1
|
Chalvon-Demersay T, Gaudichon C, Moro J, Even PC, Khodorova N, Piedcoq J, Viollet B, Averous J, Maurin AC, Tomé D, Foretz M, Fafournoux P, Azzout-Marniche D. Role of liver AMPK and GCN2 kinases in the control of postprandial protein metabolism in response to mid-term high or low protein intake in mice. Eur J Nutr 2023; 62:407-417. [PMID: 36071290 DOI: 10.1007/s00394-022-02983-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/03/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Protein synthesis and proteolysis are known to be controlled through mammalian target of rapamycin, AMP-activated kinase (AMPK) and general control non-derepressible 2 (GCN2) pathways, depending on the nutritional condition. This study aimed at investigating the contribution of liver AMPK and GCN2 on the adaptation to high variations in protein intake. METHODS To evaluate the answer of protein pathways to high- or low-protein diet, male wild-type mice and genetically modified mice from C57BL/6 background with liver-specific AMPK- or GCN2-knockout were fed from day 25 diets differing in their protein level as energy: LP (5%), NP (14%) and HP (54%). Two hours after a 1 g test meal, protein synthesis rate was measured after a 13C valine flooding dose. The gene expression of key enzymes involved in proteolysis and GNC2 signaling pathway were quantified. RESULTS The HP diet but not the LP diet was associated with a decrease in fractional synthesis rate by 29% in the liver compared to NP diet. The expression of mRNA encoding ubiquitin and Cathepsin D was not sensitive to the protein content. The deletion of AMPK or GCN2 in the liver did not affect nor protein synthesis rates and neither proteolysis markers in the liver or in the muscle, whatever the protein intake. In the postprandial state, protein level alters protein synthesis in the liver but not in the muscle. CONCLUSIONS Taken together, these results suggest that liver AMPK and GCN2 are not involved in this adaptation to high- and low-protein diet observed in the postprandial period.
Collapse
Affiliation(s)
| | - Claire Gaudichon
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | - Joanna Moro
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | - Patrick C Even
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | - Nadezda Khodorova
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | - Julien Piedcoq
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | - Benoit Viollet
- Institut Cochin, CNRS, INSERM, Université de Paris, 75014, Paris, France
| | - Julien Averous
- UMR 1019 Nutrition Humaine, INRAE, Centre de Clermont-Ferrand-Theix, Université Clermont 1, 63122, Saint-Genès Champanelle, France
| | - Anne-Catherine Maurin
- UMR 1019 Nutrition Humaine, INRAE, Centre de Clermont-Ferrand-Theix, Université Clermont 1, 63122, Saint-Genès Champanelle, France
| | - Daniel Tomé
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | - Marc Foretz
- Institut Cochin, CNRS, INSERM, Université de Paris, 75014, Paris, France
| | - Pierre Fafournoux
- UMR 1019 Nutrition Humaine, INRAE, Centre de Clermont-Ferrand-Theix, Université Clermont 1, 63122, Saint-Genès Champanelle, France
| | | |
Collapse
|
2
|
Maharjan P, Mullenix G, Hilton K, Beitia A, Weil J, Suesuttajit N, Martinez D, Umberson C, England J, Caldas J, Haro VDN, Coon C. Effects of dietary amino acid levels and ambient temperature on mixed muscle protein turnover in Pectoralis major during finisher feeding period in two broiler lines. J Anim Physiol Anim Nutr (Berl) 2020; 104:1351-1364. [PMID: 32358883 DOI: 10.1111/jpn.13363] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 01/09/2023]
Abstract
Two broiler lines A and B were fed experimental diets from 21 to 42 days with an objective to determine Pectoralis major protein turnover (PT) as affected by the dietary amino acid (AA) levels and ambient temperature. Experimental diets (n = 9 replicate pens per diet) were formulated to 3,150 kcal/kg with five levels of digestible lysine (dLys) -80, 90, 100, 110 and 120% of recommended AA level giving g dlys/Mcal values of 2.53, 2.85, 3.17, 3.48 and 3.80 respectively. All other AA was formulated to a fixed ratio to dLys. Fractional synthesis or degradation rates (FSR or FDR) of P. major were measured on day 36 and day 42 for all dietary treatment levels for both broiler lines using stable isotope of AA (15 N-phenylalanine) as metabolic tracer. Experimental feeding studies were conducted once in hot season (24-hr mean ~ 85.3°F; 80.9% RH) and repeated in cool season (24-hr mean ~ 71.6°F; 61.7% RH) of the year. The FSR values increased (p < .05) as digestible AA in diet increased for both broiler lines in hot season until break point FSR occurring at 106.2% AA level. The average FSR values measured were higher for Line B at day 36 (20.98%/D for Line B vs. 20.69%/D for Line A) and at day 42 (16.07%/D for Line B vs. 12.47% D for Line A). FDR values observed at day 36 and day 42 were not different between lines (p > .05). Similar trends but elevated values of FSR and FDR in cool season than in hot season were recorded for both the lines. Line B showed the higher mixed muscle protein accretion (%/D) than Line A by actually increasing the FSR which was correlated by higher lean mass deposition and higher feed intake (p < .05). The overall findings indicated that PT response in P. major due to effects of digestible AA levels and ambient temperature was different and line-specific.
