1
|
Song BH, Yun SI, Goldhardt JL, Kim J, Lee YM. Key virulence factors responsible for differences in pathogenicity between clinically proven live-attenuated Japanese encephalitis vaccine SA14-14-2 and its pre-attenuated highly virulent parent SA14. PLoS Pathog 2025; 21:e1012844. [PMID: 39775684 PMCID: PMC11741592 DOI: 10.1371/journal.ppat.1012844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 01/17/2025] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Japanese encephalitis virus (JEV), a neuroinvasive and neurovirulent orthoflavivirus, can be prevented in humans with the SA14-14-2 vaccine, a live-attenuated version derived from the wild-type SA14 strain. To determine the viral factors responsible for the differences in pathogenicity between SA14 and SA14-14-2, we initially established a reverse genetics system that includes a pair of full-length infectious cDNAs for both strains. Using this cDNA pair, we then systematically exchanged genomic regions between SA14 and SA14-14-2 to generate 20 chimeric viruses and evaluated their replication capability in cell culture and their pathogenic potential in mice. Our findings revealed the following: (i) The single envelope (E) protein of SA14-14-2, which contains nine mutations (eight in the ectodomain and one in the stem region), is both necessary and sufficient to render SA14 non-neuroinvasive and non-neurovirulent. (ii) Conversely, the E protein of SA14 alone is necessary for SA14-14-2 to become highly neurovirulent, but it is not sufficient to make it highly neuroinvasive. (iii) The limited neuroinvasiveness of an SA14-14-2 derivative that contains the E gene of SA14 significantly increases (approaching that of the wild-type strain) when two viral nonstructural proteins are replaced by their counterparts from SA14: (a) NS1/1', which has four mutations on the external surface of the core β-ladder domain; and (b) NS2A, which has two mutations in the N-terminal region, including two non-transmembrane α-helices. In line with their roles in viral pathogenicity, the E, NS1/1', and NS2A genes all contribute to the enhanced spread of the virus in cell culture. Collectively, our data reveal for the first time that the E protein of JEV has a dual function: It is the master regulator of viral neurovirulence and also the primary initiator of viral neuroinvasion. After the initial E-mediated neuroinvasion, the NS1/1' and NS2A proteins act as secondary promoters, further amplifying viral neuroinvasiveness.
Collapse
Affiliation(s)
- Byung-Hak Song
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Joseph L Goldhardt
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Jiyoun Kim
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, Utah, United States of America
| |
Collapse
|
2
|
Zhang H, Li D, Zheng J, Zhang Y, Li Z, Liu K, Li B, Qiu Y, Shao D, Wai S, Wei J, Ma Z, Liu J. Genetic Characterization of Japanese Encephalitis Virus Isolates Circulating in Mosquitoes from Pig and Sheep Farms in Shanghai, China. Animals (Basel) 2024; 14:3653. [PMID: 39765557 PMCID: PMC11672859 DOI: 10.3390/ani14243653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Japanese encephalitis virus (JEV) is regarded as an emerging and reemerging pathogen that is a primary cause of viral encephalitis in humans. However, there is a scarcity of research on the prevalence of JEV genotypes across the different mosquito species in Shanghai. In this study, the diversity of mosquito species and prevalence of JEV in pig and sheep farms in Shanghai were surveyed in 2022. A total of 24,073 mosquitoes, belonging to four genera and seven species, were collected from pig and sheep enclosures in the Chongming, Jiading, Pudong, Fengxian, and Jinshan Districts of Shanghai. Culex tritaeniorhynchus was identified as the predominant species (87.09%, 20,965/24,073) with the highest JEV detection rate. Six strains of JEV were isolated in this study, and genetic analysis revealed that five strains (SH22-M5, SH22-M9, SH22-M14, SH22-M41, and SH22-M52) belonged to genotype I (GI), while one strain (SH22-M1) was classified as genotype III (GIII). The sequence homology was highest between SH22-M9 and SD-1 (99.87%) and between SH22-M14 and SD12 (99.53%). SH22-M5, SH22-M41, and SH22-M52 shared the highest sequence homology with the HEN07011 strain (99.73-99.93%). SH22-M1 was most closely related to SH18, with a sequence homology of 99.8%. Additionally, for the first time, the GI JEV strain was isolated from mosquitoes in sheep sties in this study. The findings highlight the necessity of enhancing the surveillance of JEV in pigs and other livestock farms, including sheep, as well as monitoring the mosquitoes present in these environments. It is recommended that livestock farming areas be kept separate from human habitation to reduce the risk of JEV infections in humans.
