1
|
Jay F, Brioudes F, Novaković L, Imboden A, Benitez‐Alfonso Y, Voinnet O. A pectin acetyl-transferase facilitates secondary plasmodesmata formation and RNA silencing movement between plant cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70194. [PMID: 40353833 PMCID: PMC12068369 DOI: 10.1111/tpj.70194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 04/03/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025]
Abstract
Some silencing small (s)RNAs, comprising micro (mi)RNAs and small-interfering (si)RNAs, move between plant cells to orchestrate gene expression and defense. Besides possible redundancy or embryo lethality, a prevalent challenge in genetic studies of mobile silencing is to discriminate bona fide alterations to sRNA movement from impaired cell-autonomous sRNA activity within silencing-recipient cells. Without such clarifications, cell-to-cell mobility factors are yet to be unequivocally identified. Consequently, known properties of sRNA movement, including contextuality and directionality, remain poorly explained. Circumstantial evidence and synthetic biology pinpoint plasmodesmata (PDs) - the pores traversing plant cell walls (CWs) - as the likely channels involved. Yet, how plants control the number of primary and secondary PDs developing respectively before and after CW formation remains largely unknown. Here, we address these intertwined issues in Arabidopsis using a forward screen for compromised epidermis-to-mesophyll movement of an artificial (a)miRNA. We identify a pectin acetyl-transferase mutation that, we demonstrate, reduces amiRNA physical trafficking but also impedes siRNA, GFP, and viral movement by decreasing the frequency of leaf secondary PDs. sRNA movement at leaf interfaces involving primary PDs remains unaffected, however, as does miRNA and GFP cell-to-cell mobility in roots, hinting at how movement's contextuality and directionality might be achieved. We also show that reducing de-esterified pectin depolymerization decreases leaves' symplasmic connectivity, whereas defective pectin biogenesis increases PD number. Combining genetics with antibody-based pectin probing and atomic force microscopy helps delineate a mechanistically coherent framework whereby pectin esterification and/or abundance impact CW loosening, a process required for CW extension during which secondary PDs form to enable macromolecular trafficking.
Collapse
Affiliation(s)
- Florence Jay
- Department of BiologySwiss Federal Institute of Technology (ETH‐Zürich)Zürich8092Switzerland
| | - Florian Brioudes
- Department of BiologySwiss Federal Institute of Technology (ETH‐Zürich)Zürich8092Switzerland
| | - Lazar Novaković
- School of Biology, Centre for Plant Sciences, and Astbury CentreUniversity of LeedsLeedsLS2 9JTUK
| | - André Imboden
- Department of BiologySwiss Federal Institute of Technology (ETH‐Zürich)Zürich8092Switzerland
| | - Yoselin Benitez‐Alfonso
- School of Biology, Centre for Plant Sciences, and Astbury CentreUniversity of LeedsLeedsLS2 9JTUK
| | - Olivier Voinnet
- Department of BiologySwiss Federal Institute of Technology (ETH‐Zürich)Zürich8092Switzerland
| |
Collapse
|
2
|
Hsu CY, Hsu CH, Chang HY, Lu KJ. Exploring the formation and permeability of plasmodesmata in the liverwort, Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2025; 66:333-346. [PMID: 39786413 DOI: 10.1093/pcp/pcae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 12/16/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Plasmodesmata are cell-wall-embedded channels that evolved in the common ancestor of land plants to increase cell-to-cell communication. Whether all the fundamental properties of plasmodesmata emerged and were inherited in all land plants at the same time is unknown. Here, we show that the bryophyte Marchantia polymorpha (a nonvascular plant) forms mostly simple plasmodesmata in early-developing gemmae. The complexity of plasmodesmata increases during gemma maturation, and complex plasmodesmata with enlarged cavities are majorly observed in thalli. In contrast to vascular plants, whose simple plasmodesmata can transport monomeric fluorescent proteins, plasmodesmata in M. polymorpha limited their permeability before the juvenile-to-adult transition. In support, callose, a known polysaccharide regulating plasmodesmata permeability in vascular plants, accumulated in most of the M. polymorpha tissues examined. Furthermore, we found that in the apical meristematic region, plasmodesmata allowed the transport of monomeric fluorescent proteins, and this relaxation might correlate with the lower accumulation of callose. Taken together, our study suggests that certain plasmodesmata properties, such as complexity progression and callose accumulation, may have evolved before the divergence between vascular and nonvascular plants.
Collapse
Affiliation(s)
- Chia-Yun Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 40227, Taiwan, Republic of China
| | - Chia-Hsuan Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 40227, Taiwan, Republic of China
| | - Hui-Yu Chang
- Graduate Institute of Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 40227, Taiwan, Republic of China
| | - Kuan-Ju Lu
- Graduate Institute of Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 40227, Taiwan, Republic of China
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
| |
Collapse
|
3
|
Ibrahim A, Sasaki N, Schoelz JE, Nelson RS. Tobacco Mosaic Virus Movement: From Capsid Disassembly to Transport Through Plasmodesmata. Viruses 2025; 17:214. [PMID: 40006969 PMCID: PMC11861069 DOI: 10.3390/v17020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Determining mechanisms to establish an initial infection and form intracellular complexes for accumulation and movement of RNA plant viruses are important areas of study in plant virology. The impact of these findings on the basic understanding of plant molecular virology and its application in agriculture is significant. Studies with tobacco mosaic virus (TMV) and related tobamoviruses often provide important foundational knowledge for studies involving other viruses. Topics discussed here include capsid disassembly, establishment of a virus replication complex (VRC), and transport of the VRCs or virus components within the cell to locations at the plasmodesmata for intercellular virus RNA (vRNA) movement. Seminal findings with TMV and related tobamoviruses include detecting co-translational disassembly of the vRNA from the virus rod, full sequencing of genomic vRNA and production of infectious transcript for genetic studies determining virus components necessary for intercellular movement, and biochemical and cell biological studies determining the host factors, protein and membrane, needed for replication and movement. This review highlights many of the studies through the years on TMV and selected tobamoviruses that have impacted not only our understanding of tobamovirus accumulation and movement but also that of other plant viruses.
Collapse
Affiliation(s)
- Amr Ibrahim
- Department of Nucleic Acid and Protein Structure, Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Nobumitsu Sasaki
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu 183-8509, Japan;
| | - James E. Schoelz
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA;
| | | |
Collapse
|
4
|
Deinum EE. The systems and interactions underpinning complex cell wall patterning. Biochem Soc Trans 2024; 52:2385-2398. [PMID: 39666440 DOI: 10.1042/bst20230642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024]
Abstract
Cell walls can confer amazing properties to plant cells, particularly if they have complex patterns. Complex cell wall patterns in the primary cell wall often lead to complex cell shapes, whereas in the secondary cell wall they lead to advanced material properties that prepare cells for mechanically demanding tasks. Not surprisingly, many of these structures are found in water transporting tissues. In this review, I compare the mechanisms controlling primary and secondary cell wall patterns, with emphasis on water transporting tissues and insights derived from modeling studies. Much of what we know about this is based on complex cell shapes and primary xylem patterns, leading to an emphasis on the Rho-of-plants - cortical microtubule - cellulose microfibril system for secondary cell wall patterning. There is a striking diversity of secondary cell wall patterns with important functional benefits, however, about which we know much less and that may develop in substantially different ways.
Collapse
Affiliation(s)
- Eva E Deinum
- Mathematical and Statistical Methods (Biometris), Plant Science Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
5
|
Zhao B, Song W, Chen Z, Zhang Q, Liu D, Bai Y, Li Z, Dong H, Gao X, Li X, Wang X. A process-based model of climate-driven xylogenesis and tree-ring formation in broad-leaved trees (BTR). TREE PHYSIOLOGY 2024; 44:tpae127. [PMID: 39331735 DOI: 10.1093/treephys/tpae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/23/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024]
Abstract
The process-based xylem formation model is an important tool for understanding the radial growth process of trees and its influencing factors. While numerous xylogenesis models for conifers have been developed, there is a lack of models available for non-coniferous trees. In this study, we present a process-based model designed for xylem formation and ring growth in broad-leaved trees, which we call the Broad-leaved Tree-Ring (BTR) model. Climate factors, including daylength, air temperature, soil moisture and vapor pressure deficit, drive daily xylem cell production (fibers and vessels) and growth (enlargement, wall deposition). The model calculates the total cell area in the simulated zone to determine the annual ring width. The results demonstrate that the BTR model can basically simulate inter-annual variation in ring width and intra-annual changes in vessel and fiber cell formation in Fraxinus mandshurica (ring-porous) and Betula platyphylla (diffuse-porous). The BTR model is a potential tool for understanding how different trees form wood and how climate change influences this process.
Collapse
Affiliation(s)
- Binqing Zhao
- Center for Ecological Research and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Wenqi Song
- Center for Ecological Research and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Zecheng Chen
- Center for Ecological Research and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Qingzhu Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Di Liu
- Center for Ecological Research and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Yuxin Bai
- Center for Ecological Research and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Zongshan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Hanjun Dong
- Center for Ecological Research and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Xiaohui Gao
- Center for Ecological Research and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| | - Xingxing Li
- Shijiazhuang Landscape Greening Engineering Project Construction Center, 435-2 Huaizhong Road, Yuhua District, Shijiazhuang 050000, China
| | - Xiaochun Wang
- Center for Ecological Research and Key Laboratory of Sustainable Forest Ecosystem Management, Ministry of Education, School of Ecology, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, China
| |
Collapse
|
6
|
Chen X, Li WW, Gao J, Wu Z, Du J, Zhang X, Zhu YX. Arabidopsis PDLP7 modulated plasmodesmata function is related to BG10-dependent glucosidase activity required for callose degradation. Sci Bull (Beijing) 2024; 69:3075-3088. [PMID: 38735789 DOI: 10.1016/j.scib.2024.04.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/01/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024]
Abstract
The microdomains of plasmodesmata, specialized cell-wall channels responsible for communications between neighboring cells, are composed of various plasmodesmata-located proteins (PDLPs) and lipids. Here, we found that, among all PDLP or homologous proteins in Arabidopsis thaliana genome, PDLP5 and PDLP7 possessed a C-terminal sphingolipid-binding motif, with the latter being the only member that was significantly upregulated upon turnip mosaic virus and cucumber mosaic virus infections. pdlp7 mutant plants exhibited significantly reduced callose deposition, larger plasmodesmata diameters, and faster viral transmission. These plants exhibited increased glucosidase activity but no change in callose synthase activity. PDLP7 interacted specifically with glucan endo-1,3-β-glucosidase 10 (BG10). Consistently, higher levels of callose deposition and slower virus transmission in bg10 mutants were observed. The interaction between PDLP7 and BG10 was found to depend on the presence of the Gnk2-homologous 1 (GnK2-1) domain at the N terminus of PDLP7 with Asp-35, Cys-42, Gln-44, and Leu-116 being essential. In vitro supplementation of callose was able to change the conformation of the GnK2-1 domain. Our data suggest that the GnK2-1 domain of PDLP7, in conjunction with callose and BG10, plays a key role in plasmodesmata opening and closure, which is necessary for intercellular movement of various molecules.