Collapse
Affiliation(s)
- Pramir Maharjan
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Garret Mullenix
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Katie Hilton
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Antonio Beitia
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Jordan Weil
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Nawin Suesuttajit
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Diego Martinez
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Cole Umberson
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Judith England
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | | | | | - Craig Coon
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
3
|
Tessier R, Khodorova N, Calvez J, Kapel R, Quinsac A, Piedcoq J, Tomé D, Gaudichon C. 15N and ²H Intrinsic Labeling Demonstrate That Real Digestibility in Rats of Proteins and Amino Acids from Sunflower Protein Isolate Is Almost as High as That of Goat Whey. J Nutr 2020; 150:450-457. [PMID: 31825068 DOI: 10.1093/jn/nxz279] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/08/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In the context of developing plant protein sources for humans, sunflower is a good candidate in its form as an oilseed coproduct. OBJECTIVES We aimed to compare the real digestibility in rats of a sunflower isolate to that of goat whey protein. We also studied the efficiency of 15N and 2H intrinsic labeling in this assessment. METHODS Sunflower seeds and goat milk were labeled with 15N and 2H. Male Wistar rats (10 wk old) were fed a meal containing 12% of either sunflower isolate (n = 8) or whey (n = 8). Six hours after meal ingestion, protein and amino acid digestibility were assessed by measuring nitrogen, hydrogen, and amino acids in the digesta, as well as isotope enrichments in the bulk and individual amino acids. The differences between groups and isotopes were respectively tested with an unpaired and a paired t test. RESULTS Protein isolate purity was 87% for whey and 94% for sunflower. 2H and 15N enrichments were, respectively, 0.12 atom % (AP) and 1.06 AP in sunflower isolate and 0.18 AP and 0.95 AP in whey. Fecal 15N protein digestibility was 97.2 ± 0.2% for whey and 95.1 ± 0.5% for sunflower isolate. The use of 2H resulted in a lower digestibility estimate than 15N for whey (96.9 ± 0.2%, P < 0.05) and sunflower (94.2 ± 0.5%, P < 0.01). For both isotopes, protein digestibility was about 2% higher for whey than for sunflower isolate. Mean 15N amino acid caecal digestibility was 97.5 ± 0.2% for whey and 96.3 ± 0.2% for sunflower isolate. The values obtained with 15N and 2H resulted in significant differences ranging from -0.1% to 3.5%. The DIAAS was >1.0 for whey and 0.84 for sunflower (lysine). CONCLUSIONS The protein and amino acid digestibility of sunflower isolate was high but its DIAAS reflected a moderate lysine imbalance. Despite slight differences with 15N, deuterium produced comparable results, making it suitable for in vivo digestion studies.
Collapse
Affiliation(s)
- Romain Tessier
- PNCA, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | | | - Juliane Calvez
- PNCA, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Romain Kapel
- LRGP, Unité Mixte de Recherche CNRS 7274, Université de Lorraine, Plateforme SVS, Vandoeuvre-les-Nancy, France
| | | | - Julien Piedcoq
- PNCA, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Daniel Tomé
- PNCA, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Claire Gaudichon
- PNCA, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| |
Collapse
|
4
|
Chalvon-Demersay T, Moro J, Even PC, Chaumontet C, Tomé D, Averous J, Piedcoq J, Gaudichon C, Maurin AC, Fafournoux P, Azzout-Marniche D. Liver GCN2 controls hepatic FGF21 secretion and modulates whole body postprandial oxidation profile under a low-protein diet. Am J Physiol Endocrinol Metab 2019; 317:E1015-E1021. [PMID: 31573843 DOI: 10.1152/ajpendo.00022.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
General control nonderepressible 2 (GCN2) is a kinase that detects amino acid deficiency and is involved in the control of protein synthesis and energy metabolism. However, the role of hepatic GCN2 in the metabolic adaptations in response to the modulation of dietary protein has been seldom studied. Wild-type (WT) and liver GCN2-deficient (KO) mice were fed either a normo-protein diet, a low-protein diet, or a high-protein diet for 3 wk. During this period, body weight, food intake, and metabolic parameters were followed. In mice fed normo- and high-protein diets, GCN2 pathway in the liver is not activated in WT mice, leading to a similar metabolic profile with the one of KO mice. On the contrary, a low-protein diet activates GCN2 in WT mice, inducing FGF21 secretion. In turn, FGF21 maintains a high level of lipid oxidation, leading to a different postprandial oxidation profile compared with KO mice. Hepatic GCN2 controls FGF21 secretion under a low-protein diet and modulates a whole body postprandial oxidation profile.
Collapse
Affiliation(s)
| | - Joanna Moro
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Patrick C Even
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | | | - Daniel Tomé
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Julien Averous
- UMR 1019 Nutrition Humaine, INRA, Université Clermont 1, Centre de Clermont-Ferrand-Theix, Saint Genès Champanelle, France
| | - Julien Piedcoq
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Claire Gaudichon
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Anne-Catherine Maurin
- UMR 1019 Nutrition Humaine, INRA, Université Clermont 1, Centre de Clermont-Ferrand-Theix, Saint Genès Champanelle, France
| | - Pierre Fafournoux
- UMR 1019 Nutrition Humaine, INRA, Université Clermont 1, Centre de Clermont-Ferrand-Theix, Saint Genès Champanelle, France
| | | |
Collapse
|
5
|
Tessier R, Ribeiro-Parenti L, Bruneau O, Khodorova N, Cavin JB, Bado A, Azzout-Marniche D, Calvez J, Le Gall M, Gaudichon C. Effect of different bariatric surgeries on dietary protein bioavailability in rats. Am J Physiol Gastrointest Liver Physiol 2019; 317:G592-G601. [PMID: 31460792 DOI: 10.1152/ajpgi.00142.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bariatric surgery may induce protein malabsorption, although data are scarce. This study aims at evaluating dietary protein bioavailability after different bariatric surgeries in rats. Diet-induced obese Wistar rats were operated for vertical sleeve gastrectomy (VSG) or Roux-en-Y gastric bypass (RYGB). The control group was composed of pair-fed, sham-operated rats (Sham). Two weeks after surgery, rats were fed a 15N protein meal. Protein bioavailability was assessed by determination of 15N recovery in the gastrointestinal tract and organs 6 h after the meal. Fractional protein synthesis rate (FSR) was assessed using a flooding dose of 13C valine. Weight loss was the highest in RYGB rats and the lowest in Sham rats. Surprisingly, RYGB (95.6 ± 0.7%) improved protein digestibility (P = 0.045) compared with Sham (93.5 ± 0.5%) and VSG (93.8 ± 0.6%). In contrast, 15N retained in the liver (P = 0.001) and plasma protein (P = 0.037) was lower than in Sham, with a similar trend in muscle (P = 0.052). FSR was little altered by bariatric surgery, except for a decrease in the kidney of RYGB (P = 0.02). The 15N distribution along the small intestinal tissue suggests that dietary nitrogen was considerably retained in the remodeled mucosa of RYGB compared with Sham. This study revealed that in contrast to VSG, RYGB slightly improved protein digestibility but altered peripheral protein bioavailability. This effect may be ascribed to a higher uptake of dietary amino acids by the remodeled intestine.NEW & NOTEWORTHY Using a sensitive 15N meal test, we found that gastric bypass slightly improved protein digestibility compared with sleeve gastrectomy or control but, in contrast, lowered protein retention in the liver and muscles. This paradox can be due to a higher uptake of dietary nitrogen by the intestinal mucosa that was hypertrophied. This study provides new insight on the digestive and metabolic fate of dietary protein in different models of bariatric surgery in rats.