Collapse
Affiliation(s)
- Hailong Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Dan Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jiayang Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yan Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Soesoe Wai
- Department of Veterinary Public Health, University of Veterinary Science, Yezin 15013, Myanmar
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| |
Collapse
|
3
|
Kim WJ, Lee AR, Hong SY, Kim SH, Kim JD, Kim SJ, Oh JS, Shim SM, Seo SU. Characterization of a Small Plaque Variant Derived from Genotype V Japanese Encephalitis Virus Clinical Isolate K15P38. J Microbiol Biotechnol 2024; 34:1592-1598. [PMID: 39081248 PMCID: PMC11380520 DOI: 10.4014/jmb.2404.04054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 08/29/2024]
Abstract
Genotype V (GV) Japanese encephalitis virus (JEV) has been predominantly reported in the Republic of Korea (ROK) since 2010. GV JEV exhibits higher virulence and distinct antigenicity compared to other genotypes, which results in reduced efficacy of existing vaccines. Research on GV JEV is essential to minimize its clinical impact, but the only available clinical strain in the ROK is K15P38, isolated from the cerebrospinal fluid of a patient in 2015. We obtained this virus from National Culture Collection for Pathogens (NCCP) and isolated a variant forming small plaques during our research. We identified that this variant has one amino acid substitution each in the PrM and NS5 proteins compared to the reported K15P38. Additionally, we confirmed that this virus exhibits delayed propagation in vitro and an attenuated phenotype in mice. The isolation of this variant is a critical reference for researchers intending to study K15P38 obtained from NCCP, and the mutations in the small plaque-forming virus are expected to be useful for studying the pathology of GV JEV.
Collapse
Affiliation(s)
- Woo-Jin Kim
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ah-Ra Lee
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Su-Yeon Hong
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sang-Hyun Kim
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jae-Deog Kim
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sung Jae Kim
- Vaxdigm Co., Ltd., Seoul 04798, Republic of Korea
- Bio & Living Engineering Major, Global Leaders College, Yonsei University, Seoul 03722, Republic of Korea
| | - Jae Sang Oh
- Department of Neurosurgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sang-Mu Shim
- Division of Acute Viral Disease, Center for Emerging Virus Research, National Institute of Infectious Diseases, Korea National Institute of Health, Cheongju 28159, Republic of Korea
| | - Sang-Uk Seo
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
4
|
Tan N, Chen C, Ren Y, Huang R, Zhu Z, Xu K, Yang X, Yang J, Yuan L. Nucleotide at position 66 of NS2A in Japanese encephalitis virus is associated with the virulence and proliferation of virus. Virus Genes 2024; 60:9-17. [PMID: 37938470 DOI: 10.1007/s11262-023-02036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/10/2023] [Indexed: 11/09/2023]
Abstract
Most wild strains of Japanese encephalitis virus (JEV) produce NS1' protein, which plays an important role in viral infection and immune escape. The G66A nucleotide mutation in NS2A gene of the wild strain SA14 prevented the ribosomal frameshift that prevented the production of NS1' protein, thus reduced the virulence. In this study, the 66th nucleotide of the NS2A gene of SA14 was mutated into A, U or C, respectively. Both the G66U and G66C mutations cause the E22D mutation of the NS2A protein. Subsequently, the expression of NS1' protein, plaque size, replication ability, and virulence to mice of the three mutant strains were examined. The results showed that the three mutant viruses could not express NS1' protein, and their proliferation ability in nerve cells and virulence to mice were significantly reduced. In addition, the SA14(G66C) was less virulent than the other two mutated viruses. Our results indicate that only when G is the 66th nucleotide of NS2A, the JEV can produce NS1' protein, which affects the virulence.