Collapse
Affiliation(s)
- Xin Chen
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Wan-Wan Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jin Gao
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zhiguo Wu
- Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Juan Du
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu-Xian Zhu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China; Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
7
|
Kumar R, Iswanto ABB, Kumar D, Shuwei W, Oh K, Moon J, Son GH, Oh ES, Vu MH, Lee J, Lee KW, Oh MH, Kwon C, Chung WS, Kim JY, Kim SH. C-Type LECTIN receptor-like kinase 1 and ACTIN DEPOLYMERIZING FACTOR 3 are key components of plasmodesmata callose modulation. PLANT, CELL & ENVIRONMENT 2024; 47:3749-3765. [PMID: 38780063 DOI: 10.1111/pce.14957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Plasmodesmata (PDs) are intercellular organelles carrying multiple membranous nanochannels that allow the trafficking of cellular signalling molecules. The channel regulation of PDs occurs dynamically and is required in various developmental and physiological processes. It is well known that callose is a critical component in regulating PD permeability or symplasmic connectivity, but the understanding of the signalling pathways and mechanisms of its regulation is limited. Here, we used the reverse genetic approach to investigate the role of C-type lectin receptor-like kinase 1 (CLRLK1) in the aspect of PD callose-modulated symplasmic continuity. Here, we found that loss-of-function mutations in CLRLK1 resulted in excessive PD callose deposits and reduced symplasmic continuity, resulting in an accelerated gravitropic response. The protein interactome study also found that CLRLK1 interacted with actin depolymerizing factor 3 (ADF3) in vitro and in plants. Moreover, mutations in ADF3 result in elevated PD callose deposits and faster gravitropic response. Our results indicate that CLRLK1 and ADF3 negatively regulate PD callose accumulation, contributing to fine-tuning symplasmic opening apertures. Overall, our studies identified two key components involved in the deposits of PD callose and provided new insights into how symplasmic connectivity is maintained by the control of PD callose homoeostasis.
Collapse
Affiliation(s)
- Ritesh Kumar
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Arya B B Iswanto
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Dhinesh Kumar
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Wu Shuwei
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Kyujin Oh
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jiyun Moon
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Geon H Son
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Eun-Seok Oh
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Minh H Vu
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jinsu Lee
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Keun W Lee
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Man-Ho Oh
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Chian Kwon
- Department of Molecular Biology, Dankook University, Cheonan, Korea
| | - Woo S Chung
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Sang H Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
8
|
Wegner L, Ehlers K. Plasmodesmata dynamics in bryophyte model organisms: secondary formation and developmental modifications of structure and function. PLANTA 2024; 260:45. [PMID: 38965075 PMCID: PMC11224097 DOI: 10.1007/s00425-024-04476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
MAIN CONCLUSION Developing bryophytes differentially modify their plasmodesmata structure and function. Secondary plasmodesmata formation via twinning appears to be an ancestral trait. Plasmodesmata networks in hornwort sporophyte meristems resemble those of angiosperms. All land-plant taxa use plasmodesmata (PD) cell connections for symplasmic communication. In angiosperm development, PD networks undergo an extensive remodeling by structural and functional PD modifications, and by postcytokinetic formation of additional secondary PD (secPD). Since comparable information on PD dynamics is scarce for the embryophyte sister groups, we investigated maturating tissues of Anthoceros agrestis (hornwort), Physcomitrium patens (moss), and Marchantia polymorpha (liverwort). As in angiosperms, quantitative electron microscopy revealed secPD formation via twinning in gametophytes of all model bryophytes, which gives rise to laterally adjacent PD pairs or to complex branched PD. This finding suggests that PD twinning is an ancient evolutionary mechanism to adjust PD numbers during wall expansion. Moreover, all bryophyte gametophytes modify their existing PD via taxon-specific strategies resembling those of angiosperms. Development of type II-like PD morphotypes with enlarged diameters or formation of pit pairs might be required to maintain PD transport rates during wall thickening. Similar to angiosperm leaves, fluorescence redistribution after photobleaching revealed a considerable reduction of the PD permeability in maturating P. patens phyllids. In contrast to previous reports on monoplex meristems of bryophyte gametophytes with single initials, we observed targeted secPD formation in the multi-initial basal meristems of A. agrestis sporophytes. Their PD networks share typical features of multi-initial angiosperm meristems, which may hint at a putative homologous origin. We also discuss that monoplex and multi-initial meristems may require distinct types of PD networks, with or without secPD formation, to control maintenance of initial identity and positional signaling.
Collapse
Affiliation(s)
- Linus Wegner
- Institute of Botany, Justus-Liebig University, 35392, Giessen, Germany.
| | - Katrin Ehlers
- Institute of Botany, Justus-Liebig University, 35392, Giessen, Germany.
| |
Collapse
|
9
|
Guo H, Guo H, Zhang L, Tian X, Wu J, Fan Y, Li T, Gou Z, Sun Y, Gao F, Wang J, Shan G, Zeng F. Organelle Ca 2+/CAM1-SELTP confers somatic cell embryogenic competence acquisition and transformation in plant regeneration. THE NEW PHYTOLOGIST 2024; 242:1172-1188. [PMID: 38501463 DOI: 10.1111/nph.19679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Somatic cell totipotency in plant regeneration represents the forefront of the compelling scientific puzzles and one of the most challenging problems in biology. How somatic embryogenic competence is achieved in regeneration remains elusive. Here, we discover uncharacterized organelle-based embryogenic differentiation processes of intracellular acquisition and intercellular transformation, and demonstrate the underlying regulatory system of somatic embryogenesis-associated lipid transfer protein (SELTP) and its interactor calmodulin1 (CAM1) in cotton as the pioneer crop for biotechnology application. The synergistic CAM1 and SELTP exhibit consistent dynamical amyloplast-plasmodesmata (PD) localization patterns but show opposite functional effects. CAM1 inhibits the effect of SELTP to regulate embryogenic differentiation for plant regeneration. It is noteworthy that callus grafting assay reflects intercellular trafficking of CAM1 through PD for embryogenic transformation. This work originally provides insight into the mechanisms responsible for embryogenic competence acquisition and transformation mediated by the Ca2+/CAM1-SELTP regulatory pathway, suggesting a principle for plant regeneration and cell/genetic engineering.
Collapse
Affiliation(s)
- Huihui Guo
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Haixia Guo
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Li Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Xindi Tian
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Jianfei Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Yupeng Fan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Tongtong Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Zhongyuan Gou
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Yuxiao Sun
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Fan Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Jianjun Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Guangyao Shan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Fanchang Zeng
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
10
|
Liu Z, Ruonala R, Helariutta Y. Control of phloem unloading and root development. JOURNAL OF PLANT PHYSIOLOGY 2024; 295:154203. [PMID: 38428153 DOI: 10.1016/j.jplph.2024.154203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/16/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
Root growth and development need proper carbon partitioning between sources and sinks. Photosynthesis products are unloaded from the phloem and enter the root meristem cell by cell. While sugar transporters play a major role in phloem loading, phloem unloading occurs via the plasmodesmata in growing root tips. The aperture and permeability of plasmodesmata strongly influence symplastic unloading. Recent research has dissected the symplastic path for phloem unloading and identified several genes that regulate phloem unloading in the root. Callose turnover and membrane lipid composition alter the shape of plasmodesmata, allowing fine-tuning to adapt phloem unloading to the environmental and developmental conditions. Unloaded sugars act both as an energy supply and as signals to coordinate root growth and development. Increased knowledge of how phloem unloading is regulated enhances our understanding of carbon allocation in plants. In the future, it may be possible to modulate carbon allocation between sources and sinks in a manner that would contribute to increased plant biomass and carbon fixation.
Collapse
Affiliation(s)
- Zixuan Liu
- Organismal and Evolutionary Biology Research Programme, Faculty of Biology and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Raili Ruonala
- Organismal and Evolutionary Biology Research Programme, Faculty of Biology and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ykä Helariutta
- Organismal and Evolutionary Biology Research Programme, Faculty of Biology and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
11
|
Schreiber JM, Limpens E, de Keijzer J. Distributing Plant Developmental Regulatory Proteins via Plasmodesmata. PLANTS (BASEL, SWITZERLAND) 2024; 13:684. [PMID: 38475529 DOI: 10.3390/plants13050684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
During plant development, mobile proteins, including transcription factors, abundantly serve as messengers between cells to activate transcriptional signaling cascades in distal tissues. These proteins travel from cell to cell via nanoscopic tunnels in the cell wall known as plasmodesmata. Cellular control over this intercellular movement can occur at two likely interdependent levels. It involves regulation at the level of plasmodesmata density and structure as well as at the level of the cargo proteins that traverse these tunnels. In this review, we cover the dynamics of plasmodesmata formation and structure in a developmental context together with recent insights into the mechanisms that may control these aspects. Furthermore, we explore the processes involved in cargo-specific mechanisms that control the transport of proteins via plasmodesmata. Instead of a one-fits-all mechanism, a pluriform repertoire of mechanisms is encountered that controls the intercellular transport of proteins via plasmodesmata to control plant development.
Collapse
Affiliation(s)
- Joyce M Schreiber
- Laboratory of Cell and Developmental Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Erik Limpens
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jeroen de Keijzer
- Laboratory of Cell and Developmental Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
12
|
Brunkard JO. Communicating Across Cell Walls: Structure, Evolution, and Regulation of Plasmodesmatal Transport in Plants. Results Probl Cell Differ 2024; 73:73-86. [PMID: 39242375 DOI: 10.1007/978-3-031-62036-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Plasmodesmata are conduits in plant cell walls that allow neighboring cells to communicate and exchange resources. Despite their central importance to plant development and physiology, our understanding of plasmodesmata is relatively limited compared to other subcellular structures. In recent years, technical advances in electron microscopy, mass spectrometry, and phylogenomics have illuminated the structure, composition, and evolution of plasmodesmata in diverse plant lineages. In parallel, forward genetic screens have revealed key signaling pathways that converge to regulate plasmodesmatal transport, including chloroplast-derived retrograde signaling, phytohormone signaling, and metabolic regulation by the conserved eukaryotic Target of Rapamycin kinase. This review summarizes our current knowledge of the structure, evolution, and regulation of plasmodesmatal transport in plants.