Collapse
Affiliation(s)
- Romain Tessier
- UMR Physiology of Nutrition and Ingestive Behavior (PNCA), AgroParisTech, INRA, Université Paris-Saclay, Paris, France.,INSERM UMRS 1149, UFR de Médecine Paris Diderot, Université de Paris, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lara Ribeiro-Parenti
- INSERM UMRS 1149, UFR de Médecine Paris Diderot, Université de Paris, Assistance Publique-Hôpitaux de Paris, Paris, France.,Department of General and Digestive Surgery, Bichat Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Ouafa Bruneau
- UMR Physiology of Nutrition and Ingestive Behavior (PNCA), AgroParisTech, INRA, Université Paris-Saclay, Paris, France.,INSERM UMRS 1149, UFR de Médecine Paris Diderot, Université de Paris, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Nadezda Khodorova
- UMR Physiology of Nutrition and Ingestive Behavior (PNCA), AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Jean-Baptiste Cavin
- INSERM UMRS 1149, UFR de Médecine Paris Diderot, Université de Paris, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - André Bado
- INSERM UMRS 1149, UFR de Médecine Paris Diderot, Université de Paris, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Dalila Azzout-Marniche
- UMR Physiology of Nutrition and Ingestive Behavior (PNCA), AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Juliane Calvez
- UMR Physiology of Nutrition and Ingestive Behavior (PNCA), AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| | - Maude Le Gall
- INSERM UMRS 1149, UFR de Médecine Paris Diderot, Université de Paris, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Claire Gaudichon
- UMR Physiology of Nutrition and Ingestive Behavior (PNCA), AgroParisTech, INRA, Université Paris-Saclay, Paris, France
| |
Collapse
|
6
|
Extended indirect calorimetry with isotopic CO 2 sensors for prolonged and continuous quantification of exogenous vs. total substrate oxidation in mice. Sci Rep 2019; 9:11507. [PMID: 31395916 PMCID: PMC6687832 DOI: 10.1038/s41598-019-47977-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/25/2019] [Indexed: 11/22/2022] Open
Abstract
Indirect calorimetry (InCa) estimates whole-body energy expenditure and total substrate oxidation based on O2 consumption and CO2 production, but does not allow for the quantification of oxidation of exogenous substrates with time. To achieve this, we incorporated 13CO2 and 12CO2 gas sensors into a commercial InCa system and aimed to demonstrate their performance and added value. As a performance indicator, we showed the discriminative oscillations in 13CO2 enrichment associated with food intake in mice fed diets containing naturally low (wheat) vs high (maize) 13C enrichment. To demonstrate the physiological value, we quantified exogenous vs total carbohydrate and fat oxidation continuously, in real time in mice varying in fat mass. Diet-induced obese mice were fed a single liquid mixed meal containing 13C-isotopic tracers of glucose or palmitate. Over 13 h, ~70% glucose and ~48% palmitate ingested were oxidised. Exogenous palmitate oxidation depended on body fat mass, which was not the case for exogenous glucose oxidation. We conclude that extending an InCa system with 13CO2 and 12CO2 sensors provides an accessible and powerful technique for real-time continuous quantification of exogenous and whole-body substrate oxidation in mouse models of human metabolic physiology.
Collapse
|
7
|
Azzout-Marniche D, Chaumontet C, Piedcoq J, Khodorova N, Fromentin G, Tomé D, Gaudichon C, Even PC. High Pancreatic Amylase Expression Promotes Adiposity in Obesity-Prone Carbohydrate-Sensitive Rats. J Nutr 2019; 149:270-279. [PMID: 30753533 DOI: 10.1093/jn/nxy262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/13/2018] [Accepted: 09/15/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND We have reported large differences in adiposity (fat mass/body weight) gain between rats fed a low-fat, high-starch diet, leading to their classification into carbohydrate "sensitive" and "resistant" rats. In sensitive animals, fat accumulates in visceral adipose tissues, leading to the suggestion that this form of obesity could be responsible for rapid development of metabolic syndrome. OBJECTIVE We investigated whether increased amylase secretion by the pancreas and accelerated starch degradation in the intestine could be responsible for this phenotype. METHOD Thirty-two male Wistar rats (7-wk-old) were fed a purified low-fat (10%), high-carbohydrate diet for 6 wk, in which most of the carbohydrate (64% by energy) was provided as corn starch. Meal tolerance tests of the Starch diet were performed to measure glucose and insulin responses to meal ingestion. Indirect calorimetry combined with use of 13C-labelled dietary starch was used to assess meal-induced changes in whole body and starch-derived glucose oxidation. Real-time polymerase chain reaction was used to assess mRNA expression in pancreas, liver, white and brown adipose tissues, and intestine. Amylase activity was measured in the duodenum, jejunum, and ileum contents. ANOVA and regression analyses were used for statistical comparisons. RESULTS "Resistant" and "sensitive" rats were separated according to adiposity gain during the study (1.73% ± 0.20% compared with 4.35% ± 0.36%). Breath recovery of 13CO2 from 13C-labelled dietary starch was higher in "sensitive" rats, indicating a larger increase in whole body glucose oxidation and, conversely, a larger decrease in lipid oxidation. Amylase mRNA expression in pancreas, and amylase activity in jejunum, were also higher in sensitive rats. CONCLUSION Differences in digestion of starch can promote visceral fat accumulation in rats when fed a low-fat, high-starch diet. This mechanism may have important implications in human obesity.
