1
|
Varsani A, Harrach B, Roumagnac P, Benkő M, Breitbart M, Delwart E, Franzo G, Kazlauskas D, Rosario K, Segalés J, Dunay E, Rukundo J, Goldberg TL, Fehér E, Kaszab E, Bányai K, Krupovic M. 2024 taxonomy update for the family Circoviridae. Arch Virol 2024; 169:176. [PMID: 39143430 DOI: 10.1007/s00705-024-06107-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Circovirids have a circular single-stranded DNA genome packed into a small icosahedral capsid. They are classified within two genera, Circovirus and Cyclovirus, in the family Circoviridae (phylum Cressdnaviricota, class Arfiviricetes, order Cirlivirales). Over the last five years, a number of new circovirids have been identified, and, as a result, 54 new species have been created for their classification based on the previously established species demarcation criterion, namely, that viruses classified into different species share less than 80% genome-wide pairwise sequence identity. Of note, one of the newly created species includes a circovirus that was identified in human hepatocytes and suspected of causing liver damage. Furthermore, to comply with binomial species nomenclature, all new and previously recognized species have been (re)named in binomial format with a freeform epithet. Here, we provide a summary of the properties of circovirid genomes and their classification as of June 2024 (65 species in the genus Circovirus and 90 species in the genus Cyclovirus). Finally, we provide reference datasets of the nucleotide and amino acid sequences representing each of the officially recognized circovirid species to facilitate further classification of newly discovered members of the Circoviridae.
Collapse
Affiliation(s)
- Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA.
- Structural Biology Research Unit, Department of Integrative, Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| | - Balázs Harrach
- HUN-REN Veterinary Medical Research Institute, Budapest, 1143, Hungary
| | - Philippe Roumagnac
- CIRAD-UMR PHIM, Campus International de Baillarguet, 34398, Montpellier, France
| | - Mária Benkő
- HUN-REN Veterinary Medical Research Institute, Budapest, 1143, Hungary
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL, 33701, USA
| | - Eric Delwart
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94118, USA
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), Università di Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Darius Kazlauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, 10257, Vilnius, Lithuania
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD, 20894, USA
| | - Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, FL, 33701, USA
| | - Joaquim Segalés
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
| | - Emily Dunay
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, WI, USA
| | - Joshua Rukundo
- Ngamba Island Chimpanzee Sanctuary/Chimpanzee Trust, Entebbe, Uganda
| | - Tony L Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, WI, USA
| | - Enikő Fehér
- HUN-REN Veterinary Medical Research Institute, Budapest, 1143, Hungary
| | - Eszter Kaszab
- HUN-REN Veterinary Medical Research Institute, Budapest, 1143, Hungary
| | - Krisztián Bányai
- HUN-REN Veterinary Medical Research Institute, Budapest, 1143, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078, Budapest, Hungary
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, 25 rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
2
|
Castro-Scholten S, Vasinioti VI, Caballero-Gómez J, García-Bocanegra I, Pellegrini F, Salvaggiulo A, Odigie AE, Diakoudi G, Camero M, Decaro N, Martella V, Lanave G. Identification and characterization of a novel circovirus in Iberian lynx in Spain. Res Vet Sci 2024; 176:105336. [PMID: 38880017 DOI: 10.1016/j.rvsc.2024.105336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024]
Abstract
Circoviruses cause severe disease in pigs and birds. Canine circovirus has thus far only been associated with respiratory and gastrointestinal disorders and systemic disease in dogs. The Iberian lynx (Lynx pardinus) is one of the most endangered carnivores in Europe and the most endangered felid worldwide. Exploring the virome of these animals may be important in terms of virus discovery and assessing the interspecies-circulation of viruses from related carnivores. In this study, 162 spleen samples from Iberian lynx were screened for CRESS DNA viruses. Overall, 11 (6.8%) of 162 samples tested positive using a consensus PCR. Partial rep sequences were tightly related to each other (96.6-100%). Specific molecular protocols were designed on the partial rep sequences of the novel virus, Iberian lynx-associated circovirus-1 (ILCV-1). By screening a subset of 45 spleen samples, the infection rate of ILCV-1 in Iberian lynxes was 57.8% (26/45). ILCV-1 strains formed a separate cluster intermingled with bat, rodent, mongoose, and felid circoviruses. The genome of the novel virus displayed the highest nucleotide identity (64.3-65.3%) to mongoose circoviruses, thus representing a novel candidate circovirus species. The detection of these viruses in the spleen tissues could suggest systemic infection in the animal host. Overall, these findings suggest that this novel circovirus is common in the Iberian lynx. Further studies are warranted to assess the possible health implications of ILCV-1 in this endangered species.
