1
|
Engelhardt A, Ebeling M, Kaltenegger E, Langel D, Ober D. An easy and sensitive assay for acetohydroxyacid synthases based on the simultaneous detection of substrates and products in a single step. Anal Bioanal Chem 2024; 416:7085-7098. [PMID: 39443363 PMCID: PMC11579085 DOI: 10.1007/s00216-024-05613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Acetohydroxyacid synthase (AHAS, EC 2.2.1.6) catalyzes the first step in the synthesis of the branched-chain amino acids valine, leucine, and isoleucine, pathways being present in plants and microorganisms, but not in animals. Thus, AHAS is an important target for numerous herbicides and, more recently, for the development of antimicrobial agents. The need to develop new and optimized herbicides and pharmaceuticals requires a detailed understanding of the biochemistry of AHAS. AHAS transfers an activated two-carbon moiety derived from pyruvate to either pyruvate or 2-oxobutyrate as acceptor substrates, forming 2-acetolactate or 2-acetohydroxy-2-butyrate, respectively. Various methods have been described in the literature to biochemically characterize AHAS with respect to substrate preferences, substrate specificity, or kinetic parameters. However, the simultaneous detection and quantification of substrates and unstable products of the AHAS-catalyzed reaction have always been a challenge. Using AHAS isoform II from Escherichia coli, we have developed a sensitive assay for AHAS-catalyzed reactions that uses derivatization with ethyl chloroformate to stabilize and volatilize all reactants in the aqueous solution and detect them by gas chromatography coupled to flame ionization detection or mass spectrometry. This assay allows us to characterize the product formation in reactions in single and dual substrate reactions and the substrate specificity of AHAS, and to reinterpret previous biochemical observations. This assay is not limited to the AHAS-catalyzed reactions, but should be applicable to studies of many metabolic pathways.
Collapse
Affiliation(s)
- Annika Engelhardt
- Botanical Institute and Botanic Gardens, Kiel University, D-24098, Kiel, Germany
| | - Marco Ebeling
- Botanical Institute and Botanic Gardens, Kiel University, D-24098, Kiel, Germany
| | | | - Dorothee Langel
- Botanical Institute and Botanic Gardens, Kiel University, D-24098, Kiel, Germany
| | - Dietrich Ober
- Botanical Institute and Botanic Gardens, Kiel University, D-24098, Kiel, Germany.
| |
Collapse
|
2
|
Xu Q, Gao Y, Sun Z, Shi JR, Tang JY, Wang Y, Liu Y, Sun XW, Li HR, Lonhienne TG, Niu CW, Li YH, Guddat LW, Wang JG. Chemical Synthesis, Herbicidal Activity, Crop Safety, and Molecular Basis of ortho-Fluoroalkoxy Substituted Sulfonylureas as Novel Acetohydroxyacid Synthase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39374109 DOI: 10.1021/acs.jafc.4c05201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
In the face of increasing resistance to the currently used commercial herbicides and the lack of success in identifying new herbicide targets, alternative herbicides need to be developed to control unwanted monocotyledon grasses in food crops. Here, a panel of 29 novel sulfonylurea-based compounds with ortho-fluoroalkoxy substitutions at the phenyl ring were designed and synthesized. Pot assays demonstrated that two of these compounds, 6d and 6u, have strong herbicidal activities against Echinochloa crus-galli, Eleusine indica, Alopecurus aequalis, and Alopecurus japonicus Steudel at a dosage of 15 g ha-1. Furthermore, these two compounds exhibited <5% inhibition against wheat at a dosage of 30 g ha-1 under post-emergence conditions. 6u also exhibited <5% inhibition against rice at a dosage of 30 g ha-1 under both post-emergence and pre-emergence conditions. A kinetics study demonstrated that 6d and 6u are potent inhibitors of Arabidopsis thaliana acetohydroxyacid synthase (AHAS; EC 2.2.1.6) with potent Ki values of 18 ± 1.1 and 11.9 ± 4.0 nM, respectively. The crystal structure of 6u in complex with A. thaliana (At)AHAS has also been determined at 2.7 Å resolution. These new compounds represent new alternative herbicide choices to protect wheat or rice from invading grasses.
Collapse
Affiliation(s)
- Qing Xu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yanhua Gao
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Zhongjie Sun
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jin-Rui Shi
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jin-Yin Tang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yuan Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yun Liu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xue-Wen Sun
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hao-Ran Li
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Thierry G Lonhienne
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Cong-Wei Niu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yong-Hong Li
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Jian-Guo Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, National Engineering Research Center of Pesticide, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Yu X, Lin X, Zhou T, Cao L, Hu K, Li F, Qu S. Host-induced gene silencing in wild apple germplasm Malus hupehensis confers resistance to the fungal pathogen Botryosphaeria dothidea. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1174-1193. [PMID: 38430515 DOI: 10.1111/tpj.16664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 12/24/2023] [Accepted: 01/22/2024] [Indexed: 03/04/2024]
Abstract
Host-induced gene silencing (HIGS) is an inherent mechanism of plant resistance to fungal pathogens, resulting from cross-kingdom RNA interference (RNAi) mediated by small RNAs (sRNAs) delivered from plants into invading fungi. Introducing artificial sRNA precursors into crops can trigger HIGS of selected fungal genes, and thus has potential applications in agricultural disease control. To investigate the HIGS of apple (Malus sp.) during the interaction with Botryosphaeria dothidea, the pathogenic fungus causing apple ring rot disease, we evaluated whether apple miRNAs can be transported into and target genes in B. dothidea. Indeed, miR159a from Malus hupehensis, a wild apple germplasm with B. dothidea resistance, silenced the fungal sugar transporter gene BdSTP. The accumulation of miR159a in extracellular vesicles (EVs) of both infected M. hupehensis and invading B. dothidea suggests that this miRNA of the host is transported into the fungus via the EV pathway. Knockout of BdSTP caused defects in fungal growth and proliferation, whereas knockin of a miR159a-insensitive version of BdSTP resulted in increased pathogenicity. Inhibition of miR159a in M. hupehensis substantially enhanced plant sensitivity to B. dothidea, indicating miR159a-mediated HIGS against BdSTP being integral to apple immunity. Introducing artificial sRNA precursors targeting BdSTP and BdALS, an acetolactate synthase gene, into M. hupehensis revealed that double-stranded RNAs were more potent than engineered MIRNAs in triggering HIGS alternative to those natural of apple and inhibiting infection. These results provide preliminary evidence for cross-kingdom RNAi in the apple-B. dothidea interaction and establish HIGS as a potential disease control strategy in apple.
Collapse
Affiliation(s)
- Xinyi Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Xinxin Lin
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Tingting Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Lifang Cao
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Kaixu Hu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Fangzhu Li
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Shenchun Qu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| |
Collapse
|
4
|
Steyer JT, Todd RB. Branched-chain amino acid biosynthesis in fungi. Essays Biochem 2023; 67:865-876. [PMID: 37455545 DOI: 10.1042/ebc20230003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Branched-chain amino acids (BCAAs)-isoleucine, leucine, and valine-are synthesized by fungi. These amino acids are important components of proteins and secondary metabolites. The biochemical pathway for BCAA biosynthesis is well-characterized in the yeast Saccharomyces cerevisiae. The biosynthesis of these three amino acids is interconnected. Different precursors are metabolized in multiple steps through shared enzymes to produce isoleucine and valine, and the valine biosynthesis pathway branches before the penultimate step to a series of leucine biosynthesis-specific steps to produce leucine. Recent efforts have made advances toward characterization of the BCAA biosynthesis pathway in several fungi, revealing diversity in gene duplication and functional divergence in the genes for these enzymatic steps in different fungi. The BCAA biosynthesis pathway is regulated by the transcription factor LEU3 in S. cerevisiae, and LeuB in Aspergillus nidulans and Aspergillus fumigatus, and the activity of these transcription factors is modulated by the leucine biosynthesis pathway intermediate α-isopropylmalate. Herein, we discuss recent advances in our understanding of the BCAA pathway and its regulation, focusing on filamentous ascomycete fungi and comparison with the well-established process in yeast.
Collapse
Affiliation(s)
- Joel T Steyer
- Department of Plant Pathology, Kansas State University, Manhattan KS, 66506, U.S.A
| | - Richard B Todd
- Department of Plant Pathology, Kansas State University, Manhattan KS, 66506, U.S.A
| |
Collapse
|
5
|
Ustun R, Chalmers G, Tehrani D, Uzun B. Computational molecular explanation of Soybean AHAS resistance from P197S mutation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107782. [PMID: 37315349 DOI: 10.1016/j.plaphy.2023.107782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
The first enzyme in the pathway involving branched-chain amino is acetohydroxyacid synthase (AHAS, E.C. 2.2.1.6), which is inhibited by five commercial herbicide families. In this work a computational study of a point mutation of Proline-197-Serine of the Soybean AHAS enzyme, which was obtained by mutagenesis, explains the latter's S197 resistance to the commonly used Chlorsulfuron. Using protein-ligand docking and large-scale sampling and distributions from AlphaFold-generated the resistant and susceptible soybean AHAS protein structure. The computational approach here is scaled to screen for mutation probabilities of protein binding sites, similar to screening compounds for potential hits in therapeutic design using the docking software. P197 and S197 AHAS structures were found to be different even if only one amino acid was changed. The non-specific distribution of bindings in the S197 cavity after the P197S change has been rigorously calculated by RMSD analysis that it would require x20 more concentrations to fill the P197 site by the same amount. There is no previously performed detailed chlorsulfuron soybean P197S AHAS binding calculation. In the herbicide site of AHAS, several amino acids interact - a computational study could elucidate the optimal choice of point mutations for herbicidal resistance either individually or collectively by mutations one at a time and analyzing the effects with a set of herbicides individually. With a computational approach, enzymes involved in crop research and development could be analyzed more quickly, enabling faster discovery and development of herbicides.
Collapse
Affiliation(s)
- Rustem Ustun
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, Antalya, Türkiye.
| | - Gordon Chalmers
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Daniel Tehrani
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Bulent Uzun
- Department of Field Crops, Faculty of Agriculture, Akdeniz University, Antalya, Türkiye
| |
Collapse
|
6
|
Orlowska K, Fling RR, Nault R, Schilmiller AL, Zacharewski TR. Cystine/Glutamate Xc - Antiporter Induction Compensates for Transsulfuration Pathway Repression by 2,3,7,8-Tetrachlorodibenzo- p-dioxin (TCDD) to Ensure Cysteine for Hepatic Glutathione Biosynthesis. Chem Res Toxicol 2023; 36:900-915. [PMID: 37184393 PMCID: PMC10284067 DOI: 10.1021/acs.chemrestox.3c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Indexed: 05/16/2023]
Abstract
Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been associated with the induction of oxidative stress and the progression of steatosis to steatohepatitis with fibrosis. It also disrupts metabolic pathways including one-carbon metabolism (OCM) and the transsulfuration pathway with possible consequences on glutathione (GSH) levels. In this study, complementary RNAseq and metabolomics data were integrated to examine the hepatic transsulfuration pathway and glutathione biosynthesis in mice following treatment with TCDD every 4 days for 28 days. TCDD dose-dependently repressed hepatic cystathionine β-synthase (CBS) and cystathionine γ-lyase (CTH) mRNA and protein levels. Reduced CBS and CTH levels are also correlated with dose-dependent decreases in hepatic extract hydrogen sulfide (H2S). In contrast, cysteine levels increased consistent with the induction of Slc7a11, which encodes for the cystine/glutamate Xc- antiporter. Cotreatment of primary hepatocytes with sulfasalazine, a cystine/glutamate Xc- antiporter inhibitor, decreased labeled cysteine incorporation into GSH with a corresponding increase in TCDD cytotoxicity. Although reduced and oxidized GSH levels were unchanged following treatment due to the induction of GSH/GSSG efflux transporter by TCDD, the GSH:GSSG ratio decreased and global protein S-glutathionylation levels in liver extracts increased in response to oxidative stress along with the induction of glutamate-cysteine ligase catalytic subunit (Gclc), glutathione synthetase (Gss), glutathione disulfide reductase (Gsr), and glutathione transferase π (Gstp). Furthermore, levels of ophthalmic acid, a biomarker of oxidative stress indicating GSH consumption, were also increased. Collectively, the data suggest that increased cystine transport due to cystine/glutamate Xc- antiporter induction compensated for decreased cysteine production following repression of the transsulfuration pathway to support GSH synthesis in response to TCDD-induced oxidative stress.