Collapse
Affiliation(s)
- Dalila Azzout-Marniche
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris Saclay, Paris, France
| | - Catherine Chaumontet
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris Saclay, Paris, France
| | - Julien Piedcoq
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris Saclay, Paris, France
| | - Nadezda Khodorova
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris Saclay, Paris, France
| | - Gilles Fromentin
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris Saclay, Paris, France
| | - Daniel Tomé
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris Saclay, Paris, France
| | - Claire Gaudichon
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris Saclay, Paris, France
| | - Patrick C Even
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris Saclay, Paris, France
| |
Collapse
|
8
|
Azzouz-Olden F, Hunt A, DeGrandi-Hoffman G. Transcriptional response of honey bee (Apis mellifera) to differential nutritional status and Nosema infection. BMC Genomics 2018; 19:628. [PMID: 30134827 PMCID: PMC6106827 DOI: 10.1186/s12864-018-5007-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/13/2018] [Indexed: 12/29/2022] Open
Abstract
Background Bees are confronting several environmental challenges, including the intermingled effects of malnutrition and disease. Intuitively, pollen is the healthiest nutritional choice, however, commercial substitutes, such as Bee-Pro and MegaBee, are widely used. Herein we examined how feeding natural and artificial diets shapes transcription in the abdomen of the honey bee, and how transcription shifts in combination with Nosema parasitism. Results Gene ontology enrichment revealed that, compared with poor diet (carbohydrates [C]), bees fed pollen (P > C), Bee-Pro (B > C), and MegaBee (M > C) showed a broad upregulation of metabolic processes, especially lipids; however, pollen feeding promoted more functions, and superior proteolysis. The superiority of the pollen diet was also evident through the remarkable overexpression of vitellogenin in bees fed pollen instead of MegaBee or Bee-Pro. Upregulation of bioprocesses under carbohydrates feeding compared to pollen (C > P) provided a clear poor nutritional status, uncovering stark expression changes that were slight or absent relatively to Bee-Pro (C > B) or MegaBee (C > M). Poor diet feeding (C > P) induced starvation response genes and hippo signaling pathway, while it repressed growth through different mechanisms. Carbohydrate feeding (C > P) also elicited ‘adult behavior’, and developmental processes suggesting transition to foraging. Finally, it altered the ‘circadian rhythm’, reflecting the role of this mechanism in the adaptation to nutritional stress in mammals. Nosema-infected bees fed pollen compared to carbohydrates (PN > CN) upheld certain bioprocesses of uninfected bees (P > C). Poor nutritional status was more apparent against pollen (CN > PN) than Bee-Pro (CN > BN) or MegaBee (CN > MN). Nosema accentuated the effects of malnutrition since more starvation-response genes and stress response mechanisms were upregulated in CN > PN compared to C > P. The bioprocess ‘Macromolecular complex assembly’ was also enriched in CN > PN, and involved genes associated with human HIV and/or influenza, thus providing potential candidates for bee-Nosema interactions. Finally, the enzyme Duox emerged as essential for guts defense in bees, similarly to Drosophila. Conclusions These results provide evidence of the superior nutritional status of bees fed pollen instead of artificial substitutes in terms of overall health, even in the presence of a pathogen. Electronic supplementary material The online version of this article (10.1186/s12864-018-5007-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Arthur Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | | |
Collapse
|
9
|
Li B, Song K, Meng J, Li L, Zhang G. Integrated application of transcriptomics and metabolomics provides insights into glycogen content regulation in the Pacific oyster Crassostrea gigas. BMC Genomics 2017; 18:713. [PMID: 28893177 PMCID: PMC5594505 DOI: 10.1186/s12864-017-4069-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/16/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The Pacific oyster Crassostrea gigas is an important marine fishery resource, which contains high levels of glycogen that contributes to the flavor and the quality of the oyster. However, little is known about the molecular and chemical mechanisms underlying glycogen content differences in Pacific oysters. Using a homogeneous cultured Pacific oyster family, we explored these regulatory networks at the level of the metabolome and the transcriptome. RESULTS Oysters with the highest and lowest natural glycogen content were selected for differential transcriptome and metabolome analysis. We identified 1888 differentially-expressed genes, seventy-five differentially-abundant metabolites, which are part of twenty-seven signaling pathways that were enriched using an integrated analysis of the interaction between the differentially-expressed genes and the differentially-abundant metabolites. Based on these results, we found that a high expression of carnitine O-palmitoyltransferase 2 (CPT2), indicative of increased fatty acid degradation, is associated with a lower glycogen content. Together, a high level of expression of phosphoenolpyruvate carboxykinase (PEPCK), and high levels of glucogenic amino acids likely underlie the increased glycogen production in high-glycogen oysters. In addition, the higher levels of the glycolytic enzymes hexokinase (HK) and pyruvate kinase (PK), as well as of the TCA cycle enzymes malate dehydrogenase (MDH) and pyruvate carboxylase (PYC), imply that there is a concomitant up-regulation of energy metabolism in high-glycogen oysters. High-glycogen oysters also appeared to have an increased ability to cope with stress, since the levels of the antioxidant glutathione peroxidase enzyme 5 (GPX5) gene were also increased. CONCLUSION Our results suggest that amino acids and free fatty acids are closely related to glycogen content in oysters. In addition, oysters with a high glycogen content have a greater energy production capacity and a greater ability to cope with stress. These findings will not only provide insights into the molecular mechanisms underlying oyster quality, but also promote research into the molecular breeding of oysters.
