1
|
Bedendi G, Maroni P, Milton RD. Enzyme-Substrate Complex Formation and Electron Transfer in Nitrogenase-Like Dark-Operative Protochlorophyllide Oxidoreductase (DPOR). ChemistryOpen 2025:e202500153. [PMID: 40195889 DOI: 10.1002/open.202500153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Nitrogenase-like dark-operative protochlorophyllide oxidoreductase (DPOR) is a two-component metalloenzyme involved in (bacterio)chlorophyll biosynthesis. DPOR enables photosynthesis in photosynthetic bacteria by catalyzing the MgATP hydrolysis-dependent, stereoselective two-electron reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide). This requires the repeated transient association of DPOR's two component proteins (BchL and BchNB), and involves a series of individual and unresolved sequence of events (including MgATP-hydrolysis, electron transfer, protein association/dissociation, substrate binding, etc.). DPOR shares structural and mechanistic similarities with nitrogenase, although the spectroscopic properties of Pchlide and Chlide permit the reaction to be followed in situ with visible spectroscopy. Here, we investigate DPOR's mechanism through vis-spectroscopy in the absence of an electron donor in the system, where we were able to observe the formation of the enzyme-substrate (ES) complex prior to substrate reduction (electron transfer and MgATP hydrolysis). The determination of rate constants for ES formation as well as overall electron transfer reveals the complex rate-limiting interplay between these two processes. Further, we observe evidence of cooperativity for ES complex formation in DPOR, which may be the origin of cooperativity during enzymatic turnover.
Collapse
Affiliation(s)
- Giada Bedendi
- Department of Inorganic and Analytical Chemistry, Faculty of Science, University of Geneva, Quai Ernest-Ansermet 30, 1205, Geneva, Switzerland
| | - Plinio Maroni
- Department of Inorganic and Analytical Chemistry, Faculty of Science, University of Geneva, Quai Ernest-Ansermet 30, 1205, Geneva, Switzerland
| | - Ross D Milton
- Department of Inorganic and Analytical Chemistry, Faculty of Science, University of Geneva, Quai Ernest-Ansermet 30, 1205, Geneva, Switzerland
| |
Collapse
|
2
|
Xing J, Pan J, Yang W. Chloroplast protein translocation complexes and their regulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:912-925. [PMID: 40013537 DOI: 10.1111/jipb.13875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/24/2025] [Accepted: 02/04/2025] [Indexed: 02/28/2025]
Abstract
Chloroplasts, refined through more than a billion years of evolution in plants and algae, act as highly efficient and resilient converters of solar energy. Additionally, these organelles function as complex anabolic factories, synthesizing a wide array of primary and secondary metabolites. The functionality of chloroplasts is dependent on the involvement of more than 3,000 proteins, the majority of which are encoded by the nuclear genome. These nucleus-encoded proteins must cross the chloroplast double lipid membrane to become functional. This translocation process is facilitated by the translocons at the outer and inner envelope membranes of chloroplasts (the outer chloroplast [TOC] and the inner chloroplast [TIC] complexes, respectively) and is driven by an energy-providing motor. Despite decades of research, the composition of these complexes remains highly controversial, especially regarding the TIC and motor components. However, recent studies have provided valuable insight into the TOC/TIC complexes, while also raising new questions about their mechanisms. In this review, we explore the latest advancements in understanding the structure and function of these complexes. Additionally, we briefly examine the processes of protein quality control, retrograde signaling, and discuss promising directions for future research in this field.
Collapse
Affiliation(s)
- Jiale Xing
- State Key Laboratory of Forage Breeding-by-Design and Utilization and Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- State Key Laboratory for Quality Assurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Junting Pan
- State Key Laboratory of Forage Breeding-by-Design and Utilization and Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenqiang Yang
- State Key Laboratory of Forage Breeding-by-Design and Utilization and Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Li Y, Cao T, Guo Y, Grimm B, Li X, Duanmu D, Lin R. Regulatory and retrograde signaling networks in the chlorophyll biosynthetic pathway. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:887-911. [PMID: 39853950 DOI: 10.1111/jipb.13837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/08/2024] [Indexed: 01/26/2025]
Abstract
Plants, algae and photosynthetic bacteria convert light into chemical energy by means of photosynthesis, thus providing food and energy for most organisms on Earth. Photosynthetic pigments, including chlorophylls (Chls) and carotenoids, are essential components that absorb the light energy necessary to drive electron transport in photosynthesis. The biosynthesis of Chl shares several steps in common with the biosynthesis of other tetrapyrroles, including siroheme, heme and phycobilins. Given that many tetrapyrrole precursors possess photo-oxidative properties that are deleterious to macromolecules and can lead to cell death, tetrapyrrole biosynthesis (TBS) requires stringent regulation under various developmental and environmental conditions. Thanks to decades of research on model plants and algae, we now have a deeper understanding of the regulatory mechanisms that underlie Chl synthesis, including (i) the many factors that control the activity and stability of TBS enzymes, (ii) the transcriptional and post-translational regulation of the TBS pathway, and (iii) the complex roles of tetrapyrrole-mediated retrograde signaling from chloroplasts to the cytoplasm and the nucleus. Based on these new findings, Chls and their derivatives will find broad applications in synthetic biology and agriculture in the future.