Collapse
Affiliation(s)
- Karina Orlowska
- Biochemistry
& Molecular Biology, Institute for Integrative Toxicology, Microbiology &
Molecular Genetics, and Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan 48824, United States
| | - Russ R. Fling
- Biochemistry
& Molecular Biology, Institute for Integrative Toxicology, Microbiology &
Molecular Genetics, and Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rance Nault
- Biochemistry
& Molecular Biology, Institute for Integrative Toxicology, Microbiology &
Molecular Genetics, and Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan 48824, United States
| | - Anthony L. Schilmiller
- Biochemistry
& Molecular Biology, Institute for Integrative Toxicology, Microbiology &
Molecular Genetics, and Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan 48824, United States
| | - Timothy R. Zacharewski
- Biochemistry
& Molecular Biology, Institute for Integrative Toxicology, Microbiology &
Molecular Genetics, and Mass Spectrometry and Metabolomics Core, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
7
|
Cheng Y, Lonhienne T, Garcia MD, Williams CM, Schenk G, Guddat LW. Crystal Structure of the Commercial Herbicide, Amidosulfuron, in Complex with Arabidopsis thaliana Acetohydroxyacid Synthase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5117-5126. [PMID: 36943718 DOI: 10.1021/acs.jafc.2c08528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Amidosulfuron (AS) is from the commercial sulfonylurea herbicide family. It is highly effective against dicot broad-leaf weeds. This herbicide targets acetohydroxyacid synthase (AHAS), the first enzyme in the branched chain amino acid biosynthesis pathway. Here, we have determined the crystal structure of AS in complex with wildtype Arabidopsis thaliana AHAS (AtAHAS) and with the resistance mutant, S653T. In both structures, the cofactor, ThDP, is modified to a peracetate adduct, consistent with time-dependent accumulative inhibition. Compared to other AHAS-inhibiting herbicides of the sulfonylurea family, AS lacks a second aromatic ring. The replacement is an aryl sulfonyl group with a reduced number of interactions with the enzyme and relatively low affinity (Ki = 4.2 μM vs low nM when two heteroaromatic rings are present). This study shows that effective herbicides can have a relatively high Ki for plant AHAS but can still be a potent herbicide provided accumulative inhibition also occurs.
Collapse
Affiliation(s)
- Yan Cheng
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Thierry Lonhienne
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Mario D Garcia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Gerard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
8
|
Zafar K, Khan MZ, Amin I, Mukhtar Z, Zafar M, Mansoor S. Employing template-directed CRISPR-based editing of the OsALS gene to create herbicide tolerance in Basmati rice. AOB PLANTS 2023; 15:plac059. [PMID: 36873055 PMCID: PMC9977225 DOI: 10.1093/aobpla/plac059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Rice (Oryza sativa) is one of the primary food crops which contributes major portion of daily calorie intake. It is used as model crop for various genome editing studies. Basmati rice was also explored for establishing non-homologous end joining-based genome editing. But it was not clear whether homology-directed repair (HDR)-based genome editing can be done in Basmati rice. The current study was designed to establish HDR-based genome editing in Basmati rice to develop herbicide tolerance. There is severe weed spread when rice is grown via direct planted rice method in various countries to save labour and water resources. Therefore, the use of herbicides is necessary to control weeds. These herbicides can also affect cultivated rice which creates the need to develop herbicide-tolerant rice. In current study, we introduced a point mutation in Acetolactate Synthase gene to convert tryptophan to leucine at position 548. For this purpose, different constructs for HDR were tested with different RNA scaffold and orientation of repair templates. Out of four different architectures, the one having repair template identical to the target DNA strand precisely edited the target site. We successfully established template-directed CRISPR-Cas9 system in Super Basmati rice by detecting desired substitutions at the target site in Acetolactate Synthase locus. Moreover, this editing of Acetolactate Synthase gene resulted in the production of herbicide tolerance in Super Basmati rice. This study suggests that such type of HDR system can be used to precisely edit other genes for crop improvement.
Collapse
Affiliation(s)
| | - Muhammad Zuhaib Khan
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad 37000, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad 37000, Pakistan
| | - Zahid Mukhtar
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad 37000, Pakistan
| | - Mehak Zafar
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad 37000, Pakistan
| | | |
Collapse
|
9
|
Alves Bezerra Morais P, Britto KB, Messias E, de Andrade P, Werner E, Costa AV, Lacerda V, Pinheiro CJG, de Paula H, Borges WDS. Synthesis and Phytotoxic Evaluation of Isatin Derivatives Supported by 3D-QSAR Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:255-266. [PMID: 36583683 DOI: 10.1021/acs.jafc.2c06500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Concerned about weed infestation, a major threat to food production and herbicide resistance that interferes in the mechanism of action of the main herbicides, we have synthesized eight isatin derivatives using the "Click Chemistry" approach through copper-catalyzed azide-alkyne cycloadditions (CuAAC). Sixteen isatin derivatives were evaluated for their phytotoxic activity against the seed culture of the model plants, Lactuca sativa and Allium cepa. Six of them showed phytotoxic activity similar to the positive control, trifluralin. Hypocotyl length measurement analysis in L. sativa revealed that triazole derivative 8 is more active than trifluralin. For A. cepa, root length measurement analyses revealed that 3, 10, 14, 16, and 17 were similar to the positive control trifluralin. Three-dimensional quantitative structure-activity relationship (3D-QSAR) comparative molecular field analysis (CoMFA) model construction using the acetolactate synthase (ALS) crystallographic structure displayed pki values of predicted inhibitory activity and contour maps revealing sterically bulky groups for 11, the CF3 group in ortho, and for 17, Br in ortho, favoring the inhibitory ALS activity.
Collapse
Affiliation(s)
- Pedro Alves Bezerra Morais
- Programa de Pós-Graduação em Agroquímica, Universidade Federal do Espírito Santo, 29500000Alegre, ES, Brazil
| | - Karolinni B Britto
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Espírito Santo, 29075910Vitória, ES, Brazil
| | - Evandro Messias
- Programa de Pós-Graduação em Agroquímica, Universidade Federal do Espírito Santo, 29500000Alegre, ES, Brazil
| | - Peterson de Andrade
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, ManchesterM1 7DN, U.K
| | - Elias Werner
- Programa de Pós-Graduação em Biologia Vegetal, Universidade Federal do Espírito Santo, 29075-910Vitória, ES, Brazil
| | - Adilson Vidal Costa
- Programa de Pós-Graduação em Agroquímica, Universidade Federal do Espírito Santo, 29500000Alegre, ES, Brazil
| | - Valdemar Lacerda
- Programa de Pós-Graduação em Química, Universidade Federal do Espírito Santo, 29075910Vitória, ES, Brazil
| | | | - Heberth de Paula
- Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, 29500000Alegre, ES, Brazil
| | - Warley de Souza Borges
- Programa de Pós-Graduação em Química, Universidade Federal do Espírito Santo, 29075910Vitória, ES, Brazil
| |
Collapse
|
10
|
Doestzada M, Zhernakova DV, C L van den Munckhof I, Wang D, Kurilshikov A, Chen L, Bloks VW, van Faassen M, Rutten JHW, Joosten LAB, Netea MG, Wijmenga C, Riksen NP, Zhernakova A, Kuipers F, Fu J. Systematic analysis of relationships between plasma branched-chain amino acid concentrations and cardiometabolic parameters: an association and Mendelian randomization study. BMC Med 2022; 20:485. [PMID: 36522747 PMCID: PMC9753387 DOI: 10.1186/s12916-022-02688-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) are essential amino acids that are associated with an increased risk of cardiometabolic diseases (CMD). However, there are still only limited insights into potential direct associations between BCAAs and a wide range of CMD parameters, especially those remaining after correcting for covariates and underlying causal relationships. METHODS To shed light on these relationships, we systematically characterized the associations between plasma BCAA concentrations and a large panel of 537 CMD parameters (including atherosclerosis-related parameters, fat distribution, plasma cytokine concentrations and cell counts, circulating concentrations of cardiovascular-related proteins and plasma metabolites) in 1400 individuals from the Dutch population cohort LifeLines DEEP and 294 overweight individuals from the 300OB cohort. After correcting for age, sex, and BMI, we assessed associations between individual BCAAs and CMD parameters. We further assessed the underlying causality using Mendelian randomization. RESULTS A total of 838 significant associations were detected for 409 CMD parameters. BCAAs showed both common and specific associations, with the most specific associations being detected for isoleucine. Further, we found that obesity status substantially affected the strength and direction of associations for valine, which cannot be corrected for using BMI as a covariate. Subsequent univariable Mendelian randomization (UVMR), after removing BMI-associated SNPs, identified seven significant causal relationships from four CMD traits to BCAA levels, mostly for diabetes-related parameters. However, no causal effects of BCAAs on CMD parameters were supported. CONCLUSIONS Our cross-sectional association study reports a large number of associations between BCAAs and CMD parameters. Our results highlight some specific associations for isoleucine, as well as obesity-specific effects for valine. MR-based causality analysis suggests that altered BCAA levels can be a consequence of diabetes and alteration in lipid metabolism. We found no MR evidence to support a causal role for BCAAs in CMD. These findings provide evidence to (re)evaluate the clinical importance of individual BCAAs in CMD diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Marwah Doestzada
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Daria V Zhernakova
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Laboratory of Genomic Diversity, Center for Computer Technologies, ITMO University, St. Petersburg, Russia
| | - Inge C L van den Munckhof
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Daoming Wang
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Lianmin Chen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Vincent W Bloks
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martijn van Faassen
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Joost H W Rutten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.,Department for Genomics Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany.,Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Romania
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Niels P Riksen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.,University of Groningen, University Medical Center Groningen, European Institute of Healthy Ageing (ERIBA), Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands. .,Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
11
|
Zhou S, Zhao LT, Meng FF, Hua XW, Li YH, Liu B, Chen J, Chen AL, Li ZM. Synthesis, herbicidal activity and soil degradation of novel 5-substituted sulfonylureas as AHAS inhibitors. PEST MANAGEMENT SCIENCE 2022; 78:5313-5324. [PMID: 36054636 DOI: 10.1002/ps.7153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 08/03/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Chlorsulfuron, metsulfuron-methyl and ethametsulfuron can damage sensitive crops in rotation pattern as a result of their long persistence in soil. To explore novel sulfonylurea (SU) herbicides with favorable soil degradation rates, four series of SUs were synthesized through a structure-based drug design (SBDD) strategy. RESULTS The target compounds, especially Ia, Id and Ie, exhibited prospective herbicidal activity against dicotyledon oil seed rape (Brassica campestris), amaranth (Amaranthus retroflexus), monocotyledon barnyard grass (Echinochloa crusgalli) and crab grass (Digitaria sanguinalis) at a concentration of 15 a.i. g ha-1 . Additionally, Ia, Id and Ig displayed excellent inhibitory effects against AtAHAS, with Kapp i values of 59.1, 34.5 and 71.8 μm, respectively, which were much lower than that of chlorsulfuron at 149.4 μm. The π-π stack and H-bonds between the Ia conformation and AtAHAS in the molecular docking results confirmed the series of compounds to be conventional AHAS inhibitors. In alkaline soil (pH = 8.46), compounds Ia-Ig revealed various degrees of acceleration in the degradation rate compared with chlorsulfuron. Besides, compound Ia showed considerable wheat and corn safety under postemergence at the concentration of 30, 60 and even 120 a.i. g ha-1 . CONCLUSION Overall, based on the synthetic procedure, herbicidal activity, soil degradation and crop safety, the Ia sulfonylureas series were chosen to be investigated as prospective AHAS inhibitors. The 5-dimethylamino group on SUs accelerated the degradation rate at different levels in alkaline soils which seems to be controllable in conventional cropping systems in their further application. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Sha Zhou
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, China
| | - Lv-Ting Zhao
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Fan-Fei Meng
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, China
| | - Xue-Wen Hua
- College of Agriculture, Liaocheng University, Liaocheng, China
| | - Yong-Hong Li
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, China
| | - Bin Liu
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, China
| | - Jie Chen
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - An-Liang Chen
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Zheng-Ming Li
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
12
|
Yang X, Huang Q, Xu J, Gao Z, Jiang X, Wu Y, Ye W, Liang Y. Transcriptome reveals BCAAs biosynthesis pathway is influenced by lovastatin and can act as a potential control target in Phytophthora sojae. J Appl Microbiol 2022; 133:3585-3595. [PMID: 36000236 DOI: 10.1111/jam.15792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/27/2022]
Abstract
AIMS Lovastatin has been indicated to impair growth and development of Phytophthora sojae. Therefore, this study was performed to understand the inhibitory mechanism of lovastatin and investigate the metabolic pathway potentially serviced as a new control target for this plant pathogen. METHODS AND RESULTS Whole transcriptome analysis of lovastatin-treated P. sojae was performed by RNA-sequencing. The results revealed that 84 genes were upregulated and 58 were downregulated with more than four-fold changes under treatment. Kyoto Encyclopedia of Genes and Genomes analysis indicated that the branched-chain amino acids (BCAAs) biosynthesis pathway was abundantly enriched. All enzymes in the BCAAs biosynthesis pathway were identified in the P. sojae genome. Moreover, the study found that the herbicide flumetsulam targeting acetohydroxyacid synthase (AHAS) of the BCAAs biosynthesis pathway could effectively inhibit mycelial growth of P. sojae. CONCLUSIONS Lovastatin treatment significantly influences the BCAAs biosynthesis pathway in P. sojae. Moreover, the herbicide flumetsulam targets AHAS and inhibits growth of P. sojae. SIGNIFICANCE AND IMPACT OF STUDY The present study revealed that BCAAs biosynthesis pathway was influenced by lovastatin treatment and its key enzyme AHAS was identified as a potential new control target, which provides clues for exploring more oomycides to control plant diseases caused by P. sojae.