Collapse
Affiliation(s)
- Jacob O Brunkard
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
13
|
Li J, Yang J, Gao Y, Zhang Z, Gao C, Chen S, Liesche J. Parallel auxin transport via PINs and plasmodesmata during the Arabidopsis leaf hyponasty response. PLANT CELL REPORTS 2023; 43:4. [PMID: 38117314 PMCID: PMC10733227 DOI: 10.1007/s00299-023-03119-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023]
Abstract
KEY MESSAGE The leaf hyponasty response depends on tip-to-petiole auxin transport. This transport can happen through two parallel pathways: active trans-membrane transport mediated by PIN proteins and passive diffusion through plasmodesmata. A plant's ability to counteract potential shading by neighboring plants depends on transport of the hormone auxin. Neighbor sensing at the leaf tip triggers auxin production. Once this auxin reaches the abaxial petiole epidermis, it causes cell elongation, which leads to leaf hyponasty. Two pathways are known to contribute to this intercellular tip-to-petiole auxin movement: (i) transport facilitated by plasma membrane-localized PIN auxin transporters and (ii) diffusion enabled by plasmodesmata. We tested if these two modes of transport are arranged sequentially or in parallel. Moreover, we investigated if they are functionally linked. Mutants in which one of the two pathways is disrupted indicated that both pathways are necessary for a full hyponasty response. Visualization of PIN3-GFP and PIN7-GFP localization indicated PIN-mediated transport in parallel to plasmodesmata-mediated transport along abaxial midrib epidermis cells. We found plasmodesmata-mediated cell coupling in the pin3pin4pin7 mutant to match wild-type levels, indicating no redundancy between pathways. Similarly, PIN3, PIN4 and PIN7 mRNA levels were unaffected in a mutant with disrupted plasmodesmata pathway. Our results provide mechanistic insight on leaf hyponasty, which might facilitate the manipulation of the shade avoidance response in crops.
Collapse
Affiliation(s)
- Jiazhou Li
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China
- Biomass Energy Center for Arid and Semiarid Lands, Northwest A & F University, Yangling, 712100, China
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A & F University, Yangling, 712100, China
| | - Jintao Yang
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China
- Biomass Energy Center for Arid and Semiarid Lands, Northwest A & F University, Yangling, 712100, China
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A & F University, Yangling, 712100, China
| | - Yibo Gao
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Ziyu Zhang
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Chen Gao
- Institute for Molecular Physiology, University of Düsseldorf, 40225, Düsseldorf, Germany
| | - Shaolin Chen
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China
- Biomass Energy Center for Arid and Semiarid Lands, Northwest A & F University, Yangling, 712100, China
| | - Johannes Liesche
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China.
- Biomass Energy Center for Arid and Semiarid Lands, Northwest A & F University, Yangling, 712100, China.
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A & F University, Yangling, 712100, China.
- Institute of Biology, University of Graz, Schubertstraße 51, 8010, Graz, Austria.
| |
Collapse
|
14
|
Li W, Yuan K, Ren M, Xie Z, Qi K, Gong X, Wang Q, Zhang S, Tao S. PbPDCB16-mediated callose deposition affects the plasmodesmata blockage and reduces lignification in pear fruit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111876. [PMID: 37748584 DOI: 10.1016/j.plantsci.2023.111876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/10/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Stone cell, a type of lignified cell, is a unique trait in pear and one of the key factors affects pear fruit quality and economic value. The transmissibility of cell lignification process has been proven to exist, however the effects of callose on the permeability of plasmodesmata (PD) and how to influence cell lignification processes are still unknown. In this study, the genome-wide analysis of PD callose binding proteins (PDCB) gene family in pear genome was performed, and 25 PbPDCB genes were identified and divided into four branches. Similar intron/exon structural patterns were observed in the same branch, strongly supporting their close evolutionary relationship. The expression of PbPDCB16 was negatively correlated with lignin accumulation through qRT-PCR analysis. With transient expression in pear fruit and stable expression in pear calli, the increased callose content accompanied by decreased lignin content was further observed. Besides, compared with wild type Arabidopsis, the transgenic plants grew slowly, and cell walls in the stem were thinner, while fewer PDs were observed on the cell walls, and the interspore filaments were also blocked in transgenic Arabidopsis through the transmission electron microscope (TEM). In summary, overexpression of PbPDCB16 could promote accumulation of callose at PD to affect the PD-mediated intercellular connectivity, and inhibit the intercellular communication. This study will provide new insight in reducing the lignin content through callose deposition, and also provide the theoretical basis for further exploration of lignin metabolism and cell wall lignification to form stone cells in pear fruit.
Collapse
Affiliation(s)
- Wen Li
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaili Yuan
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Mei Ren
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihua Xie
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaijie Qi
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Gong
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Qi Wang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya 572000, China
| | - Shutian Tao
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya 572000, China.
| |
Collapse
|
15
|
Wegner L, Porth ML, Ehlers K. Multicellularity and the Need for Communication-A Systematic Overview on (Algal) Plasmodesmata and Other Types of Symplasmic Cell Connections. PLANTS (BASEL, SWITZERLAND) 2023; 12:3342. [PMID: 37765506 PMCID: PMC10536634 DOI: 10.3390/plants12183342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
In the evolution of eukaryotes, the transition from unicellular to simple multicellular organisms has happened multiple times. For the development of complex multicellularity, characterized by sophisticated body plans and division of labor between specialized cells, symplasmic intercellular communication is supposed to be indispensable. We review the diversity of symplasmic connectivity among the eukaryotes and distinguish between distinct types of non-plasmodesmatal connections, plasmodesmata-like structures, and 'canonical' plasmodesmata on the basis of developmental, structural, and functional criteria. Focusing on the occurrence of plasmodesmata (-like) structures in extant taxa of fungi, brown algae (Phaeophyceae), green algae (Chlorophyta), and streptophyte algae, we present a detailed critical update on the available literature which is adapted to the present classification of these taxa and may serve as a tool for future work. From the data, we conclude that, actually, development of complex multicellularity correlates with symplasmic connectivity in many algal taxa, but there might be alternative routes. Furthermore, we deduce a four-step process towards the evolution of canonical plasmodesmata and demonstrate similarity of plasmodesmata in streptophyte algae and land plants with respect to the occurrence of an ER component. Finally, we discuss the urgent need for functional investigations and molecular work on cell connections in algal organisms.
Collapse
Affiliation(s)
- Linus Wegner
- Institute of Botany, Justus-Liebig University, D-35392 Giessen, Germany;
| | | | - Katrin Ehlers
- Institute of Botany, Justus-Liebig University, D-35392 Giessen, Germany;
| |
Collapse
|
16
|
Lu Y, Fricke W. Salt Stress-Regulation of Root Water Uptake in a Whole-Plant and Diurnal Context. Int J Mol Sci 2023; 24:ijms24098070. [PMID: 37175779 PMCID: PMC10179082 DOI: 10.3390/ijms24098070] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
This review focuses on the regulation of root water uptake in plants which are exposed to salt stress. Root water uptake is not considered in isolation but is viewed in the context of other potential tolerance mechanisms of plants-tolerance mechanisms which relate to water relations and gas exchange. Plants spend between one third and half of their lives in the dark, and salt stress does not stop with sunset, nor does it start with sunrise. Surprisingly, how plants deal with salt stress during the dark has received hardly any attention, yet any growth response to salt stress over days, weeks, months and years is the integrative result of how plants perform during numerous, consecutive day/night cycles. As we will show, dealing with salt stress during the night is a prerequisite to coping with salt stress during the day. We hope to highlight with this review not so much what we know, but what we do not know; and this relates often to some rather basic questions.
Collapse
Affiliation(s)
- Yingying Lu
- School of Biology and Environmental Science, University College Dublin (UCD), Belfield, D04 N2E5 Dublin, Ireland
| | - Wieland Fricke
- School of Biology and Environmental Science, University College Dublin (UCD), Belfield, D04 N2E5 Dublin, Ireland
| |
Collapse
|
17
|
Deng Y, Shang W, Zhang X, Guo J, Wang Y, Zhang Z, Hong J, Li Z, Xie L. Quantification of plasmodesmata frequency under three-dimensional view using focused ion beam-scanning electron microscopy and image analysis. Micron 2023; 166:103413. [PMID: 36657308 DOI: 10.1016/j.micron.2023.103413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 12/08/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
The quantitative study of plasmodesmata (PD) frequency is routine in plant science for providing information on the potential of intercellular transportation. Here, we report quantification of plasmodesmatal frequency in virus-infected tobacco vascular tissues using serial sectioning and image analysis. The image datasets were collected by focused ion beam-scanning electron microscopy (FIB-SEM), and the measurements of plasmodesmatal frequency were performed after image analysis with commercial computational programs. With a 5-nm step size (less than half the diameter of PD) during FIB sectioning, exhaustive PD sampling was performed in regions of interest. Segmentation of cell wall (CW) and PD from the background densities was performed manually, and PD were assigned automatically to individual CW interfaces by image analysis and then quantified. The PD quantification results were used to compare the plamodesmatal frequencies among different CW interfaces of individual cells and the average frequencies among different cell types were calculated. CWs lacking PD distribution were found in several cellular types, and the PD frequency were used to determine the possible pathways of PD-based symplasmic transportation. The method enables imaging of samples of several cells containing multiple CW interfaces and minimizes PD omission during sectioning and imaging.
Collapse
Affiliation(s)
- Yinlu Deng
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
| | - Weina Shang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Xiaomin Zhang
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiansheng Guo
- Department of Biophysics, Zhejiang University School of Medicine and Center of Cryo Electron Microscopy, Zhejiang University, Hangzhou 310058, China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhongkai Zhang
- Institute of Biotechnology and Genetic Resources, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650223, China
| | - Jian Hong
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China.
| | - Li Xie
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
18
|
Cui Y, Zhang X, Li X, Lin J. Multiscale microscopy to decipher plant cell structure and dynamics. THE NEW PHYTOLOGIST 2023; 237:1980-1997. [PMID: 36477856 DOI: 10.1111/nph.18641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
New imaging methodologies with high contrast and molecular specificity allow researchers to analyze dynamic processes in plant cells at multiple scales, from single protein and RNA molecules to organelles and cells, to whole organs and tissues. These techniques produce informative images and quantitative data on molecular dynamics to address questions that cannot be answered by conventional biochemical assays. Here, we review selected microscopy techniques, focusing on their basic principles and applications in plant science, discussing the pros and cons of each technique, and introducing methods for quantitative analysis. This review thus provides guidance for plant scientists in selecting the most appropriate techniques to decipher structures and dynamic processes at different levels, from protein dynamics to morphogenesis.
