1
|
Samanta S, Akhter F, Xue R, Sosunov AA, Wu L, Chen D, Arancio O, Yan SF, Yan SS. Synaptic mitochondria glycation contributes to mitochondrial stress and cognitive dysfunction. Brain 2025; 148:262-275. [PMID: 39001866 PMCID: PMC11706288 DOI: 10.1093/brain/awae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 07/15/2024] Open
Abstract
Mitochondrial and synaptic dysfunction are pathological features of brain ageing and cognitive decline. Synaptic mitochondria are vital for meeting the high energy demands of synaptic transmission. However, little is known about the link between age-related metabolic changes and the integrity of synaptic mitochondria. To this end, we investigated the mechanisms of advanced glycation end product (AGE)-mediated mitochondrial and synaptic stress and evaluated the strategies to eliminate these toxic metabolites. Using aged brain and novel transgenic mice overexpressing neuronal glyoxalase 1 (GLO1), we comprehensively analysed alterations in accumulation/build-up of AGEs and related metabolites in synaptic mitochondria and the association of AGE levels with mitochondrial function. We demonstrated for the first time that synaptic mitochondria are an early and major target of AGEs and the related toxic metabolite methylglyoxal (MG), a precursor of AGEs. MG/AGE-insulted synaptic mitochondria exhibit deterioration of mitochondrial and synaptic function. Such accumulation of MG/AGEs positively correlated with mitochondrial perturbation and oxidative stress in ageing brain. Importantly, clearance of AGE-related metabolites by enhancing neuronal GLO1, a key enzyme for detoxification of AGEs, reduces synaptic mitochondrial AGE accumulation and improves mitochondrial and cognitive function in ageing and AGE-challenged mice. Furthermore, we evaluated the direct effect of AGEs on synaptic function in hippocampal neurons in live brain slices as an ex vivo model and in vitro cultured hippocampal neurons by recording long-term potentiation (LTP) and measuring spontaneously occurring miniature excitatory postsynaptic currents (mEPSCs). Neuronal GLO1 rescues deficits in AGE-induced synaptic plasticity and transmission by full recovery of decline in LTP or frequency of mEPSC. These studies explored crosstalk between synaptic mitochondrial dysfunction and age-related metabolic changes relevant to brain ageing and cognitive decline. Synaptic mitochondria are particularly susceptible to AGE-induced damage, highlighting the central importance of synaptic mitochondrial dysfunction in synaptic degeneration in age-related cognitive decline. Thus, augmenting GLO1 function to scavenge toxic metabolites represents a therapeutic approach to reduce age-related AGE accumulation and improve mitochondrial function and learning and memory.
Collapse
Affiliation(s)
- Sourav Samanta
- Department of Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Firoz Akhter
- Higuchi Bioscience Center, University of Kansas, Lawrence, KS 66047, USA
| | - Renhao Xue
- Higuchi Bioscience Center, University of Kansas, Lawrence, KS 66047, USA
| | - Alexandre A Sosunov
- Department of Neurosurgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Long Wu
- Higuchi Bioscience Center, University of Kansas, Lawrence, KS 66047, USA
| | - Doris Chen
- Higuchi Bioscience Center, University of Kansas, Lawrence, KS 66047, USA
| | - Ottavio Arancio
- Department of Pathology and Taub Institute, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Shi Fang Yan
- Department of Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Shirley ShiDu Yan
- Department of Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Molecular Pharmacology & Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
2
|
Xu Z, Huang J, Shi K, Lu Y. Panax notoginseng saponins improves lipid metabolism and prevents atherosclerosis in mice with steroid-resistant lupus nephritis via the SIRT1/PPARγ signaling pathway. J Steroid Biochem Mol Biol 2025; 245:106631. [PMID: 39522615 DOI: 10.1016/j.jsbmb.2024.106631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Steroids serve as the primary medication for treating lupus nephritis (LN), however, steroid-resistance (SR) occurs sporadically in clinical practice, significantly affecting the therapeutic effect and long-term prognosis of patients. Our previous study found that panax notoginseng saponins (PNS) could partially reverse SR in LN. To further explore the role of PNS in reversing SR and reducing cardiovascular complications in LN, we conducted this study. Lupus mice were induced into SR while simultaneously receiving PNS. SIRT1-siRNA, SIRT1-siRNA NC, normal and lupus mice were used as control groups. Urine protein levels were measured at week 0, 4 and 8. Lipid metabolism-related biomarkers and renal function were assessed. The apoptosis rate of abdominal aortic endothelial cells was detected using flow-cytometry. The expression levels of PPARγ and SIRT1 were measured using RT-PCR and Western Blotting. Immunohistochemistry was performed to examine ACAT1 and VCAM-1 expressions. The results showed that compared to the SR lupus mice, the lupus mice treated with low/high dose PNS presented lower levels of urinary protein, serum creatinine, and blood lipids, a lower apoptosis rate of abdominal aortic endothelial cells, and decreased levels of ACAT1 and VCAM-1 PI in liver tissue, while the high-dose PNS exhibited more evidently. The PPARγ expression in SIRT1-siRNA group, as well as in low-dose and high-dose PNS groups was higher than that in the lupus and SR lupus group. In contrast, the expression of SIRT1 showed the opposite trend. Therefore, we conclude that PNS has the efficacy of reversing SR and ameliorating dyslipidemia in LN by modulating the SIRT1/PPARγ signaling pathway.