Collapse
Affiliation(s)
- Xinyu Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Qifeng Huang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Jitao Xu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Zhen Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xue Jiang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Wenwu Ye
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yue Liang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
13
|
Evaluation of Metabolic Engineering Strategies on 2-Ketoisovalerate Production by Escherichia coli. Appl Environ Microbiol 2022; 88:e0097622. [PMID: 35980178 PMCID: PMC9469723 DOI: 10.1128/aem.00976-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As an important metabolic intermediate, 2-ketoisovalerate has significant potential in the pharmaceutical and biofuel industries. However, a low output through microbial fermentation inhibits its industrial application. The microbial production of 2-ketoisovalerate is representative whereby redox imbalance is generated with two molecules of NADH accumulated and an extra NADPH required to produce one 2-ketoisovalerate from glucose. To achieve efficient 2-ketoisovalerate production, metabolic engineering strategies were evaluated in Escherichia coli. After deleting the competing routes, overexpressing the key enzymes for 2-ketoisovalerate production, tuning the supply of NADPH, and recycling the excess NADH through enhancing aerobic respiration, a 2-ketoisovalerate titer and yield of 46.4 g/L and 0.644 mol/mol glucose, respectively, were achieved. To reduce the main by-product of isobutanol, the activity and expression of acetolactate synthase were modified. Additionally, a protein degradation tag was fused to pyruvate dehydrogenase (PDH) to curtail the conversion of pyruvate precursor into acetyl-CoA and the generation of NADH. The resulting strain, 050TY/pCTSDTQ487S-RBS55, was initially incubated under aerobic conditions to attain sufficient cell mass and then transferred to a microaerobic condition to degrade PDH and inhibit the remaining activity of PDH. Intracellular redox imbalance was relieved with titer, productivity and yield of 2-ketoisovalerate improved to 55.8 g/L, 2.14 g/L h and 0.852 mol/mol glucose. These results revealed metabolic engineering strategies for the production of a redox-imbalanced fermentative metabolite with high titer, productivity, and yield. IMPORTANCE An efficient microbial strain was constructed for 2-ketoisovalerate synthesis. The positive effect of the leuA deletion on 2-ketoisovalerate production was found. An optimal combination of overexpressing the target genes was obtained by adjusting the positions of the multiple enzymes on the plasmid frame and the presence of terminators, which could also be useful for the production of downstream products such as isobutanol and l-valine. Reducing the isobutanol by-product by engineering the acetolactate synthase called for special attention to decreasing the promiscuous activity of the enzymes involved. Redox-balancing strategies such as tuning the expression of the chromosomal pyridine nucleotide transhydrogenase, recycling NADH under aerobic cultivation, switching off PDH by degradation, and inhibiting the expression and activity under microaerobic conditions were proven effective for improving 2-ketoisovalerate production. The degradation of PDH and inhibiting this enzyme's expression would serve as a means to generate a wide range of products from pyruvate.
Collapse
|
14
|
Xiong Y, Jiang L, Li T. Aberrant branched-chain amino acid catabolism in cardiovascular diseases. Front Cardiovasc Med 2022; 9:965899. [PMID: 35911554 PMCID: PMC9334649 DOI: 10.3389/fcvm.2022.965899] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/29/2022] [Indexed: 01/04/2023] Open
Abstract
Globally, cardiovascular diseases are the leading cause of death. Research has focused on the metabolism of carbohydrates, fatty acids, and amino acids to improve the prognosis of cardiovascular diseases. There are three types of branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) required for protein homeostasis, energy balance, and signaling pathways. Increasing evidence has implicated BCAAs in the pathogenesis of multiple cardiovascular diseases. This review summarizes the biological origin, signal transduction pathways and function of BCAAs as well as their significance in cardiovascular diseases, including myocardial hypertrophy, heart failure, coronary artery disease, diabetic cardiomyopathy, dilated cardiomyopathy, arrhythmia and hypertension.
Collapse
Affiliation(s)
- Yixiao Xiong
- Department of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu, China
| | - Ling Jiang
- Department of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Li
- Department of Anesthesiology, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Mitochondria and Metabolism, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Tao Li,
| |
Collapse
|
15
|
Shah S, Lonhienne T, Murray CE, Chen Y, Dougan KE, Low YS, Williams CM, Schenk G, Walter GH, Guddat LW, Chan CX. Genome-Guided Analysis of Seven Weed Species Reveals Conserved Sequence and Structural Features of Key Gene Targets for Herbicide Development. FRONTIERS IN PLANT SCIENCE 2022; 13:909073. [PMID: 35845697 PMCID: PMC9277346 DOI: 10.3389/fpls.2022.909073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Herbicides are commonly deployed as the front-line treatment to control infestations of weeds in native ecosystems and among crop plants in agriculture. However, the prevalence of herbicide resistance in many species is a major global challenge. The specificity and effectiveness of herbicides acting on diverse weed species are tightly linked to targeted proteins. The conservation and variance at these sites among different weed species remain largely unexplored. Using novel genome data in a genome-guided approach, 12 common herbicide-target genes and their coded proteins were identified from seven species of Weeds of National Significance in Australia: Alternanthera philoxeroides (alligator weed), Lycium ferocissimum (African boxthorn), Senecio madagascariensis (fireweed), Lantana camara (lantana), Parthenium hysterophorus (parthenium), Cryptostegia grandiflora (rubber vine), and Eichhornia crassipes (water hyacinth). Gene and protein sequences targeted by the acetolactate synthase (ALS) inhibitors and glyphosate were recovered. Compared to structurally resolved homologous proteins as reference, high sequence conservation was observed at the herbicide-target sites in the ALS (target for ALS inhibitors), and in 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase (target for glyphosate). Although the sequences are largely conserved in the seven phylogenetically diverse species, mutations observed in the ALS proteins of fireweed and parthenium suggest resistance of these weeds to ALS-inhibiting and other herbicides. These protein sites remain as attractive targets for the development of novel inhibitors and herbicides. This notion is reinforced by the results from the phylogenetic analysis of the 12 proteins, which reveal a largely consistent vertical inheritance in their evolutionary histories. These results demonstrate the utility of high-throughput genome sequencing to rapidly identify and characterize gene targets by computational methods, bypassing the experimental characterization of individual genes. Data generated from this study provide a useful reference for future investigations in herbicide discovery and development.
Collapse
Affiliation(s)
- Sarah Shah
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Thierry Lonhienne
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Cody-Ellen Murray
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Yibi Chen
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Katherine E. Dougan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Yu Shang Low
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Craig M. Williams
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Sustainable Minerals Institute, The University of Queensland, Brisbane, QLD, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Gimme H. Walter
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Luke W. Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
16
|
Shao S, Li B, Sun Q, Guo P, Du Y, Huang J. Acetolactate synthases regulatory subunit and catalytic subunit genes VdILVs are involved in BCAA biosynthesis, microscletotial and conidial formation and virulence in Verticillium dahliae. Fungal Genet Biol 2022; 159:103667. [PMID: 35041986 DOI: 10.1016/j.fgb.2022.103667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/02/2022] [Accepted: 01/11/2022] [Indexed: 11/26/2022]
Abstract
Acetolactate synthase (AHAS) catalyses the first common step in the biosynthesis pathways of three branched-chain amino acids (BCAAs) of valine, isoleucine and leucine. Here, we characterized one regulatory subunit (VdILV6) and three catalytic subunits (VdILV2A, VdILV2B and VdILV2C) of AHAS from the important cotton Verticillium wilt fungus Verticillium dahliae. Phenotypic analysis showed that VdILV6 knockout mutants were auxotrophic for valine and isoleucine and were defective in conidial morphogenesis, hypha penetration and virulence to cotton, and lost ability of microscletotial formation. The growth of single catalytic subunit gene knockout mutants were significantly inhibited by leucine at higher concentration and single catalytic subunit gene knockout mutants showed significantly reduced virulence to cotton. VdILV2B knockout also led to obviously reduced microscletotial formation and conidial production, VdILV2C knockout led to reduced conidial production. Further studies suggested that both feedback inhibition by leucine and the inhibition by AHAS inhibiting herbicides of tribenuron and bispyribac resulted in significantly down-regulated expression of the four subunit VdILVs genes (VdILV2A, VdILV2B, VdILV2C and VdILV6). Any single catalytic subunit gene knockout led to reduced expression of the other three subunit genes, whereas VdILV6 knckout induced increased expression of the three catalytic subunit genes. VdILV2B, VdILV2C and VdILV6 knockout resulted in increased expression of VdCPC1 regulator gene of the cross-pathway control of amino acid biosynthesis. Taken together, these results indicate multiple roles of four VdILVs genes in the biosynthesis of BCAAs, virulence, fungal growth and development in the filamentous fungi V. dahliae.
