1
|
Miao Q, Deng L, Le X, Li Q, Ning Y, Duan Y, Liu Q, Tao Y, Wang B, Xia X. Genetic and Antiviral Potential Characterization of Four Insect-Specific Viruses Identified and Isolated from Mosquitoes in Yunnan Province. Viruses 2025; 17:596. [PMID: 40431611 PMCID: PMC12116109 DOI: 10.3390/v17050596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/19/2025] [Accepted: 04/20/2025] [Indexed: 05/29/2025] Open
Abstract
Mosquitoes, comprising over 300 species, are pivotal vectors for transmitting arthropod-borne viruses (arboviruses) to vertebrates via bites, posing a significant public health threat with approximately 700,000 annual deaths. In contrast, insect-specific viruses (ISVs) exclusively infect insects and have no direct impact on human health. Yunnan Province in China, located in tropical and subtropical regions, provides an ideal environment for mosquito habitation and has the highest diversity of known mosquito-borne viruses. In this study, mosquito samples were collected from eight cities and states in Yunnan Province, totaling 15,099 specimens. Based on the collection sites and mosquito species, the samples were divided into 110 groups for virus isolation. Four insect-specific viruses (Tanay virus [TANV], Culex orthoflavivirus [CxFV], Aedes orthoflavivirus [AeFV], La Tina virus [LTNV]) were successfully isolated, and co-infection studies with dengue virus (DENV-2) were conducted in C6/36 cells. Preliminary results suggested that these four insect-specific viruses may reduce the viral titer of DENV-2 in C6/36 cells. Understanding the intricate interactions between insect-specific viruses and mosquito-borne viruses is crucial for elucidating the multifaceted role of mosquitoes in arboviral transmission dynamics. Insect-specific viruses exhibit considerable potential as innovative biocontrol agents, with promising capacity to attenuate mosquito-borne viral transmission through the targeted modulation of mosquito innate immunity and physiological adaptations.
Collapse
Affiliation(s)
- Qinxuan Miao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (Q.M.); (L.D.); (X.L.); (Q.L.); (Y.N.); (Y.D.); (Q.L.)
| | - Lulu Deng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (Q.M.); (L.D.); (X.L.); (Q.L.); (Y.N.); (Y.D.); (Q.L.)
| | - Xiang Le
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (Q.M.); (L.D.); (X.L.); (Q.L.); (Y.N.); (Y.D.); (Q.L.)
| | - Qian Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (Q.M.); (L.D.); (X.L.); (Q.L.); (Y.N.); (Y.D.); (Q.L.)
| | - Yuting Ning
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (Q.M.); (L.D.); (X.L.); (Q.L.); (Y.N.); (Y.D.); (Q.L.)
| | - Yimeng Duan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (Q.M.); (L.D.); (X.L.); (Q.L.); (Y.N.); (Y.D.); (Q.L.)
| | - Qi Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China; (Q.M.); (L.D.); (X.L.); (Q.L.); (Y.N.); (Y.D.); (Q.L.)
| | - Yinzhu Tao
- Yunnan Province Key Laboratory of Public Health and Biosafety, School of Public Health, Kunming Medical University, Kunming 650500, China;
| | - Binghui Wang
- Yunnan Province Key Laboratory of Public Health and Biosafety, School of Public Health, Kunming Medical University, Kunming 650500, China;
| | - Xueshan Xia
- Yunnan Province Key Laboratory of Public Health and Biosafety, School of Public Health, Kunming Medical University, Kunming 650500, China;
| |
Collapse
|
2
|
Sewade W, Polat C, Kasap OE. Molecular evidence of Wolbachia and Orthoflavivirus infection in field-collected mosquitoes in three provinces of Türkiye. Trop Med Int Health 2025. [PMID: 40229230 DOI: 10.1111/tmi.14099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
BACKGROUND Mosquitoes transmit various pathogens causing diseases like Zika, Dengue, West Nile and Chikungunya. They also harbour insect-specific viruses (ISVs) and Wolbachia, which can block arbovirus transmission. This study investigated the prevalence of Orthoflavivirus and Wolbachia in mosquito populations from three provinces in Türkiye. METHODS Mosquitoes were collected using CDC Miniature Light traps in 2022-2023. Morphologically identified specimens were pooled (1-10 individuals) and screened for Orthoflavivirus and Wolbachia via PCR and confirmed by Sanger sequencing. Infection prevalence was estimated using the maximum likelihood method. Mosquito taxa richness across provinces was estimated using the abundance-based, non-parametric Chao1 index. RESULTS Among 8766 mosquitoes (11 taxa) collected, Culex perexiguus, Ochlerotatus caspius and Anopheles claviger were most abundant. Anopheles flavivirus (AnFV) detected in one Oc. caspius pool, while Wolbachia sequences belonging to supergroup B were detected in An. claviger, Cx. pipiens s.l., Cx. perexiguus and Oc. caspius, with an overall infection prevalence of 0.0119 (95% CI: 0.008-0.0161). The richest mosquito fauna was detected in Ankara, followed by Adana, and Çankırı. CONCLUSION This study provides new insights into mosquito richness and the prevalence of Orthoflavivirus and Wolbachia in Türkiye, contributing to vector surveillance and the potential use of Wolbachia in mosquito control strategies.