Collapse
Affiliation(s)
- Yuhong Li
- Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Tianjun Cao
- School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Yunling Guo
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiaobo Li
- School of Life Sciences, Westlake University, Hangzhou, 310030, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- Institute of Biotechnology, Xianghu Laboratory, Hangzhou, 311231, China
| |
Collapse
|
4
|
Zhang C, Li W, Wu Y, Li S, Hua B, Sun H. Chloroplast Functionality at the Interface of Growth, Defense, and Genetic Innovation: A Multi-Omics and Technological Perspective. PLANTS (BASEL, SWITZERLAND) 2025; 14:978. [PMID: 40265935 DOI: 10.3390/plants14060978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 04/24/2025]
Abstract
Chloroplasts are important in plant growth, development, and defense mechanisms, making them central to addressing global agricultural challenges. This review explores the multi-faceted contributions of chloroplasts, including photosynthesis, hormone biosynthesis, and stress signaling, which orchestrate the trade-off between growth and defense. Advancements in chloroplast genomics, transcription, translation, and proteomics have deepened our understanding of their regulatory functions and interactions with nuclear-encoded proteins. Case studies have demonstrated the potential of chloroplast-targeted strategies, such as the expression of elongation factor EF-2 for heat tolerance and flavodiiron proteins for drought resilience, to enhance crop productivity and stress adaptation. Future research directions should focus on the need for integrating omics data with nanotechnology and synthetic biology to develop sustainable and resilient agricultural systems. This review uniquely integrates recent advancements in chloroplast genomics, transcriptional regulation, and synthetic biology to present a holistic perspective on optimizing plant growth and stress tolerance. We emphasize the role of chloroplast-driven trade-off in balancing growth and immunity, leveraging omics technologies and emerging biotechnological innovations. This comprehensive approach offers new insights into sustainable agricultural practices, making it a significant contribution to the field.
Collapse
Affiliation(s)
- Chunhua Zhang
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Inner Mongolia, Hohhot 010031, China
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Herbivore Nutrition Science, Hohhot 010031, China
| | - Wenting Li
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Inner Mongolia, Hohhot 010031, China
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Herbivore Nutrition Science, Hohhot 010031, China
| | - Yahan Wu
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Inner Mongolia, Hohhot 010031, China
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Herbivore Nutrition Science, Hohhot 010031, China
| | - Shengli Li
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Inner Mongolia, Hohhot 010031, China
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Herbivore Nutrition Science, Hohhot 010031, China
| | - Bao Hua
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Inner Mongolia, Hohhot 010031, China
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Herbivore Nutrition Science, Hohhot 010031, China
| | - Haizhou Sun
- Institute of Animal Nutrition and Feed, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Inner Mongolia, Hohhot 010031, China
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Hohhot 010031, China
- Inner Mongolia Key Laboratory of Herbivore Nutrition Science, Hohhot 010031, China
| |
Collapse
|
5
|
Poirier MC, Fugard K, Cvetkovska M. Light quality affects chlorophyll biosynthesis and photosynthetic performance in Antarctic Chlamydomonas. PHOTOSYNTHESIS RESEARCH 2025; 163:9. [PMID: 39832016 DOI: 10.1007/s11120-024-01127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025]
Abstract
The perennially ice-covered Lake Bonney in Antarctica has been deemed a natural laboratory for studying life at the extreme. Photosynthetic algae dominate the lake food webs and are adapted to a multitude of extreme conditions including perpetual shading even at the height of the austral summer. Here we examine how the unique light environment in Lake Bonney influences the physiology of two Chlamydomonas species. Chlamydomonas priscui is found exclusively in the deep photic zone where it receives very low light levels biased in the blue part of the spectrum (400-500 nm). In contrast, Chlamydomonas sp. ICE-MDV is represented at various depths within the water column (including the bright surface waters), and it receives a broad range of light levels and spectral wavelengths. The psychrophilic character of both species makes them an ideal system to study the effects of light quality and quantity on chlorophyll biosynthesis and photosynthetic performance in extreme conditions. We show that the shade-adapted C. priscui exhibits a decreased ability to accumulate chlorophyll and severe photoinhibition when grown under red light compared to blue light. These effects are particularly pronounced under red light of higher intensity, suggesting a loss of capability to acclimate to varied light conditions. In contrast, ICE-MDV has retained the ability to synthesize chlorophyll and maintain photosynthetic efficiency under a broader range of light conditions. Our findings provide insights into the mechanisms of photosynthesis under extreme conditions and have implications on algal survival in changing conditions of Antarctic ice-covered lakes.
Collapse
Affiliation(s)
- Mackenzie C Poirier
- Department of Biology, University of Ottawa, 30 Marie-Curie Pr., Ottawa, ON, K1N 6N5, Canada
| | - Kassandra Fugard
- Department of Biology, University of Ottawa, 30 Marie-Curie Pr., Ottawa, ON, K1N 6N5, Canada
| | - Marina Cvetkovska
- Department of Biology, University of Ottawa, 30 Marie-Curie Pr., Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
6
|
Topatan ZŞ, Kalefetoğlu Macar T, Macar O, Yalçin E, Çavuşoğlu K, Acar A, Kutluer F. Alleviatory efficacy of achillea millefolium L. in etoxazole-mediated toxicity in allium cepa L. Sci Rep 2024; 14:31674. [PMID: 39738374 PMCID: PMC11686124 DOI: 10.1038/s41598-024-81586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/27/2024] [Indexed: 01/02/2025] Open
Abstract
The application of pesticides may adversely impact a variety of non-target organisms. The use of side-effect-free herbal remedies to protect against the toxicity of harmful pesticides such as etoxazole has gained attention in recent times. The current study aimed to reveal the potential mitigating efficacy of Achillea millefolium L. extract against etoxazole toxicity in Allium cepa L. A. cepa bulbs in the control group were applied with tap water, while bulbs in the treatment groups were applied with etoxazole at dose of 0.5 m/L and two different doses of A. millefolium extract (200 mg/L and 400 mg/L). The impact of the treatments on certain parameters was evaluated. The molecular docking analysis was employed to investigate the potential interactions of etoxazole with DNA species, DNA topoisomerases, tubulin proteins, glutamate-1-semialdehyde aminotransferase, and protochlorophyllide reductase. The phenolic profile of A. millefolium was assessed. Etoxazole exposure reduced rooting percentage, root length, weight gain, mitotic index, and levels of chlorophyll a and chlorophyll b. Conversely, etoxazole treatment led to an increase in chromosomal aberrations and micronuclei occurrence. The most frequently observed chromosomal aberrations induced by etoxazole, which serve as bioindicators of genotoxicity, were fragment, vagrant chromosome, sticky chromosome, unequal chromatin distribution, bridge, reverse polarization, and vacuolated nucleus. The levels of malondialdehyde and antioxidant enzyme (superoxide dismutase and catalase) activities were also elevated. Epidermis cell damage, flattened cell nucleus, thickened cortex cell wall, and thickened conduction tissue were the meristematic cell disorders triggered by etoxazole. Molecular docking studies showed that etoxazole can interact directly with DNA, tubulins, and the enzymes mentioned above. A. millefolium extract was found to contain a substantial quantity of phenolic compounds. A. millefolium extract, when co-administered with etoxazole, attenuated all toxic effects of etoxazole dose-dependently. In conclusion, A. millefolium may potentially serve as a reliable pharmacological shield against the toxicity of pesticides in non-target organisms.