Collapse
Affiliation(s)
- ShengNan Shao
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, Xinjiang
| | - Biao Li
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, Xinjiang
| | - Qi Sun
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, Xinjiang
| | - PeiRu Guo
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, Xinjiang
| | - YeJuan Du
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, Xinjiang.
| | - JiaFeng Huang
- College of Agriculture / Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi 832003, Xinjiang.
| |
Collapse
|
17
|
Schröpfer S, Lempe J, Emeriewen OF, Flachowsky H. Recent Developments and Strategies for the Application of Agrobacterium-Mediated Transformation of Apple Malus × domestica Borkh. FRONTIERS IN PLANT SCIENCE 2022; 13:928292. [PMID: 35845652 PMCID: PMC9280197 DOI: 10.3389/fpls.2022.928292] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/08/2022] [Indexed: 05/09/2023]
Abstract
Genetic transformation has become an important tool in plant genome research over the last three decades. This applies not only to model plants such as Arabidopsis thaliana but also increasingly to cultivated plants, where the establishment of transformation methods could still pose many problems. One of such plants is the apple (Malus spp.), the most important fruit of the temperate climate zone. Although the genetic transformation of apple using Agrobacterium tumefaciens has been possible since 1989, only a few research groups worldwide have successfully applied this technology, and efficiency remains poor. Nevertheless, there have been some developments, especially in recent years, which allowed for the expansion of the toolbox of breeders and breeding researchers. This review article attempts to summarize recent developments in the Agrobacterium-mediated transformation strategies of apple. In addition to the use of different tissues and media for transformation, agroinfiltration, as well as pre-transformation with a Baby boom transcription factor are notable successes that have improved transformation efficiency in apple. Further, we highlight targeted gene silencing applications. Besides the classical strategies of RNAi-based silencing by stable transformation with hairpin gene constructs, optimized protocols for virus-induced gene silencing (VIGS) and artificial micro RNAs (amiRNAs) have emerged as powerful technologies for silencing genes of interest. Success has also been achieved in establishing methods for targeted genome editing (GE). For example, it was recently possible for the first time to generate a homohistont GE line into which a biallelic mutation was specifically inserted in a target gene. In addition to these methods, which are primarily aimed at increasing transformation efficiency, improving the precision of genetic modification and reducing the time required, methods are also discussed in which genetically modified plants are used for breeding purposes. In particular, the current state of the rapid crop cycle breeding system and its applications will be presented.
Collapse
|
18
|
Wang B, He Y, Wen X, Niu C, Xi Z. Prediction on the Resistance of Acetohydroxyacid Synthase Mutants to Herbicide Flumetsulam. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21110526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Jung MK, Okekunle AP, Lee JE, Sung MK, Lim YJ. Role of Branched-chain Amino Acid Metabolism in Tumor Development and Progression. J Cancer Prev 2021; 26:237-243. [PMID: 35047449 PMCID: PMC8749315 DOI: 10.15430/jcp.2021.26.4.237] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/30/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022] Open
Abstract
Branched-chain amino acids (BCAAs), isoleucine, leucine and valine, are essential amino acids with vital roles in protein synthesis and energy production. We reviewed the fundamentals of BCAA metabolism in advanced cancer patients. BCAAs and various catabolic products act as signalling molecules, which activate mechanisms ranging from protein synthesis to insulin secretion. Recently, BCAA metabolism has been suggested to contribute to cancer progression. Of particular interest is the modulation of the mTOR activity by BCAAs. There are likely multiple pathways involved in BCAA metabolism implicated in carcinogenesis. Understanding the mechanism(s) underlying altered BCAAs metabolism will significantly advance the current understanding of nutrient involvement in carcinogenesis and direct future studies to unravel the significance of BCCA metabolites in tumor development and progression.
Collapse
Affiliation(s)
- Min Kyu Jung
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kyungpook National University Hospital, Daegu, Korea
| | - Akinkunmi Paul Okekunle
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea.,Research Institute of Human Ecology, Seoul National University, Seoul, Korea
| | - Jung Eun Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea.,Research Institute of Human Ecology, Seoul National University, Seoul, Korea
| | - Mi Kyung Sung
- Department of Food and Nutrition, Sookmyung Women's University, Seoul, Korea
| | - Yun Jeong Lim
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Dongguk University College of Medicine, Goyang, Korea
| |
Collapse
|
20
|
Guo Y, Gao H, Ma H, Du C, Zhang D, Wang X, Hu S. Characterization of tribenuron-methyl-induced male sterility in Brassica juncea L. BREEDING SCIENCE 2021; 71:538-549. [PMID: 35087318 PMCID: PMC8784348 DOI: 10.1270/jsbbs.21016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/16/2021] [Indexed: 06/14/2023]
Abstract
Significant heterosis has been documented in Brassica juncea L. that are grown as agriculturally important oilseeds, vegetables and condiments crops. Male sterility induced by chemical hybridizing agents is an important pollination control system in hybrid crop breeding. Herein, we show that tribenuron-methyl (TBM), a sulfonylurea herbicide, is an effective male gametocide in B. juncea when used at a very low dosage. In the present study, foliar application of various rates of TBM induced a significant increase in pollen sterility in B. juncea (90.57-100%). TBM-treated plants exhibited reductions in size of floral organ and yield components; however, lower dose of TBM (0.075 g a.i. ha-1) did not cause a significant reduction in seed yield per plant. Tapetum cells of TBM-treated plants were hypertrophied and degenerated earlier, and abnormal meiosis was observed at the meiotic stage. A significant decrease of acetohydroxyacid synthase (AHAS) activities was detected in buds of plants treated with 0.10 g a.i. ha-1 TBM, and RT-qPCR analysis showed that TBM exposure perturbed AHAS expression in small buds, which support that TBM induces male sterility in B. juncea by targeting AHAS expression. Our results suggest that TBM could be used as an efficient chemical hybridization agent in B. juncea, which has practical implications for the application of hybrid breeding in B. juncea.
Collapse
Affiliation(s)
- Yuan Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huhu Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huaiying Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunlei Du
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dongsuo Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoyue Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shengwu Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
21
|
Marzonie M, Flores F, Sadoun N, Thomas MC, Valada-Mennuni A, Kaserzon S, Mueller JF, Negri AP. Toxicity thresholds of nine herbicides to coral symbionts (Symbiodiniaceae). Sci Rep 2021; 11:21636. [PMID: 34737333 PMCID: PMC8568975 DOI: 10.1038/s41598-021-00921-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/14/2021] [Indexed: 01/22/2023] Open
Abstract
Over 30 herbicides have been detected in catchments and waters of the Great Barrier Reef (GBR) and their toxicity to key tropical species, including the coral endosymbiotic algae Symbiodiniaceae, is not generally considered in current water quality guideline values (WQGVs). Mutualistic symbionts of the family Symbiodiniaceae are essential for the survival of scleractinian corals. We tested the effects of nine GBR-relevant herbicides on photosynthetic efficiency (ΔF/Fm′) and specific growth rate (SGR) over 14 days of cultured coral endosymbiont Cladocopium goreaui (formerly Symbiodinium clade C1). All seven Photosystem II (PSII) herbicides tested inhibited ΔF/Fm′ and SGR, with toxicity thresholds for SGR ranging between 2.75 and 320 µg L−1 (no effect concentration) and 2.54–257 µg L−1 (EC10). There was a strong correlation between EC50s for ΔF/Fm′ and SGR for all PSII herbicides indicating that inhibition of ΔF/Fm′ can be considered a biologically relevant toxicity endpoint for PSII herbicides to this species. The non-PSII herbicides haloxyfop and imazapic did not affect ΔF/Fm′ or SGR at the highest concentrations tested. The inclusion of this toxicity data for Symbiodiniaceae will contribute to improving WQGVs to adequately inform risk assessments and the management of herbicides in tropical marine ecosystems.
Collapse
Affiliation(s)
- Magena Marzonie
- Australian Institute of Marine Science, PMB No. 3, Townsville, QLD, 4810, Australia.,AIMS@JCU: Australian Institute of Marine Science and College of Marine and Environmental Sciences, James Cook University, Townsville, QLD, 4811, Australia
| | - Florita Flores
- Australian Institute of Marine Science, PMB No. 3, Townsville, QLD, 4810, Australia. .,AIMS@JCU: Australian Institute of Marine Science and College of Marine and Environmental Sciences, James Cook University, Townsville, QLD, 4811, Australia.
| | - Nora Sadoun
- Australian Institute of Marine Science, PMB No. 3, Townsville, QLD, 4810, Australia
| | - Marie C Thomas
- Australian Institute of Marine Science, PMB No. 3, Townsville, QLD, 4810, Australia
| | - Anais Valada-Mennuni
- Australian Institute of Marine Science, PMB No. 3, Townsville, QLD, 4810, Australia
| | - Sarit Kaserzon
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Andrew P Negri
- Australian Institute of Marine Science, PMB No. 3, Townsville, QLD, 4810, Australia.,AIMS@JCU: Australian Institute of Marine Science and College of Marine and Environmental Sciences, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
22
|
Functional Analysis of Keto-Acid Reductoisomerase ILVC in the Entomopathogenic Fungus Metarhizium robertsii. J Fungi (Basel) 2021; 7:jof7090737. [PMID: 34575775 PMCID: PMC8471054 DOI: 10.3390/jof7090737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 11/28/2022] Open
Abstract
Ketol-acid reductoisomerase (ILVC) is the second enzyme in the branched-chain amino acid (BCAA) biosynthesis, which regulates many physiological activities in a variety of organisms from bacteria to fungi and plants. In this work, function mechanisms of ILVC in Metarhizium robertsii Metchnikoff (Hypocreales: Clavicipitaceae) were explored with site-directed mutagenesis, reductase activity assays and transcriptomics analysis. The reductase activity assays showed that ILVC from phytopathogenic fungi exhibited significantly higher activities than those from entomopathogenic fungi but lower than those from yeast. Site-directed mutagenesis and enzymatic activities of MrILVC with different active-site mutants (Arg-113, Ser-118, Asp-152, Asp-260, and Glu-264) confirmed that active sites of MrILVC are conserved with plant and bacterial ILVCs. Deleting MrilvC causes the complete failures of vegetative growth and conidial germination, feeding with branched-chain amino acids (BCAAs) recovers the fungal growth but not conidial germination, while both characteristics are restored when supplemented with yeast extract. Compared to ΔMrilvC cultured in czapek agar (CZA), plenty of genes involved in the biosynthesis of antibiotics and amino acids were up- or down-regulated in the wild type or ΔMrilvC feeding with either BCAAs or yeast extract. Further analysis showed some genes, such as catalase A, participate in mycelial growth and conidial germination was down-regulated in ΔMrilvC from CZA, revealing that MrILVC might control the fungal development by gene regulation and BCAAs or yeast extract could play partial roles of MrILVC. This study will advance our understanding of ILVC function mechanisms in fungi.