Collapse
Affiliation(s)
- Ning Tan
- Department of Pathogenic Biology, School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Chen Chen
- Department of Pathogenic Biology, School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Yang Ren
- Department of Laboratory Medicine, Jintang First People's Hospital, West China Hospital Sichuan University JinTang Hospital, Chengdu, 610400, China
| | - Rong Huang
- Department of Pathogenic Biology, School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Zhuang Zhu
- Department of Pathogenic Biology, School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Kui Xu
- Department of Pathogenic Biology, School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Xiaoyao Yang
- Department of Pathogenic Biology, School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Jian Yang
- Department of Pathogenic Biology, School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Lei Yuan
- Department of Pathogenic Biology, School of Basic Medical Sciences and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China.
| |
Collapse
|
5
|
Dong N, Zhang X, Zhang H, Zheng J, Qiu Y, Li Z, Li B, Liu K, Shao D, Ma Z, Wei J. Genotype Change in Circulating JEV Strains in Fujian Province, China. Viruses 2023; 15:1822. [PMID: 37766229 PMCID: PMC10536422 DOI: 10.3390/v15091822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Japanese encephalitis (JE), found in pigs, is a serious mosquito-borne zoonotic infectious disease caused by the Japanese encephalitis virus (JEV). JEV is maintained in an enzootic cycle between mosquitoes and amplifying vertebrate hosts, mainly pigs and wading birds. It is transmitted to humans through the bite of an infected mosquito, allowing the pathogen to spread and cause disease epidemics. However, there is little research on JEV genotype variation in mosquitoes and pigs in Fujian province. Previous studies have shown that the main epidemic strain of JEV in Fujian Province is genotype III. In this study, a survey of mosquito species diversity in pig farms and molecular evolutionary analyses of JEV were conducted in Fujian, China, in the summer of 2019. A total of 19,177 mosquitoes were collected at four sites by UV trap. Four genera were identified, of which the Culex tritaeniorhynchus was the most common mosquito species, accounting for 76.4% of the total (14,651/19,177). Anopheles sinensi (19.25%, 3691/19,177) was the second largest species. High mosquito infection rateswere an important factor in the outbreak. The captured mosquito samples were milled and screened with JEV-specific primers. Five viruses were isolated, FJ1901, FJ1902, FJ1903, FJ1904, and FJ1905. Genetic affinity was determined by analyzing the envelope (E) gene variants. The results showed that they are JEV gene type I and most closely related to the strains SH-53 and SD0810. In this study, it was found through genetic evolution analysis that the main epidemic strain of JE in pig farms changed from gene type III to gene type I. Compared with the SH-53 and SD0810 strains, we found no change in key sites related to antigenic activity and neurovirulence of JEV in Fujian JEV and pig mosquito strains, respectively. The results of the study provide basic data for analyzing the genotypic shift of JEV in Fujian Province and support the prevention and control of JEV.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (N.D.); (X.Z.); (H.Z.); (J.Z.); (Y.Q.); (Z.L.); (B.L.); (K.L.); (D.S.)
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (N.D.); (X.Z.); (H.Z.); (J.Z.); (Y.Q.); (Z.L.); (B.L.); (K.L.); (D.S.)