Collapse
Affiliation(s)
- Wilfrid Sewade
- Department of Biology, VERG Laboratories, Faculty of Science, Hacettepe University, Ankara, Türkiye
- Graduate School of Science and Engineering, Hacettepe University, Ankara, Türkiye
| | - Ceylan Polat
- Department of Medical Microbiology, Virology Unit, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Ozge Erisoz Kasap
- Department of Biology, VERG Laboratories, Faculty of Science, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
3
|
Farías AA, Laberdolive V, Stein M, Juri MJD, Visintin A, Almirón WR, Contigiani MS, Re VE, Diaz A. Diversity and molecular characterization of insect-specific flaviviruses in mosquitoes (Diptera: Culicidae) collected in central and northern Argentina. AN ACAD BRAS CIENC 2024; 96:e20230452. [PMID: 38922274 DOI: 10.1590/0001-3765202420230452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 02/28/2024] [Indexed: 06/27/2024] Open
Abstract
The genus Flavivirus comprises approximately 80 different viruses. Phylogenetic relationships among its members indicate a clear ecological separation between those viruses transmitted by mosquitoes, ticks, with no known vector, and insect-specific Flaviviruses. The diversity and phylogenetic relationships among insect-specific flaviviruses circulating in the central and northern regions of Argentina were studied by performing molecular detection and characterization of the NS5 protein gene in mosquitoes collected in Córdoba, Chaco and Tucumán provinces. Overall, 68 out of 1776 pools were positive. CxFV, KRV and CFAV circulate in the 3 studied provinces. Several mosquito species (Aedes aegypti, Culex bidens, Cx. dolosus, Cx. interfor, Cx. quinquefasciatus, Cx. saltanensis, Haemagogus spegazzini) were found infected. A wide circulation of CxFV was observed in the central-northern region of Argentina. CxFV strains detected in our study clustered with strains circulating in Santa Fe and Buenos Aires provinces (Argentina), and other countries such as Indonesia, Mexico, Uganda and Taiwan. The presence of these viruses in mosquitoes could play an important role from the public health perspective, because it has been shown that previous CxFV infection can increase or block the infection of the mosquito by other pathogenic flaviviruses.
Collapse
Affiliation(s)
- Adrián A Farías
- Universidad Nacional de Córdoba, Laboratorio de Arbovirus, Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Enfermera Gordillo Gomez s/n, Ciudad Universitaria, CP 5016, Córdoba, Córdoba, Argentina
| | - Victoria Laberdolive
- Universidad Nacional de Córdoba, Laboratorio de Arbovirus, Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Enfermera Gordillo Gomez s/n, Ciudad Universitaria, CP 5016, Córdoba, Córdoba, Argentina
| | - Marina Stein
- Universidad Nacional del Nordeste, Departamento de Entomología, Instituto de Medicina Regional, Avenida Las Heras 727, CP 3500, Resistencia, Chaco, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Godoy Cruz 2290, CABA, Argentina
| | - María Julia Dantur Juri
- Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Godoy Cruz 2290, CABA, Argentina
- Unidad Ejecutora Lillo (CONICET-Fundación Miguel Lillo), Miguel Lillo 251, CP 4000, San Miguel de Tucumán, Tucumán, Argentina
| | - Andrés Visintin
- Universidad Nacional de la Rioja, Instituto de Biología de la Conservación y Paleobiología (IBiCoPa), Centro de Investigación e Innovación Tecnológica (CENIIT), Avenida Luis Vernet y Apóstol Felipe s/n, F5200, La Rioja, Argentina
| | - Walter R Almirón
- Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Godoy Cruz 2290, CABA, Argentina
- Universidad Nacional de Córdoba, Centro de Investigaciones Entomológicas de Córdoba, Instituto de Investigaciones Biológicas y Tecnológicas (IIBYT), CONICET- Av. Vélez Sarsfield 1611, X5016, Córdoba, Argentina
| | - Marta S Contigiani
- Universidad Nacional de Córdoba, Laboratorio de Arbovirus, Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Enfermera Gordillo Gomez s/n, Ciudad Universitaria, CP 5016, Córdoba, Córdoba, Argentina
| | - Viviana E Re
- Universidad Nacional de Córdoba, Laboratorio de Arbovirus, Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Enfermera Gordillo Gomez s/n, Ciudad Universitaria, CP 5016, Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Godoy Cruz 2290, CABA, Argentina
| | - Adrián Diaz
- Universidad Nacional de Córdoba, Laboratorio de Arbovirus, Instituto de Virología "Dr. J. M. Vanella", Facultad de Ciencias Médicas, Enfermera Gordillo Gomez s/n, Ciudad Universitaria, CP 5016, Córdoba, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Godoy Cruz 2290, CABA, Argentina
| |
Collapse
|
4
|
Lwande OW, Näslund J, Sjödin A, Lantto R, Luande VN, Bucht G, Ahlm C, Agwanda B, Obanda V, Evander M. Novel strains of Culex flavivirus and Hubei chryso-like virus 1 from the Anopheles mosquito in western Kenya. Virus Res 2024; 339:199266. [PMID: 37944758 PMCID: PMC10682293 DOI: 10.1016/j.virusres.2023.199266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Surveillance of mosquito vectors is critical for early detection, prevention and control of vector borne diseases. In this study we used advanced molecular tools, such as DNA barcoding in combination with novel sequencing technologies to discover new and already known viruses in genetically identified mosquito species. Mosquitoes were captured using BG sentinel traps in Western Kenya during May and July 2019, and homogenized individually before pooled into groups of ten mosquitoes. The pools and individual samples were then used for molecular analysis and to infect cell cultures. Of a total of fifty-four (54) 10-pools, thirteen (13) showed cytopathic effect (CPE) on VeroB4 cells, eighteen (18) showed CPE on C6/36 cells. Eight (8) 10-pools out of the 31 CPE positive pools showed CPE on both VeroB4 and C6/36 cells. When using reverse transcriptase polymerase chain reaction (RT-PCR), Sanger sequencing and Twist Comprehensive Viral Research Panel (CVRP) (Twist Biosciences), all pools were found negative by RT-PCR when using genus specific primers targeting alphaviruses, orthobunyaviruses and virus specific primers towards o'nyong-nyong virus, chikungunya virus and Sindbis virus (previously reported to circulate in the region). Interestingly, five pools were RT-PCR positive for flavivirus. Two of the RT-PCR positive pools showed CPE on both VeroB4 and C6/36 cells, two pools showed CPE on C6/36 cells alone and one pool on VeroB4 cells only. Fifty individual mosquito homogenates from the five RT-PCR positive 10-pools were analyzed further for flavivirus RNA. Of these, 19 out of the 50 individual mosquito homogenates indicated the presence of flavivirus RNA. Barcoding of the flavivirus positive mosquitoes revealed the mosquito species as Aedes aegypti (1), Mansonia uniformis (6), Anopheles spp (3), Culex pipiens (5), Culex spp (1), Coquilletidia metallica (2) and Culex quinquefasciatus (1). Of the 19 flavivirus positive individual mosquitoes, five (5) virus positive homogenates were sequenced. Genome sequences of two viruses were completed. One was identified as the single-stranded RNA Culex flavivirus and the other as the double-stranded RNA Hubei chryso-like virus 1. Both viruses were found in the same Anopheles spp. homogenate extracted from a sample that showed CPE on both VeroB4 and C6/36 cells. The detection of both viruses in a single mosquito homogenate indicated coinfection. Phylogenetic analyses suggested that the Culex flavivirus sequence detected was closely related to a Culex flavivirus isolated from Uganda in 2008. All four Hubei chryso-like virus 1 segments clusters closely to Hubei chryso-like virus 1 strains isolated in Australia, China and USA. Two novel strains of insect-specific viruses in Anopheles mosquitoes were detected and characterized.