Collapse
|
23
|
Xia X, Cheng X, Li R, Yao J, Li Z, Cheng Y. Advances in application of genome editing in tomato and recent development of genome editing technology. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2727-2747. [PMID: 34076729 PMCID: PMC8170064 DOI: 10.1007/s00122-021-03874-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/25/2021] [Indexed: 05/07/2023]
Abstract
Genome editing, a revolutionary technology in molecular biology and represented by the CRISPR/Cas9 system, has become widely used in plants for characterizing gene function and crop improvement. Tomato, serving as an excellent model plant for fruit biology research and making a substantial nutritional contribution to the human diet, is one of the most important applied plants for genome editing. Using CRISPR/Cas9-mediated targeted mutagenesis, the re-evaluation of tomato genes essential for fruit ripening highlights that several aspects of fruit ripening should be reconsidered. Genome editing has also been applied in tomato breeding for improving fruit yield and quality, increasing stress resistance, accelerating the domestication of wild tomato, and recently customizing tomato cultivars for urban agriculture. In addition, genome editing is continuously innovating, and several new genome editing systems such as the recent prime editing, a breakthrough in precise genome editing, have recently been applied in plants. In this review, these advances in application of genome editing in tomato and recent development of genome editing technology are summarized, and their leaving important enlightenment to plant research and precision plant breeding is also discussed.
Collapse
Affiliation(s)
- Xuehan Xia
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Xinhua Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Rui Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Juanni Yao
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Yulin Cheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, 401331, China.
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
24
|
L-valine production in Corynebacterium glutamicum based on systematic metabolic engineering: progress and prospects. Amino Acids 2021; 53:1301-1312. [PMID: 34401958 DOI: 10.1007/s00726-021-03066-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
L-valine is an essential branched-chain amino acid that cannot be synthesized by the human body and has a wide range of applications in food, medicine and feed. Market demand has stimulated people's interest in the industrial production of L-valine. At present, the mutagenized or engineered Corynebacterium glutamicum is an effective microbial cell factory for producing L-valine. Because the biosynthetic pathway and metabolic network of L-valine are intricate and strictly regulated by a variety of key enzymes and genes, highly targeted metabolic engineering can no longer meet the demand for efficient biosynthesis of L-valine. In recent years, the development of omics technology has promoted the upgrading of traditional metabolic engineering to systematic metabolic engineering. This whole-cell-scale transformation strategy has become a productive method for developing L-valine producing strains. This review provides an overview of the biosynthesis and regulation mechanism of L-valine, and summarizes the current metabolic engineering techniques and strategies for constructing L-valine high-producing strains. Finally, the opinion of constructing a cell factory for efficiently biosynthesizing L-valine was proposed.
Collapse
|
25
|
Lowes DJ, Miao J, Al-Waqfi RA, Avad KA, Hevener KE, Peters BM. Identification of Dual-Target Compounds with Antifungal and Anti-NLRP3 Inflammasome Activity. ACS Infect Dis 2021; 7:2522-2535. [PMID: 34260210 PMCID: PMC11344480 DOI: 10.1021/acsinfecdis.1c00270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Invasive and superficial infections caused by the Candida species result in significant global morbidity and mortality. As the pathogenicity of these organisms is intimately intertwined with host immune response, therapies to target both the fungus and host inflammation may be warranted. Structural similarities exist between established inhibitors of the NLRP3 inflammasome and those of fungal acetohydroxyacid synthase (AHAS). Therefore, we leveraged this information to conduct an in silico molecular docking screen to find novel polypharmacologic inhibitors of these targets that resulted in the identification of 12 candidate molecules. Of these, compound 10 significantly attenuated activation of the NLPR3 inflammasome by LPS + ATP, while also demonstrating growth inhibitory activity against C. albicans that was alleviated in the presence of exogenous branched chain amino acids, consistent with targeting of fungal AHAS. SAR studies delineated an essential molecular scaffold required for dual activity. Ultimately, 10 and its analog 10a resulted in IC50 (IL-1β release) and MIC50 (fungal growth) values with low μM potency against several Candida species. Collectively, this work demonstrates promising potential of dual-target approaches for improved management of fungal infections.
Collapse
Affiliation(s)
- David J Lowes
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jian Miao
- Graduate Program in Pharmaceutical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Rand A Al-Waqfi
- Graduate Program in Pharmaceutical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Kristiana A Avad
- Graduate Program in Pharmaceutical Sciences, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Doctor of Pharmacy Program, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Kirk E Hevener
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Department of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
26
|
Wang HL, Li HR, Zhang YC, Yang WT, Yao Z, Wu RJ, Niu CW, Li YH, Wang JG. Discovery of ortho-Alkoxy Substituted Novel Sulfonylurea Compounds That Display Strong Herbicidal Activity against Monocotyledon Grasses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8415-8427. [PMID: 34283603 DOI: 10.1021/acs.jafc.1c02081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the present study, we have designed and synthesized a series of 42 novel sulfonylurea compounds with ortho-alkoxy substitutions at the phenyl ring and evaluated their herbicidal activities. Some target compounds showed excellent herbicidal activity against monocotyledon weed species. When applied at 7.5 g ha-1, 6-11 exhibited more potent herbicidal activity against barnyard grass (Echinochloa crus-galli) and crab grass (Digitaria sanguinalis) than commercial acetohydroxyacid synthase (AHAS; EC 2.2.1.6) inhibitors triasulfuron, penoxsulam, and nicosulfuron at both pre-emergence and postemergence conditions. 6-11 was safe for peanut for postemergence application at this ultralow dosage, suggesting that it could be considered a potential herbicide candidate for peanut fields. Although 6-11 and triasulfuron share similar chemical structures and have close Ki values for plant AHAS, a significant difference has been observed between their LUMO maps from DFT calculations, which might be a possible factor that leads to their different behaviors toward monocotyledon weed species.
Collapse
Affiliation(s)
- Hai-Lian Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hao-Ran Li
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yi-Chi Zhang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wen-Tao Yang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zheng Yao
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ren-Jun Wu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Cong-Wei Niu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yong-Hong Li
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jian-Guo Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
27
|
Li JH, Li RH, Wang Y, Li SX, Wu YP, Zhang J, Zhu YG, Xie BJ. Synthesis, herbicidal activity, enzyme activity, and molecular docking of novel aniline thiourea. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1901702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jia hui Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Ran hong Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yan Wang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Sui xin Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yun peng Wu
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Jing Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yong gang Zhu
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Bei jie Xie
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| |
Collapse
|
28
|
Xie L, Zang X, Cheng W, Zhang Z, Zhou J, Chen M, Tang Y. Harzianic Acid from Trichoderma afroharzianum Is a Natural Product Inhibitor of Acetohydroxyacid Synthase. J Am Chem Soc 2021; 143:10.1021/jacs.1c03988. [PMID: 34132537 PMCID: PMC8674378 DOI: 10.1021/jacs.1c03988] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acetohydroxyacid synthase (AHAS) is the first enzyme in the branched-chain amino acid biosynthetic pathway and is a validated target for herbicide and fungicide development. Here we report harzianic acid (HA, 1) produced by the biocontrol fungus Trichoderma afroharzianum t-22 (Tht22) as a natural product inhibitor of AHAS. The biosynthetic pathway of HA was elucidated with heterologous reconstitution. Guided by a putative self-resistance enzyme in the genome, HA was biochemically demonstrated to be a selective inhibitor of fungal AHAS, including those from phytopathogenic fungi. In addition, HA can inhibit a common resistant variant of AHAS in which the active site proline is mutated. Structural analysis of AHAS complexed with HA revealed the molecular basis of competitive inhibition, which differs from all known commercial AHAS inhibitors. The alternative binding mode also rationalizes the selectivity of HA, as well as effectiveness toward resistant mutants. A proposed role of HA biosynthesis by Tht22 in the rhizosphere is discussed based on the data.
Collapse
Affiliation(s)
- Linan Xie
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Xin Zang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Wei Cheng
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Zhuan Zhang
- Texas Therapeutics Institute, the Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, Texas 77054, United States
| | - Jiahai Zhou
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mengbin Chen
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
- Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
29
|
Alvarado O, García-Meseguer R, Ruiz-Pernía JJ, Tuñon I, Delgado EJ. Mechanistic study of the biosynthesis of R-phenylacetylcarbinol by acetohydroxyacid synthase enzyme using hybrid quantum mechanics/molecular mechanics simulations. Arch Biochem Biophys 2021; 707:108849. [PMID: 33832752 DOI: 10.1016/j.abb.2021.108849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The biosynthesis of R-phenylacetylcarbinol (R-PAC) by the acetohydroxy acid synthase, (AHAS) is addressed by molecular dynamics simulations (MD), hybrid quantum mechanics/molecular mechanics (QM/MM), and QM/MM free energy calculations. The results show the reaction starts with the nucleophilic attack of the C2α atom of the HEThDP intermediate on the Cβ atom of the carbonyl group of benzaldehyde substrate via the formation of a transition state (TS1) with the HEThDP intermediate under 4'-aminopyrimidium (APH+) form. The calculated activation free energy for this step is 17.4 kcal mol-1 at 27 °C. From this point, the reaction continues with the abstraction of Hβ atom of the HEThDP intermediate by the Oβ atom of benzaldehyde to form the intermediate I. The reaction is completed with the cleavage of the bond C2α-C2 to form the product R-PAC and to regenerate the ylide intermediate under the APH+ form, allowing in this way to reinitiate to the catalytic cycle once more. The calculated activation barrier for this last step is 15.9 kcal mol-1 at 27 °C.
Collapse
Affiliation(s)
- Omar Alvarado
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile; Departamento de Química, Facultad de Ciencias, Universidad del Bío-Bío, Avenida Collao 1202, Concepción, Chile
| | - Rafael García-Meseguer
- School of Mathematics, University of Bristol, Bristol, UK; Department of Physical Chemistry, Universitat de Valencia, 46100, Burjassot, Spain
| | | | - Iñaki Tuñon
- Department of Physical Chemistry, Universitat de Valencia, 46100, Burjassot, Spain
| | - Eduardo J Delgado
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
30
|
Hasan MM, Rima R. Genetic engineering to improve essential and conditionally essential amino acids in maize: transporter engineering as a reference. Transgenic Res 2021; 30:207-220. [PMID: 33583006 DOI: 10.1007/s11248-021-00235-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/21/2021] [Indexed: 11/27/2022]
Abstract
Ruminants and humans are unable to synthesize essential amino acids (EAAs) and conditionally essential amino acids (CEAAs) under normal conditions and need to acquire them from plant sources. Maize plays, as a major crop, a central role in global food security. However, maize is deficient in several EAAs and CEAAs. Genetic engineering has been successfully used to enrich the EAA content of maize to some extent, including the content of Lys, Trp, and Met. However, research on other EAAs is lacking. Genetic engineering provides several viable approaches for increasing the EAA content in maize, including transformation of a single gene, transformation of multiple genes in a single cassette, overexpression of putative amino acid transporters, engineering the amino acid biosynthesis pathway including silencing of feedback inhibition enzymes, and overexpression of major enzymes in this pathway. These challenging processes require a deep understanding of the biosynthetic and metabolic pathways of individual amino acids, and the interaction of individual amino acids with other metabolic pathways.