| |
Collapse
|
6
|
Virulence and Cross-Protection Conferred by an Attenuated Genotype I-Based Chimeric Japanese Encephalitis Virus Strain Harboring the E Protein of Genotype V in Mice. Microbiol Spectr 2022; 10:e0199022. [PMID: 36301111 PMCID: PMC9769820 DOI: 10.1128/spectrum.01990-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Japanese encephalitis virus (JEV) genotype V (GV) emerged in China in 2009, then South Korea, and has since spread to other regions in Asia and beyond, raising concern about its pathogenicity and the cross-protection offered by JEV vaccines against different genotypes. In this study, we replaced the structural proteins (C-prM-E) of an attenuated genotype I (GI) SD12-F120 strain with those of a virulent GV XZ0934 strain to construct a recombinant chimeric GI-GV JEV (JEV-GI/V) strain to determine the role of the structural proteins in virulence and cross-protection. The recombinant chimeric virus was highly neurovirulent and neuroinvasive in mice. This demonstrated the determinant role of the structural proteins in the virulence of the GV strain. Intracerebral or intraperitoneal inoculation of mice with JEV-GI/V-E5 harboring a combination of substitutions (N47K, L107F, E138K, H123R, and I176R) in E protein, but not mutants containing single substitution of these residues, resulted in decreased or disappeared mortality, suggesting that these residues synergistically, but not individually, played a role in determining the neurovirulence and neuroinvasiveness of the GV strain. Immunization of mice with attenuated strain JEV-GI/V-E5 provided complete protection and induced high neutralizing antibody titers against parental strain JEV-GI/V, but partial cross-protection and low cross-neutralizing antibodies titers against the heterologous GI and GIII strains in mice, suggesting the reduced cross-protection of JEV vaccines among different genotypes. Overall, these findings suggested the essential role of the structural proteins in determination of the virulence of GV strain, and highlighted the need for a novel vaccine against this newly emerged strain. IMPORTANCE The GV JEV showed an increase in epidemic areas, which exhibited higher pathogenicity in mice than the prevalent GI and GIII strains. We replaced a recombinant chimeric GI-GV JEV (JEV-GI/V) strain to determine the role of the structural proteins in virulence and cross-protection. It was found that the essential role of the structural proteins is to determinethe virulence of the GV strain. It is also suggested that there is reduced cross-protection of JEV vaccines among different genotypes, which provides basic data for subsequent JEV prevention, control, and new vaccine development.
Collapse
|
7
|
Sun Y, Ding H, Zhao F, Yan Q, Li Y, Niu X, Zeng W, Wu K, Ling B, Fan S, Zhao M, Yi L, Chen J. Genomic Characteristics and E Protein Bioinformatics Analysis of JEV Isolates from South China from 2011 to 2018. Vaccines (Basel) 2022; 10:vaccines10081303. [PMID: 36016192 PMCID: PMC9412759 DOI: 10.3390/vaccines10081303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Japanese encephalitis is a mosquito-borne zoonotic epidemic caused by the Japanese encephalitis virus (JEV). JEV is not only the leading cause of Asian viral encephalitis, but also one of the leading causes of viral encephalitis worldwide. To understand the genetic evolution and E protein characteristics of JEV, 263 suspected porcine JE samples collected from South China from 2011 to 2018 were inspected. It was found that 78 aborted porcine fetuses were JEV-nucleic-acid-positive, with a positive rate of 29.7%. Furthermore, four JEV variants were isolated from JEV-nucleic-acid-positive materials, namely, CH/GD2011/2011, CH/GD2014/2014, CH/GD2015/2015, and CH/GD2018/2018. The cell culture and virus titer determination of four JEV isolates showed that four JEV isolates could proliferate stably in Vero cells, and the virus titer was as high as 108.5 TCID 50/mL. The whole-genome sequences of four JEV isolates were sequenced. Based on the phylogenetic analysis of the JEV E gene and whole genome, it was found that CH/GD2011/2011 and CH/GD2015/2015 belonged to the GIII type, while CH/GD2014/2014 and CH/GD2018/2018 belonged to the GI type, which was significantly different from that of the JEV classical strain CH/BJ-1/1995. Bioinformatics tools were used to analyze the E protein phosphorylation site, glycosylation site, B cell antigen epitope, and modeled 3D structures of E protein in four JEV isolates. The analysis of the prevalence of JEV and the biological function of E protein can provide a theoretical basis for the prevention and control of JEV and the design of antiviral drugs.