Collapse
Affiliation(s)
- Olivia Wesula Lwande
- Department of Clinical Microbiology, Umeå University, Umeå 901-85, Sweden; Umeå Centre for Microbial Research, Umeå University, Umeå 901-87, Sweden.
| | - Jonas Näslund
- Swedish Defence Research Agency, CBRN, Defence and Security, Umeå 901 82, Sweden
| | - Andreas Sjödin
- Swedish Defence Research Agency, CBRN, Defence and Security, Umeå 901 82, Sweden
| | - Rebecca Lantto
- Department of Clinical Microbiology, Umeå University, Umeå 901-85, Sweden
| | | | - Göran Bucht
- Department of Clinical Microbiology, Umeå University, Umeå 901-85, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Umeå University, Umeå 901-85, Sweden; Umeå Centre for Microbial Research, Umeå University, Umeå 901-87, Sweden
| | - Bernard Agwanda
- Mammalogy Section, National Museums of Kenya, Nairobi 40658-00100, Kenya
| | - Vincent Obanda
- Department of Research Permitting and Compliance Wildlife Research and Training Institute, Naivasha 842-20117, Kenya
| | - Magnus Evander
- Department of Clinical Microbiology, Umeå University, Umeå 901-85, Sweden; Umeå Centre for Microbial Research, Umeå University, Umeå 901-87, Sweden
| |
Collapse
|
5
|
Hernandez-Valencia JC, Muñoz-Laiton P, Gómez GF, Correa MM. A Systematic Review on the Viruses of Anopheles Mosquitoes: The Potential Importance for Public Health. Trop Med Infect Dis 2023; 8:459. [PMID: 37888587 PMCID: PMC10610971 DOI: 10.3390/tropicalmed8100459] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Anopheles mosquitoes are the vectors of Plasmodium, the etiological agent of malaria. In addition, Anopheles funestus and Anopheles gambiae are the main vectors of the O'nyong-nyong virus. However, research on the viruses carried by Anopheles is scarce; thus, the possible transmission of viruses by Anopheles is still unexplored. This systematic review was carried out to identify studies that report viruses in natural populations of Anopheles or virus infection and transmission in laboratory-reared mosquitoes. The databases reviewed were EBSCO-Host, Google Scholar, Science Direct, Scopus and PubMed. After the identification and screening of candidate articles, a total of 203 original studies were included that reported on a variety of viruses detected in Anopheles natural populations. In total, 161 viruses in 54 species from 41 countries worldwide were registered. In laboratory studies, 28 viruses in 15 Anopheles species were evaluated for mosquito viral transmission capacity or viral infection. The viruses reported in Anopheles encompassed 25 viral families and included arboviruses, probable arboviruses and Insect-Specific Viruses (ISVs). Insights after performing this review include the need for (1) a better understanding of Anopheles-viral interactions, (2) characterizing the Anopheles virome-considering the public health importance of the viruses potentially transmitted by Anopheles and the significance of finding viruses with biological control activity-and (3) performing virological surveillance in natural populations of Anopheles, especially in the current context of environmental modifications that may potentiate the expansion of the Anopheles species distribution.
Collapse
Affiliation(s)
- Juan C. Hernandez-Valencia
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia; (J.C.H.-V.); (P.M.-L.); (G.F.G.)
| | - Paola Muñoz-Laiton
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia; (J.C.H.-V.); (P.M.-L.); (G.F.G.)
| | - Giovan F. Gómez
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia; (J.C.H.-V.); (P.M.-L.); (G.F.G.)
- Dirección Académica, Escuela de Pregrados, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia
| | - Margarita M. Correa
- Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia; (J.C.H.-V.); (P.M.-L.); (G.F.G.)
| |
Collapse
|
6
|
Hollingsworth BD, Grubaugh ND, Lazzaro BP, Murdock CC. Leveraging insect-specific viruses to elucidate mosquito population structure and dynamics. PLoS Pathog 2023; 19:e1011588. [PMID: 37651317 PMCID: PMC10470969 DOI: 10.1371/journal.ppat.1011588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Several aspects of mosquito ecology that are important for vectored disease transmission and control have been difficult to measure at epidemiologically important scales in the field. In particular, the ability to describe mosquito population structure and movement rates has been hindered by difficulty in quantifying fine-scale genetic variation among populations. The mosquito virome represents a possible avenue for quantifying population structure and movement rates across multiple spatial scales. Mosquito viromes contain a diversity of viruses, including several insect-specific viruses (ISVs) and "core" viruses that have high prevalence across populations. To date, virome studies have focused on viral discovery and have only recently begun examining viral ecology. While nonpathogenic ISVs may be of little public health relevance themselves, they provide a possible route for quantifying mosquito population structure and dynamics. For example, vertically transmitted viruses could behave as a rapidly evolving extension of the host's genome. It should be possible to apply established analytical methods to appropriate viral phylogenies and incidence data to generate novel approaches for estimating mosquito population structure and dispersal over epidemiologically relevant timescales. By studying the virome through the lens of spatial and genomic epidemiology, it may be possible to investigate otherwise cryptic aspects of mosquito ecology. A better understanding of mosquito population structure and dynamics are key for understanding mosquito-borne disease ecology and methods based on ISVs could provide a powerful tool for informing mosquito control programs.