Collapse
Affiliation(s)
- Md Mahmudul Hasan
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
- The Key Laboratory of Plant-Soil Interactions, Ministry of Education, Center for Resources, Environment and Food Security, Department of Plant Nutrition, China Agricultural University, Beijing, 100193, China.
| | - Rima Rima
- Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
31
|
Alvarado O, García-Meseguer R, Ruiz-Pernía JJ, Tuñon I, Delgado EJ. Mechanistic study of the biosynthesis of R-phenylcarbinol by acetohydroxyacid synthase enzyme using hybrid quantum mechanics/molecular mechanics simulations. Arch Biochem Biophys 2021; 701:108807. [PMID: 33587902 DOI: 10.1016/j.abb.2021.108807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 11/26/2022]
Abstract
The biosynthesis of R-phenylacetylcarbinol (R-PAC) by the acetohydroxy acid synthase, (AHAS) is addressed by molecular dynamics simulations (MD), hybrid quantum mechanics/molecular mechanics (QM/MM), and QM/MM free energy calculations. The results show the reaction starts with the nucleophilic attack of the C2α atom of the HEThDP intermediate on the Cβ atom of the carbonyl group of benzaldehyde substrate via the formation of a transition state (TS1) with the HEThDP intermediate under 4'-aminopyrimidium (APH+) form. The calculated activation free energy for this step is 17.4kcal mol-1 at 27 °C. From this point, the reaction continues with the abstraction of Hβ atom of the HEThDP intermediate by the Oβ atom of benzaldehyde to form the intermediate I. The reaction is completed with the cleavage of the bond C2α-C2 to form the product R-PAC and to regenerate the ylide intermediate under the APH+ form, allowing in this way to reinitiate to the catalytic cycle once more. The calculated activation barrier for this last step is 15.9kcal mol-1 at 27 °C.
Collapse
Affiliation(s)
- Omar Alvarado
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile; Departamento de Química, Facultad de Ciencias, Universidad del Bío-Bío, Avenida Collao 1202, Concepción, Chile
| | - Rafael García-Meseguer
- School of Mathematics, University of Bristol, Bristol, United Kingdom; Department of Physical Chemistry, Universitat de Valencia, 46100, Burjassot, Spain
| | | | - Iñaki Tuñon
- Department of Physical Chemistry, Universitat de Valencia, 46100, Burjassot, Spain
| | - Eduardo J Delgado
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
32
|
Wang H, Sun P, Guo W, Dong X, Liu W, Wang J. Florasulam resistance status of flixweed (Descurainia sophia L.) and alternative herbicides for its chemical control in the North China plain. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 172:104748. [PMID: 33518041 DOI: 10.1016/j.pestbp.2020.104748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Flixweed (Descurainia sophia L.) is widely distributed in winter wheat (Triticum aestivum L.) fields in the North China Plain and has evolved resistance to herbicides, including the acetolactate synthase (ALS) inhibitor florasulam. However, the florasulam resistance status of flixweed in the North China Plain is poorly understood, which hinders the integrated management of this weed in winter wheat production systems. Thus, 45 flixweed populations were collected in wheat fields in these areas, and their sensitivity to florasulam and ALS-inhibitor-resistant mutation diversity were assessed. Meanwhile, alternative herbicides/herbicide mixtures for the control of florasulam-resistant flixweed were screened and evaluated under greenhouse and field conditions. Of the populations, 30 showed florasulam resistance (RRR and RR), 9 had a high risk of evolving florasulam resistance (R?) and 6 were susceptible. These populations had 5.3 to 345.1-fold resistance to florasulam, and 4 ALS resistance mutations (P197H, P197S, P197T and W574L) were observed. The subsequent herbicide sensitivity assay showed that the SD-06 population (with ALS1 P197T and ALS2 W574L mutations) exhibited cross-resistance to all ALS inhibitors tested, but was sensitive to MCPA-Na, fluroxypyr, carfentrazone-ethyl and bipyrazone. Meanwhile, the other HN-07 population with non-target-site resistance (NTSR) also showed resistance to all tested ALS inhibitors, and it was "R?" to MCPA-Na while sensitive to fluroxypyr, carfentrazone-ethyl and bipyrazone. The field experiments were conducted at the research farm where the SD-06 population was collected, and the results suggested that florasulam at 3.75-4.5 g ai ha-1 had little efficacy (0.6-12.1%), whereas MCPA-Na + carfentrazone-ethyl (87.1-91.2%) and bipyrazone+fluroxypyr (90.1-97.8%) controlled the resistant flixweed.
Collapse
Affiliation(s)
- Hengzhi Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, Shandong, PR China; Key Laboratory of Pesticide Toxicology and Application Technique, Shandong Agricultural University, Tai'an 271018, Shandong, PR China
| | - Penglei Sun
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, Shandong, PR China; Key Laboratory of Pesticide Toxicology and Application Technique, Shandong Agricultural University, Tai'an 271018, Shandong, PR China
| | - Wenlei Guo
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, PR China
| | - Xiuxia Dong
- Agriculture and Rural Affairs Bureau of Chiping District, Liaocheng 252100, PR China
| | - Weitang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, Shandong, PR China; Key Laboratory of Pesticide Toxicology and Application Technique, Shandong Agricultural University, Tai'an 271018, Shandong, PR China.
| | - Jinxin Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, Shandong, PR China; Key Laboratory of Pesticide Toxicology and Application Technique, Shandong Agricultural University, Tai'an 271018, Shandong, PR China.
| |
Collapse
|
33
|
Li JH, Wang Y, Wu YP, Li RH, Liang S, Zhang J, Zhu YG, Xie BJ. Synthesis, herbicidal activity study and molecular docking of novel pyrimidine thiourea. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 172:104766. [PMID: 33518053 DOI: 10.1016/j.pestbp.2020.104766] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
According to the pharmacophore binding strategy and principle of bioelectronic isobaric, used the sulfonylurea bridge as the parent structure, a series of novel thiourea compounds containing aromatic-substituted pyrimidines were designed and synthesized. The preliminary herbicidal activity tests showed that some compounds had good herbicidal activity against Digitaria adscendens, Amaranthus retroflexus, especially for compound 4d and 4f. The results showed that compound 4d had an inhibition rate of 81.5% on the root growth of Brassica napus L. at the concentration of 100 mg L-1, and compound 4f had an inhibition rate of 81% on the root growth of Digitaria adscendens at the concentration of 100 mg L-1. Compounds 4d and 4f had higher comparative activity on Echinochloa crus-galli than the commercial herbicide bensulfuron-methyl. The preliminary structure-activity relationship (SAR) was also summarized. We also tested the in vivo AHAS enzyme activity inhibition experiment of 14 compounds at 100 mg L-1, and the results showed that they all have inhibitory activity on the enzyme, with the highest inhibition rate reaching 44.4% (compound 4d). Based on the results of molecular docking to yeast acetohydroxyacid synthase (AHAS), the possible herbicidal activity mechanism of these compounds was evaluated.
Collapse
Affiliation(s)
- Jia-Hui Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yan Wang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China.
| | - Yun-Peng Wu
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Ran-Hong Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Shuang Liang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Jing Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yong-Gang Zhu
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Bei-Jie Xie
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| |
Collapse
|
34
|
Obregón Alvarez D, Mendes KF, Tosi M, Fonseca de Souza L, Campos Cedano JC, de Souza Falcão NP, Dunfield K, Tsai SM, Tornisielo VL. Sorption-desorption and biodegradation of sulfometuron-methyl and its effects on the bacterial communities in Amazonian soils amended with aged biochar. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111222. [PMID: 32890950 DOI: 10.1016/j.ecoenv.2020.111222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/11/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
Sulfometuron-methyl is a broad-spectrum herbicide, used throughout Brazil; however, its environmental impacts in biochar (BC) amended soils is not fully understood. Biochar is known to enhance soil quality but can also have undesired effects such as altering the bioavailability and behavior of herbicides. Microbial communities can degrade herbicides such as sulfometuron-methyl in soils; however, they are known to be affected by BC. Therefore, it is important to understand the tripartite interaction between these factors. This research aimed to evaluate the sorption-desorption and biodegradation of sulfometuron-methyl in Amazonian soils amended with BC, and to assess the effects of the interactions between BC and sulfometuron-methyl on soil bacterial communities. Soil samples were collected from field plots amended with BC at three doses (0, 40 and 80 t ha-1) applied ten years ago. The herbicide sorption and desorption were evaluated using a batch equilibrium method. Mineralization and biodegradation studies were conducted in microcosms incubated with 14C-sulfometuron-methyl for 80 days. Systematic soil sampling, followed by DNA extraction, quantification (qPCR) and 16S rRNA amplicon sequencing were performed. The presence of BC increased the sorption of the herbicide to the soil by 11% (BC40) and 16% (BC80) compared to unamended soil. The presence of BC also affected the degradation of 14C-sulfometuron-methyl, reducing the mineralization rate and increasing the degradation half-life times (DT50) from 36.67 days in unamended soil to 52.11 and 55.45 days in BC40 and BC80 soils, respectively. The herbicide application altered the bacterial communities, affecting abundance and richness, and changing the taxonomic diversity (i.e., some taxa were promoted and other inhibited). A tripartite interaction was found between BC, the herbicide and soil bacterial communities, suggesting that it is important to consider the environmental impact of soil applied herbicides in biochar amended soils.
Collapse
Affiliation(s)
- Dasiel Obregón Alvarez
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Av. Centenário, N° 303, Piracicaba, São Paulo, 13400-970, Brazil; School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Kassio Ferreira Mendes
- Department of Agronomy, Federal University of Viçosa, Avenida Peter Henry Rolfs, S/n, Viçosa, Minas Gerais, 36570-000, Brazil.
| | - Micaela Tosi
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Leandro Fonseca de Souza
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Av. Centenário, N° 303, Piracicaba, São Paulo, 13400-970, Brazil
| | - Johnny Carlos Campos Cedano
- Department of Agricultural Sciences, National Institute of Amazonian Research (INPA), Av. André Araújo, 2936, Aleixo, Manaus, Amazonas, 69060-001, Brazil
| | - Newton Paulo de Souza Falcão
- Department of Agricultural Sciences, National Institute of Amazonian Research (INPA), Av. André Araújo, 2936, Aleixo, Manaus, Amazonas, 69060-001, Brazil
| | - Kari Dunfield
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Siu Mui Tsai
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Av. Centenário, N° 303, Piracicaba, São Paulo, 13400-970, Brazil
| | - Valdemar Luiz Tornisielo
- Ecotoxicology Laboratory, Center for Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Av. Centenário, N° 303, Piracicaba, São Paulo, 13400-970 Brazil
| |
Collapse
|
35
|
New Strategies to Overcome Present CRISPR/Cas9 Limitations in Apple and Pear: Efficient Dechimerization and Base Editing. Int J Mol Sci 2020; 22:ijms22010319. [PMID: 33396822 PMCID: PMC7795782 DOI: 10.3390/ijms22010319] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 12/19/2022] Open
Abstract
Despite recent progress, the application of CRISPR/Cas9 in perennial plants still has many obstacles to overcome. Our previous results with CRISPR/Cas9 in apple and pear indicated the frequent production of phenotypic and genotypic chimeras, after editing of the phytoene desaturase (PDS) gene conferring albino phenotype. Therefore, our first objective was to determine if adding an adventitious regeneration step from leaves of the primary transgenic plants (T0) would allow a reduction in chimerism. Among hundreds of adventitious buds regenerated from a variegated T0 line, 89% were homogeneous albino. Furthermore, the analysis of the target zone sequences of twelve of these regenerated lines (RT0 for “regenerated T0” lines) indicated that 99% of the RT0 alleles were predicted to produce a truncated target protein and that 67% of RT0 plants had less heterogeneous editing profiles than the T0. Base editors are CRISPR/Cas9-derived new genome-editing tools that allow precise nucleotide substitutions without double-stranded breaks. Hence, our second goal was to demonstrate the feasibility of CRISPR/Cas9 base editing in apple and pear using two easily scorable genes: acetolactate synthase—ALS (conferring resistance to chlorsulfuron) and PDS. The two guide RNAs under MdU3 and MdU6 promoters were coupled into a cytidine base editor harboring a cytidine deaminase fused to a nickase Cas9. Using this vector; we induced C-to-T DNA substitutions in the target genes; leading to discrete variation in the amino-acid sequence and generating new alleles. By co-editing ALS and PDS genes; we successfully obtained chlorsulfuron resistant and albino lines in pear. Overall; our work indicates that a regeneration step can efficiently reduce the initial chimerism and could be coupled with the application of base editing to create accurate genome edits in perennial plants.