Collapse
Affiliation(s)
- Busu Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Kai Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jie Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China. .,Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, China. .,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China. .,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
10
|
Chalvon-Demersay T, Even PC, Chaumontet C, Piedcoq J, Viollet B, Gaudichon C, Tomé D, Foretz M, Azzout-Marniche D. Modifying the Dietary Carbohydrate-to-Protein Ratio Alters the Postprandial Macronutrient Oxidation Pattern in Liver of AMPK-Deficient Mice. J Nutr 2017; 147:1669-1676. [PMID: 28747486 DOI: 10.3945/jn.117.250803] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 03/28/2017] [Accepted: 06/13/2017] [Indexed: 11/14/2022] Open
Abstract
Background: Hepatic AMP-activated kinase (AMPK) activity is sensitive to the dietary carbohydrate-to-protein ratio. However, the role of AMPK in metabolic adaptations to variations in dietary macronutrients remains poorly understood.Objective: The objective of this study was to determine the role of hepatic AMPK in the adaptation of energy metabolism in response to modulation of the dietary carbohydrate-to-protein ratio.Methods: Male 7-wk-old wild-type (WT) and liver AMPK-deficient (knockout) mice were fed either a normal-protein and normal-carbohydrate diet (NP-NC; 14% protein, 76% carbohydrate on an energy basis), a low-protein and high-carbohydrate diet (LP-HC; 5% protein, 85% carbohydrate), or a high-protein and low-carbohydrate diet (HP-LC; 55% protein, 35% carbohydrate) for 3 wk. During this period, after an overnight fast, metabolic parameters were measured and indirect calorimetry was performed in mice during the first hours after refeeding a 1-g calibrated meal of their own diet in order to investigate lipid and carbohydrate metabolism.Results: Knockout mice fed an LP-HC or HP-LC meal exhibited 24% and 8% lower amplitudes in meal-induced carbohydrate and lipid oxidation changes. By contrast, knockout mice fed an NP-NC meal displayed normal carbohydrate and lipid oxidation profiles. These mice exhibited a transient increase in hepatic triglycerides and a decrease in hepatic glycogen. These changes were associated with a 650% higher secretion of fibroblast growth factor 21 (FGF21) 2 h after refeeding.Conclusions: The consequences of hepatic AMPK deletion depend on the dietary carbohydrate-to-protein ratio. In mice fed the NP-NC diet, deletion of AMPK in the liver led to an adaptation of liver metabolism resulting in increased secretion of FGF21. These changes possibly compensated for the absence of hepatic AMPK, as these mice exhibited normal postprandial changes in carbohydrate and lipid oxidation. By contrast, in mice fed the LP-HC and HP-LC diets, the lack of adjustment in liver metabolism in knockout mice resulted in a metabolic inflexibility, leading to a reduced amplitude of meal-induced changes in carbohydrate and lipid oxidation.
Collapse
Affiliation(s)
- Tristan Chalvon-Demersay
- UMR Nutrition Physiology and Ingestive Behavior, AgroParisTech, INRA, Paris-Saclay University, Paris, France
| | - Patrick C Even
- UMR Nutrition Physiology and Ingestive Behavior, AgroParisTech, INRA, Paris-Saclay University, Paris, France
| | - Catherine Chaumontet
- UMR Nutrition Physiology and Ingestive Behavior, AgroParisTech, INRA, Paris-Saclay University, Paris, France
| | - Julien Piedcoq
- UMR Nutrition Physiology and Ingestive Behavior, AgroParisTech, INRA, Paris-Saclay University, Paris, France
| | - Benoit Viollet
- French National Institute of Health and Medical Research, U1016, Cochin Institute, Paris, France.,The National Center for Scientific Research, UMR8104, Paris, France; and.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Claire Gaudichon
- UMR Nutrition Physiology and Ingestive Behavior, AgroParisTech, INRA, Paris-Saclay University, Paris, France
| | - Daniel Tomé
- UMR Nutrition Physiology and Ingestive Behavior, AgroParisTech, INRA, Paris-Saclay University, Paris, France;
| | - Marc Foretz
- French National Institute of Health and Medical Research, U1016, Cochin Institute, Paris, France.,The National Center for Scientific Research, UMR8104, Paris, France; and.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Dalila Azzout-Marniche
- UMR Nutrition Physiology and Ingestive Behavior, AgroParisTech, INRA, Paris-Saclay University, Paris, France
| |
Collapse
|
11
|
Long-term intake of a high-protein diet increases liver triacylglycerol deposition pathways and hepatic signs of injury in rats. J Nutr Biochem 2017; 46:39-48. [DOI: 10.1016/j.jnutbio.2017.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/07/2017] [Accepted: 04/11/2017] [Indexed: 12/24/2022]
|
12
|
Chalvon-Demersay T, Blachier F, Tomé D, Blais A. Animal Models for the Study of the Relationships between Diet and Obesity: A Focus on Dietary Protein and Estrogen Deficiency. Front Nutr 2017; 4:5. [PMID: 28373974 PMCID: PMC5357654 DOI: 10.3389/fnut.2017.00005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/01/2017] [Indexed: 01/26/2023] Open
Abstract
Obesity is an increasing major public health concern asking for dietary strategies to limit weight gain and associated comorbidities. In this review, we present animal models, particularly rats and mice, which have been extensively used by scientists to understand the consequences of diet quality on weight gain and health. Notably, modulation of dietary protein quantity and/or quality has been shown to exert huge effects on body composition homeostasis through the modulation of food intake, energy expenditure, and metabolic pathways. Interestingly, the perinatal window appears to represent a critical period during which the protein intake of the dam can impact the offspring’s weight gain and feeding behavior. Animal models are also widely used to understand the processes and mechanisms that contribute to obesity at different physiological and pathophysiological stages. An interesting example of such aspect is the situation of decreased estrogen level occurring at menopause, which is linked to weight gain and decreased energy expenditure. To study metabolic disorders associated with such situation, estrogen withdrawal in ovariectomized animal models to mimic menopause are frequently used. According to many studies, clear species-specific differences exist between rats and mice that need to be taken into account when results are extrapolated to humans.