Collapse
Affiliation(s)
- Zeynep Şule Topatan
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkey
| | - Tuğçe Kalefetoğlu Macar
- Department of Food Technology, Şebinkarahisar School of Applied Sciences, Giresun University, Giresun, Turkey.
| | - Oksal Macar
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkey
| | - Emine Yalçin
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkey
| | - Kültiğin Çavuşoğlu
- Department of Biology, Faculty of Science and Art, Giresun University, Giresun, Turkey
| | - Ali Acar
- Department of Medical Services and Techniques, Vocational School of Health Services, Giresun University, Giresun, Turkey
| | - Fatih Kutluer
- Department of Herbal and Animal Production, Kırıkkale Vocational School, Kırıkkale University, Kırıkkale, Turkey
| |
Collapse
|
7
|
Yang P, Guo K, Yang Y, Lyu M, Liu J, Li X, Feng Y. Phylogeny and genetic variations of the three genome compartments in haptophytes shed light on the rapid evolution of coccolithophores. Gene 2023; 887:147716. [PMID: 37604324 DOI: 10.1016/j.gene.2023.147716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Haptophyte algae, including coccolithophores, play key roles in global carbon cycling and ecosystem. They exhibit exceptional morphological and functional diversity. However, their phylogeny is mostly based on short markers and genome researches are always limited to few species, hindering a better understanding about their evolution and diversification. In this study, by assembling 69 new plastid genomes, 65 new mitochondrial genomes, and 55 nuclear drafts, we systematically analyzed their genome variations and built the most comprehensive phylogenies in haptophytes and Noelaerhabdaceae, with the latter is the family of the model coccolithophore Emiliania huxleyi. The haptophyte genomes vary significantly in size, gene content, and structure. We detected phylogenetic incongruence of Prymnesiales between genome compartments. In Noelaerhabdaceae, by including Reticulofenestra sessilis and a proper outgroup, we found R. sessilis was not the basal taxon of this family. Noelaerhabdaceae strains have very similar genomic features and conserved sequences, but different gene content and dynamic structure. We speculate that was caused by DNA double-strand break repairs. Our results provide valuable genetic resources and new insights into the evolution of haptophytes, especially coccolithophores.
Collapse
Affiliation(s)
- Penghao Yang
- Fudan University, Shanghai 200433, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Kangning Guo
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yuqing Yang
- Fudan University, Shanghai 200433, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Mingjie Lyu
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300380, China
| | - Jingwen Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xiaobo Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Yanlei Feng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310030, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
8
|
Zheng J, Shen Z, Gao JM, Zhou J, Gu Y. Enzymatic Photodecarboxylation on Secondary and Tertiary Carboxylic Acids. Org Lett 2023; 25:8564-8569. [PMID: 38019531 DOI: 10.1021/acs.orglett.3c03356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Photoenzymatic decarboxylation of bulky secondary and tertiary carboxylic acids catalyzed by engineered Chlorella variabilis fatty acid photodecarboxylase (CvFAP) is reported. Rational design and directed evolution of wild-type CvFAP are used to improve the reactivity and expand potential applications. Moreover, engineered CvFAP can catalyze light-driven kinetic resolution of α-substituted carboxylic acid. Our work sheds light on the production of chiral building blocks and bioactive molecules from bulky carboxylic acids via the photoenzymatic way.
Collapse
Affiliation(s)
- Jie Zheng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Zhuanglin Shen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, People's Republic of China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jiahai Zhou
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, People's Republic of China
| | - Yang Gu
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, People's Republic of China
| |
Collapse
|
9
|
Buller R, Lutz S, Kazlauskas RJ, Snajdrova R, Moore JC, Bornscheuer UT. From nature to industry: Harnessing enzymes for biocatalysis. Science 2023; 382:eadh8615. [PMID: 37995253 DOI: 10.1126/science.adh8615] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
Biocatalysis harnesses enzymes to make valuable products. This green technology is used in countless applications from bench scale to industrial production and allows practitioners to access complex organic molecules, often with fewer synthetic steps and reduced waste. The last decade has seen an explosion in the development of experimental and computational tools to tailor enzymatic properties, equipping enzyme engineers with the ability to create biocatalysts that perform reactions not present in nature. By using (chemo)-enzymatic synthesis routes or orchestrating intricate enzyme cascades, scientists can synthesize elaborate targets ranging from DNA and complex pharmaceuticals to starch made in vitro from CO2-derived methanol. In addition, new chemistries have emerged through the combination of biocatalysis with transition metal catalysis, photocatalysis, and electrocatalysis. This review highlights recent key developments, identifies current limitations, and provides a future prospect for this rapidly developing technology.