Collapse
|
36
|
Hao Y, Ma Q, Liu X, Fan X, Men J, Wu H, Jiang S, Tian D, Xiong B, Xie X. High-yield production of L-valine in engineered Escherichia coli by a novel two-stage fermentation. Metab Eng 2020; 62:198-206. [DOI: 10.1016/j.ymben.2020.09.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/24/2020] [Accepted: 09/16/2020] [Indexed: 01/27/2023]
|
37
|
Yang Y, Zhang Z, Lu X, Gu J, Wang Y, Yao Y, Liao X, Shi J, Lye G, Baganz F, Hao J. Production of 2,3-dihydroxyisovalerate by Enterobacter cloacae. Enzyme Microb Technol 2020; 140:109650. [PMID: 32912674 DOI: 10.1016/j.enzmictec.2020.109650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 01/09/2023]
Abstract
2,3-Dihydroxyisovalerate is an intermediate of the valine synthesis pathway. However, neither natural microorganisms nor valine producing engineered strains have been reported yet to produce this chemical. Based on the 2,3-butanediol synthesis pathway, a biological route of 2,3-dihydroxyisovalerate production was developed using a budA and ilvD disrupted Klebsiella pneumoniae strain in our previous research. We hypothesised, that other 2,3-butanediol producing bacteria could be used for 2,3-dihydroxyisovalerate production. Here a budA disrupted Enterobacter cloacae was constructed, and this strain exhibited a high 2,3-dihydroxyisovalerate producing ability. Disruption of ilvD in E. cloacae ΔbudA further increased 2,3-dihydroxyisovalerate level. The disruption of budA, encoding an acetolactate decarboxylase, resulted in the acetolactate synthesized in the 2,3-butanediol synthesis pathway to flow into the valine synthesis pathway. The additional disruption of ilvD, encoding a dihydroxy acid dehydratase, prevented the 2,3-dihydroxyisovalerate to be further metabolized in the valine synthesis pathway. Thus, the disruption of both budA and ilvD in 2,3-butanediol producing strains might be an universal strategy for 2,3-dihydroxyisovalerate accumulation. After optimization of the medium components and culture parameters 31.2 g/L of 2,3-dihydroxyisovalerate was obtained with a productivity of 0.41 g/L h and a substrate conversion ratio of 0.56 mol/mol glucose in a fed-batch fermentation. This approach provides an economic way for 2,3-dihydroxyisovalerate production.
Collapse
Affiliation(s)
- Yang Yang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, PR China; School of Life Science, Shanghai University, Shanghai 200444, PR China
| | - Zhongxi Zhang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, PR China; School of Life Science, Shanghai University, Shanghai 200444, PR China
| | - Xiyang Lu
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, PR China
| | - Jinjie Gu
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yike Wang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, PR China; School of Life Science, Shanghai University, Shanghai 200444, PR China
| | - Yao Yao
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xianyan Liao
- School of Life Science, Shanghai University, Shanghai 200444, PR China
| | - Jiping Shi
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, PR China; School of Life Science and Technology, ShanghaiTech University, PR China
| | - Gary Lye
- Department of Biochemical Engineering, University College London, Gordon Street, London WC1H 0AH, UK
| | - Frank Baganz
- Department of Biochemical Engineering, University College London, Gordon Street, London WC1H 0AH, UK.
| | - Jian Hao
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, PR China; Department of Biochemical Engineering, University College London, Gordon Street, London WC1H 0AH, UK.
| |
Collapse
|
38
|
Lonhienne T, Low YS, Garcia MD, Croll T, Gao Y, Wang Q, Brillault L, Williams CM, Fraser JA, McGeary RP, West NP, Landsberg MJ, Rao Z, Schenk G, Guddat LW. Structures of fungal and plant acetohydroxyacid synthases. Nature 2020; 586:317-321. [PMID: 32640464 DOI: 10.1038/s41586-020-2514-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
Acetohydroxyacid synthase (AHAS), also known as acetolactate synthase, is a flavin adenine dinucleotide-, thiamine diphosphate- and magnesium-dependent enzyme that catalyses the first step in the biosynthesis of branched-chain amino acids1. It is the target for more than 50 commercial herbicides2. AHAS requires both catalytic and regulatory subunits for maximal activity and functionality. Here we describe structures of the hexadecameric AHAS complexes of Saccharomyces cerevisiae and dodecameric AHAS complexes of Arabidopsis thaliana. We found that the regulatory subunits of these AHAS complexes form a core to which the catalytic subunit dimers are attached, adopting the shape of a Maltese cross. The structures show how the catalytic and regulatory subunits communicate with each other to provide a pathway for activation and for feedback inhibition by branched-chain amino acids. We also show that the AHAS complex of Mycobacterium tuberculosis adopts a similar structure, thus demonstrating that the overall AHAS architecture is conserved across kingdoms.
Collapse
Affiliation(s)
- Thierry Lonhienne
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.
| | - Yu Shang Low
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Mario D Garcia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Tristan Croll
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Quan Wang
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lou Brillault
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Craig M Williams
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - James A Fraser
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Ross P McGeary
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Nicholas P West
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Michael J Landsberg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin, China.,Laboratory of Structural Biology, Tsinghua University, Beijing, China
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
39
|
Molecular architecture of the acetohydroxyacid synthase holoenzyme. Biochem J 2020; 477:2439-2449. [DOI: 10.1042/bcj20200292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 01/03/2023]
Abstract
The acetohydroxyacid synthase (AHAS) holoenzyme catalyzes the first step of branch-chain amino acid biosynthesis and is essential for plants and bacteria. It consists of a regulatory subunit (RSU) and a catalytic subunit (CSU). The allosteric mechanism of the AHAS holoenzyme has remained elusive for decades. Here, we determined the crystal structure of the AHAS holoenzyme, revealing the association between the RSU and CSU in an A2B2 mode. Structural analysis in combination with mutational studies demonstrated that the RSU dimer forms extensive interactions with the CSU dimer, in which a conserved salt bridge between R32 and D120 may act as a trigger to open the activation loop of the CSU, resulting in the activation of the CSU by the RSU. Our study reveals the activation mechanism of the AHAS holoenzyme.
Collapse
|
40
|
Shen W, Wang D, Wei L, Zhang Y. Fungal elicitor-induced transcriptional changes of genes related to branched-chain amino acid metabolism in Streptomyces natalensis HW-2. Appl Microbiol Biotechnol 2020; 104:4471-4482. [DOI: 10.1007/s00253-020-10564-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 12/26/2022]
|
41
|
Zhang H, Zhang L, Yu X, Xu Y. The Biosynthesis Mechanism Involving 2,3-Pentanedione and Aminoacetone Describes the Production of 2-Ethyl-3,5-dimethylpyrazine and 2-Ethyl-3,6-dimethylpyrazine by Bacillus subtilis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3558-3567. [PMID: 32065523 DOI: 10.1021/acs.jafc.9b07809] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
2-Ethyl-3,5(3,6)-dimethylpyrazines (EDMPs) have a pleasant aroma of roasted cocoa or nuts with an extreme low odor threshold that have potential in industrial applications as food fragrances. The food fermentation process can accumulate EDMPs, and this might be the chance to study the biosynthesis mechanism of EDMPs under mild conditions for "natural" EDMPs' production. In this study, an EDMP-producing strain was isolated from baijiu fermentation. This strain was identified as Bacillus subtilis, a generally regarded as safe organism. After reasonable assumption and substrate addition and isotope-labeled experiments, we found that EDMPs are produced from l-threonine and d-glucose at environmental temperature and pressure. In addition, aminoacetone, the metabolite of l-threonine, and 2,3-pentanedione, the metabolite of l-threonine and d-glucose, are intermediates for the production of EDMPs. This study proposed and confirmed the biosynthesis pathway of EDMPs. It will be helpful for the industrial production of EDMPs and provides reference for the biosynthetic mechanism analysis of other valuable pyrazines.
Collapse
Affiliation(s)
- Huaizhi Zhang
- State Key Laboratory of Food Science & Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Lijie Zhang
- State Key Laboratory of Food Science & Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Xiaowei Yu
- State Key Laboratory of Food Science & Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Yan Xu
- State Key Laboratory of Food Science & Technology, Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| |
Collapse
|
42
|
Inheritance and Molecular Characterization of a Novel Mutated AHAS Gene Responsible for the Resistance of AHAS-Inhibiting Herbicides in Rapeseed ( Brassica napus L.). Int J Mol Sci 2020; 21:ijms21041345. [PMID: 32079260 PMCID: PMC7072869 DOI: 10.3390/ijms21041345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/04/2020] [Accepted: 02/14/2020] [Indexed: 11/25/2022] Open
Abstract
The use of herbicides is an effective and economic way to control weeds, but their availability for rapeseed is limited due to the shortage of herbicide-resistant cultivars in China. The single-point mutation in the acetohydroxyacidsynthase (AHAS) gene can lead to AHAS-inhibiting herbicide resistance. In this study, the inheritance and molecular characterization of the tribenuron-methyl (TBM)-resistant rapeseed (Brassica napus L.) mutant, K5, are performed. Results indicated that TBM-resistance of K5 was controlled by one dominant allele at a single nuclear gene locus. The novel substitution of cytosine with thymine at position 544 in BnAHAS1 was identified in K5, leading to the alteration of proline with serine at position 182 in BnAHAS1. The TBM-resistance of K5 was approximately 100 times that of its wild-type ZS9, and K5 also showed cross-resistance to bensufuron-methyl and monosulfuron-ester sodium. The BnAHAS1544T transgenic Arabidopsis exhibited higher TBM-resistance than that of its wild-type, which confirmed that BnAHAS1544T was responsible for the herbicide resistance of K5. Simultaneously, an allele-specific marker was developed to quickly distinguish the heterozygous and homozygous mutated alleles BnAHAS1544T. In addition, a method for the fast screening of TBM-resistant plants at the cotyledon stage was developed. Our research identified and molecularly characterized one novel mutative AHAS allele in B. napus and laid a foundation for developing herbicide-resistant rapeseed cultivars.