Collapse
Affiliation(s)
- Yawei Sun
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Hongxing Ding
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Feifan Zhao
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Quanhui Yan
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Yuwan Li
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xinni Niu
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Weijun Zeng
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Keke Wu
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Bing Ling
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Shuangqi Fan
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Mingqiu Zhao
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Lin Yi
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
| | - Jinding Chen
- Department of Microbiology and Immunology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Correspondence: ; Fax: +86-20-8528-0245
| |
Collapse
|
8
|
Development of antiviral carbon quantum dots that target the Japanese encephalitis virus envelope protein. J Biol Chem 2022; 298:101957. [PMID: 35452675 PMCID: PMC9123278 DOI: 10.1016/j.jbc.2022.101957] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/23/2022] Open
Abstract
Japanese encephalitis is a mosquito-borne disease caused by the Japanese encephalitis virus (JEV) that is prevalent in Asia and the Western Pacific. Currently, there is no effective treatment for Japanese encephalitis. Curcumin (Cur) is a compound extracted from the roots of Curcuma longa, and many studies have reported its antiviral and anti-inflammatory activities. However, the high cytotoxicity and very low solubility of Cur limit its biomedical applications. In this study, Cur carbon quantum dots (Cur-CQDs) were synthesized by mild pyrolysis-induced polymerization and carbonization, leading to higher water solubility and lower cytotoxicity, as well as superior antiviral activity against JEV infection. We found that Cur-CQDs effectively bound to the E protein of JEV, preventing viral entry into the host cells. In addition, after continued treatment of JEV with Cur-CQDs, a mutant strain of JEV was evolved that did not support binding of Cur-CQDs to the JEV envelope. Using transmission electron microscopy, biolayer interferometry, and molecular docking analysis, we revealed that the S123R and K312R mutations in the E protein play a key role in binding Cur-CQDs. The S123 and K312 residues are located in structural domains II and III of the E protein, respectively, and are responsible for binding to receptors on and fusing with the cell membrane. Taken together, our results suggest that the E protein of flaviviruses represents a potential target for the development of CQD-based inhibitors to prevent or treat viral infections.
Collapse
|
9
|
Tajima S, Taniguchi S, Nakayama E, Maeki T, Inagaki T, Saijo M, Lim CK. Immunogenicity and Protective Ability of Genotype I-Based Recombinant Japanese Encephalitis Virus (JEV) with Attenuation Mutations in E Protein against Genotype V JEV. Vaccines (Basel) 2021; 9:vaccines9101077. [PMID: 34696184 PMCID: PMC8538582 DOI: 10.3390/vaccines9101077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Genotype V (GV) Japanese encephalitis virus (JEV) has emerged in Korea and China since 2009. Recent findings suggest that current Japanese encephalitis (JE) vaccines may reduce the ability to induce neutralizing antibodies against GV JEV compared to other genotypes. This study sought to produce a novel live attenuated JE vaccine with a high efficacy against GV JEV. Genotype I (GI)-GV intertypic recombinant strain rJEV-EXZ0934-M41 (EXZ0934), in which the E region of the GI Mie/41/2002 strain was replaced with that of GV strain XZ0934, was introduced with the same 10 attenuation substitutions in the E region found in the live attenuated JE vaccine strain SA 14-14-2 to produce a novel mutant virus rJEV-EXZ/SA14142m-M41 (EXZ/SA14142m). In addition, another mutant rJEV-EM41/SA14142m-M41 (EM41/SA14142m), which has the same substitutions in the Mie/41/2002, was also produced. The neuroinvasiveness and neurovirulence of the two mutant viruses were significantly reduced in mice. The mutant viruses induced neutralizing antibodies against GV JEV in mice. The growth of EXZ/SA14142m was lower than that of EM41/SA14142m. In mouse challenge tests, a single inoculation with a high dose of the mutants blocked lethal GV JEV infections; however, the protective efficacy of EXZ/SA14142m was weaker than that of EM41/SA14142m in low-dose inoculations. The lower protection potency of EXZ/SA14142m may be ascribed to the reduced growth ability caused by the attenuation mutations.