Collapse
Affiliation(s)
- Yaning Cui
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xi Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaojuan Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jinxing Lin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
19
|
Husted S, Minutello F, Pinna A, Tougaard SL, Møs P, Kopittke PM. What is missing to advance foliar fertilization using nanotechnology? TRENDS IN PLANT SCIENCE 2023; 28:90-105. [PMID: 36153275 DOI: 10.1016/j.tplants.2022.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
An urgent challenge within agriculture is to improve fertilizer efficiency in order to reduce the environmental footprint associated with an increased production of crops on existing farmland. Standard soil fertilization strategies are often not very efficient due to immobilization in the soil and losses of nutrients by leaching or volatilization. Foliar fertilization offers an attractive supplementary strategy as it bypasses the adverse soil processes, but implementation is often hampered by a poor penetration through leaf barriers, leaf damage, and a limited ability of nutrients to translocate. Recent advances within bionanotechnology offer a range of emerging possibilities to overcome these challenges. Here we review how nanoparticles can be tailored with smart properties to interact with plant tissue for a more efficient delivery of nutrients.
Collapse
Affiliation(s)
- Søren Husted
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark.
| | - Francesco Minutello
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark
| | - Andrea Pinna
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark
| | - Stine Le Tougaard
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark
| | - Pauline Møs
- University of Copenhagen, Department of Plant and Environmental Sciences, Copenhagen Plant Science Center, DK-1871 Frederiksberg C, Denmark
| | - Peter M Kopittke
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia 4072, Queensland, Australia
| |
Collapse
|
20
|
Aguilera A, Distéfano A, Jauzein C, Correa-Aragunde N, Martinez D, Martin MV, Sueldo DJ. Do photosynthetic cells communicate with each other during cell death? From cyanobacteria to vascular plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7219-7242. [PMID: 36179088 DOI: 10.1093/jxb/erac363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
As in metazoans, life in oxygenic photosynthetic organisms relies on the accurate regulation of cell death. During development and in response to the environment, photosynthetic cells activate and execute cell death pathways that culminate in the death of a specific group of cells, a process known as regulated cell death (RCD). RCD control is instrumental, as its misregulation can lead to growth penalties and even the death of the entire organism. Intracellular molecules released during cell demise may act as 'survival' or 'death' signals and control the propagation of cell death to surrounding cells, even in unicellular organisms. This review explores different signals involved in cell-cell communication and systemic signalling in photosynthetic organisms, in particular Ca2+, reactive oxygen species, lipid derivates, nitric oxide, and eATP. We discuss their possible mode-of-action as either 'survival' or 'death' molecules and their potential role in determining cell fate in neighbouring cells. By comparing the knowledge available across the taxonomic spectrum of this coherent phylogenetic group, from cyanobacteria to vascular plants, we aim at contributing to the identification of conserved mechanisms that control cell death propagation in oxygenic photosynthetic organisms.
Collapse
Affiliation(s)
- Anabella Aguilera
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 39231 Kalmar, Sweden
| | - Ayelén Distéfano
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Cécile Jauzein
- Ifremer, Centre de Brest, DYNECO-Pelagos, F-29280 Plouzané, France
| | - Natalia Correa-Aragunde
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, 7600 Mar del Plata, Argentina
| | - Dana Martinez
- Instituto de Fisiología Vegetal (INFIVE-CONICET), Universidad Nacional de La Plata, 1900 La Plata, Argentina
| | - María Victoria Martin
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Universidad Nacional de Mar del Plata,7600 Mar del Plata, Argentina
| | - Daniela J Sueldo
- Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
21
|
Ershova N, Sheshukova E, Kamarova K, Arifulin E, Tashlitsky V, Serebryakova M, Komarova T. Nicotiana benthamiana Kunitz peptidase inhibitor-like protein involved in chloroplast-to-nucleus regulatory pathway in plant-virus interaction. FRONTIERS IN PLANT SCIENCE 2022; 13:1041867. [PMID: 36438111 PMCID: PMC9685412 DOI: 10.3389/fpls.2022.1041867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Plant viruses use a variety of strategies to infect their host. During infection, viruses cause symptoms of varying severity, which are often associated with altered leaf pigmentation due to structural and functional damage to chloroplasts that are affected by viral proteins. Here we demonstrate that Nicotiana benthamiana Kunitz peptidase inhibitor-like protein (KPILP) gene is induced in response to potato virus X (PVX) infection. Using reverse genetic approach, we have demonstrated that KPILP downregulates expression of LHCB1 and LHCB2 genes of antenna light-harvesting complex proteins, HEMA1 gene encoding glutamyl-tRNA reductase, which participates in tetrapyrrole biosynthesis, and RBCS1A gene encoding RuBisCO small subunit isoform involved in the antiviral immune response. Thus, KPILP is a regulator of chloroplast retrograde signaling system during developing PVX infection. Moreover, KPILP was demonstrated to affect carbon partitioning: reduced glucose levels during PVX infection were associated with KPILP upregulation. Another KPILP function is associated with plasmodesmata permeability control. Its ability to stimulate intercellular transport of reporter 2xGFP molecules indicates that KPILP is a positive plasmodesmata regulator. Moreover, natural KPILP glycosylation is indispensable for manifestation of this function. During PVX infection KPILP increased expression leads to the reduction of plasmodesmata callose deposition. These results could indicate that KPILP affects plasmodesmata permeability via callose-dependent mechanism. Thus, virus entering a cell and starting reproduction triggers KPILP expression, which leads to downregulation of nuclear-encoded chloroplast genes associated with retrograde signaling, reduction in photoassimilates accumulation and increase in intercellular transport, creating favorable conditions for reproduction and spread of viral infection.
Collapse
Affiliation(s)
- Natalia Ershova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Sheshukova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Kamila Kamarova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Evgenii Arifulin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Vadim Tashlitsky
- Chemistry Department, Lomonosov Moscow State University, Moscow, Russia
| | - Marina Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana Komarova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
22
|
Blekemolen MC, Cao L, Tintor N, de Groot T, Papp D, Faulkner C, Takken FLW. The primary function of Six5 of Fusarium oxysporum is to facilitate Avr2 activity by together manipulating the size exclusion limit of plasmodesmata. FRONTIERS IN PLANT SCIENCE 2022; 13:910594. [PMID: 35968143 PMCID: PMC9373983 DOI: 10.3389/fpls.2022.910594] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Pathogens produce effector proteins to manipulate their hosts. While most effectors act autonomously, some fungal effectors act in pairs and rely on each other for function. During the colonization of the plant vasculature, the root-infecting fungus Fusarium oxysporum (Fo) produces 14 so-called Secreted in Xylem (SIX) effectors. Two of these effector genes, Avr2 (Six3) and Six5, form a gene pair on the pathogenicity chromosome of the tomato-infecting Fo strain. Avr2 has been shown to suppress plant defense responses and is required for full pathogenicity. Although Six5 and Avr2 together manipulate the size exclusion limit of plasmodesmata to facilitate cell-to-cell movement of Avr2, it is unclear whether Six5 has additional functions as well. To investigate the role of Six5, we generated transgenic Arabidopsis lines expressing Six5. Notably, increased susceptibility during the early stages of infection was observed in these Six5 lines, but only to Fo strains expressing Avr2 and not to wild-type Arabidopsis-infecting Fo strains lacking this effector gene. Furthermore, neither PAMP-triggered defense responses, such as ROS accumulation and callose deposition upon treatment with Flg22, necrosis and ethylene-inducing peptide 1-like protein (NLP), or chitosan, nor susceptibility to other plant pathogens, such as the bacterium Pseudomonas syringae or the fungus Verticilium dahlia, were affected by Six5 expression. Further investigation of the ability of the Avr2/Six5 effector pair to manipulate plasmodesmata (PD) revealed that it not only permits cell-to-cell movement of Avr2, but also facilitates the movement of two additional effectors, Six6 and Six8. Moreover, although Avr2/Six5 expands the size exclusion limit of plasmodesmata (i.e., gating) to permit the movement of a 2xFP fusion protein (53 kDa), a larger variant, 3xFP protein (80 kDa), did not move to the neighboring cells. The PD manipulation mechanism employed by Avr2/Six5 did not involve alteration of callose homeostasis in these structures. In conclusion, the primary function of Six5 appears to function together with Avr2 to increase the size exclusion limit of plasmodesmata by an unknown mechanism to facilitate cell-to-cell movement of Fo effectors.
Collapse
Affiliation(s)
- Mila C. Blekemolen
- Molecular Plant Pathology, Swammerdam Institute of Life Science (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Lingxue Cao
- Molecular Plant Pathology, Swammerdam Institute of Life Science (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Nico Tintor
- Molecular Plant Pathology, Swammerdam Institute of Life Science (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Tamara de Groot
- Molecular Plant Pathology, Swammerdam Institute of Life Science (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Diana Papp
- The John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | | | - Frank L. W. Takken
- Molecular Plant Pathology, Swammerdam Institute of Life Science (SILS), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
23
|
Sphingolipids at Plasmodesmata: Structural Components and Functional Modulators. Int J Mol Sci 2022; 23:ijms23105677. [PMID: 35628487 PMCID: PMC9145688 DOI: 10.3390/ijms23105677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Plasmodesmata (PD) are plant-specific channels connecting adjacent cells to mediate intercellular communication of molecules essential for plant development and defense. The typical PD are organized by the close apposition of the plasma membrane (PM), the desmotubule derived from the endoplasmic reticulum (ER), and spoke-like elements linking the two membranes. The plasmodesmal PM (PD-PM) is characterized by the formation of unique microdomains enriched with sphingolipids, sterols, and specific proteins, identified by lipidomics and proteomics. These components modulate PD to adapt to the dynamic changes of developmental processes and environmental stimuli. In this review, we focus on highlighting the functions of sphingolipid species in plasmodesmata, including membrane microdomain organization, architecture transformation, callose deposition and permeability control, and signaling regulation. We also briefly discuss the difference between sphingolipids and sterols, and we propose potential unresolved questions that are of help for further understanding the correspondence between plasmodesmal structure and function.