Collapse
Affiliation(s)
- Brandon D Hollingsworth
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute for Host Microbe Interaction and Disease, Cornell University, Ithaca, New York, United States of America
| | - Nathan D Grubaugh
- Yale School of Public Health, New Haven, Connecticut, United States of America
- Yale University, New Haven, Connecticut, United States of America
| | - Brian P Lazzaro
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute for Host Microbe Interaction and Disease, Cornell University, Ithaca, New York, United States of America
| | - Courtney C Murdock
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute for Host Microbe Interaction and Disease, Cornell University, Ithaca, New York, United States of America
- Northeast Regional Center for Excellence in Vector-borne Diseases, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
7
|
Culex Flavivirus Isolation from Naturally Infected Mosquitoes Trapped at Rio de Janeiro City, Brazil. INSECTS 2022; 13:insects13050477. [PMID: 35621811 PMCID: PMC9143766 DOI: 10.3390/insects13050477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary The Flavivirus genus groups a wide range of species capable of infecting vertebrates and invertebrates, both terrestrial and aquatic. According to phylogenetic analyses, the flavivirus genomes cluster into three main branches; the first one containing viruses that infect vertebrates, also called arboviruses; the second called arbovirus-affiliated insect-specific flaviviruses or dual-host insect-specific flaviviruses (dISF), that preserve genomic similarity with arboviruses, but its replication is apparently restricted to invertebrates and insect-specific classical flaviviruses (ISF), with infection restricted to invertebrates. Culex Flavivirus (CxFV) is a classical insect-specific virus, which has aroused interest after the first indication that it can produce in nature superinfection exclusion of viruses of medical interest such as West Nile. Despite the detection of CxFV in different regions, CxFV ecology and the influence of co-circulation of arboviruses remains poorly understood. Therefore, our primary goals are to observe the occurrence of CxFV infection in mosquitoes trapped in an urban area of Rio de Janeiro, Brazil, characterize the virus circulation, and provide isolates. A prospective study was carried out for eight months on the Federal University of Rio de Janeiro campus trapping adult mosquitoes. The CxFV minimum infection rates were determined in this period, and the virus isolation process is fully described. Samples from this study were grouped into genotype 2, along with CxFV sequences from Latin America and Africa. Abstract Culex Flavivirus (CxFV) is a classical insect-specific virus, which has aroused interest after the first indication that it can produce in nature superinfection exclusion of viruses of medical interest such as West Nile. Despite the detection of CxFV in different regions, CxFV ecology and the influence of co-circulation of arboviruses remains poorly understood. Therefore, our primary goals are to observe the occurrence of CxFV infection in mosquitoes trapped in an urban area of Rio de Janeiro, Brazil, characterize the virus circulating, and provide isolates. A prospective study was carried out for eight months on the campus of the Federal University of Rio de Janeiro, trapping adult mosquitoes. The CxFV minimum infection rates were determined in this period, and the virus isolation process is fully described. Samples from this study were grouped into genotype 2, along with CxFV sequences from Latin America and Africa.
Collapse
|
8
|
Chatterjee S, Kim CM, Yun NR, Kim DM, Song HJ, Chung KA. Molecular detection and identification of Culex flavivirus in mosquito species from Jeju, Republic of Korea. Virol J 2021; 18:150. [PMID: 34281569 PMCID: PMC8287664 DOI: 10.1186/s12985-021-01618-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 07/12/2021] [Indexed: 11/10/2022] Open
Abstract
Background Mosquito-borne flaviviruses are prime pathogens and have been a major hazard to humans and animals. They comprise several arthropod-borne viruses, including dengue virus, yellow fever virus, Japanese encephalitis virus, and West Nile virus. Culex flavivirus (CxFV) is a member of the insect-specific flavivirus (ISF) group belonging to the genus Flavivirus, which is widely distributed in a variety of mosquito populations.
Methods Viral nucleic acid was extracted from adult mosquito pools and subjected to reverse transcriptase nested polymerase chain reaction (PCR) using target-specific primers for detecting CxFV nonstructural protein 5 (NS5). The PCR-positive samples were then sequenced, and a phylogenetic tree was constructed, including reference sequences obtained from GenBank. Results 21 pools, belonging to Culex pipiens pallens (Cx. p. pallens) were found to be positive for the CxFV RNA sequence, with a minimum infection rate of 14.5/1000 mosquitoes. The phylogenetic analysis of the NS5 protein sequences indicated that the detected sequences were closely related to strains identified in China, with 95–98% sequence similarities. Conclusion Our findings highlight the presence of CxFV in Cx. p. pallens mosquito species in Jeju province, Republic of Korea. This is the first study reporting the prevalence of CxFV in Culex Pipiens (Cx. pipiens) host in the Jeju province, which can create possible interaction with other flaviviruses causing human and animal diseases. Although, mosquito-borne disease causing viruses were not identified properly, more detailed surveillance and investigation of both the host and viruses are essential to understand the prevalence, evolutionary relationship and genetic characteristic with other species.
Collapse
Affiliation(s)
- Shilpa Chatterjee
- Department of Internal Medicine, College of Medicine, Chosun University, 588 Seosuk-dong, Dong-gu, Gwangju, 61453, Republic of Korea
| | - Choon-Mee Kim
- Department of Premedical Science, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Na Ra Yun
- Department of Internal Medicine, College of Medicine, Chosun University, 588 Seosuk-dong, Dong-gu, Gwangju, 61453, Republic of Korea
| | - Dong-Min Kim
- Department of Internal Medicine, College of Medicine, Chosun University, 588 Seosuk-dong, Dong-gu, Gwangju, 61453, Republic of Korea.