Collapse
Affiliation(s)
- Sabrina Castro-Scholten
- Animal Health and Zoonosis Research Group (GISAZ), Department of Animal Health, University of Córdoba, Córdoba, Spain
| | | | - Javier Caballero-Gómez
- Animal Health and Zoonosis Research Group (GISAZ), Department of Animal Health, University of Córdoba, Córdoba, Spain; Infectious Diseases Unit, Maimonides Institute for Biomedical Research (IMIBIC), University Hospital Reina Sofía, University of Córdoba, Córdoba, Spain; CIBERINFEC, ISCIII - CIBER Infectious Diseases, Health Institute Carlos III, Madrid, Spain
| | - Ignacio García-Bocanegra
- Animal Health and Zoonosis Research Group (GISAZ), Department of Animal Health, University of Córdoba, Córdoba, Spain; CIBERINFEC, ISCIII - CIBER Infectious Diseases, Health Institute Carlos III, Madrid, Spain
| | - Francesco Pellegrini
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, Italy
| | - Anna Salvaggiulo
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, Italy
| | | | - Georgia Diakoudi
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, Italy
| | - Michele Camero
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, Italy
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, Italy; Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Bari, Italy.
| |
Collapse
|
3
|
Zhang J, Tang A, Jin T, Sun D, Guo F, Lei H, Lin L, Shu W, Yu P, Li X, Li B. A panoramic view of the virosphere in three wastewater treatment plants by integrating viral-like particle-concentrated and traditional non-concentrated metagenomic approaches. IMETA 2024; 3:e188. [PMID: 38898980 PMCID: PMC11183165 DOI: 10.1002/imt2.188] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 06/21/2024]
Abstract
Wastewater biotreatment systems harbor a rich diversity of microorganisms, and the effectiveness of biotreatment systems largely depends on the activity of these microorganisms. Specifically, viruses play a crucial role in altering microbial behavior and metabolic processes throughout their infection phases, an aspect that has recently attracted considerable interest. Two metagenomic approaches, viral-like particle-concentrated (VPC, representing free viral-like particles) and non-concentrated (NC, representing the cellular fraction), were employed to assess their efficacy in revealing virome characteristics, including taxonomy, diversity, host interactions, lifestyle, dynamics, and functional genes across processing units of three wastewater treatment plants (WWTPs). Our findings indicate that each approach offers unique insights into the viral community and functional composition. Their combined use proved effective in elucidating WWTP viromes. We identified nearly 50,000 viral contigs, with Cressdnaviricota and Uroviricota being the predominant phyla in the VPC and NC fractions, respectively. Notably, two pathogenic viral families, Asfarviridae and Adenoviridae, were commonly found in these WWTPs. We also observed significant differences in the viromes of WWTPs processing different types of wastewater. Additionally, various phage-derived auxiliary metabolic genes (AMGs) were active at the RNA level, contributing to the metabolism of the microbial community, particularly in carbon, sulfur, and phosphorus cycling. Moreover, we identified 29 virus-carried antibiotic resistance genes (ARGs) with potential for host transfer, highlighting the role of viruses in spreading ARGs in the environment. Overall, this study provides a detailed and integrated view of the virosphere in three WWTPs through the application of VPC and NC metagenomic approaches. Our findings enhance the understanding of viral communities, offering valuable insights for optimizing the operation and regulation of wastewater treatment systems.