Collapse
Affiliation(s)
- Zheng Xu
- the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou.
| | - Jie Huang
- the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou
| | - Kaishun Shi
- the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou
| | - Ying Lu
- the Second Clinical Medical College of Zhejiang Chinese Medical University, Binwen Road 546, Binjiang District, Hangzhou 310053, China.
| |
Collapse
|
3
|
Lu X, Ma R, Zhan J, Pan X, Liu C, Zhang S, Tian Y. Effect of dietary intake of advanced glycation end products on biomarkers of type 2 diabetes: a systematic review and meta-analysis. Crit Rev Food Sci Nutr 2024:1-10. [PMID: 39320860 DOI: 10.1080/10408398.2024.2407894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Thermal treatment of food may undergo Maillard reactions and produce harmful substances, e.g., advanced glycation end products (AGEs). Current studies show different results about the effects of dietary AGE intake on the biomarkers of type 2 diabetes mellitus (T2DM). Therefore, this work conducted a systematic review and meta-analysis to explore the effect of dietary AGE intake on the biomarkers of T2DM, the available evidence, and the bias of this evidence. This meta-analysis focused on the association between high AGE intake and fasting plasma glucose, fasting plasma insulin, HbA1c, and HOMA-IR. Thirteen parallel studies and 4 randomized crossover studies were finally included. In the pooled analysis, fasting glucose (SMD: 0.98; 95% CI: 0.23, 1.73; p = .011), fasting insulin (SMD: 1.44; 95% CI: 0.63, 2.25; p < .01), and HOMA-IR (SMD: 1.47; 95% CI: 0.59, 2.34; p < .01) significantly increased after dietary intake with high AGEs. In the subgroup analyses, high-AGE diets and healthy participants were associated with changes in the biomarkers of T2DM. Taken together, the intake of high dietary AGE was related to the development of T2DM.