Collapse
Affiliation(s)
- Tristan Chalvon-Demersay
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay , Paris , France
| | - François Blachier
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay , Paris , France
| | - Daniel Tomé
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay , Paris , France
| | - Anne Blais
- UMR Physiologie de la Nutrition et du Comportement Alimentaire, AgroParisTech, INRA, Université Paris-Saclay , Paris , France
| |
Collapse
|
13
|
Stepien M, Azzout-Marniche D, Even PC, Khodorova N, Fromentin G, Tomé D, Gaudichon C. Adaptation to a high-protein diet progressively increases the postprandial accumulation of carbon skeletons from dietary amino acids in rats. Am J Physiol Regul Integr Comp Physiol 2016; 311:R771-R778. [PMID: 27581809 DOI: 10.1152/ajpregu.00040.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/26/2016] [Indexed: 11/22/2022]
Abstract
We aimed to determine whether oxidative pathways adapt to the overproduction of carbon skeletons resulting from the progressive activation of amino acid (AA) deamination and ureagenesis under a high-protein (HP) diet. Ninety-four male Wistar rats, of which 54 were implanted with a permanent jugular catheter, were fed a normal protein diet for 1 wk and were then switched to an HP diet for 1, 3, 6, or 14 days. On the experimental day, they were given their meal containing a mixture of 20 U-[15N]-[13C] AA, whose metabolic fate was followed for 4 h. Gastric emptying tended to be slower during the first 3 days of adaptation. 15N excretion in urine increased progressively during the first 6 days, reaching 29% of ingested protein. 13CO2 excretion was maximal, as early as the first day, and represented only 16% of the ingested proteins. Consequently, the amount of carbon skeletons remaining in the metabolic pools 4 h after the meal ingestion progressively increased to 42% of the deaminated dietary AA after 6 days of HP diet. In contrast, 13C enrichment of plasma glucose tended to increase from 1 to 14 days of the HP diet. We conclude that there is no oxidative adaptation in the early postprandial period to an excess of carbon skeletons resulting from AA deamination in HP diets. This leads to an increase in the postprandial accumulation of carbon skeletons throughout the adaptation to an HP diet, which can contribute to the sustainable satiating effect of this diet.
Collapse
Affiliation(s)
- Magdalena Stepien
- UMR Physiologie de la Nutrition du Comportement Alimentaire, AgroParisTech, Institut National de la Recherche Agronomique, Université Paris Saclay, Paris, France
| | - Dalila Azzout-Marniche
- UMR Physiologie de la Nutrition du Comportement Alimentaire, AgroParisTech, Institut National de la Recherche Agronomique, Université Paris Saclay, Paris, France
| | - Patrick C Even
- UMR Physiologie de la Nutrition du Comportement Alimentaire, AgroParisTech, Institut National de la Recherche Agronomique, Université Paris Saclay, Paris, France
| | - Nadezda Khodorova
- UMR Physiologie de la Nutrition du Comportement Alimentaire, AgroParisTech, Institut National de la Recherche Agronomique, Université Paris Saclay, Paris, France
| | - Gilles Fromentin
- UMR Physiologie de la Nutrition du Comportement Alimentaire, AgroParisTech, Institut National de la Recherche Agronomique, Université Paris Saclay, Paris, France
| | - Daniel Tomé
- UMR Physiologie de la Nutrition du Comportement Alimentaire, AgroParisTech, Institut National de la Recherche Agronomique, Université Paris Saclay, Paris, France
| | - Claire Gaudichon
- UMR Physiologie de la Nutrition du Comportement Alimentaire, AgroParisTech, Institut National de la Recherche Agronomique, Université Paris Saclay, Paris, France
| |
Collapse
|
14
|
Chalvon-Demersay T, Even PC, Tomé D, Chaumontet C, Piedcoq J, Gaudichon C, Azzout-Marniche D. Low-protein diet induces, whereas high-protein diet reduces hepatic FGF21 production in mice, but glucose and not amino acids up-regulate FGF21 in cultured hepatocytes. J Nutr Biochem 2016; 36:60-67. [PMID: 27574977 DOI: 10.1016/j.jnutbio.2016.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/10/2016] [Accepted: 07/05/2016] [Indexed: 12/27/2022]
Abstract
Fibroblast growth factor 21 (FGF21) is a polypeptide secreted by the liver and involved in several metabolic processes such as thermogenesis and lipid oxidation. The nutritional mechanisms controlling FGF21 production are poorly understood. This study aimed to investigate how dietary carbohydrates and proteins impact FGF21 production and how in turn, FGF21 is involved in the metabolic adaptation to changes in the carbohydrate and protein contents of the diet. For that purpose, we fed 25 male C57BL/6 mice diets composed of different protein and carbohydrate contents (normal-protein and carbohydrate diet (N=9, NPNC), low-protein high-carbohydrate diet (N=8, LPHC), high-protein low-carbohydrate diet (N=8, HPLC) for 3 weeks. We measured liver Fgf21 gene expression, synthesis and secretion as well as different parameters related to energy and glucose metabolism. We also investigated the direct role of amino acids and glucose in the control of Fgf21 gene expression in hepatocyte primary cultures (n=6). In vivo, FGF21 responds acutely to LPHC intake whereas under an HPLC diet, plasma FGF21 circulating levels are low in the fasted and refed states. In hepatocytes, Fgf21 expression was controlled by glucose but not amino acids. Both diets increased the thermic effect of feeding (TEF) and ketogenesis was increased in fasted HPLC mice. The results presented suggest that dietary glucose, rather than amino acids, directly controls FGF21 secretion, and that FGF21 may be involved in the increased TEF response to LPHC. The effects of the HPLC diet on ketogenesis and TEF are probably controlled by other metabolic pathways.