Collapse
|
24
|
Miras M, Pottier M, Schladt TM, Ejike JO, Redzich L, Frommer WB, Kim JY. Plasmodesmata and their role in assimilate translocation. JOURNAL OF PLANT PHYSIOLOGY 2022; 270:153633. [PMID: 35151953 DOI: 10.1016/j.jplph.2022.153633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
During multicellularization, plants evolved unique cell-cell connections, the plasmodesmata (PD). PD of angiosperms are complex cellular domains, embedded in the cell wall and consisting of multiple membranes and a large number of proteins. From the beginning, it had been assumed that PD provide passage for a wide range of molecules, from ions to metabolites and hormones, to RNAs and even proteins. In the context of assimilate allocation, it has been hypothesized that sucrose produced in mesophyll cells is transported via PD from cell to cell down a concentration gradient towards the phloem. Entry into the sieve element companion cell complex (SECCC) is then mediated on three potential routes, depending on the species and conditions, - either via diffusion across PD, after conversion to raffinose via PD using a polymer trap mechanism, or via a set of transporters which secrete sucrose from one cell and secondary active uptake into the SECCC. Multiple loading mechanisms can likely coexist. We here review the current knowledge regarding photoassimilate transport across PD between cells as a prerequisite for translocation from leaves to recipient organs, in particular roots and developing seeds. We summarize the state-of-the-art in protein composition, structure, transport mechanism and regulation of PD to apprehend their functions in carbohydrate allocation. Since many aspects of PD biology remain elusive, we highlight areas that require new approaches and technologies to advance our understanding of these enigmatic and important cell-cell connections.
Collapse
Affiliation(s)
- Manuel Miras
- Institute for Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - Mathieu Pottier
- Institute for Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - T Moritz Schladt
- Institute for Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - J Obinna Ejike
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - Laura Redzich
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| | - Wolf B Frommer
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
| | - Ji-Yun Kim
- Institute for Molecular Physiology and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University Düsseldorf, Düsseldorf, 40225, Germany
| |
Collapse
|
25
|
Kang BH, Anderson CT, Arimura SI, Bayer E, Bezanilla M, Botella MA, Brandizzi F, Burch-Smith TM, Chapman KD, Dünser K, Gu Y, Jaillais Y, Kirchhoff H, Otegui MS, Rosado A, Tang Y, Kleine-Vehn J, Wang P, Zolman BK. A glossary of plant cell structures: Current insights and future questions. THE PLANT CELL 2022; 34:10-52. [PMID: 34633455 PMCID: PMC8846186 DOI: 10.1093/plcell/koab247] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/29/2021] [Indexed: 05/03/2023]
Abstract
In this glossary of plant cell structures, we asked experts to summarize a present-day view of plant organelles and structures, including a discussion of outstanding questions. In the following short reviews, the authors discuss the complexities of the plant cell endomembrane system, exciting connections between organelles, novel insights into peroxisome structure and function, dynamics of mitochondria, and the mysteries that need to be unlocked from the plant cell wall. These discussions are focused through a lens of new microscopy techniques. Advanced imaging has uncovered unexpected shapes, dynamics, and intricate membrane formations. With a continued focus in the next decade, these imaging modalities coupled with functional studies are sure to begin to unravel mysteries of the plant cell.
Collapse
Affiliation(s)
- Byung-Ho Kang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Charles T Anderson
- Department of Biology and Center for Lignocellulose Structure and Formation, The Pennsylvania State University, University Park, Pennsylvania 16802 USA
| | - Shin-ichi Arimura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Emmanuelle Bayer
- Université de Bordeaux, CNRS, Laboratoire de Biogenèse Membranaire, UMR 5200, Villenave d'Ornon F-33140, France
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Miguel A Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortifruticultura Subtropical y Mediterránea “La Mayora,” Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Universidad de Málaga, Málaga 29071, Spain
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Kent D Chapman
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas 76203, USA
| | - Kai Dünser
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Yangnan Gu
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes (RDP), Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France
| | - Helmut Kirchhoff
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin 53706, USA
| | - Abel Rosado
- Department of Botany, University of British Columbia, Vancouver V6T1Z4, Canada
| | - Yu Tang
- Department of Plant and Microbial Biology, Innovative Genomics Institute, University of California, Berkeley, California 94720, USA
| | - Jürgen Kleine-Vehn
- Faculty of Biology, Chair of Molecular Plant Physiology (MoPP) University of Freiburg, Freiburg 79104, Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg 79104, Germany
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Bethany Karlin Zolman
- Department of Biology, University of Missouri, St. Louis, St. Louis, Missouri 63121, USA
| |
Collapse
|
26
|
Kirk P, Benitez-Alfonso Y. Plasmodesmata Structural Components and Their Role in Signaling and Plant Development. Methods Mol Biol 2022; 2457:3-22. [PMID: 35349130 DOI: 10.1007/978-1-0716-2132-5_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasmodesmata are plant intercellular channels that mediate the transport of small and large molecules including RNAs and transcription factors (TFs) that regulate plant development. In this review, we present current research on plasmodesmata form and function and discuss the main regulatory pathways. We show the progress made in the development of approaches and tools to dissect the plasmodesmata proteome in diverse plant species and discuss future perspectives and challenges in this field of research.
Collapse
Affiliation(s)
- Philip Kirk
- Centre for Plant Science, School of Biology, University of Leeds, Leeds, UK
| | | |
Collapse
|
27
|
Godel-J Drychowska K, Kurczy Ska E. Qualitative and quantitative analyses of the plasmodesmata that accompany cell fate changes during the somatic embryogenesis of Arabidopsis thaliana. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:186-200. [PMID: 34838155 DOI: 10.1071/fp21243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Plasmodesmata (PD) are cytoplasmic and membrane-lined microchannels that enable symplasmic communication in plants, which is involved in the regulation of cell differentiation. The presented results emphasise the qualitative and quantitative analyses of PD, which are the basis of the symplasmic communication. The cells that initiate various development programmes create symplasmic domains that are characterised by different degrees of symplasmic communication. Changes in symplasmic communication are caused by the presence or absence of PD and/or the ability of signals to move through them. In the presented studies, somatic embryogenesis was used to describe the characteristics of the PD within and between the symplasmic domains in explants of the Arabidopsis thaliana (L.) Heynh ecotype Columbia-0 and 35S:BBM transgenic line. Transmission electron microscopy was used to describe the cells that regain totipotency/pluripotency during somatic embryogenesis, as well as the number and shape of the PD in the different symplasmic domains of the explants and somatic embryos. Array tomography was used to create a 3D reconstruction of the protodermal cells of the somatic embryos with particular emphasis on the PD distribution in the cell walls. The results showed that there were different frequencies of the PD within and between the symplasmic domain that emerges during somatic embryogenesis and between the Col-0 and 35S:BBM somatic embryos with regard to the differences in the shape of the PD.
Collapse
Affiliation(s)
- Kamila Godel-J Drychowska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, The University of Silesia, 28 Jagiellonska Street, 40-032 Katowice, Poland
| | - Ewa Kurczy Ska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, The University of Silesia, 28 Jagiellonska Street, 40-032 Katowice, Poland
| |
Collapse
|
28
|
Sankoh AF, Burch-Smith TM. Approaches for investigating plasmodesmata and effective communication. CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102143. [PMID: 34826658 DOI: 10.1016/j.pbi.2021.102143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Plasmodesmata (PD) are integral plant cell wall components that provide routes for intercellular communication, signaling, and resource sharing. They are therefore essential for plant growth and survival. Much effort has been put forth to understand how PD are generated and their structure is refined for function and to determine how they regulate intercellular trafficking. This review provides an overview of some of the approaches that have been used to study PD structure and function, highlighting those that may be more widely adopted to address questions of PD cell biology and function. Extending our focus on the importance of communication, we address how effective communication strategies can increase diversity and accessibility in the research laboratory, focusing on challenges faced by our deaf/hard-of-hearing colleagues, and highlight successful approaches to including them in the research laboratory.
Collapse
Affiliation(s)
- Amie F Sankoh
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
29
|
Paniagua C, Sinanaj B, Benitez-Alfonso Y. Plasmodesmata and their role in the regulation of phloem unloading during fruit development. CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102145. [PMID: 34826657 PMCID: PMC8687135 DOI: 10.1016/j.pbi.2021.102145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 05/08/2023]
Abstract
Fruit consumption is fundamental to a balanced diet. The contemporary challenge of maintaining a steady food supply to meet the demands of a growing population is driving the development of strategies to improve the production and nutritional quality of fruit. Plasmodesmata, the structures that mediate symplasmic transport between plant cells, play an important role in phloem unloading and distribution of sugars and signalling molecules into developing organs. Targeted modifications to the structures and functioning of plasmodesmata have the potential to improve fruit development; however, knowledge on the mechanisms underpinning plasmodesmata regulation in this context is scarce. In this review, we have compiled current knowledge on plasmodesmata and their structural characterisation during the development of fruit organs. We discuss key questions on phloem unloading, including the pathway shift from symplasmic to apoplastic that takes place during the onset of ripening as potential targets for improving fruit quality.
Collapse
Affiliation(s)
- Candelas Paniagua
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Besiana Sinanaj
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | | |
Collapse
|
30
|
Abstract
More than 60% of tree phytomass is concentrated in stem wood, which is the result of periodic activity of the cambium. Nevertheless, there are few attempts to quantitatively describe cambium dynamics. In this study, we develop a state-of-the-art band model of cambium development, based on the kinetic heterogeneity of the cambial zone and the connectivity of the cell structure. The model describes seasonal cambium development based on an exponential function under climate forcing which can be effectively used to estimate the seasonal cell production for individual trees. It was shown that the model is able to simulate different cell production for fast-, middle- and slow-growing trees under the same climate forcing. Based on actual measurements of cell production for two contrasted trees, the model effectively reconstructed long-term cell production variability (up to 75% of explained variance) of both tree-ring characteristics over the period 1937−2012. The new model significantly simplifies the assessment of seasonal cell production for individual trees of a studied forest stand and allows the entire range of individual absolute variability in the ring formation of any tree in the stand to be quantified, which can lead to a better understanding of the anatomy of xylem formation, a key component of the carbon cycle.
Collapse
|
31
|
Sankoh AF, Burch-Smith TM. Plasmodesmata and hormones: pathways for plant development. AMERICAN JOURNAL OF BOTANY 2021; 108:1580-1583. [PMID: 34580857 DOI: 10.1002/ajb2.1733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Amie F Sankoh
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
32
|
Abstract
In recent years; the interaction of nanoparticles (NPs) with plants has been intensively studied. Therefore, more and more aspects related to both the positive and negative impact of NP on plants are well described. This article focuses on two aspects of NP interaction with plants. The first is a summary of the current knowledge on NP migration through the roots into the plant body, in particular, the role of the cell wall. The second aspect summarizes the current knowledge of the participation of the symplast, including the plasmodesmata (PD), in the movement of NP within the plant body. We highlight the gaps in our knowledge of the plant–NP interactions; paying attention to the need for future studies to explain the mechanisms that regulate the composition of the cell wall and the functioning of the PD under the influence of NP.