Collapse
|
10
|
Substantial Attenuation of Virulence of Tembusu Virus Strain PS Is Determined by an Arginine at Residue 304 of the Envelope Protein. J Virol 2021; 95:JVI.02331-20. [PMID: 33328312 DOI: 10.1128/jvi.02331-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
The Tembusu virus (TMUV) PS strain, derived by several passages and plaque purifications in BHK-21 cells, displays markedly lower virulence in Pekin ducklings relative to a natural isolate of TMUV, but the potential virulence determinants and the in vivo mechanisms for substantial virulence attenuation of the passage variant remain unknown. Here, we constructed a series of chimeric and mutant viruses and assessed their virulence using a 2-day-old Pekin duckling model. We showed that residue 304 in the envelope (E) protein is the molecular determinant of TMUV virulence. Further investigations with mutant and parental viruses demonstrated that acquisition of positive charges at E protein residue 304 plays a critical role in substantial attenuation of neurovirulence and neuroinvasiveness, which is linked to enhanced binding affinity for glycosaminoglycans (GAGs). In Pekin ducklings infected by subcutaneous inoculation, an Arg at residue 304 in the E protein was shown to contribute to more rapid virus clearance from the circulation, markedly reduced viremia, and significantly decreased viral growth in the extraneural tissues and the central nervous system, relative to a Met at the corresponding residue. These findings suggest that the in vivo mechanism of virulence attenuation of the TMUV passage variant closely resembles that proposed previously for GAG-binding variants of other flaviviruses. Overall, our study provides insight into the molecular basis of TMUV virulence and the in vivo consequences of acquisition of a GAG-binding determinant at residue 304 in the E protein of TMUV.IMPORTANCE TMUV-related disease emerged in 2010 and has a significant economic impact on the duck industry. Although the disease was originally recognized to affect adult ducks, increasing evidence has shown that TMUV also causes severe disease of young ducklings. It is, therefore, essential to investigate the pathogenesis of TMUV infection in a young duckling model. The significance of our studies is in identifying E protein residue Arg304 as the molecular determinant for TMUV virulence and in clarifying the crucial role of positive charges at E protein residue 304 in virulence attenuation of a TMUV passage variant. These data will greatly enhance our understanding of the pathogenesis of TMUV infection in ducklings and have implications for development of a safe and efficient vaccine.
Collapse
|
11
|
Hameed M, Khan S, Xu J, Zhang J, Wang X, Di D, Chen Z, Naveed Anwar M, Wahaab A, Ma X, Nawaz M, Liu K, Li B, Shao D, Qiu Y, Wei J, Ma Z. Detection of Japanese encephalitis virus in mosquitoes from Xinjiang during next-generation sequencing arboviral surveillance. Transbound Emerg Dis 2020; 68:467-476. [PMID: 32614516 DOI: 10.1111/tbed.13697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 01/10/2023]
Abstract
A total of 548 mosquitoes were collected from different animal farms located near to highly populated cities in Xinjiang and were subjected to metagenomic next-generation sequencing (mNGS). The mNGS data demonstrated that 18,842 (XJ1 strain) and 1,077 (XJ2 strain) of Japanese encephalitis virus (JEV)-related reads were detected in XJ1 and XJ2 mosquito samples collected from Wushi and Wensu counties of Aksu area, which accounted for 0.032% and 0.006% of the total clean reads generated from XJ1 and XJ2 samples, respectively. The Bayesian molecular phylogenetic analysis suggested that XJ1 and XJ2 strains belonged to JEV genotype III and were clustered with JEV strains isolated in China. Notably, Bayesian molecular time line phylogeny revealed that XJ1 strain shared its MRCA with JEV GSS strain about 67 YA, suggesting that XJ1 strain likely originated from linages closely related to GSS strain and spread to Xinjiang later. Overall, these findings suggest that Xinjiang was probably not free from JEV, and thus, a further surveillance of JEV is required in Xinjiang.