Collapse
Affiliation(s)
- Tristan Chalvon-Demersay
- UMR PNCA, AgroParisTech, INRA, Université Paris Saclay, 16 rue Claude Bernard, F-75005 Paris, France
| | - Patrick C Even
- UMR PNCA, AgroParisTech, INRA, Université Paris Saclay, 16 rue Claude Bernard, F-75005 Paris, France
| | - Daniel Tomé
- UMR PNCA, AgroParisTech, INRA, Université Paris Saclay, 16 rue Claude Bernard, F-75005 Paris, France
| | - Catherine Chaumontet
- UMR PNCA, AgroParisTech, INRA, Université Paris Saclay, 16 rue Claude Bernard, F-75005 Paris, France
| | - Julien Piedcoq
- UMR PNCA, AgroParisTech, INRA, Université Paris Saclay, 16 rue Claude Bernard, F-75005 Paris, France
| | - Claire Gaudichon
- UMR PNCA, AgroParisTech, INRA, Université Paris Saclay, 16 rue Claude Bernard, F-75005 Paris, France
| | - Dalila Azzout-Marniche
- UMR PNCA, AgroParisTech, INRA, Université Paris Saclay, 16 rue Claude Bernard, F-75005 Paris, France.
| |
Collapse
|
15
|
Ben-Dor M, Gopher A, Barkai R. Neandertals' large lower thorax may represent adaptation to high protein diet. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 160:367-78. [DOI: 10.1002/ajpa.22981] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/10/2015] [Accepted: 02/24/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Miki Ben-Dor
- Department of Archaeology and Ancient near East Cultures; Tel Aviv University; Tel Aviv 69978 Israel
| | - Avi Gopher
- Department of Archaeology and Ancient near East Cultures; Tel Aviv University; Tel Aviv 69978 Israel
| | - Ran Barkai
- Department of Archaeology and Ancient near East Cultures; Tel Aviv University; Tel Aviv 69978 Israel
| |
Collapse
|
16
|
High dietary protein decreases fat deposition induced by high-fat and high-sucrose diet in rats. Br J Nutr 2015; 114:1132-42. [PMID: 26285832 DOI: 10.1017/s000711451500238x] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
High-protein diets are known to reduce adiposity in the context of high carbohydrate and Western diets. However, few studies have investigated the specific high-protein effect on lipogenesis induced by a high-sucrose (HS) diet or fat deposition induced by high-fat feeding. We aimed to determine the effects of high protein intake on the development of fat deposition and partitioning in response to high-fat and/or HS feeding. A total of thirty adult male Wistar rats were assigned to one of the six dietary regimens with low and high protein, sucrose and fat contents for 5 weeks. Body weight (BW) and food intake were measured weekly. Oral glucose tolerance tests and meal tolerance tests were performed after 4th and 5th weeks of the regimen, respectively. At the end of the study, the rats were killed 2 h after ingestion of a calibrated meal. Blood, tissues and organs were collected for analysis of circulating metabolites and hormones, body composition and mRNA expression in the liver and adipose tissues. No changes were observed in cumulative energy intake and BW gain after 5 weeks of dietary treatment. However, high-protein diets reduced by 20 % the adiposity gain induced by HS and high-sucrose high-fat (HS-HF) diets. Gene expression and transcriptomic analysis suggested that high protein intake reduced liver capacity for lipogenesis by reducing mRNA expressions of fatty acid synthase (fasn), acetyl-CoA carboxylase a and b (Acaca and Acacb) and sterol regulatory element binding transcription factor 1c (Srebf-1c). Moreover, ketogenesis, as indicated by plasma β-hydroxybutyrate levels, was higher in HS-HF-fed mice that were also fed high protein levels. Taken together, these results suggest that high-protein diets may reduce adiposity by inhibiting lipogenesis and stimulating ketogenesis in the liver.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW This review presents the different pathways by which protein and amino acid impact glucose control. The review more particularly discusses the contradictory effects reported in the literature on the involvement of amino acid on glucose production and in insulin secretion and sensitivity. RECENT FINDINGS Some recent findings allow a better understanding of the direct and indirect mechanisms involved in the insulinotropic activity of some amino acids in pancreatic β-cell and in the production of glucose through liver gluconeogenesis that participates to improve the control of glycemia. In contrast, the potential deleterious effects of branched chain amino acid, and particularly leucine, hypothesized in previous publications, have been discussed in some recent publications. SUMMARY These processes are of high clinical relevance since the role of protein and amino acid have been repeatedly discussed to improve insulin secretion in type 2 diabetes patients or in weight management strategy in overweight and obese individuals. In addition, whether blood amino acid could be used as biomarkers for the risk of type 2 diabetes needs to be discussed.