Collapse
Affiliation(s)
- R Buller
- Competence Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland
| | - S Lutz
- Codexis Incorporated, Redwood City, CA 94063, USA
| | - R J Kazlauskas
- Department of Biochemistry, Molecular Biology and Biophysics, Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - R Snajdrova
- Novartis Institutes for BioMedical Research, Global Discovery Chemistry, 4056 Basel, Switzerland
| | - J C Moore
- MRL, Merck & Co., Rahway, NJ 07065, USA
| | - U T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology and Enzyme Catalysis, Greifswald University, Greifswald, Germany
| |
Collapse
|
10
|
Zheng JW, He GH, Xu RX, Wang X, Li HY, Yang WD. Systematic exploration of transcriptional responses of interspecies interaction between Karenia mikimotoi and Prorocentrum shikokuense. HARMFUL ALGAE 2023; 126:102441. [PMID: 37290889 DOI: 10.1016/j.hal.2023.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 06/10/2023]
Abstract
Karenia mikimotoi and Prorocentrum shikokuense (also identified as P. donghaiense Lu and P. obtusidens Schiller) are two important harmful algal species which often form blooms in the coasts of China. Studies have shown that the allelopathy of K. mikimotoi and P. shikokuense plays an important role in inter-algal competition, though the underlying mechanisms remain largely unclear. Here, we observed reciprocal inhibitory effects between K. mikimotoi and P. shikokuense under co-cultures. Based on the reference sequences, we isolated RNA sequencing reads of K. mikimotoi and P. shikokuense from co-culture metatranscriptome, respectively. We found the genes involved in photosynthesis, carbon fixation, energy metabolism, nutrients absorption and assimilation were significantly up-regulated in K. mikimotoi after co-cultured with P. shikokuense. However, genes involved in DNA replication and cell cycle were significantly down-regulated. These results suggested that co-culture with P. shikokuense stimulated cell metabolism and nutrients competition activity of K. mikimotoi, and inhibited cell cycle. In contrast, genes involved in energy metabolism, cell cycle and nutrients uptake and assimilation were dramatically down-regulated in P. shikokuense under co-culture with K. mikimotoi, indicating that K. mikimotoi could highly affect the cellular activity of P. shikokuense. In addition, the expression of PLA2G12 (Group XII secretory phospholipase A2) that can catalyze the accumulation of linoleic acid or linolenic acid, and nitrate reductase that may be involved in nitric oxide production were significantly increased in K. mikimotoi, suggesting that PLA2G12 and nitrate reductase may play important roles in the allelopathy of K. mikimotoi. Our findings shed new light on the interspecies competition between K. mikimotoi and P. shikokuense, and provide a novel strategy for studying interspecific competition in complex systems.
Collapse
Affiliation(s)
- Jian-Wei Zheng
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; College of Food Science and Engineering, Foshan University of Science and Technology, Foshan 528231, China
| | - Guo-Hui He
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Rui-Xia Xu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiang Wang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
11
|
Ha JS, Lhee D, Andersen RA, Melkonian B, Melkonian M, Yoon HS. Plastid Genome Evolution of Two Colony-Forming Benthic Ochrosphaera neapolitana Strains (Coccolithales, Haptophyta). Int J Mol Sci 2023; 24:10485. [PMID: 37445662 DOI: 10.3390/ijms241310485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Coccolithophores are well-known haptophytes that produce small calcium carbonate coccoliths, which in turn contribute to carbon sequestration in the marine environment. Despite their important ecological role, only two of eleven haptophyte plastid genomes are from coccolithophores, and those two belong to the order Isochrysidales. Here, we report the plastid genomes of two strains of Ochrosphaera neapolitana (Coccolithales) from Spain (CCAC 3688 B) and the USA (A15,280). The newly constructed plastid genomes are the largest in size (116,906 bp and 113,686 bp, respectively) among all the available haptophyte plastid genomes, primarily due to the increased intergenic regions. These two plastid genomes possess a conventional quadripartite structure with a long single copy and short single copy separated by two inverted ribosomal repeats. These two plastid genomes share 110 core genes, six rRNAs, and 29 tRNAs, but CCAC 3688 B has an additional CDS (ycf55) and one tRNA (trnL-UAG). Two large insertions at the intergenic regions (2 kb insertion between ycf35 and ycf45; 0.5 kb insertion in the middle of trnM and trnY) were detected in the strain CCAC 3688 B. We found the genes of light-independent protochlorophyllide oxidoreductase (chlB, chlN, and chlL), which convert protochlorophyllide to chlorophyllide during chlorophyll biosynthesis, in the plastid genomes of O. neapolitana as well as in other benthic Isochrysidales and Coccolithales species, putatively suggesting an evolutionary adaptation to benthic habitats.
Collapse
Affiliation(s)
- Ji-San Ha
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Duckhyun Lhee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Robert A Andersen
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| | - Barbara Melkonian
- Group Integrative Bioinformatics, Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Central Collection of Algal Cultures (CCAC), Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Michael Melkonian
- Group Integrative Bioinformatics, Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
- Central Collection of Algal Cultures (CCAC), Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
12
|
Emmanuel MA, Bender SG, Bilodeau C, Carceller JM, DeHovitz JS, Fu H, Liu Y, Nicholls BT, Ouyang Y, Page CG, Qiao T, Raps FC, Sorigué DR, Sun SZ, Turek-Herman J, Ye Y, Rivas-Souchet A, Cao J, Hyster TK. Photobiocatalytic Strategies for Organic Synthesis. Chem Rev 2023; 123:5459-5520. [PMID: 37115521 PMCID: PMC10905417 DOI: 10.1021/acs.chemrev.2c00767] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Biocatalysis has revolutionized chemical synthesis, providing sustainable methods for preparing various organic molecules. In enzyme-mediated organic synthesis, most reactions involve molecules operating from their ground states. Over the past 25 years, there has been an increased interest in enzymatic processes that utilize electronically excited states accessed through photoexcitation. These photobiocatalytic processes involve a diverse array of reaction mechanisms that are complementary to one another. This comprehensive review will describe the state-of-the-art strategies in photobiocatalysis for organic synthesis until December 2022. Apart from reviewing the relevant literature, a central goal of this review is to delineate the mechanistic differences between the general strategies employed in the field. We will organize this review based on the relationship between the photochemical step and the enzymatic transformations. The review will include mechanistic studies, substrate scopes, and protein optimization strategies. By clearly defining mechanistically-distinct strategies in photobiocatalytic chemistry, we hope to illuminate future synthetic opportunities in the area.