| | - Hyeon Je Song
- Department of Clinical Laboratory Science, Gwangju Health University, Gwangju, Republic of Korea
| | - Kyeoung A Chung
- Department of Clinical Laboratory Science, Gwangju Health University, Gwangju, Republic of Korea
| |
Collapse
|
9
|
Fang Y, Tambo E, Xue JB, Zhang Y, Zhou XN, Khater EIM. Detection of DENV-2 and Insect-Specific Flaviviruses in Mosquitoes Collected From Jeddah, Saudi Arabia. Front Cell Infect Microbiol 2021; 11:626368. [PMID: 33718273 PMCID: PMC7947193 DOI: 10.3389/fcimb.2021.626368] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/18/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Mosquito-borne diseases are rapidly spreading due to increasing international travel and trade. Routine mosquito surveillance and screening for mosquito-borne pathogens can be early indicators for local disease transmission and outbreaks. However, arbovirus detection in mosquito vectors has rarely been reported in Saudi Arabia. METHODS A total of 769,541 Aedes and Culex mosquitoes were collected by Black Hole traps during routine mosquito surveillance in the first half of 2016. Culex. quinquefasciatus and Ae. aegypti were the most prevalent species observed. Twenty-five and 24 randomly selected pools of Ae. aegypti and Cx. quinquefasciatus, respectively, were screened for arboviruses by RT-PCR. RESULTS Dengue 2 (DENV-2) and four strains of insect-specific flaviviruses, including one of cell-fusing agent virus (CFAV) and three of Phlebotomus-associated flavivirus (PAFV) were detected in pools of Ae. aegypti. We also detected 10 strains of Culex flavivirus (CxFV) in pools of Cx. quinquefasciatus. Phylogenetic analysis using whole genome sequences placed the DENV strain into the cosmopolitan 1 sub-DENV-2 genotype, and the CxFVs into the African/Caribbean/Latin American genotype. These analyses also showed that the DENV-2 strain detected in the present study was closely related to strains detected in China in 2014 and in Japan in 2018, which suggests frequent movement of DENV-2 strains among these countries. Furthermore, the phylogenetic analysis suggested at least five introductions of DENV-2 into Saudi Arabia from 2014 through 2018, most probably from India. CONCLUSIONS To our knowledge, this study reports the first detection of four arboviruses DENV, CFAV, PAFV, and CxFV in mosquitoes in Saudi Arabia, which shows that they are co-circulating in Jeddah. Our findings show a need for widespread mosquito-based arbovirus surveillance programs in Saudi Arabia, which will improve our understanding of the transmission dynamics of the mosquito-borne arboviruses within the country and help early predict and mitigate the risk of human infections and outbreaks.
Collapse
Affiliation(s)
- Yuan Fang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Chinese Center for Tropical Diseases Research, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention-Shenzhen Center for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, China
| | - Ernest Tambo
- Public Health Pests Laboratory, Municipality of Jeddah Governorate, Jeddah, Saudi Arabia
| | - Jing-Bo Xue
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Chinese Center for Tropical Diseases Research, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention-Shenzhen Center for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, China
| | - Yi Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Chinese Center for Tropical Diseases Research, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention-Shenzhen Center for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Chinese Center for Tropical Diseases Research, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention-Shenzhen Center for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, China
| | - Emad I. M. Khater
- Public Health Pests Laboratory, Municipality of Jeddah Governorate, Jeddah, Saudi Arabia
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
10
|
Mosquito-Borne Viruses and Insect-Specific Viruses Revealed in Field-Collected Mosquitoes by a Monitoring Tool Adapted from a Microbial Detection Array. Appl Environ Microbiol 2019; 85:AEM.01202-19. [PMID: 31350319 DOI: 10.1128/aem.01202-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/22/2019] [Indexed: 12/19/2022] Open
Abstract
Several mosquito-borne diseases affecting humans are emerging or reemerging in the United States. The early detection of pathogens in mosquito populations is essential to prevent and control the spread of these diseases. In this study, we tested the potential applicability of the Lawrence Livermore Microbial Detection Array (LLMDA) to enhance biosurveillance by detecting microbes present in Aedes aegypti, Aedes albopictus, and Culex mosquitoes, which are major vector species globally, including in Texas. The sensitivity and reproducibility of the LLMDA were tested in mosquito samples spiked with different concentrations of dengue virus (DENV), revealing a detection limit of >100 but <1,000 PFU/ml. Additionally, field-collected mosquitoes from Chicago, IL, and College Station, TX, of known infection status (West Nile virus [WNV] and Culex flavivirus [CxFLAV] positive) were tested on the LLMDA to confirm its efficiency. Mosquito field samples of unknown infection status, collected in San Antonio, TX, and the Lower Rio Grande Valley (LRGV), TX, were run on the LLMDA and further confirmed by PCR or quantitative PCR (qPCR). The analysis of the field samples with the LLMDA revealed the presence of cell-fusing agent virus (CFAV) in A. aegypti populations. Wolbachia was also detected in several of the field samples (A. albopictus and Culex spp.) by the LLMDA. Our findings demonstrated that the LLMDA can be used to detect multiple arboviruses of public health importance, including viruses that belong to the Flavivirus, Alphavirus, and Orthobunyavirus genera. Additionally, insect-specific viruses and bacteria were also detected in field-collected mosquitoes. Another strength of this array is its ability to detect multiple viruses in the same mosquito pool, allowing for the detection of cocirculating pathogens in an area and the identification of potential ecological associations between different viruses. This array can aid in the biosurveillance of mosquito-borne viruses circulating in specific geographical areas.IMPORTANCE Viruses associated with mosquitoes have made a large impact on public and veterinary health. In the United States, several viruses, including WNV, DENV, and chikungunya virus (CHIKV), are responsible for human disease. From 2015 to 2018, imported Zika cases were reported in the United States, and in 2016 to 2017, local Zika transmission occurred in the states of Texas and Florida. With globalization and a changing climate, the frequency of outbreaks linked to arboviruses will increase, revealing a need to better detect viruses in vector populations. With the capacity of the LLMDA to detect viruses, bacteria, and fungi, this study highlights its ability to broadly screen field-collected mosquitoes and contribute to the surveillance and management of arboviral diseases.