Collapse
Affiliation(s)
- Jiayu Zhang
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
- Research Center for Eco‐Environmental EngineeringDongguan University of TechnologyDongguanChina
| | - Aixi Tang
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Tao Jin
- Guangdong Magigene Biotechnology Co., Ltd.ShenzhenChina
| | - Deshou Sun
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
- Shenzhen Tongchen Biotechnology Co., LimitedShenzhenChina
| | - Fangliang Guo
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Huaxin Lei
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Lin Lin
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Wensheng Shu
- Guangdong Magigene Biotechnology Co., Ltd.ShenzhenChina
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life SciencesSouth China Normal UniversityGuangzhouChina
| | - Pingfeng Yu
- College of Environmental and Resource SciencesZhejiang UniversityHangzhouChina
| | - Xiaoyan Li
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Bing Li
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| |
Collapse
|
4
|
Tarján ZL, Szekeres S, Vidovszky MZ, Egyed L. Detection of circovirus in free-ranging brown rats (Rattus norvegicus). INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105548. [PMID: 38176604 DOI: 10.1016/j.meegid.2023.105548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Accidentally found, two poisoned brown rats from Hungary were surveyed for presence of circoviral DNA, using specific nested primers, designed against the rep gene of the virus. Both specimens were positive. The whole genomes were amplified using inverse PCR based on the Rep sequence parts and sequenced by the primer walking method. Genomic analyses revealed that these novel rat viruses, together with tawny owl-associated circovirus reported by Italian researchers in 2022, are sequence variations of the same virus from genus Circovirus. In phylogenetic reconstructions, these circovirus strains detected from brown rats clustered closest to circoviruses derived from faeces samples of various predatory mammals. Molecular data as well as the phylogenetic analyses of the complete derived replication-associated protein and the capsid protein, as well as the prey preference of the host species of the recently described tawny owl-associated virus suggest that brown rat could be the evolutionary adapted host of the viruses described in this paper (brown rat circovirus types 1 and 2) and the previously reported tawny owl-associated virus. Possible pathogenic and zoonotic role of these viruses need further studies.
Collapse
Affiliation(s)
- Z L Tarján
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
| | - S Szekeres
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary; HUN-REN-UVMB Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, Budapest, Hungary
| | - M Z Vidovszky
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary
| | - L Egyed
- HUN-REN Veterinary Medical Research Institute, Budapest, Hungary.
| |
Collapse
|
5
|
Hess SC, Weiss KCB, Custer JM, Lewis JS, Kraberger S, Varsani A. Identification of small circular DNA viruses in coyote fecal samples from Arizona (USA). Arch Virol 2023; 169:12. [PMID: 38151635 DOI: 10.1007/s00705-023-05937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023]
Abstract
Coyotes (Canis latrans) have a broad geographic distribution across North and Central America. Despite their widespread presence in urban environments in the USA, there is limited information regarding viruses associated with coyotes in the USA and in particular the state of Arizona. To explore viruses associated with coyotes, particularly small DNA viruses, 44 scat samples were collected (April-June 2021 and November 2021-January 2022) along the Salt River near Phoenix, Arizona (USA), along 43 transects (500 m). From these samples, we identified 11 viral genomes: two novel circoviruses, six unclassified cressdnaviruses, and two anelloviruses. One of the circoviruses is most closely related to a circovirus sequence identified from an aerosolized dust sample in Arizona, USA. The second circovirus is most closely related to a rodent-associated circovirus and canine circovirus. Of the unclassified cressdnaviruses, three encode replication-associated proteins that are similar to those found in protists (Histomonas meleagridis and Monocercomonoides exilis), implying an evolutionary relationship with or a connection to similar unidentified protist hosts. The two anelloviruses are most closely related to those found in rodents, and this suggests a diet-related identification.
Collapse
Affiliation(s)
- Savage C Hess
- The School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Katherine C B Weiss
- The School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Joy M Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ, 85287, USA
| | - Jesse S Lewis
- College of Integrative Sciences and Arts, Arizona State University, Polytechnic Campus, 6073 South Backus Mall, Mesa, AZ, 85212, USA
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ, 85287, USA
| | - Arvind Varsani
- The School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA.
- The Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ, 85287, USA.
- Center of Evolution and Medicine, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA.
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, 7925, South Africa.