Collapse
|
33
|
Liu J, Zhang L, Yan D. Plasmodesmata-Involved Battle Against Pathogens and Potential Strategies for Strengthening Hosts. FRONTIERS IN PLANT SCIENCE 2021; 12:644870. [PMID: 34149749 PMCID: PMC8210831 DOI: 10.3389/fpls.2021.644870] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/28/2021] [Indexed: 06/01/2023]
Abstract
Plasmodesmata (PD) are membrane-lined pores that connect adjacent cells to mediate symplastic communication in plants. These intercellular channels enable cell-to-cell trafficking of various molecules essential for plant development and stress responses, but they can also be utilized by pathogens to facilitate their infection of hosts. Some pathogens or their effectors are able to spread through the PD by modifying their permeability. Yet plants have developed various corresponding defense mechanisms, including the regulation of PD to impede the spread of invading pathogens. In this review, we aim to illuminate the various roles of PD in the interactions between pathogens and plants during the infection process. We summarize the pathogenic infections involving PD and how the PD could be modified by pathogens or hosts. Furthermore, we propose several hypothesized and promising strategies for enhancing the disease resistance of host plants by the appropriate modulation of callose deposition and plasmodesmal permeability based on current knowledge.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Lin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Dawei Yan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
34
|
Godel-Jędrychowska K, Kulińska-Łukaszek K, Kurczyńska E. Similarities and Differences in the GFP Movement in the Zygotic and Somatic Embryos of Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:649806. [PMID: 34122474 PMCID: PMC8194063 DOI: 10.3389/fpls.2021.649806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Intercellular signaling during embryo patterning is not well understood and the role of symplasmic communication has been poorly considered. The correlation between the symplasmic domains and the development of the embryo organs/tissues during zygotic embryogenesis has only been described for a few examples, including Arabidopsis. How this process occurs during the development of somatic embryos (SEs) is still unknown. The aim of these studies was to answer the question: do SEs have a restriction in symplasmic transport depending on the developmental stage that is similar to their zygotic counterparts? The studies included an analysis of the GFP distribution pattern as expressed under diverse promoters in zygotic embryos (ZEs) and SEs. The results of the GFP distribution in the ZEs and SEs showed that 1/the symplasmic domains between the embryo organs and tissues in the SEs was similar to those in the ZEs and 2/the restriction in symplasmic transport in the SEs was correlated with the developmental stage and was similar to the one in their zygotic counterparts, however, with the spatio-temporal differences and different PDs SEL value between these two types of embryos.
Collapse
|
35
|
Fischer K, Lachner LAM, Olsen S, Mulisch M, Krause K. The Enigma of Interspecific Plasmodesmata: Insight From Parasitic Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:641924. [PMID: 33868340 PMCID: PMC8049502 DOI: 10.3389/fpls.2021.641924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/09/2021] [Indexed: 05/29/2023]
Abstract
Parasitic plants live in intimate physical connection with other plants serving as their hosts. These host plants provide the inorganic and organic compounds that the parasites need for their propagation. The uptake of the macromolecular compounds happens through symplasmic connections in the form of plasmodesmata. In contrast to regular plasmodesmata, which connect genetically identical cells of an individual plant, the plasmodesmata that connect the cells of host and parasite join separate individuals belonging to different species and are therefore termed "interspecific". The existence of such interspecific plasmodesmata was deduced either indirectly using molecular approaches or observed directly by ultrastructural analyses. Most of this evidence concerns shoot parasitic Cuscuta species and root parasitic Orobanchaceae, which can both infect a large range of phylogenetically distant hosts. The existence of an interspecific chimeric symplast is both striking and unique and, with exceptions being observed in closely related grafted plants, exist only in these parasitic relationships. Considering the recent technical advances and upcoming tools for analyzing parasitic plants, interspecific plasmodesmata in parasite/host connections are a promising system for studying secondary plasmodesmata. For open questions like how their formation is induced, how their positioning is controlled and if they are initiated by one or both bordering cells simultaneously, the parasite/host interface with two adjacent distinguishable genetic systems provides valuable advantages. We summarize here what is known about interspecific plasmodesmata between parasitic plants and their hosts and discuss the potential of the intriguing parasite/host system for deepening our insight into plasmodesmatal structure, function, and development.
Collapse
Affiliation(s)
- Karsten Fischer
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Lena Anna-Maria Lachner
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Stian Olsen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Maria Mulisch
- Central Microscopy at the Biology Center, Christian-Albrechts-University, Kiel, Germany
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
36
|
Zhang X, Man Y, Zhuang X, Shen J, Zhang Y, Cui Y, Yu M, Xing J, Wang G, Lian N, Hu Z, Ma L, Shen W, Yang S, Xu H, Bian J, Jing Y, Li X, Li R, Mao T, Jiao Y, Sodmergen, Ren H, Lin J. Plant multiscale networks: charting plant connectivity by multi-level analysis and imaging techniques. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1392-1422. [PMID: 33974222 DOI: 10.1007/s11427-020-1910-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/04/2021] [Indexed: 12/21/2022]
Abstract
In multicellular and even single-celled organisms, individual components are interconnected at multiscale levels to produce enormously complex biological networks that help these systems maintain homeostasis for development and environmental adaptation. Systems biology studies initially adopted network analysis to explore how relationships between individual components give rise to complex biological processes. Network analysis has been applied to dissect the complex connectivity of mammalian brains across different scales in time and space in The Human Brain Project. In plant science, network analysis has similarly been applied to study the connectivity of plant components at the molecular, subcellular, cellular, organic, and organism levels. Analysis of these multiscale networks contributes to our understanding of how genotype determines phenotype. In this review, we summarized the theoretical framework of plant multiscale networks and introduced studies investigating plant networks by various experimental and computational modalities. We next discussed the currently available analytic methodologies and multi-level imaging techniques used to map multiscale networks in plants. Finally, we highlighted some of the technical challenges and key questions remaining to be addressed in this emerging field.
Collapse
Affiliation(s)
- Xi Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yi Man
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Yaning Cui
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Meng Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jingjing Xing
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 457004, China
| | - Guangchao Wang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Na Lian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Zijian Hu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Lingyu Ma
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Weiwei Shen
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Shunyao Yang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Huimin Xu
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiahui Bian
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanping Jing
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaojuan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Ruili Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing, 100101, China
| | - Sodmergen
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Haiyun Ren
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing, 100875, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China. .,College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
37
|
Chen C, Vanneste S, Chen X. Review: Membrane tethers control plasmodesmal function and formation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110800. [PMID: 33568299 DOI: 10.1016/j.plantsci.2020.110800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Cell-to-cell communication is crucial in coordinating diverse biological processes in multicellular organisms. In plants, communication between adjacent cells occurs via nanotubular passages called plasmodesmata (PD). The PD passage is composed of an appressed endoplasmic reticulum (ER) internally, and plasma membrane (PM) externally, that traverses the cell wall, and associates with the actin-cytoskeleton. The coordination of the ER, PM and cytoskeleton plays a potential role in maintaining the architecture and conductivity of PD. Many data suggest that PD-associated proteins can serve as tethers that connect these structures in a functional PD, to regulate cell-to-cell communication. In this review, we summarize the organization and regulation of PD activity via tethering proteins, and discuss the importance of PD-mediated cell-to-cell communication in plant development and defense against environmental stress.
Collapse
Affiliation(s)
- Chaofan Chen
- College of Life Science and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China; FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Department of Plants and Crops, Ghent University, Coupure links 653, 9000 Ghent, Belgium; Lab of Plant Growth Analysis, Ghent University Global Campus, Songdomunhwa-Ro, 119, Yeonsu-gu, Incheon 21985, Republic of Korea
| | - Xu Chen
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
38
|
Azim MF, Burch-Smith TM. Organelles-nucleus-plasmodesmata signaling (ONPS): an update on its roles in plant physiology, metabolism and stress responses. CURRENT OPINION IN PLANT BIOLOGY 2020; 58:48-59. [PMID: 33197746 DOI: 10.1016/j.pbi.2020.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 05/03/2023]
Abstract
Plasmodesmata allow movement of metabolites and signaling molecules between plant cells and are, therefore, critical players in plant development and physiology, and in responding to environmental signals and stresses. There is emerging evidence that plasmodesmata are controlled by signaling originating from other organelles, primarily the chloroplasts and mitochondria. These signals act in the nucleus to alter expression of genetic pathways that control both trafficking via plasmodesmata and the plasmodesmatal pores themselves. This control circuit was dubbed organelle-nucleus-plasmodesmata signaling (ONPS). Here we discuss how ONPS arose during plant evolution and highlight the discovery of an ONPS-like module for regulating stomata. We also consider recent findings that illuminate details of the ONPS circuit and its roles in plant physiology, metabolism, and defense.
Collapse
Affiliation(s)
- Mohammad F Azim
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States
| | - Tessa M Burch-Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
39
|
Wang X, Sager R, Lee JY. Evaluating molecular movement through plasmodesmata. Methods Cell Biol 2020; 160:99-117. [PMID: 32896335 DOI: 10.1016/bs.mcb.2020.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Plasmodesmata are membrane-lined cytoplasmic passageways that facilitate the movement of nutrients and various types of molecules between cells in the plant. They are highly dynamic channels, opening or closing in response to physiological and developmental stimuli or environmental challenges such as biotic and abiotic stresses. Accumulating evidence supports the idea that such dynamic controls occur through integrative cellular mechanisms. Currently, a few fluorescence-based methods are available that allow monitoring changes in molecular movement through plasmodesmata. In this chapter, following a brief introduction to those methods, we provide a detailed step-by-step protocol for the Drop-ANd-See (DANS) assay, which is advantageous when it is desirable to measure plasmodesmal permeability non-invasively, in situ and in real-time. We discuss the experimental conditions one should consider to produce reliable and reproducible DANS results along with troubleshooting ideas.