Collapse
Affiliation(s)
- Muddassar Hameed
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Sawar Khan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Jinpeng Xu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Junjie Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Xin Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Di Di
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Zheng Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China
| | - Muhammad Naveed Anwar
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Abdul Wahaab
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Xiaochun Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Mohsin Nawaz
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| |
Collapse
|
12
|
Anwar MN, Wang X, Hameed M, Wahaab A, Li C, Sharma M, Pang L, Malik MI, Liu K, Li B, Qiu Y, Wei J, Ma Z. Phenotypic and Genotypic Comparison of a Live-Attenuated Genotype I Japanese Encephalitis Virus SD12-F120 Strain with Its Virulent Parental SD12 Strain. Viruses 2020; 12:v12050552. [PMID: 32429445 PMCID: PMC7290960 DOI: 10.3390/v12050552] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
The phenotypic and genotypic characteristics of a live-attenuated genotype I (GI) strain (SD12-F120) of Japanese encephalitis virus (JEV) were compared with its virulent parental SD12 strain to gain an insight into the genetic changes acquired during the attenuation process. SD12-F120 formed smaller plaque on BHK-21 cells and showed reduced replication in mouse brains compared with SD12. Mice inoculated with SD12-F120 via either intraperitoneal or intracerebral route showed no clinical symptoms, indicating a highly attenuated phenotype in terms of both neuroinvasiveness and neurovirulence. SD12-F120 harbored 29 nucleotide variations compared with SD12, of which 20 were considered silent nucleotide mutations, while nine resulted in eight amino acid substitutions. Comparison of the amino acid variations of SD12-F120 vs. SD12 pair with those from other four isogenic pairs of the attenuated and their virulent parental strains revealed that the variations at E138 and E176 positions of E protein were identified in four and three pairs, respectively, while the remaining amino acid variations were almost unique to their respective strain pairs. These observations suggest that the genetic changes acquired during the attenuation process were likely to be strain-specific and that the mechanisms associated with JEV attenuation/virulence are complicated.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jianchao Wei
- Correspondence: (J.W.); (Z.M.); Tel.: +86-21-3468-3635 (J.W.); +86-21-34293139 (Z.M.); Fax: +86-21-54081818 (J.W. & Z.M.)
| | - Zhiyong Ma
- Correspondence: (J.W.); (Z.M.); Tel.: +86-21-3468-3635 (J.W.); +86-21-34293139 (Z.M.); Fax: +86-21-54081818 (J.W. & Z.M.)
| |
Collapse
|
13
|
Tajima S, Shibasaki KI, Taniguchi S, Nakayama E, Maeki T, Lim CK, Saijo M. E and prM proteins of genotype V Japanese encephalitis virus are required for its increased virulence in mice. Heliyon 2019; 5:e02882. [PMID: 31799464 PMCID: PMC6881638 DOI: 10.1016/j.heliyon.2019.e02882] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/01/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
We previously showed that the Japanese encephalitis virus (JEV) genotype V (GV) strain Muar exhibits significantly higher virulence in mice than the genotype I (GI) JEV strain Mie/41/2002. In this study, we attempted to identify the region responsible for the increased virulence of GV JEV using recombinant intertypic and single mutant JEVs. Intertypic viruses containing the GV E region in the Mie/41/2002 backbone showed increased pathogenicity in mice. The amino acid at position 123 in the E protein (E123) of the Mie/41/2002 and GV JEVs was serine and histidine, respectively. A serine-to-histidine substitution at E123 of the Mie/41/2002 increased its virulence. However, histidine-to-serine changes at E123 in the intertypic mutants with the GV E region remained highly virulent. GV Muar prM-bearing mutants were also highly pathogenic in mice. Our results suggest that the E and prM proteins of GV JEV are responsible for the highly virulent characteristics of GV JEV.
