analysis (for identifying a panel of biochemicals discriminating PD from HCs) used several biostatistical methods, including logistic LASSO regression. RESULTS Comparing PD and HCs, strong differentiation was achieved from CSF but not serum specimens. With univariate analysis, 21 CSF compounds exhibited significant differential concentrations. Logistic LASSO regression led to selection of 23 biochemicals (11 shared with those determined by the univariate analysis). The selected compounds, as a group, distinguished PD from HCs, with Area-Under-the-Receiver-Operating-Characteristic (ROC) curve of 0.897. With optimal cutoff, logistic LASSO achieved 100% sensitivity and 96% specificity (and positive and negative predictive values of 96% and 100%). Ten-fold cross-validation gave 84% sensitivity and 82% specificity (and 82% positive and 84% negative predictive values). From the logistic LASSO-chosen regression model, 2 polyamine metabolites (N-acetylcadaverine and N-acetylputrescine) were chosen and had the highest fold-changes in comparing PD to HCs. Another chosen biochemical, acisoga (N-(3-acetamidopropyl)pyrrolidine-2-one), also is a polyamine metabolism derivative. CONCLUSIONS UHPLC-MS/MS assays provided a metabolomic signature highly predictive of PD. These findings provide further evidence for involvement of polyamine pathways in the neurodegeneration of PD.
Collapse
Affiliation(s)
- Peter A LeWitt
- Departments of Neurology, Henry Ford Hospital, West Bloomfield, MI, USA; Wayne State University School of Medicine, West Bloomfield, MI, USA.
| | - Jia Li
- The Department of Public Health Science, Henry Ford Health System, Detroit, MI, USA
| | - Kuan-Han Wu
- The Department of Public Health Science, Henry Ford Health System, Detroit, MI, USA
| | - Mei Lu
- The Department of Public Health Science, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
29
|
Endoplasmic Reticulum Stress-Regulated Chaperones as a Serum Biomarker Panel for Parkinson's Disease. Mol Neurobiol 2023; 60:1476-1485. [PMID: 36478320 PMCID: PMC9899193 DOI: 10.1007/s12035-022-03139-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
Examination of post-mortem brain tissues has previously revealed a strong association between Parkinson's disease (PD) pathophysiology and endoplasmic reticulum (ER) stress. Evidence in the literature regarding the circulation of ER stress-regulated factors released from neurons provides a rationale for investigating ER stress biomarkers in the blood to aid diagnosis of PD. The levels of ER stress-regulated proteins in serum collected from 29 PD patients and 24 non-PD controls were measured using enzyme-linked immunosorbent assays. A panel of four biomarkers, protein disulfide-isomerase A1, protein disulfide-isomerase A3, mesencephalic astrocyte-derived neurotrophic factor, and clusterin, together with age and gender had higher ability (area under the curve 0.64, sensitivity 66%, specificity 57%) and net benefit to discriminate PD patients from the non-PD group compared with other analyzed models. Addition of oligomeric and total α-synuclein to the model did not improve the diagnostic power of the biomarker panel. We provide evidence that ER stress-regulated proteins merit further investigation for their potential as diagnostic biomarkers of PD.
Collapse
|
30
|
Gonzalez-Robles C, Weil RS, van Wamelen D, Bartlett M, Burnell M, Clarke CS, Hu MT, Huxford B, Jha A, Lambert C, Lawton M, Mills G, Noyce A, Piccini P, Pushparatnam K, Rochester L, Siu C, Williams-Gray CH, Zeissler ML, Zetterberg H, Carroll CB, Foltynie T, Schrag A. Outcome Measures for Disease-Modifying Trials in Parkinson's Disease: Consensus Paper by the EJS ACT-PD Multi-Arm Multi-Stage Trial Initiative. JOURNAL OF PARKINSON'S DISEASE 2023; 13:1011-1033. [PMID: 37545260 PMCID: PMC10578294 DOI: 10.3233/jpd-230051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Multi-arm, multi-stage (MAMS) platform trials can accelerate the identification of disease-modifying treatments for Parkinson's disease (PD) but there is no current consensus on the optimal outcome measures (OM) for this approach. OBJECTIVE To provide an up-to-date inventory of OM for disease-modifying PD trials, and a framework for future selection of OM for such trials. METHODS As part of the Edmond J Safra Accelerating Clinical Trials in Parkinson Disease (EJS ACT-PD) initiative, an expert group with Patient and Public Involvement and Engagement (PPIE) representatives' input reviewed and evaluated available evidence on OM for potential use in trials to delay progression of PD. Each OM was ranked based on aspects such as validity, sensitivity to change, participant burden and practicality for a multi-site trial. Review of evidence and expert opinion led to the present inventory. RESULTS An extensive inventory of OM was created, divided into: general, motor and non-motor scales, diaries and fluctuation questionnaires, cognitive, disability and health-related quality of life, capability, quantitative motor, wearable and digital, combined, resource use, imaging and wet biomarkers, and milestone-based. A framework for evaluation of OM is presented to update the inventory in the future. PPIE input highlighted the need for OM which reflect their experience of disease progression and are applicable to diverse populations and disease stages. CONCLUSION We present a range of OM, classified according to a transparent framework, to aid selection of OM for disease-modifying PD trials, whilst allowing for inclusion or re-classification of relevant OM as new evidence emerges.
Collapse
Affiliation(s)
| | | | | | | | - Matthew Burnell
- Medical Research Council Clinical Trials Unit at University College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Increased blood-derived mitochondrial DNA copy number in African ancestry individuals with Parkinson's disease. Parkinsonism Relat Disord 2022; 101:1-5. [PMID: 35728366 DOI: 10.1016/j.parkreldis.2022.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/17/2022] [Accepted: 06/07/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Altered levels of mitochondrial DNA copy number (mtDNA-CN) have been proposed as a proxy for mitochondrial dysfunction. Following reports of mtDNA depletion in the blood and substantia nigra of Parkinson's disease (PD) cases, mtDNA-CN was also suggested as a possible biomarker for PD. Therefore, this study aimed to investigate whether blood mtDNA-CN levels of African ancestry PD cases would be altered compared to controls, as previously reported in individuals of Asian and European ancestry. METHODS Droplet digital polymerase chain reaction (ddPCR) was performed to quantify blood-derived mtDNA-CN levels as a ratio of a mitochondrial gene (MT-TL1) to a nuclear gene (B2M) in 72 PD cases and 79 controls of African ancestry (i.e. individuals with African mtDNA haplogroups) from South Africa. mtDNA-CN per cell was calculated by the formula 2 × MT-TL1/B2M. RESULTS Accepting study limitations, we report significantly higher mtDNA-CN in whole blood of our PD cases compared to controls (median difference = 81 copies/cell), independent of age (95% CI [64, 98]; P < 0.001]). These findings contradict previous reports of mtDNA depletion in PD cases. CONCLUSIONS We caution that the observed differences in mtDNA-CN between the present and past studies may be a result of unaccounted-for factors and variability in study designs. Consequently, larger well-designed investigations may help determine whether mtDNA-CN is consistently altered in the blood of PD cases across different ancestries and whether it can serve as a viable biomarker for PD.
Collapse
|