Collapse
|
11
|
Moraes OS, Cardoso BF, Pacheco TA, Pinto AZL, Carvalho MS, Hahn RC, Burlamaqui TCT, Oliveira LF, Oliveira RS, Vasconcelos JM, Lemos PS, Nunes MRT, Slhessarenko RD. Natural infection by Culex flavivirus in Culex quinquefasciatus mosquitoes captured in Cuiabá, Mato Grosso Mid-Western Brazil. MEDICAL AND VETERINARY ENTOMOLOGY 2019; 33:397-406. [PMID: 30887540 DOI: 10.1111/mve.12374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/19/2019] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
New species of insect-specific viruses (ISV) have been reported worldwide. In the present study, the complete genome of Culex flavivirus (CxFV) and partial sequences of other ISVs in Culex quinquefasciatus Say 1823 females (n = 3425) sampled in 200 urban areas census tracts of Cuiaba, state of Mato Grosso, were identified via reverse transcriptase-polymerase chain reaction for a NS5 region of flaviviruses, nucleotide and high-throughput sequencing, and viral isolation in C6/36 cells. CxFV was detected in 16 of 403 mosquito pools; sequences found in the study presented a high similarity with isolates from São Paulo, Brazil and other countries in Latin American that belong to genotype II, supporting the geographical influence on CxFV evolution. The monthly maximum likelihood estimation for CxFV ranged from 1.81 to 9.94 per 1000 mosquitoes. In addition to the CxFV complete genome, one pool contained an ORF1 sequence (756 bp) that belongs to a novel Negevirus from the Sandewavirus supergroup most similar to the Santana virus (77.1%) and another pool presented an RNA-dependent RNA polymerase sequence (1081 bp) of a novel Rhabdovirus most similar to Wuhan mosquito virus 9 (44%). After three passages in C6/36 cells, only CxFV was isolated from these co-infected pools. The importance of ISVs relies on their possible ability to interfere with arbovirus replication in competent vectors.
Collapse
Affiliation(s)
- O S Moraes
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - B F Cardoso
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - T A Pacheco
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - A Z L Pinto
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - M S Carvalho
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - R C Hahn
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| | - T C T Burlamaqui
- Centro de Inovação Tecnológica, Instituto Evandro Chagas, Ministério da Saúde, Ananindeua, Brazil
| | - L F Oliveira
- Centro de Inovação Tecnológica, Instituto Evandro Chagas, Ministério da Saúde, Ananindeua, Brazil
| | - R S Oliveira
- Centro de Inovação Tecnológica, Instituto Evandro Chagas, Ministério da Saúde, Ananindeua, Brazil
| | - J M Vasconcelos
- Centro de Inovação Tecnológica, Instituto Evandro Chagas, Ministério da Saúde, Ananindeua, Brazil
| | - P S Lemos
- Centro de Inovação Tecnológica, Instituto Evandro Chagas, Ministério da Saúde, Ananindeua, Brazil
| | - M R T Nunes
- Centro de Inovação Tecnológica, Instituto Evandro Chagas, Ministério da Saúde, Ananindeua, Brazil
| | - R D Slhessarenko
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso, Cuiabá, Brazil
| |
Collapse
|
12
|
Miranda J, Mattar S, Gonzalez M, Hoyos-López R, Aleman A, Aponte J. First report of Culex flavivirus infection from Culex coronator (Diptera: Culicidae), Colombia. Virol J 2019; 16:1. [PMID: 30606229 PMCID: PMC6318882 DOI: 10.1186/s12985-018-1108-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Flaviviruses are important pathogens for humans and animals (Dengue viruses, Yellow fever virus, Zika virus and West Nile virus). Culex flavivirus (CxFV) is an insect-specific virus of the genus Flavivirus, detected in a wide variety of mosquito species. OBJECTIVE To detect Flavivirus in mosquitoes of a tropical region of the Colombian Caribbean. METHODS In 2014, an entomological surveillance of arboviruses was conducted in the department of Cordoba area of the Caribbean, Colombia. A total of 8270 mosquitoes were captured as follow: Mansonia (n = 3271/39.5%), Culex (n = 2668/32.26%), Anopheles (n = 840/10.15%), Aedeomyia (n = 411/4.9%), Psorophora (n = 397/4.8%), Coquilletidia (n = 369/4.46%), Uranotaenia (n = 261/3.15%) and Aedes (n = 53/0.6%). All mosquito species were collected in dry tropical forest of the Caribbean area. Universal primers for NS5 gene (958 pb), RT-PCR for flavivirus and sequencing were used for molecular identification of viruses detected. RESULTS Two pools belonging to Culex coronator were positive for flavivirus RNA sequence by RT-PCR. The sequences of the PCR amplicons, matched that of the Culex flaviviruses, CxFv COL PM_149 (GenBank: KR014201) and CxFv COL PM_212 (GenBank: KT307717). Phylogenetic analysis of the NS5 protein sequences of the Culex flaviviruses sequences with those of reference sequences available in GenBank indicated viruses of Genotype II, closely related to the Brazilian strain, BR_SJRP_01_ (GenBank: KT726939), from Culex sp. The alignment of Culex flavivirus sequences CxFv COL_ PM 212 and CxFv COL_ PM 149 with sequences of strains detected in different geographical regions grouped the strains in a Latin American clade reported in Brazil, Argentina and Mexico. CONCLUSIONS The present work illustrated that CxFV was circulating among vectors of human pathogenic arboviruses in Colombia, but the impact of CxFV on other flaviviruses which are endemic in the study area still remains to be explored.