Collapse
Affiliation(s)
- Megan A Emmanuel
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Sophie G Bender
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Catherine Bilodeau
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jose M Carceller
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Institute of Chemical Technology (ITQ), Universitat Politècnica de València, València 46022,Spain
| | - Jacob S DeHovitz
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Haigen Fu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Yi Liu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Bryce T Nicholls
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yao Ouyang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Claire G Page
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Tianzhang Qiao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Felix C Raps
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Damien R Sorigué
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Aix-Marseille University, CEA, CNRS, Institute of Biosciences and Biotechnologies, BIAM Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Shang-Zheng Sun
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Joshua Turek-Herman
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yuxuan Ye
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Ariadna Rivas-Souchet
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jingzhe Cao
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Todd K Hyster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
13
|
Montuori E, Martinez KA, De Luca D, Ianora A, Lauritano C. Transcriptome Sequencing of the Diatom Asterionellopsis thurstonii and In Silico Identification of Enzymes Potentially Involved in the Synthesis of Bioactive Molecules. Mar Drugs 2023; 21:md21020126. [PMID: 36827167 PMCID: PMC9959416 DOI: 10.3390/md21020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Microalgae produce a plethora of primary and secondary metabolites with possible applications in several market sectors, including cosmetics, human nutrition, aquaculture, biodiesel production and treatment/prevention of human diseases. Diatoms, in particular, are the most diversified microalgal group, many species of which are known to have anti-cancer, anti-oxidant, anti-diabetes, anti-inflammatory and immunomodulatory properties. Compounds responsible for these activities are often still unknown. The aim of this study was to de novo sequence the full transcriptome of two strains of the diatom Asterionellopsis thurstonii, sampled from two different locations and cultured in both control and phosphate starvation conditions. We used an RNA-sequencing approach to in silico identify transcripts potentially involved in the synthesis/degradation of compounds with anti-cancer and immunomodulatory properties. We identified transcript coding for L-asparaginase I, polyketide cyclase/dehydrase, bifunctional polyketide phosphatase/kinase, 1-deoxy-D-xylulose-5-phosphate synthase (fragment), inositol polyphosphate 5-phosphatase INPP5B/F, catechol O-Methyltransferase, digalactosyldiacylglycerol synthase (DGD1), 1,2-diacylglycerol-3-beta-galactosyltransferase and glycerolphosphodiester phosphodiesterase. Differential expression analysis also allowed to identify in which culturing condition these enzymes are more expressed. Overall, these data give new insights on the annotation of diatom genes, enzymatic pathways involved in the generation of bioactive molecules and possible exploitation of Asterionellopsis thurstonii.
Collapse
Affiliation(s)
- Eleonora Montuori
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Naples, Italy
| | - Kevin A. Martinez
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Naples, Italy
| | - Daniele De Luca
- Department of Biology, University of Naples Federico II, Via Foria 223, 80139 Naples, Italy
| | - Adrianna Ianora
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Naples, Italy
| | - Chiara Lauritano
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Naples, Italy
- Correspondence: author:
| |
Collapse
|
14
|
Gao LL, Hong ZH, Wang Y, Wu GZ. Chloroplast proteostasis: A story of birth, life, and death. PLANT COMMUNICATIONS 2023; 4:100424. [PMID: 35964157 PMCID: PMC9860172 DOI: 10.1016/j.xplc.2022.100424] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 06/02/2023]
Abstract
Protein homeostasis (proteostasis) is a dynamic balance of protein synthesis and degradation. Because of the endosymbiotic origin of chloroplasts and the massive transfer of their genetic information to the nucleus of the host cell, many protein complexes in the chloroplasts are constituted from subunits encoded by both genomes. Hence, the proper function of chloroplasts relies on the coordinated expression of chloroplast- and nucleus-encoded genes. The biogenesis and maintenance of chloroplast proteostasis are dependent on synthesis of chloroplast-encoded proteins, import of nucleus-encoded chloroplast proteins from the cytosol, and clearance of damaged or otherwise undesired "old" proteins. This review focuses on the regulation of chloroplast proteostasis, its interaction with proteostasis of the cytosol, and its retrograde control over nuclear gene expression. We also discuss significant issues and perspectives for future studies and potential applications for improving the photosynthetic performance and stress tolerance of crops.
Collapse
Affiliation(s)
- Lin-Lin Gao
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zheng-Hui Hong
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yinsong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guo-Zhang Wu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
15
|
Distribution and Genomic Variation of Thermophilic Cyanobacteria in Diverse Microbial Mats at the Upper Temperature Limits of Photosynthesis. mSystems 2022; 7:e0031722. [PMID: 35980085 PMCID: PMC9600594 DOI: 10.1128/msystems.00317-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Thermophilic cyanobacteria have been extensively studied in Yellowstone National Park (YNP) hot springs, particularly during decades of work on the thick laminated mats of Octopus and Mushroom springs. However, focused studies of cyanobacteria outside these two hot springs have been lacking, especially regarding how physical and chemical parameters along with community morphology influence the genomic makeup of these organisms. Here, we used a metagenomic approach to examine cyanobacteria existing at the upper temperature limit of photosynthesis. We examined 15 alkaline hot spring samples across six geographic areas of YNP, all with various physical and chemical parameters and community morphology. We recovered 22 metagenome-assembled genomes (MAGs) belonging to thermophilic cyanobacteria, notably an uncultured Synechococcus-like taxon recovered from a setting at the upper temperature limit of photosynthesis, 73°C, in addition to thermophilic Gloeomargarita. Furthermore, we found that three distinct groups of Synechococcus-like MAGs recovered from different temperature ranges vary in their genomic makeup. MAGs from the uncultured very-high-temperature (up to 73°C) Synechococcus-like taxon lack key nitrogen metabolism genes and have genes implicated in cellular stress responses that diverge from other Synechococcus-like MAGs. Across all parameters measured, temperature was the primary determinant of taxonomic makeup of recovered cyanobacterial MAGs. However, total Fe, community morphology, and biogeography played an additional role in the distribution and abundance of upper-temperature-limit-adapted Synechococcus-like MAGs. These findings expand our understanding of cyanobacterial diversity in YNP and provide a basis for interrogation of understudied thermophilic cyanobacteria. IMPORTANCE Oxygenic photosynthesis arose early in microbial evolution-approximately 2.5 to 3.5 billion years ago-and entirely reshaped the biological makeup of Earth. However, despite the span of time in which photosynthesis has been refined, it is strictly limited to temperatures below 73°C, a barrier that many other biological processes have been able to overcome. Furthermore, photosynthesis at temperatures above 56°C is limited to circumneutral and alkaline pH. Hot springs in Yellowstone National Park (YNP), which have a large diversity in temperatures, pH, and geochemistry, provide a natural laboratory to study thermophilic microbial mats and the cyanobacteria within. While cyanobacteria in YNP microbial mats have been studied for decades, a vast majority of the work has focused on two springs within the same geyser basin, both containing similar community morphologies. Thus, the drivers of cyanobacterial adaptations to the upper limits of photosynthesis across a variety of environmental parameters have been understudied. Our findings provide new insights into the influence of these parameters on both taxonomic diversity and genomic content of cyanobacteria across a range of hot spring samples.