Collapse
Affiliation(s)
- Xu Wang
- Department of Plant Physiology and Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - Ross Sager
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States
| | - Jung-Youn Lee
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE, United States.
| |
Collapse
|
40
|
Godel-Jedrychowska K, Kulinska-Lukaszek K, Horstman A, Soriano M, Li M, Malota K, Boutilier K, Kurczynska EU. Symplasmic isolation marks cell fate changes during somatic embryogenesis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2612-2628. [PMID: 31974549 PMCID: PMC7210756 DOI: 10.1093/jxb/eraa041] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/22/2020] [Indexed: 05/05/2023]
Abstract
Cell-to-cell signalling is a major mechanism controlling plant morphogenesis. Transport of signalling molecules through plasmodesmata is one way in which plants promote or restrict intercellular signalling over short distances. Plasmodesmata are membrane-lined pores between cells that regulate the intercellular flow of signalling molecules through changes in their size, creating symplasmic fields of connected cells. Here we examine the role of plasmodesmata and symplasmic communication in the establishment of plant cell totipotency, using somatic embryo induction from Arabidopsis explants as a model system. Cell-to-cell communication was evaluated using fluorescent tracers, supplemented with histological and ultrastructural analysis, and correlated with expression of a WOX2 embryo reporter. We showed that embryogenic cells are isolated symplasmically from non-embryogenic cells regardless of the explant type (immature zygotic embryos or seedlings) and inducer system (2,4-dichlorophenoxyacetic acid or the BABY BOOM (BBM) transcription factor), but that the symplasmic domains in different explants differ with respect to the maximum size of molecule capable of moving through the plasmodesmata. Callose deposition in plasmodesmata preceded WOX2 expression in future sites of somatic embryo development, but later was greatly reduced in WOX2-expressing domains. Callose deposition was also associated with a decrease DR5 auxin response in embryogenic tissue. Treatment of explants with the callose biosynthesis inhibitor 2-deoxy-D-glucose supressed somatic embryo formation in all three systems studied, and also blocked the observed decrease in DR5 expression. Together these data suggest that callose deposition at plasmodesmata is required for symplasmic isolation and establishment of cell totipotency in Arabidopsis.
Collapse
Affiliation(s)
- Kamila Godel-Jedrychowska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Katarzyna Kulinska-Lukaszek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Anneke Horstman
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
- Laboratory of Molecular Biology, Wageningen University and Research, AA Wageningen, Netherlands
| | - Mercedes Soriano
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
| | - Mengfan Li
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
- Laboratory of Molecular Biology, Wageningen University and Research, AA Wageningen, Netherlands
| | - Karol Malota
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in KatowiceKatowice, Poland
| | - Kim Boutilier
- Bioscience, Wageningen University and Research, AA Wageningen, Netherlands
| | - Ewa U Kurczynska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
41
|
Salvi E, Rutten JP, Di Mambro R, Polverari L, Licursi V, Negri R, Dello Ioio R, Sabatini S, Ten Tusscher K. A Self-Organized PLT/Auxin/ARR-B Network Controls the Dynamics of Root Zonation Development in Arabidopsis thaliana. Dev Cell 2020; 53:431-443.e23. [PMID: 32386600 DOI: 10.1016/j.devcel.2020.04.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/20/2020] [Accepted: 04/06/2020] [Indexed: 10/24/2022]
Abstract
During organogenesis, coherent organ growth arises from spatiotemporally coordinated decisions of individual cells. In the root of Arabidopsis thaliana, this coordination results in the establishment of a division and a differentiation zone. Cells continuously move through these zones; thus, a major question is how the boundary between these domains, the transition zone, is formed and maintained. By combining molecular genetics with computational modeling, we reveal how an auxin/PLETHORA/ARR-B network controls these dynamic patterning processes. We show that after germination, cell division causes a drop in distal PLT2 levels that enables transition zone formation and ARR12 activation. The resulting PLT2-ARR12 antagonism controls expansion of the division zone (the meristem). The successive ARR1 activation antagonizes PLT2 through inducing the cell-cycle repressor KRP2, thus setting final meristem size. Our work indicates a key role for the interplay between cell division dynamics and regulatory networks in root zonation and transition zone patterning.
Collapse
Affiliation(s)
- Elena Salvi
- Department of Biology and Biotechnologies "C. Darwin," Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome "Sapienza", via dei Sardi, 70, 00185 Rome, Italy
| | - Jacob Pieter Rutten
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Riccardo Di Mambro
- Department of Biology, University of Pisa - via L. Ghini, 13, 56126 Pisa, Italy
| | - Laura Polverari
- Department of Biology and Biotechnologies "C. Darwin," Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome "Sapienza", via dei Sardi, 70, 00185 Rome, Italy
| | - Valerio Licursi
- Department of Biology and Biotechnologies "C. Darwin," Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome "Sapienza", via dei Sardi, 70, 00185 Rome, Italy
| | - Rodolfo Negri
- Department of Biology and Biotechnologies "C. Darwin," Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome "Sapienza", via dei Sardi, 70, 00185 Rome, Italy
| | - Raffaele Dello Ioio
- Department of Biology and Biotechnologies "C. Darwin," Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome "Sapienza", via dei Sardi, 70, 00185 Rome, Italy
| | - Sabrina Sabatini
- Department of Biology and Biotechnologies "C. Darwin," Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome "Sapienza", via dei Sardi, 70, 00185 Rome, Italy.
| | - Kirsten Ten Tusscher
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
42
|
Ganusova EE, Reagan BC, Fernandez JC, Azim MF, Sankoh AF, Freeman KM, McCray TN, Patterson K, Kim C, Burch-Smith TM. Chloroplast-to-nucleus retrograde signalling controls intercellular trafficking via plasmodesmata formation. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190408. [PMID: 32362251 DOI: 10.1098/rstb.2019.0408] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The signalling pathways that regulate intercellular trafficking via plasmodesmata (PD) remain largely unknown. Analyses of mutants with defects in intercellular trafficking led to the hypothesis that chloroplasts are important for controlling PD, probably by retrograde signalling to the nucleus to regulate expression of genes that influence PD formation and function, an idea encapsulated in the organelle-nucleus-PD signalling (ONPS) hypothesis. ONPS is supported by findings that point to chloroplast redox state as also modulating PD. Here, we have attempted to further elucidate details of ONPS. Through reverse genetics, expression of select nucleus-encoded genes with known or predicted roles in chloroplast gene expression was knocked down, and the effects on intercellular trafficking were then assessed. Silencing most genes resulted in chlorosis, and the expression of several photosynthesis and tetrapyrrole biosynthesis associated nuclear genes was repressed in all silenced plants. PD-mediated intercellular trafficking was changed in the silenced plants, consistent with predictions of the ONPS hypothesis. One striking observation, best exemplified by silencing the PNPase homologues, was that the degree of chlorosis of silenced leaves was not correlated with the capacity for intercellular trafficking. Finally, we measured the distribution of PD in silenced leaves and found that intercellular trafficking was positively correlated with the numbers of PD. Together, these results not only provide further support for ONPS but also point to a genetic mechanism for PD formation, clarifying a longstanding question about PD and intercellular trafficking. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.
Collapse
Affiliation(s)
- Elena E Ganusova
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Brandon C Reagan
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jessica C Fernandez
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Mohammad F Azim
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Amie F Sankoh
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Tyra N McCray
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Kelsey Patterson
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Chinkee Kim
- Departments of Science and Mathematics, RIT/National Technical Institute for the Deaf (NTID), Rochester, NY 14623, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
43
|
Reagan BC, Burch-Smith TM. Viruses Reveal the Secrets of Plasmodesmal Cell Biology. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:26-39. [PMID: 31715107 DOI: 10.1094/mpmi-07-19-0212-fi] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plasmodesmata (PD) are essential for intercellular trafficking of molecules required for plant life, from small molecules like sugars and ions to macromolecules including proteins and RNA molecules that act as signals to regulate plant development and defense. As obligate intracellular pathogens, plant viruses have evolved to manipulate this communication system to facilitate the initial cell-to-cell and eventual systemic spread in their plant hosts. There has been considerable interest in how viruses manipulate the PD that connect the protoplasts of neighboring cells, and viruses have yielded invaluable tools for probing the structure and function of PD. With recent advances in biochemistry and imaging, we have gained new insights into the composition and structure of PD in the presence and absence of viruses. Here, we first discuss viral strategies for manipulating PD for their intercellular movement and examine how this has shed light on our understanding of native PD function. We then address the controversial role of the cytoskeleton in trafficking to and through PD. Finally, we address how viruses could alter PD structure and consider possible mechanisms of the phenomenon described as 'gating'. This discussion supports the significance of virus research in elucidating the properties of PD, these persistently enigmatic plant organelles.
Collapse
Affiliation(s)
- Brandon C Reagan
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, U.S.A
| |
Collapse
|
44
|
Plasmodesmata Conductivity Regulation: A Mechanistic Model. PLANTS 2019; 8:plants8120595. [PMID: 31842374 PMCID: PMC6963776 DOI: 10.3390/plants8120595] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/03/2019] [Accepted: 12/10/2019] [Indexed: 01/16/2023]
Abstract
Plant cells form a multicellular symplast via cytoplasmic bridges called plasmodesmata (Pd) and the endoplasmic reticulum (ER) that crosses almost all plant tissues. The Pd proteome is mainly represented by secreted Pd-associated proteins (PdAPs), the repertoire of which quickly adapts to environmental conditions and responds to biotic and abiotic stresses. Although the important role of Pd in stress-induced reactions is universally recognized, the mechanisms of Pd control are still not fully understood. The negative role of callose in Pd permeability has been convincingly confirmed experimentally, yet the roles of cytoskeletal elements and many PdAPs remain unclear. Here, we discuss the contribution of each protein component to Pd control. Based on known data, we offer mechanistic models of mature leaf Pd regulation in response to stressful effects.
Collapse
|
45
|
Salicylic acid-mediated plasmodesmal closure via Remorin-dependent lipid organization. Proc Natl Acad Sci U S A 2019; 116:21274-21284. [PMID: 31575745 PMCID: PMC6800329 DOI: 10.1073/pnas.1911892116] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Plasmodesmata (PD) create cytoplasmic and membrane continuities between adjacent cells to facilitate cell–cell communication and virus movement. Plant cells have evolved diverse mechanisms to regulate PD plasticity against plant pathogens, including the accumulation of the defense hormone, salicylic acid (SA). However, the mechanism of how this occurs is not well understood. Here, we uncover a mechanism by which SA triggers Remorin-dependent membrane lipid nanodomain assembly, leading to enhancement of the liquid-ordered phase. The higher-ordered lipids, which are particularly enriched at PD membrane, decreased PD membrane plasticity, and thus restricted PD opening and impeded virus spreading. Our findings address a knowledge gap in plant defense mechanisms at the membrane level that rely on SA-controlled lipid order and PD closure. Plasmodesmata (PD) are plant-specific membrane-lined channels that create cytoplasmic and membrane continuities between adjacent cells, thereby facilitating cell–cell communication and virus movement. Plant cells have evolved diverse mechanisms to regulate PD plasticity in response to numerous environmental stimuli. In particular, during defense against plant pathogens, the defense hormone, salicylic acid (SA), plays a crucial role in the regulation of PD permeability in a callose-dependent manner. Here, we uncover a mechanism by which plants restrict the spreading of virus and PD cargoes using SA signaling by increasing lipid order and closure of PD. We showed that exogenous SA application triggered the compartmentalization of lipid raft nanodomains through a modulation of the lipid raft-regulatory protein, Remorin (REM). Genetic studies, superresolution imaging, and transmission electron microscopy observation together demonstrated that Arabidopsis REM1.2 and REM1.3 are crucial for plasma membrane nanodomain assembly to control PD aperture and functionality. In addition, we also found that a 14-3-3 epsilon protein modulates REM clustering and membrane nanodomain compartmentalization through its direct interaction with REM proteins. This study unveils a molecular mechanism by which the key plant defense hormone, SA, triggers membrane lipid nanodomain reorganization, thereby regulating PD closure to impede virus spreading.