Collapse
Affiliation(s)
- Jorge Miranda
- Instituto de Investigaciones Biológicas del Trópico, Facultad de Medicina Veterinaria y Zootecnia, Universidad de Córdoba, Montería, Colombia
| | - Salim Mattar
- Instituto de Investigaciones Biológicas del Trópico, Facultad de Medicina Veterinaria y Zootecnia, Universidad de Córdoba, Montería, Colombia
| | - Marco Gonzalez
- Instituto de Investigaciones Biológicas del Trópico, Facultad de Medicina Veterinaria y Zootecnia, Universidad de Córdoba, Montería, Colombia
| | - Richard Hoyos-López
- Grupo de Investigación en Enfermedades Tropicales y Resistencia Bacteriana, Universidad del Sinú, Montería, Colombia
| | - Ader Aleman
- Instituto de Investigaciones Biológicas del Trópico, Facultad de Medicina Veterinaria y Zootecnia, Universidad de Córdoba, Montería, Colombia
| | - Jose Aponte
- Instituto de Investigaciones Biológicas del Trópico, Facultad de Medicina Veterinaria y Zootecnia, Universidad de Córdoba, Montería, Colombia
| |
Collapse
|
13
|
Discovery and high prevalence of Phasi Charoen-like virus in field-captured Aedes aegypti in South China. Virology 2018; 523:35-40. [PMID: 30077072 DOI: 10.1016/j.virol.2018.07.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 01/20/2023]
Abstract
Arboviruses have caused significant global health concerns during the past decade. In this regard, continuous viral surveillance is essential to timely identify emerging arboviruses and other novel viruses. Here, a novel isolate of Phasi Charoen-like virus (PCLV Zhanjiang01) was identified from field-captured Aedes aegypti mosquitoes in Zhanjiang by next generation sequencing. Phylogenetic analysis suggested that PCLV Zhanjiang01 belonged to the genus Phasivirus in the family Phenuiviridae. The presence of PCLV in three batches of Aedes aegypti confirmed its high prevalence in nature. Further detection of PCLV in progenies and adult males suggested vertical transmission in mosquitoes. In parallel, PCLV was detected from multiple organs indicating its broad tissue distribution in the infected mosquitoes. To the best of our knowledge, this is the first report of PCLV in China. Our results expanded the global biogeographic distribution of PCLV. Further investigations of PCLV on the arboviral transmission and control strategies are warranted.
Collapse
|
14
|
Fang Y, Zhang Y, Zhou ZB, Shi WQ, Xia S, Li YY, Wu JT, Liu Q, Lin GY. Co-circulation of Aedes flavivirus, Culex flavivirus, and Quang Binh virus in Shanghai, China. Infect Dis Poverty 2018; 7:75. [PMID: 30021614 PMCID: PMC6052644 DOI: 10.1186/s40249-018-0457-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/26/2018] [Indexed: 11/22/2022] Open
Abstract
Background With increases in global travel and trade, the spread of arboviruses is undoubtedly alarming. Pathogen detection in field-caught mosquitoes can provide the earliest possible warning of transmission. Insect-specific flavivirus (ISFV) has been first detected in 1991 and documented worldwide in the latest ten years. Although infection with ISFVs is apparently limited to insects, an increase in the infection rate of mosquito-borne flaviviruses may be able to induce cytopathic effects in vertebrate cells during co-infection with other human pathogens. However, little is known whether ISFVs persist in most regions of China. Methods During the mosquito activity season in 2016, a surveillance program was carried out to detect ISFVs in mosquitoes in metropolitan Shanghai, China. The presence of ISFVs was randomly tested in different species of mosquitoes using RT-PCR-based and hemi-nested PCR assays, following by the sequencing of PCR products. Sequences from positive pooled samples were compared with those deposited in GenBank. Thereafter, sequences of representative insect flaviviruses were used for further phylogenetic and molecular evolutionary analyses. Results Our investigations showed: (1) the presence of Aedes flavivirus (AEFV) in 11/161 pooled samples (nine pools in Songjiang District, one pool in Huangpu District, and one pool in Qingpu District) of Aedes albopictus, (2) the presence of Quang Binh virus (QBV) in 10/195 pooled samples (all in Chongming District) of Culex tritaeniorhynchus; and (3) the presence of Culex flavivirus (CxFV) in 9/228 pooled samples (six pools in Pudong New Area, two pools in Huangpu District, and one pool in Chongming District) of Cx. pipiens. Furthermore, phylogenetic analyses of the gene sequences of envelope proteins indicated that Shanghai CxFV strains belonged to the Asia/USA genotype. The overall maximum likelihood estimation values (and 95% confidence interval) for CxFV, QBV, and AEFV in mosquitoes collected in Shanghai in 2016 were 1.34 (0.66–2.45), 1.65 (0.87–2.85), and 1.51 (0.77–2.70) per 1000, respectively. Conclusions This study reveals the presence and the geographical distribution of ISFVs, and determines the genetic variation and the infection rate of ISFVs in Shanghai, China. At least, three insect flaviviruses including ISFVs, AEFV, CxFV, and QBV, co-circulate in this area. To our knowledge, this is the first report of AEFV in China. Electronic supplementary material The online version of this article (10.1186/s40249-018-0457-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuan Fang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Yi Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China.
| | - Zheng-Bin Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Wen-Qi Shi
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Shang Xia
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Yuan-Yuan Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Jia-Tong Wu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Qin Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, 207 Rui Jin Er Road, Shanghai, 200025, People's Republic of China
| | - Guang-Yi Lin
- Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| |
Collapse
|
15
|
Xia H, Wang Y, Atoni E, Zhang B, Yuan Z. Mosquito-Associated Viruses in China. Virol Sin 2018; 33:5-20. [PMID: 29532388 PMCID: PMC5866263 DOI: 10.1007/s12250-018-0002-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 12/05/2017] [Indexed: 10/30/2022] Open
Abstract
Mosquitoes are classified into approximately 3500 species and further grouped into 41 genera. Epidemiologically, they are considered to be among the most important disease vectors in the world and they can harbor a wide variety of viruses. Several mosquito viruses are considered to be of significant medical importance and can cause serious public health issues throughout the world. Such viruses are Japanese encephalitis virus (JEV), dengue virus (DENV), chikungunya virus (CHIKV), and Zika virus (ZIKV). Others are the newly recognized mosquito viruses such as Banna virus (BAV) and Yunnan orbivirus (YNOV) with unclear medical significance. The remaining mosquito viruses are those that naturally infect mosquitoes but do not appear to infect humans or other vertebrates. With the continuous development and improvement of mosquito and mosquito-associated virus surveillance systems in China, many novel mosquito-associated viruses have been discovered in recent years. This review aims to systematically outline the history, characteristics, distribution, and/or current epidemic status of mosquito-associated viruses in China.