Collapse
|
16
|
Silva PJ, Cheng Q. An Alternative Proposal for the Reaction Mechanism of Light-Dependent Protochlorophyllide Oxidoreductase. ACS Catal 2022; 12:2589-2605. [PMID: 36568346 PMCID: PMC9778109 DOI: 10.1021/acscatal.1c05351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Light-dependent protochlorophyllide oxidoreductase is one of the few known enzymes that require a quantum of light to start their catalytic cycle. Upon excitation, it uses NADPH to reduce the C17-C18 in its substrate (protochlorophyllide) through a complex mechanism that has heretofore eluded precise determination. Isotopic labeling experiments have shown that the hydride-transfer step is very fast, with a small barrier close to 9 kcal mol-1, and is followed by a proton-transfer step, which has been postulated to be the protonation of the product by the strictly conserved Tyr189 residue. Since the structure of the enzyme-substrate complex has not yet been experimentally determined, we first used modeling techniques to discover the actual substrate binding mode. Two possible binding modes were found, both yielding stable binding (as ascertained through molecular dynamics simulations) but only one of which placed the critical C17=C18 bond consistently close to the NADPH pro-S hydrogen and to Tyr189. This binding pose was then used as a starting point for the testing of previous mechanistic proposals using time-dependent density functional theory. The quantum-chemical computations clearly showed that such mechanisms have prohibitively high activation energies. Instead, these computations showed the feasibility of an alternative mechanism initiated by excited-state electron transfer from the key Tyr189 to the substrate. This mechanism appears to agree with the extant experimental data and reinterprets the final protonation step as a proton transfer to the active site itself rather than to the product, aiming at regenerating it for another round of catalysis.
Collapse
Affiliation(s)
- Pedro J. Silva
- FP-I3ID/Fac.
de Ciências da Saúde, Universidade
Fernando Pessoa, 4200-150 Porto, Portugal,UCIBIO@REQUIMTE,
BioSIM, Departamento de Biomedicina, Faculdade de Medicina, Universidade do Porto, 4200-319 Porto, Portugal,
| | - Qi Cheng
- Department
of Biochemistry, College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071000, China,State
Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei 071000, China,
| |
Collapse
|
17
|
Sameer H, Victor G, Katalin S, Henrik A. Elucidation of ligand binding and dimerization of NADPH:protochlorophyllide (Pchlide) oxidoreductase from pea (Pisum sativum L.) by structural analysis and simulations. Proteins 2021; 89:1300-1314. [PMID: 34021929 DOI: 10.1002/prot.26151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/18/2021] [Accepted: 05/11/2021] [Indexed: 11/07/2022]
Abstract
NADPH:protochlorophyllide (Pchlide) oxidoreductase (POR) is a key enzyme of chlorophyll biosynthesis in angiosperms. It is one of few known photoenzymes, which catalyzes the light-activated trans-reduction of the C17-C18 double bond of Pchlide's porphyrin ring. Due to the light requirement, dark-grown angiosperms cannot synthesize chlorophyll. No crystal structure of POR is available, so to improve understanding of the protein's three-dimensional structure, its dimerization, and binding of ligands (both the cofactor NADPH and substrate Pchlide), we computationally investigated the sequence and structural relationships among homologous proteins identified through database searches. The results indicate that α4 and α7 helices of monomers form the interface of POR dimers. On the basis of conserved residues, we predicted 11 functionally important amino acids that play important roles in POR binding to NADPH. Structural comparison of available crystal structures revealed that they participate in formation of binding pockets that accommodate the Pchlide ligand, and that five atoms of the closed tetrapyrrole are involved in non-bonding interactions. However, we detected no clear pattern in the physico-chemical characteristics of the amino acids they interact with. Thus, we hypothesize that interactions of these atoms in the Pchlide porphyrin ring are important to hold the ligand within the POR binding site. Analysis of Pchlide binding in POR by molecular docking and PELE simulations revealed that the orientation of the nicotinamide group is important for Pchlide binding. These findings highlight the complexity of interactions of porphyrin-containing ligands with proteins, and we suggest that fit-inducing processes play important roles in POR-Pchlide interactions.