| |
Collapse
|
6
|
Vasinioti VI, Pellegrini F, Buonavoglia A, Capozza P, Cardone R, Diakoudi G, Desario C, Catella C, Vicenza T, Lucente MS, Di Martino B, Camero M, Elia G, Decaro N, Martella V, Lanave G. Investigating the genetic diversity of CRESS DNA viruses in cats identifies a novel feline circovirus and unveils exposure of cats to canine circovirus. Res Vet Sci 2023; 161:86-95. [PMID: 37327693 DOI: 10.1016/j.rvsc.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023]
Abstract
Circular replication-associated protein (Rep)-encoding single stranded (CRESS) DNA viruses include Circoviruses which have been found in several animal species and in human specimens. Circoviruses are associated with severe disease in pigs and birds and with respiratory and gastrointestinal disorders and systemic disease in dogs. In cats there are only a few anecdotical studies reporting CRESS DNA viruses. In this study, a total of 530 samples (361 sera, 131 stools, and 38 respiratory swabs) from cats, were screened for the presence of CRESS DNA viruses. Overall, 48 (9.0%) of 530 samples tested positive using a pan-Rep PCR. A total of 30 Rep sequences were obtained. Ten sequences of fecal origin were tightly related to each other (82.4-100% nt identity) and more distantly related to mongoose circoviruses (68.3 to 77.2% nt identity). At genome level these circoviruses displayed the highest nt identity (74.3-78.7%) to mongoose circoviruses thus representing a novel circovirus species. Circoviruses from different animal hosts (n = 12) and from humans (n = 8) were also identified. However, six Rep sequences were obtained from serum samples, including canine circoviruses, a human cyclovirus and human and fish-associated CRESS DNA viruses. The presence of these viruses in the sera would imply, to various extent, virus replication in the animal host, able to sustain viremia. Overall, these findings indicate a wide genetic diversity of CRESS DNA viruses in cats and warrant further investigations.
Collapse
Affiliation(s)
- Violetta Iris Vasinioti
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.p. per Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Francesco Pellegrini
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.p. per Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Alessio Buonavoglia
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.p. per Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Paolo Capozza
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.p. per Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Roberta Cardone
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.p. per Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Georgia Diakoudi
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.p. per Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Costantina Desario
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.p. per Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Cristiana Catella
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.p. per Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Teresa Vicenza
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.p. per Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Maria Stella Lucente
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.p. per Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Barbara Di Martino
- Department of Veterinary Medicine, Università degli Studi di Teramo, SP18, 64100 Teramo, Italy
| | - Michele Camero
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.p. per Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Gabriella Elia
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.p. per Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.p. per Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.p. per Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari Aldo Moro, S.p. per Casamassima Km 3, Valenzano, 70010 Bari, Italy.
| |
Collapse
|
7
|
Lund MC, Larsen BB, Rowsey DM, Otto HW, Gryseels S, Kraberger S, Custer JM, Steger L, Yule KM, Harris RE, Worobey M, Van Doorslaer K, Upham NS, Varsani A. Using archived and biocollection samples towards deciphering the DNA virus diversity associated with rodent species in the families cricetidae and heteromyidae. Virology 2023; 585:42-60. [PMID: 37276766 DOI: 10.1016/j.virol.2023.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023]
Abstract
Rodentia is the most speciose order of mammals, and they are known to harbor a wide range of viruses. Although there has been significant research on zoonotic viruses in rodents, research on the diversity of other viruses has been limited, especially for rodents in the families Cricetidae and Heteromyidae. In fecal and liver samples of nine species of rodents, we identify 346 distinct circular DNA viral genomes. Of these, a large portion are circular, single-stranded DNA viruses in the families Anelloviridae (n = 3), Circoviridae (n = 5), Genomoviridae (n = 7), Microviridae (n = 297), Naryaviridae (n = 4), Vilyaviridae (n = 15) and in the phylum Cressdnaviricota (n = 13) that cannot be assigned established families. We also identified two large bacteriophages of 36 and 50 kb that are part of the class Caudoviricetes. Some of these viruses are clearly those that infect rodents, however, most of these likely infect various organisms associated with rodents, their environment or their diet.
Collapse
Affiliation(s)
- Michael C Lund
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA
| | - Brendan B Larsen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98102, USA
| | - Dakota M Rowsey
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Hans W Otto
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Sophie Gryseels
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA; Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000, Leuven, Belgium; Department of Biology, University of Antwerp, 2000, Antwerp, Belgium; OD Taxonomy and Phylogeny, Royal Belgian Museum of Natural Sciences, 1000, Brussels, Belgium
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA
| | - Joy M Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA
| | - Laura Steger
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Kelsey M Yule
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Robin E Harris
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, The BIO5 Institute, Department of Immunobiology, Cancer Biology Graduate Interdisciplinary Program, UA Cancer Center, University of Arizona Tucson, AZ, 85724, USA
| | - Nathan S Upham
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ, 85287, USA
| | - Arvind Varsani
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA; The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA; Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7701, South Africa.
| |
Collapse
|