Collapse
Affiliation(s)
- Han Xia
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yujuan Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Evans Atoni
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
16
|
Olson KE, Bonizzoni M. Nonretroviral integrated RNA viruses in arthropod vectors: an occasional event or something more? CURRENT OPINION IN INSECT SCIENCE 2017; 22:45-53. [PMID: 28805638 DOI: 10.1016/j.cois.2017.05.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/11/2017] [Indexed: 06/07/2023]
Abstract
With few exceptions, all arthropod-borne viruses (arboviruses) are nonretroviral RNA viruses (NRVs). Despite NRVs do not encode reverse transcriptases and integrases, NRVs-DNA fragments are detected in mosquito cells and mosquitoes at early stages of infection as episomal DNA forms. Additionally, next generation sequencing and bioinformatics analyses have convincingly shown NRVs-vDNA integrated in vector genomes. We hypothesize vDNA role may be linked to host immunity and viral persistence. Key questions remain about nonretroviral integrated RNA virus sequences (NIRVS) in mosquitoes such as what is driving vDNA synthesis from NRVs, how does integration occur and what is their biological function. Here we review current knowledge about NIRVS highlighting connections with host immunity and virus-vector co-evolution and we suggest directions for future research.
Collapse
Affiliation(s)
- Ken E Olson
- Department of Microbiology, Immunology and Pathology, Arthropod-Borne and Infectious Disease Laboratory, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
17
|
Lequime S, Lambrechts L. Discovery of flavivirus-derived endogenous viral elements in Anopheles mosquito genomes supports the existence of Anopheles-associated insect-specific flaviviruses. Virus Evol 2017; 3:vew035. [PMID: 28078104 PMCID: PMC5217911 DOI: 10.1093/ve/vew035] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Flavivirus genus encompasses several arboviruses of public health significance such as dengue, yellow fever, and Zika viruses. It also includes insect-specific flaviviruses (ISFs) that are only capable of infecting insect hosts. The vast majority of mosquito-infecting flaviviruses have been associated with mosquito species of the Aedes and Culex genera in the Culicinae subfamily, which also includes most arbovirus vectors. Mosquitoes of the Anophelinae subfamily are not considered significant arbovirus vectors; however, flaviviruses have occasionally been detected in field-caught Anopheles specimens. Whether such observations reflect occasional spillover or laboratory contamination or whether Anopheles mosquitoes are natural hosts of flaviviruses is unknown. Here, we provide in silico and in vivo evidence of transcriptionally active, flavivirus-derived endogenous viral elements (EVEs) in the genome of Anopheles minimus and Anopheles sinensis. Such non-retroviral endogenization of RNA viruses is consistent with a shared evolutionary history between flaviviruses and Anopheles mosquitoes. Phylogenetic analyses of the two newly described EVEs support the existence of a distinct clade of Anopheles-associated ISFs.
Collapse
Affiliation(s)
- Sebastian Lequime
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France; Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Paris, France; University Pierre et Marie Curie, Cellule Pasteur UPMC, Paris, France
| | - Louis Lambrechts
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, Paris, France; Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Paris, France
| |
Collapse
|
18
|
Roundy CM, Azar SR, Rossi SL, Weaver SC, Vasilakis N. Insect-Specific Viruses: A Historical Overview and Recent Developments. Adv Virus Res 2016; 98:119-146. [PMID: 28433051 DOI: 10.1016/bs.aivir.2016.10.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Arthropod-borne viruses (arboviruses) have in recent years become a tremendous global health concern resulting in substantial human morbidity and mortality. With the widespread utilization of molecular technologies such as next-generation sequencing and the advancement of bioinformatics tools, a new age of viral discovery has commenced. Many of the novel agents being discovered in recent years have been isolated from mosquitoes and exhibit a highly restricted host range. Strikingly, these insect-specific viruses have been found to be members of viral families traditionally associated with human arboviral pathogens, including but not limited to the families Flaviviridae, Togaviridae, Reoviridae, and Bunyaviridae. These agents therefore present novel opportunities in the fields of viral evolution and viral/vector interaction and have tremendous potential as agents for biocontrol of vectors and or viruses of medical importance.
Collapse
Affiliation(s)
- Christopher M Roundy
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Sasha R Azar
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Shannan L Rossi
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
| | - Scott C Weaver
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States; University of Texas Medical Branch, Galveston, TX, United States; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, United States; University of Texas Medical Branch, Galveston, TX, United States
| | - Nikos Vasilakis
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States; University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
19
|
Frey KG, Biser T, Hamilton T, Santos CJ, Pimentel G, Mokashi VP, Bishop-Lilly KA. Bioinformatic Characterization of Mosquito Viromes within the Eastern United States and Puerto Rico: Discovery of Novel Viruses. Evol Bioinform Online 2016; 12:1-12. [PMID: 27346944 PMCID: PMC4912310 DOI: 10.4137/ebo.s38518] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/01/2016] [Accepted: 05/01/2016] [Indexed: 12/14/2022] Open
Abstract
Mosquitoes are efficient, militarily relevant vectors of infectious disease pathogens, including many RNA viruses. The vast majority of all viruses are thought to be undiscovered. Accordingly, recent studies have shown that viruses discovered in insects are very divergent from known pathogens and that many of them lack appropriate reference sequences in the public databases. Given that the majority of viruses are likely still undiscovered, environ mental sampling stands to provide much needed reference samples as well as genetic sequences for comparison. In this study, we sought to determine whether samples of mosquitoes collected from different sites (the Caribbean and locations on the US East Coast) could be differentiated using metagenomic analysis of the RNA viral fraction. We report here distinct virome profiles, even from samples collected short distances apart. In addition to profiling the previously known viruses from these samples, we detected a number of viruses that have been previously undiscovered.
Collapse
Affiliation(s)
- Kenneth G Frey
- Naval Medical Research Center - Frederick, Fort Detrick, MD, USA.; Henry M. Jackson Foundation, Bethesda, MD, USA
| | - Tara Biser
- Naval Medical Research Center - Frederick, Fort Detrick, MD, USA.; Hood College, Frederick, MD, USA
| | - Theron Hamilton
- Naval Medical Research Center - Frederick, Fort Detrick, MD, USA
| | | | | | | | - Kimberly A Bishop-Lilly
- Naval Medical Research Center - Frederick, Fort Detrick, MD, USA.; Henry M. Jackson Foundation, Bethesda, MD, USA
| |
Collapse
|