Collapse
Affiliation(s)
- Shigeru Tajima
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan
| | - Ken-Ichi Shibasaki
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan
| | - Satoshi Taniguchi
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan
| | - Eri Nakayama
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan
| | - Takahiro Maeki
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan
| | - Chang-Kweng Lim
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan
| | - Masayuki Saijo
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640, Japan
| |
Collapse
|
14
|
Chen C, Zhao T, Jiang Y, Li C, Wang G, Gao J, Dong Y, Xing D, Guo X, Zhao T. Vector Mosquito Ecology and Japanese Encephalitis Virus Genotype III Strain Detection from Culex tritaeniorhynchus and Pig in Huaihua, China. Vector Borne Zoonotic Dis 2019; 19:933-944. [PMID: 31184992 DOI: 10.1089/vbz.2019.2453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Japanese encephalitis virus (JEV), a mosquito-borne zoonotic pathogen, is the major cause of viral encephalitis worldwide. An investigation of mosquito species diversity, JEV infection rate, and seasonal population fluctuations of Culex tritaeniorhynchus in Huaihua County, Hunan Province, China, revealed the distribution of vector mosquito populations and genotypes and molecular characteristics of current, common JEV strains in this region. Research on mosquito species diversity in different habitats in Huaihua revealed that local community composition was relatively simple, including five species from four genera (two Culex spp., one Anopheles sp., one Aedes sp., and one Armigeres sp.). Cx. tritaeniorhynchus was clearly the dominant species comprising 94.2-98.6% of all specimens and was always the most common species captured in paddy fields, pigpens, and human dwellings. The seasonal abundance of Cx. tritaeniorhynchus was relatively even, with a single seasonal peak in late August. Two Huaihua JEV strains isolated from the mosquito and pig were highly congruent. The genetic affinities were determined by analyzing capsid/premembrane (C/PrM) and envelope (E) gene variation. The results showed that they were of genotype III and most closely related to the live, attenuated vaccine strains SAl4-14-2 and SA14 and JaGAr01. The Huaihua E protein shares high similarity (mosquito 98.8% and pig 97.6%) at the nucleotide level with the SA14-14-2 vaccine. Although we found that the E gene sequences of the Huaihua JEV mosquito strain and pig strain have 11 and 15 amino acid site substitutions compared with the SAl4-14-2 vaccine, key sites that associated with JEV's antigenic activity and neurovirulence were unchanged. The SA14-14-2 vaccine should therefore be effective in preventing JEV infection in the Huaihua region.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,PLA Rocket Army Characteristic Medical Center, Beijing, China
| | - Teng Zhao
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuting Jiang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Chunxiao Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Gang Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jian Gao
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yande Dong
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dan Xing
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaoxia Guo
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tongyan Zhao
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
15
|
Chimeric Japanese Encephalitis Virus SA14/SA14-14-2 Was Virulence Attenuated and Protected the Challenge of Wild-Type Strain SA14. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2019; 2019:9179308. [PMID: 30944684 PMCID: PMC6421771 DOI: 10.1155/2019/9179308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 12/05/2018] [Accepted: 01/10/2019] [Indexed: 12/28/2022]
Abstract
The attenuated Japanese encephalitis virus (JEV) live vaccine SA14-14-2 prepared from wild-type (WT) strain SA14 was licensed to prevent Japanese encephalitis (JE) in 1989 in China. Many studies showed that the premembrane (prM) and envelope (E) protein were the crucial determinant of virulence and immunogenicity of JEV. So we are interested in whether the substitution of prM/E of JEV WT SA14 with those of vaccine strain SA14-14-2 could decrease neurovirulence and prevent the challenge of JEV WT SA14. Molecular clone technique was used to replace the prM/E gene of JEV WT strain SA14 with those of vaccine strain SA14-14-2 to construct the infectious clone of chimeric virus (designated JEV SA14/SA14-14-2), the chimeric virus recovered from BHK21 cells upon electrotransfection of RNA into BHK21 cells. The results showed that the recovered chimeric virus was highly attenuated in mice, and a single immunization elicited strong protective immunity in a dose-dependent manner. This study increases our understanding of the molecular mechanisms of neurovirulence attenuation and immunogenicity of JEV.
Collapse
|