Collapse
|
43
|
Kumar U, Behera S, Saha S, Das D, Guru PK, Kaviraj M, Munda S, Adak T, Nayak AK. Non-target effect of bispyribac sodium on soil microbial community in paddy soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:110019. [PMID: 31816497 DOI: 10.1016/j.ecoenv.2019.110019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/26/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Bispyribac sodium is frequently used herbicide in the rice field. Though, it has been targeted to kill rice weeds, but its non-target effect on soil microbes in paddy soil was largely unknown. Therefore, in the present study, an attempt was made to assess the non-target effect of bispyribac sodium on alteration of functional variation of soil microbial community and their correlation with microbial biomass carbon (MBC) and soil enzymes. A microcosm experiment set up was made comprising three treatments viz., control (CON) (without application of bispyribac sodium), recommended dose of bispyribac sodium (35 g ha-1) (BS), and double the dose of BS (70 g ha-1) (DBS). Results indicated that the MBC and soil enzyme activities (dehydrogenase, alkaline phosphatase and urease) in BS and DBS-treated soil were significantly (p < 0.05) declined from 1st to 30th day after application as compared to CON. Counts of heterotrophic bacteria, actinomycetes and fungal population were also decreased in BS and DBS-treated soil. The average well color development (AWCD) values derived from Biolog®ecoplates followed the order of DBS ˂ BS ˂ CON. Shannon index value was high (p ≤ 0.05) in CON compared to soil-treated with BS and DBS. Principal component analysis (PCA) showed a clear distinction of the cluster of treatments between CON, BS and DBS. Biplot analysis and heatmap suggested that carboxylic compounds and amino acids showed positive response towards BS-treated soil, whereas phenolic compounds had positive correlation with DBS-treated soil. PCA analysis indicated that oligotrophs was rich in BS-treated paddy soil, whereas copiotrophs and asymbiotic nitrogen fixers were richer in DBS treatment. Overall, the present study revealed that application of recommended dose of BS and its double dose alter the soil microbial population, enzyme activities and functional microbial diversity in paddy soil.
Collapse
Affiliation(s)
- Upendra Kumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India.
| | - Sonalika Behera
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Sanjay Saha
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Deepika Das
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - P K Guru
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Megha Kaviraj
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Sushmita Munda
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Totan Adak
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - A K Nayak
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| |
Collapse
|
44
|
Wei C, Qin T, Li Y, Wang W, Dong T, Wang Q. Host-induced gene silencing of the acetolactate synthases VdILV2 and VdILV6 confers resistance to Verticillium wilt in cotton (Gossypium hirsutum L.). Biochem Biophys Res Commun 2020; 524:392-397. [PMID: 32005518 DOI: 10.1016/j.bbrc.2020.01.126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 11/15/2022]
Abstract
Cotton Verticillium wilt caused by Verticillium dahliae (V. dahliae) is one of the most destructive fungal diseases and is difficult to control. However, resistant germplasm resources are scarce in cotton. Many studies have shown that host-induced gene silencing (HIGS) is a practical and effective technology in crop disease prevention by silencing virulence genes of pathogens. Acetolactate synthase (ALS) contains a catalytic subunit ILV2 and a regulatory subunit ILV6, which catalyzes the first common step reaction in branched-chain amino acid (BCAA) biosynthesis. We identified two acetolactate synthases, VdILV2 and VdILV6, which are homologs of ILV2 and ILV6, respectively, in Magnaporthe oryzae. To characterize the function of VdILV2 and VdILV6 in V. dahliae, we suppressed their expression in the strong pathogenic isolate Vd991 by using HIGS technology. VdILV2- or VdILV6-silenced V. dahliae had a dramatic reduction in pathogenicity. The results indicated that VdILV2 and VdILV6 are involved in the pathogenicity of V. dahliae. HIGS of VdILV2 or VdILV6 provides a novel fungicide target and an effective control to resist Verticillium wilt caused by V. dahliae.
Collapse
Affiliation(s)
- Chunyan Wei
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, School of Life Science and Technology, Henan Institute of Science and Technology, Henan, Xinxiang, 453003, China.
| | - Tengfei Qin
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, School of Life Science and Technology, Henan Institute of Science and Technology, Henan, Xinxiang, 453003, China.
| | - Yuqing Li
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, School of Life Science and Technology, Henan Institute of Science and Technology, Henan, Xinxiang, 453003, China.
| | - Weipeng Wang
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, School of Life Science and Technology, Henan Institute of Science and Technology, Henan, Xinxiang, 453003, China.
| | - Tao Dong
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, School of Life Science and Technology, Henan Institute of Science and Technology, Henan, Xinxiang, 453003, China.
| | - Qinglian Wang
- Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Key Laboratory Molecular Ecology and Germplasm Innovation of Cotton and Wheat, School of Life Science and Technology, Henan Institute of Science and Technology, Henan, Xinxiang, 453003, China.
| |
Collapse
|
45
|
Mendoza F, Medina FE, Jiménez VA, Jaña GA. Catalytic Role of Gln202 in the Carboligation Reaction Mechanism of Yeast AHAS: A QM/MM Study. J Chem Inf Model 2019; 60:915-922. [DOI: 10.1021/acs.jcim.9b00863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fernanda Mendoza
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, 7100 Talcahuano, Chile
| | - Fabiola E. Medina
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, 7100 Talcahuano, Chile
| | - Verónica A. Jiménez
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, 7100 Talcahuano, Chile
| | - Gonzalo A. Jaña
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, 7100 Talcahuano, Chile
| |
Collapse
|
46
|
Chen W, Li Y, Zhou Y, Ma Y, Li Z. Design, synthesis and SAR study of novel sulfonylurea derivatives containing arylpyrimidine moieties as potential anti-phytopathogenic fungal agents. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.04.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Crystal Structure of IlvC, a Ketol-Acid Reductoisomerase, from Streptococcus Pneumoniae. CRYSTALS 2019. [DOI: 10.3390/cryst9110551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biosynthesis of branched-chain amino acids (BCAAs), including isoleucine, leucine and valine, is required for survival and virulence of a bacterial pathogen such as Streptococcus pneumoniae. IlvC, a ketol-acid reductoisomerase (E.C. 1.1.1.86) with NADP(H) and Mg2+ as cofactors from the pathogenic Streptococcus pneumoniae (SpIlvC), catalyzes the second step in the BCAA biosynthetic pathway. To elucidate the structural basis for the IlvC-mediated reaction, we determined the crystal structure of SpIlvC at 1.69 Å resolution. The crystal structure of SpIlvC contains an asymmetric dimer in which one subunit is in apo-form and the other in NADP(H) and Mg2+-bound form. Crystallographic analysis combined with an activity assay and small-angle X-ray scattering suggested that SpIlvC retains dimeric arrangement in solution and that D83 in the NADP(H) binding site and E195 in the Mg2+ binding site are the most critical in the catalytic activity of SpIlvC. Crystal structures of SpIlvC mutants (R49E, D83G, D191G and E195S) revealed local conformational changes only in the NADP(H) binding site. Taken together, our results establish the molecular mechanism for understanding functions of SpIlvC in pneumococcal growth and virulence.
Collapse
|
48
|
Xie Y, Zhang C, Wang Z, Wei C, Liao N, Wen X, Niu C, Yi L, Wang Z, Xi Z. Fluorogenic Assay for Acetohydroxyacid Synthase: Design and Applications. Anal Chem 2019; 91:13582-13590. [PMID: 31603309 DOI: 10.1021/acs.analchem.9b02739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Acetohydroxyacid synthase (AHAS) exists in plants and many microorganisms (including gut flora) but not in mammals, making it an attractive drug target. Fluorescent-based methods should be practical for high-throughput screening of inhibitors. Herein, we describe the development of the first AHAS fluorogenic assay based on an intramolecular charge transfer (ICT)-based fluorescent probe. The assay is facile, sensitive, and continuous and can be applied toward various AHASs from different species, AHAS mutants, and crude cell lysates. The fluorogenic assay was successfully applied for (1) high-throughput screening of commerical herbicides toward different AHASs for choosing matching herbicides, (2) identification of a Soybean AHAS gene with broad-spectrum herbicide resistance, and (3) identification of selective inhibitors toward intestinal-bacterial AHASs. Among the AHAS inhibitors, an active agent was found for selective inhibition of obesity-associated Ruminococcus torques growth, implying the possibility of AHAS inhibitors for the ultimate goal toward antiobesity therapeutics. The fluorogenic assay opens the door for high-throughput programs in AHAS-related fields, and the design principle might be applied for development of fluorogenic assays of other synthases.
Collapse
Affiliation(s)
- Yonghui Xie
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Changyu Zhang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess , Beijing University of Chemical Technology (BUCT) , Beijing 100029 , P. R. China
| | - Zhihua Wang
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P. R. China
| | - Chao Wei
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Ningjing Liao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Xin Wen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Congwei Niu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess , Beijing University of Chemical Technology (BUCT) , Beijing 100029 , P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering , Nankai University , Tianjin 300071 , P. R. China
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , P. R. China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, National Pesticide Engineering Research Center (Tianjin), College of Chemistry , Nankai University , Tianjin 300071 , P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering , Nankai University , Tianjin 300071 , P. R. China
| |
Collapse
|
49
|
Liu Y, Wang X, Zhan J, Hu J. The 138th residue of acetohydroxyacid synthase in Corynebacterium glutamicum is important for the substrate binding specificity. Enzyme Microb Technol 2019; 129:109357. [DOI: 10.1016/j.enzmictec.2019.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/12/2019] [Accepted: 06/01/2019] [Indexed: 11/28/2022]
|
50
|
Thiour-Mauprivez C, Martin-Laurent F, Calvayrac C, Barthelmebs L. Effects of herbicide on non-target microorganisms: Towards a new class of biomarkers? THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 684:314-325. [PMID: 31153078 DOI: 10.1016/j.scitotenv.2019.05.230] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 05/19/2023]
Abstract
Conventional agriculture still relies on the general use of agrochemicals (herbicides, fungicides and insecticides) to control various pests (weeds, fungal pathogens and insects), to ensure the yield of crop and to feed a constantly growing population. The generalized use of pesticides in agriculture leads to the contamination of soil and other connected environmental resources. The persistence of pesticide residues in soil is identified as a major threat for in-soil living organisms that are supporting an important number of ecosystem services. Although authorities released pesticides on the market only after their careful and thorough evaluation, the risk assessment for in-soil living organisms is unsatisfactory, particularly for microorganisms for which pesticide toxicity is solely considered by one global test measuring N mineralization. Recently, European Food Safety Authority (EFSA) underlined the lack of standardized methods to assess pesticide ecotoxicological effects on soil microorganisms. Within this context, there is an obvious need to develop innovative microbial markers sensitive to pesticide exposure. Biomarkers that reveal direct effects of pesticides on microorganisms are often viewed as the panacea. Such biomarkers can only be developed for pesticides having a mode of action inhibiting a specific enzyme not only found in the targeted organisms but also in microorganisms which are considered as "non-target organisms" by current regulations. This review explores possible ways of innovation to develop such biomarkers for herbicides. We scanned the herbicide classification by considering the mode of action, the targeted enzyme and the ecotoxicological effects of each class of active substance in order to identify those that can be tracked using sensitive microbial markers.
Collapse
Affiliation(s)
- Clémence Thiour-Mauprivez
- Univ. Perpignan Via Domitia, Biocapteurs-Analyses-Environnement, 66860 Perpignan, France; Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; AgroSup Dijon, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21065 Dijon, France
| | - Fabrice Martin-Laurent
- AgroSup Dijon, INRA, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21065 Dijon, France
| | - Christophe Calvayrac
- Univ. Perpignan Via Domitia, Biocapteurs-Analyses-Environnement, 66860 Perpignan, France; Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique, 66650 Banyuls-sur-Mer, France
| | - Lise Barthelmebs
- Univ. Perpignan Via Domitia, Biocapteurs-Analyses-Environnement, 66860 Perpignan, France; Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR 3579 Sorbonne Universités (UPMC) Paris 6 et CNRS Observatoire Océanologique, 66650 Banyuls-sur-Mer, France.
| |
Collapse
|