Collapse
|
46
|
Hunziker P, Halkier BA, Schulz A. Arabidopsis glucosinolate storage cells transform into phloem fibres at late stages of development. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4305-4317. [PMID: 30976798 PMCID: PMC6698705 DOI: 10.1093/jxb/erz176] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/05/2019] [Indexed: 05/17/2023]
Abstract
The phloem cap of Arabidopsis thaliana accumulates glucosinolates that yield toxic catabolites upon damage-induced hydrolysis. These defence compounds are stored in high concentrations in millimetre long S-cells. At early stages of development, S-cells initiate a process indicative of programmed cell death. How these cells are maintained in a highly turgescent state following this process is currently unknown. Here, we show that S-cells undergo substantial morphological changes during early differentiation. Vacuolar collapse and rapid clearance of the cytoplasm did not occur until senescence. Instead, smooth endoplasmic reticulum, Golgi bodies, vacuoles, and undifferentiated plastids were observed. Lack of chloroplasts indicates that S-cells depend on metabolite supply from neighbouring cells. Interestingly, TEM revealed numerous plasmodesmata between S-cells and neighbouring cells. Photoactivation of a symplasmic tracer showed coupling with neighbouring cells that are involved in glucosinolate synthesis. Hence, symplasmic transport might contribute to glucosinolate storage in S-cells. To investigate the fate of S-cells, we traced them in flower stalks from the earliest detectable stages to senescence. At late stages, S-cells were shown to deposit thick secondary cell walls and transform into phloem fibres. Thus, phloem fibres in the herbaceous plant Arabidopsis pass a pronounced phase of chemical defence during early stages of development.
Collapse
Affiliation(s)
- Pascal Hunziker
- Department of Plant and Environmental Sciences, DynaMo Center, University of Copenhagen, Thorvaldsensvej, Frederiksberg C, Denmark
| | | | | |
Collapse
|
47
|
Navarro JA, Sanchez-Navarro JA, Pallas V. Key checkpoints in the movement of plant viruses through the host. Adv Virus Res 2019; 104:1-64. [PMID: 31439146 DOI: 10.1016/bs.aivir.2019.05.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plant viruses cannot exploit any of the membrane fusion-based routes of entry described for animal viruses. In addition, one of the distinctive structures of plant cells, the cell wall, acts as the first barrier against the invasion of pathogens. To overcome the rigidity of the cell wall, plant viruses normally take advantage of the way of life of different biological vectors. Alternatively, the physical damage caused by environmental stresses can facilitate virus entry. Once inside the cell and taking advantage of the characteristic symplastic continuity of plant cells, viruses need to remodel and/or modify the restricted pore size of the plasmodesmata (channels that connect plant cells). In a successful interaction for the virus, it can reach the vascular tissue to systematically invade the plant. The connections between the different cell types in this path are not designed to allow the passage of molecules with the complexity of viruses. During this process, viruses face different cell barriers that must be overcome to reach the distal parts of the plant. In this review, we highlight the current knowledge about how plant RNA viruses enter plant cells, move between them to reach vascular cells and overcome the different physical and cellular barriers that the phloem imposes. Finally, we update the current research on cellular organelles as key regulator checkpoints in the long-distance movement of plant viruses.
Collapse
Affiliation(s)
- Jose A Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Jesus A Sanchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain.
| |
Collapse
|
48
|
Yan D, Yadav SR, Paterlini A, Nicolas WJ, Petit JD, Brocard L, Belevich I, Grison MS, Vaten A, Karami L, El-Showk S, Lee JY, Murawska GM, Mortimer J, Knoblauch M, Jokitalo E, Markham JE, Bayer EM, Helariutta Y. Sphingolipid biosynthesis modulates plasmodesmal ultrastructure and phloem unloading. NATURE PLANTS 2019; 5:604-615. [PMID: 31182845 PMCID: PMC6565433 DOI: 10.1038/s41477-019-0429-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 04/17/2019] [Indexed: 05/18/2023]
Abstract
During phloem unloading, multiple cell-to-cell transport events move organic substances to the root meristem. Although the primary unloading event from the sieve elements to the phloem pole pericycle has been characterized to some extent, little is known about post-sieve element unloading. Here, we report a novel gene, PHLOEM UNLOADING MODULATOR (PLM), in the absence of which plasmodesmata-mediated symplastic transport through the phloem pole pericycle-endodermis interface is specifically enhanced. Increased unloading is attributable to a defect in the formation of the endoplasmic reticulum-plasma membrane tethers during plasmodesmal morphogenesis, resulting in the majority of pores lacking a visible cytoplasmic sleeve. PLM encodes a putative enzyme required for the biosynthesis of sphingolipids with very-long-chain fatty acid. Taken together, our results indicate that post-sieve element unloading involves sphingolipid metabolism, which affects plasmodesmal ultrastructure. They also raise the question of how and why plasmodesmata with no cytoplasmic sleeve facilitate molecular trafficking.
Collapse
Affiliation(s)
- Dawei Yan
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Shri Ram Yadav
- Helsinki Institute of Life Science/Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Department of Biotechnology, Indian Institute of Technology, Roorkee, India
| | - Andrea Paterlini
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - William J Nicolas
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jules D Petit
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
- Laboratoire de Biophysique Moléculaire aux Interfaces, TERRA Research Centre, GX ABT, Université de Liège, Gembloux, Belgium
| | - Lysiane Brocard
- Bordeaux Imaging Centre, Plant Imaging Platform, UMS 3420, INRA-CNRS-INSERM, University of Bordeaux, Villenave-d'Ornon, France
| | - Ilya Belevich
- Helsinki Institute of Life Science/Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Magali S Grison
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France
| | - Anne Vaten
- Helsinki Institute of Life Science/Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Leila Karami
- Helsinki Institute of Life Science/Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Department of Horticulture, Faculty of Agriculture and Natural Resources, Persian Gulf University, Bushehr, Iran
| | - Sedeer El-Showk
- Helsinki Institute of Life Science/Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jung-Youn Lee
- Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Gosia M Murawska
- Biosciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint Bioenergy Institute, Emeryville, CA, USA
| | - Jenny Mortimer
- Biosciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint Bioenergy Institute, Emeryville, CA, USA
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Eija Jokitalo
- Helsinki Institute of Life Science/Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jennifer E Markham
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Emmanuelle M Bayer
- Laboratoire de Biogenèse Membranaire, UMR 5200, CNRS, Université de Bordeaux, Villenave d'Ornon, France.
| | - Ykä Helariutta
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK.
- Helsinki Institute of Life Science/Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
49
|
Kitagawa M, Tomoi T, Fukushima T, Sakata Y, Sato M, Toyooka K, Fujita T, Sakakibara H. Abscisic Acid Acts as a Regulator of Molecular Trafficking through Plasmodesmata in the Moss Physcomitrella patens. PLANT & CELL PHYSIOLOGY 2019; 60:738-751. [PMID: 30597108 DOI: 10.1093/pcp/pcy249] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 12/26/2018] [Indexed: 05/12/2023]
Abstract
In multi-cellular organisms, cell-to-cell communication is crucial for adapting to changes in the surrounding environment. In plants, plasmodesmata (PD) provide a unique pathway for cell-to-cell communication. PD interconnect most cells and generate a cytoplasmic continuum, allowing the trafficking of various micro- and macromolecules between cells. This molecular trafficking through PD is dynamically regulated by altering PD permeability dependent on environmental changes, thereby leading to an appropriate response to various stresses; however, how PD permeability is dynamically regulated is still largely unknown. Moreover, studies on the regulation of PD permeability have been conducted primarily in a limited number of angiosperms. Here, we studied the regulation of PD permeability in the moss Physcomitrella patens and report that molecular trafficking through PD is rapidly and reversibly restricted by abscisic acid (ABA). Since ABA plays a key role in various stress responses in the moss, PD permeability can be controlled by ABA to adapt to surrounding environmental changes. This ABA-dependent restriction of PD trafficking correlates with a reduction in PD pore size. Furthermore, we also found that the rate of macromolecular trafficking is higher in an ABA-synthesis defective mutant, suggesting that the endogenous level of ABA is also important for PD-mediated macromolecular trafficking. Thus, our study provides compelling evidence that P. patens exploits ABA as one of the key regulators of PD function.
Collapse
Affiliation(s)
- Munenori Kitagawa
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
| | - Takumi Tomoi
- Okazaki Institute for Integrative Bioscience, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, Japan
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
| | - Tomoki Fukushima
- Graduate School of Life Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
| | - Yoichi Sakata
- Department of BioScience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
| | - Tomomichi Fujita
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| |
Collapse
|
50
|
Ganusova EE, Burch-Smith TM. Review: Plant-pathogen interactions through the plasmodesma prism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:70-80. [PMID: 30709495 DOI: 10.1016/j.plantsci.2018.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/18/2018] [Accepted: 05/23/2018] [Indexed: 06/09/2023]
Abstract
Plasmodesmata (PD) allow membrane and cytoplasmic continuity between plant cells, and they are essential for intercellular communication and signaling in addition to metabolite partitioning. Plant pathogens have evolved a variety of mechanisms to subvert PD to facilitate their infection of plant hosts. PD are implicated not only in local spread around infection sites but also in the systemic spread of pathogens and pathogen-derived molecules. In turn, plants have developed strategies to limit pathogen spread via PD, and there is increasing evidence that PD may also be active players in plant defense responses. The last few years have seen important advances in understanding the roles of PD in plant-pathogen infection. Nonetheless, several critical areas remain to be addressed. Here we highlight some of these, focusing on the need to consider the effects of pathogen-PD interaction on the trafficking of endogenous molecules, and the involvement of chloroplasts in regulating PD during pathogen defense. By their very nature, PD are recalcitrant to most currently used investigative techniques, therefore answering these questions will require creative imaging and novel quantification approaches.
Collapse
Affiliation(s)
- Elena E Ganusova
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, United States
| | - Tessa M Burch-Smith
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, United States.
| |
Collapse
|