Collapse
Affiliation(s)
- Hassan Sameer
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Guallar Victor
- ICREA, Passeig Lluís Companys 23, Barcelona, Spain
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Solymosi Katalin
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Aronsson Henrik
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
18
|
Solymosi K, Mysliwa-Kurdziel B. The Role of Membranes and Lipid-Protein Interactions in the Mg-Branch of Tetrapyrrole Biosynthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:663309. [PMID: 33995458 PMCID: PMC8113382 DOI: 10.3389/fpls.2021.663309] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/22/2021] [Indexed: 05/31/2023]
Abstract
Chlorophyll (Chl) is essential for photosynthesis and needs to be produced throughout the whole plant life, especially under changing light intensity and stress conditions which may result in the destruction and elimination of these pigments. All steps of the Mg-branch of tetrapyrrole biosynthesis leading to Chl formation are carried out by enzymes associated with plastid membranes. Still the significance of these protein-membrane and protein-lipid interactions in Chl synthesis and chloroplast differentiation are not very well-understood. In this review, we provide an overview on Chl biosynthesis in angiosperms with emphasis on its association with membranes and lipids. Moreover, the last steps of the pathway including the reduction of protochlorophyllide (Pchlide) to chlorophyllide (Chlide), the biosynthesis of the isoprenoid phytyl moiety and the esterification of Chlide are also summarized. The unique biochemical and photophysical properties of the light-dependent NADPH:protochlorophyllide oxidoreductase (LPOR) enzyme catalyzing Pchlide photoreduction and located to peculiar tubuloreticular prolamellar body (PLB) membranes of light-deprived tissues of angiosperms and to envelope membranes, as well as to thylakoids (especially grana margins) are also reviewed. Data about the factors influencing tubuloreticular membrane formation within cells, the spectroscopic properties and the in vitro reconstitution of the native LPOR enzyme complexes are also critically discussed.
Collapse
Affiliation(s)
- Katalin Solymosi
- Department of Plant Anatomy, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Beata Mysliwa-Kurdziel
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
19
|
Genome-scale metabolic model of the diatom Thalassiosira pseudonana highlights the importance of nitrogen and sulfur metabolism in redox balance. PLoS One 2021; 16:e0241960. [PMID: 33760840 PMCID: PMC7990286 DOI: 10.1371/journal.pone.0241960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/03/2021] [Indexed: 12/22/2022] Open
Abstract
Diatoms are unicellular photosynthetic algae known to secrete organic matter that fuels secondary production in the ocean, though our knowledge of how their physiology impacts the composition of dissolved organic matter remains limited. Like all photosynthetic organisms, their use of light for energy and reducing power creates the challenge of avoiding cellular damage. To better understand the interplay between redox balance and organic matter secretion, we reconstructed a genome-scale metabolic model of Thalassiosira pseudonana strain CCMP 1335, a model for diatom molecular biology and physiology, with a 60-year history of studies. The model simulates the metabolic activities of 1,432 genes via a network of 2,792 metabolites produced through 6,079 reactions distributed across six subcellular compartments. Growth was simulated under different steady-state light conditions (5–200 μmol photons m-2 s-1) and in a batch culture progressing from exponential growth to nitrate-limitation and nitrogen-starvation. We used the model to examine the dissipation of reductants generated through light-dependent processes and found that when available, nitrate assimilation is an important means of dissipating reductants in the plastid; under nitrate-limiting conditions, sulfate assimilation plays a similar role. The use of either nitrate or sulfate uptake to balance redox reactions leads to the secretion of distinct organic nitrogen and sulfur compounds. Such compounds can be accessed by bacteria in the surface ocean. The model of the diatom Thalassiosira pseudonana provides a mechanistic explanation for the production of ecologically and climatologically relevant compounds that may serve as the basis for intricate, cross-kingdom microbial networks. Diatom metabolism has an important influence on global biogeochemistry; metabolic models of marine microorganisms link genes to ecosystems and may be key to integrating molecular data with models of ocean biogeochemistry.
Collapse
|
20
|
Occurrence, Evolution and Specificities of Iron-Sulfur Proteins and Maturation Factors in Chloroplasts from Algae. Int J Mol Sci 2021; 22:ijms22063175. [PMID: 33804694 PMCID: PMC8003979 DOI: 10.3390/ijms22063175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 01/08/2023] Open
Abstract
Iron-containing proteins, including iron-sulfur (Fe-S) proteins, are essential for numerous electron transfer and metabolic reactions. They are present in most subcellular compartments. In plastids, in addition to sustaining the linear and cyclic photosynthetic electron transfer chains, Fe-S proteins participate in carbon, nitrogen, and sulfur assimilation, tetrapyrrole and isoprenoid metabolism, and lipoic acid and thiamine synthesis. The synthesis of Fe-S clusters, their trafficking, and their insertion into chloroplastic proteins necessitate the so-called sulfur mobilization (SUF) protein machinery. In the first part, we describe the molecular mechanisms that allow Fe-S cluster synthesis and insertion into acceptor proteins by the SUF machinery and analyze the occurrence of the SUF components in microalgae, focusing in particular on the green alga Chlamydomonas reinhardtii. In the second part, we describe chloroplastic Fe-S protein-dependent pathways that are specific to Chlamydomonas or for which Chlamydomonas presents specificities compared to terrestrial plants, putting notable emphasis on the contribution of Fe-S proteins to chlorophyll synthesis in the dark and to the fermentative metabolism. The occurrence and evolutionary conservation of these enzymes and pathways have been analyzed in all supergroups of microalgae performing oxygenic photosynthesis.