Collapse
|
18
|
Measurements of substrate oxidation using 13CO2-breath testing reveals shifts in fuel mix during starvation. J Comp Physiol B 2013; 183:1039-52. [DOI: 10.1007/s00360-013-0774-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/01/2013] [Accepted: 07/19/2013] [Indexed: 10/26/2022]
|
19
|
Fromentin C, Tomé D, Nau F, Flet L, Luengo C, Azzout-Marniche D, Sanders P, Fromentin G, Gaudichon C. Dietary proteins contribute little to glucose production, even under optimal gluconeogenic conditions in healthy humans. Diabetes 2013; 62:1435-42. [PMID: 23274906 PMCID: PMC3636601 DOI: 10.2337/db12-1208] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dietary proteins are believed to participate significantly in maintaining blood glucose levels, but their contribution to endogenous glucose production (EGP) remains unclear. We investigated this question using multiple stable isotopes. After overnight fasting, eight healthy volunteers received an intravenous infusion of [6,6-²H₂]-glucose. Two hours later, they ingested four eggs containing 23 g of intrinsically, uniformly, and doubly [¹⁵N]-[¹³C]-labeled proteins. Gas exchanges, expired CO₂, blood, and urine were collected over the 8 h following egg ingestion. The cumulative amount of dietary amino acids (AAs) deaminated over this 8-h period was 18.1 ± 3.5%, 17.5% of them being oxidized. The EGP remained stable for 6 h but fell thereafter, concomitantly with blood glucose levels. During the 8 h after egg ingestion, 50.4 ± 7.7 g of glucose was produced, but only 3.9 ± 0.7 g originated from dietary AA. Our results show that the total postprandial contribution of dietary AA to EGP was small in humans habituated to a diet medium-rich in proteins, even after an overnight fast and in the absence of carbohydrates from the meal. These findings question the respective roles of dietary proteins and endogenous sources in generating significant amounts of glucose in order to maintain blood glucose levels in healthy subjects.
Collapse
Affiliation(s)
- Claire Fromentin
- Institut National de la Recherche Agronomique, Centre de Recherche en Nutrition Humaine d'Ile-de-France, UMR914 Nutrition Physiology and Ingestive Behaviour, Paris, France
- AgroParisTech, Centre de Recherche en Nutrition Humaine d'Ile-de-France, UMR914 Nutrition Physiology and Ingestive Behaviour, Paris, France
| | - Daniel Tomé
- Institut National de la Recherche Agronomique, Centre de Recherche en Nutrition Humaine d'Ile-de-France, UMR914 Nutrition Physiology and Ingestive Behaviour, Paris, France
- AgroParisTech, Centre de Recherche en Nutrition Humaine d'Ile-de-France, UMR914 Nutrition Physiology and Ingestive Behaviour, Paris, France
| | - Françoise Nau
- Institut National de la Recherche Agronomique-AgroCampus, UMR Science et Technologie du Lait et de L'œuf, Rennes, France
| | - Laurent Flet
- Centre Hospitalier Universitaire de Nantes, Hôpital Hôtel Dieu, Pharmacie, Nantes, France
| | - Catherine Luengo
- Institut National de la Recherche Agronomique, Centre de Recherche en Nutrition Humaine d'Ile-de-France, UMR914 Nutrition Physiology and Ingestive Behaviour, Paris, France
- AgroParisTech, Centre de Recherche en Nutrition Humaine d'Ile-de-France, UMR914 Nutrition Physiology and Ingestive Behaviour, Paris, France
| | - Dalila Azzout-Marniche
- Institut National de la Recherche Agronomique, Centre de Recherche en Nutrition Humaine d'Ile-de-France, UMR914 Nutrition Physiology and Ingestive Behaviour, Paris, France
- AgroParisTech, Centre de Recherche en Nutrition Humaine d'Ile-de-France, UMR914 Nutrition Physiology and Ingestive Behaviour, Paris, France
| | - Pascal Sanders
- Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail, Fougères Laboratory, Fougères, France
| | - Gilles Fromentin
- Institut National de la Recherche Agronomique, Centre de Recherche en Nutrition Humaine d'Ile-de-France, UMR914 Nutrition Physiology and Ingestive Behaviour, Paris, France
- AgroParisTech, Centre de Recherche en Nutrition Humaine d'Ile-de-France, UMR914 Nutrition Physiology and Ingestive Behaviour, Paris, France
| | - Claire Gaudichon
- Institut National de la Recherche Agronomique, Centre de Recherche en Nutrition Humaine d'Ile-de-France, UMR914 Nutrition Physiology and Ingestive Behaviour, Paris, France
- AgroParisTech, Centre de Recherche en Nutrition Humaine d'Ile-de-France, UMR914 Nutrition Physiology and Ingestive Behaviour, Paris, France
- Corresponding author: Claire Gaudichon,
| |
Collapse
|
20
|
Schwarz J, Tomé D, Baars A, Hooiveld GJEJ, Müller M. Dietary protein affects gene expression and prevents lipid accumulation in the liver in mice. PLoS One 2012; 7:e47303. [PMID: 23110065 PMCID: PMC3479095 DOI: 10.1371/journal.pone.0047303] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/10/2012] [Indexed: 01/01/2023] Open
Abstract
Background and Aims High protein (HP) diets are suggested to positively modulate obesity and associated increased prevalence of non-alcoholic fatty liver (NAFLD) disease in humans and rodents. The aim of our study was to detect mechanisms by which a HP diet affects hepatic lipid accumulation. Methods To investigate the acute and long term effect of high protein ingestion on hepatic lipid accumulation under both low and high fat (HF) conditions, mice were fed combinations of high (35 energy%) or low (10 energy%) fat and high (50 energy%) or normal (15 energy%) protein diets for 1 or 12 weeks. Effects on body composition, liver fat, VLDL production rate and the hepatic transcriptome were investigated. Results Mice fed the HP diets displayed a lower body weight, developed less adiposity and decreased hepatic lipid accumulation, which could be attributed to a combination of several processes. Next to an increased hepatic VLDL production rate, increased energy utilisation due to enhanced protein catabolic processes, such as transamination, TCA cycle and oxidative phosphorylation was found upon high protein ingestion. Conclusion Feeding a HP diet prevented the development of NAFLD by enhancing lipid secretion into VLDL particles and a less efficient use of ingested calories.
Collapse
Affiliation(s)
- Jessica Schwarz
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|