Collapse
|
21
|
Heyes DJ, Zhang S, Taylor A, Johannissen LO, Hardman SJO, Hay S, Scrutton NS. Photocatalysis as the 'master switch' of photomorphogenesis in early plant development. NATURE PLANTS 2021; 7:268-276. [PMID: 33686224 DOI: 10.1038/s41477-021-00866-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Enzymatic photocatalysis is seldom used in biology. Photocatalysis by light-dependent protochlorophyllide oxidoreductase (LPOR)-one of only a few natural light-dependent enzymes-is an exception, and is responsible for the conversion of protochlorophyllide to chlorophyllide in chlorophyll biosynthesis. Photocatalysis by LPOR not only regulates the biosynthesis of the most abundant pigment on Earth but it is also a 'master switch' in photomorphogenesis in early plant development. Following illumination, LPOR promotes chlorophyll production, plastid membranes are transformed and the photosynthetic apparatus is established. Given these remarkable, light-induced pigment and morphological changes, the LPOR-catalysed reaction has been extensively studied from catalytic, physiological and plant development perspectives, highlighting vital, and multiple, cellular roles of this intriguing enzyme. Here, we offer a perspective in which the link between LPOR photocatalysis and plant photomorphogenesis is explored. Notable breakthroughs in LPOR structural biology have uncovered the structural-mechanistic basis of photocatalysis. These studies have clarified how photon absorption by the pigment protochlorophyllide-bound in a ternary LPOR-protochlorophyllide-NADPH complex-triggers photocatalysis and a cascade of complex molecular and cellular events that lead to plant morphological changes. Photocatalysis is therefore the master switch responsible for early-stage plant development and ultimately life on Earth.
Collapse
Affiliation(s)
- Derren J Heyes
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK.
| | - Shaowei Zhang
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Aoife Taylor
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Linus O Johannissen
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Samantha J O Hardman
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Sam Hay
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, The University of Manchester, Manchester, UK.
| |
Collapse
|
22
|
The origin, evolution and diversification of multiple isoforms of light-dependent protochlorophyllide oxidoreductase (LPOR): focus on angiosperms. Biochem J 2020; 477:2221-2236. [PMID: 32568402 DOI: 10.1042/bcj20200323] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022]
Abstract
Light-dependent protochlorophyllide oxidoreductase (LPOR) catalyzes the reduction of protochlorophyllide to chlorophyllide, which is a key reaction for angiosperm development. Dark operative light-independent protochlorophyllide oxidoreductase (DPOR) is the other enzyme able to catalyze this reaction, however, it is not present in angiosperms. LPOR, which evolved later than DPOR, requires light to trigger the reaction. The ancestors of angiosperms lost DPOR genes and duplicated the LPORs, however, the LPOR evolution in angiosperms has not been yet investigated. In the present study, we built a phylogenetic tree using 557 nucleotide sequences of LPORs from both bacteria and plants to uncover the evolution of LPOR. The tree revealed that all modern sequences of LPOR diverged from a single sequence ∼1.36 billion years ago. The LPOR gene was then duplicated at least 10 times in angiosperms, leading to the formation of two or even more LPOR isoforms in multiple species. In the case of Arabidopsis thaliana, AtPORA and AtPORB originated in one duplication event, in contrary to the isoform AtPORC, which diverged first. We performed biochemical characterization of these isoforms in vitro, revealing differences in the lipid-driven properties. The results prone us to hypothesize that duplication events of LPOR gave rise to the isoforms having different lipid-driven activity, which may predispose them for functioning in different locations in plastids. Moreover, we showed that LPOR from Synechocystis operated in the lipid-independent manner, revealing differences between bacterial and plant LPORs. Based on the presented results, we propose a novel classification of LPOR enzymes based on their biochemical properties and phylogenetic relationships.
Collapse
|
23
|
Ambastha V, Chauhan G, Tiwari BS, Tripathy BC. Execution of programmed cell death by singlet oxygen generated inside the chloroplasts of Arabidopsis thaliana. PROTOPLASMA 2020; 257:841-851. [PMID: 31909436 DOI: 10.1007/s00709-019-01467-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Absorption of excess excitation energy induces overproduction of singlet oxygen (1O2) in plants. The major sources of singlet oxygen production are chlorophyll and its intermediates located in the chloroplast. Over-accumulation of the chlorophyll biosynthetic intermediate protochlorophyllide by the exogenous application of 5-aminolevulinic acid (ALA), the precursor of tetrapyrrole, induced singlet oxygen production in the plastidic membranes. Over-expression of protochlorophyllide oxidoreductase C (PORC) in Arabidopsis thaliana resulted in efficient light-induced photo-transformation of protochlorophyllide to chlorophyllide that limited the accumulation of protochlorophyllide. Consequently, the 1O2 generation decreased in the PORC overexpressors (PORCx) and their cell death was minimal. Conversely, porC-2 over-accumulated protochlorophyllide in response to ALA treatment and generated higher amounts of 1O2 in light and had highest cell death as monitored by Evans blue staining. The protoplasts isolated from PORCx plants, when treated with ALA, generated minimal amounts of 1O2 as revealed by singlet oxygen sensor green (SOSG) fluorescence emission from chloroplasts. Conversely, the protoplasts of porC-2 mutants under identical conditions generated the maximum SOSG fluorescence in their chloroplasts and cytosol surrounding the chloroplasts most likely due to the leakage from the organelle. The membrane blebbing, a hallmark of programmed cell death, was clearly visible in WT and porC-2 protoplasts. Similarly, the nick end labelling (TUNEL) assay revealed nicks in the DNA. The TUNEL-positive nuclei after 30 min of light exposure were highest in porC-2 and lowest in PORCx protoplasts. The results demonstrate that higher amounts of singlet oxygen produced in the chloroplasts play an important role in programmed cell death.
Collapse
Affiliation(s)
- Vivek Ambastha
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Garima Chauhan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Budhi Sagar Tiwari
- School of Biological Sciences and Biotechnology, Institute of Advanced Research, Koba, Gandhinagar, Gujarat, 382007, India
| | - Baishnab C Tripathy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
24
|
Yamamoto H, Kojima-Ando H, Ohki K, Fujita Y. Formation of prolamellar-body-like ultrastructures in etiolated cyanobacterial cells overexpressing light-dependent protochlorophyllide oxidoreductase in Leptolyngbya boryana. J GEN APPL MICROBIOL 2020; 66:129-139. [DOI: 10.2323/jgam.2020.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Haruki Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University
| | | | - Kaori Ohki
- Department of Marine Bioscience, Faculty of Biotechnology, Fukui Prefectural University
| | - Yuichi Fujita
- Graduate School of Bioagricultural Sciences, Nagoya University
| |
Collapse
|