Collapse
Affiliation(s)
- Xiaoxue Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Rongrong Ma
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jinling Zhan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Xiaohua Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chang Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shuang Zhang
- Analysis and Testing Center, Jiangnan University, Wuxi, China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Analysis and Testing Center, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Xie F, Liu B, Qiao W, He JZ, Cheng J, Wang ZY, Hou YM, Zhang X, Xu BH, Zhang Y, Chen YG, Zhang MX. Smooth muscle NF90 deficiency ameliorates diabetic atherosclerotic calcification in male mice via FBXW7-AGER1-AGEs axis. Nat Commun 2024; 15:4985. [PMID: 38862515 PMCID: PMC11166998 DOI: 10.1038/s41467-024-49315-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/28/2024] [Indexed: 06/13/2024] Open
Abstract
Hyperglycemia accelerates calcification of atherosclerotic plaques in diabetic patients, and the accumulation of advanced glycation end products (AGEs) is closely related to the atherosclerotic calcification. Here, we show that hyperglycemia-mediated AGEs markedly increase vascular smooth muscle cells (VSMCs) NF90/110 activation in male diabetic patients with atherosclerotic calcified samples. VSMC-specific NF90/110 knockout in male mice decreases obviously AGEs-induced atherosclerotic calcification, along with the inhibitions of VSMC phenotypic changes to osteoblast-like cells, apoptosis, and matrix vesicle release. Mechanistically, AGEs increase the activity of NF90, which then enhances ubiquitination and degradation of AGE receptor 1 (AGER1) by stabilizing the mRNA of E3 ubiquitin ligase FBXW7, thus causing the accumulation of more AGEs and atherosclerotic calcification. Collectively, our study demonstrates the effects of VSMC NF90 in mediating the metabolic imbalance of AGEs to accelerate diabetic atherosclerotic calcification. Therefore, inhibition of VSMC NF90 may be a potential therapeutic target for diabetic atherosclerotic calcification.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Glycation End Products, Advanced/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Mice, Knockout
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/pathology
- Humans
- F-Box-WD Repeat-Containing Protein 7/metabolism
- F-Box-WD Repeat-Containing Protein 7/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Nuclear Factor 90 Proteins/metabolism
- Nuclear Factor 90 Proteins/genetics
- Receptor for Advanced Glycation End Products/metabolism
- Receptor for Advanced Glycation End Products/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/genetics
- Mice, Inbred C57BL
- Ubiquitination
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Hyperglycemia/metabolism
- Hyperglycemia/genetics
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Plaque, Atherosclerotic/genetics
- Apoptosis
Collapse
Affiliation(s)
- Fei Xie
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
| | - Bin Liu
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
| | - Wen Qiao
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jing-Zhen He
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jie Cheng
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Zhao-Yang Wang
- Department of Cardiology of Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Ya-Min Hou
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xu Zhang
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Bo-Han Xu
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Yu-Guo Chen
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China.
| | - Ming-Xiang Zhang
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
5
|
Vasilj M, Goni L, Gayoso L, Razquin C, Sesma MT, Etxeberria U, Ruiz-Canela M. Correlation between serum advanced glycation end products and dietary intake of advanced glycation end products estimated from home cooking and food frequency questionnaires. Nutr Metab Cardiovasc Dis 2023; 33:1768-1777. [PMID: 37414659 DOI: 10.1016/j.numecd.2023.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/27/2023] [Accepted: 05/18/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND & AIMS To our knowledge the association between dietary advanced glycation end-products (dAGEs) and cardiometabolic disease is limited. Our aim was to examine the association between dAGEs and serum concentration of carboxymethyl-lysine (CML) or soluble receptor advanced glycation end-products (sRAGEs), and to assess the difference on dAGEs and circulating AGEs according to lifestyle and biochemical measures. METHODS AND RESULTS 52 overweight or obese adults diagnosed with type 2 diabetes were included in this cross-sectional analysis. dAGEs were estimated from a Food Frequency Questionnaire (FFQ) or from a FFQ + Home Cooking Frequency Questionnaire (HCFQ). Serum concentrations of CML and sRAGEs were measured by ELISA. Correlation tests were used to analyze the association between dAGEs derived from the FFQ or FFQ + HCFQ and concentrations of CML or sRAGEs. Demographic characteristics, lifestyle factors and biochemical measures were analyzed according to sRAGEs and dAGEs using student t-test and ANCOVA. A significant inverse association was found between serum sRAGEs and dAGEs estimated using the FFQ + HCFQ (r = -0.36, p = 0.010), whereas no association was found for dAGEs derived from the FFQ alone. No association was observed between CML and dAGEs. dAGEs intake estimated from the FFQ + HCFQ was significantly higher among younger and male participants, and in those with higher BMI, higher Hb1Ac levels, longer time with type 2 diabetes, lower adherence to Mediterranean diet, and higher use of culinary techniques that generate more AGEs (all p values p < 0.05). CONCLUSIONS These results show knowledge on culinary techniques is relevant to derive the association between dAGEs intake and cardiometabolic risk factors.
Collapse
Affiliation(s)
- Maria Vasilj
- University of Navarra, Department of Preventive Medicine and Public Health, IdiSNA (Instituto de Investigación Sanitaria de Navarra), Pamplona, Spain
| | - Leticia Goni
- University of Navarra, Department of Preventive Medicine and Public Health, IdiSNA (Instituto de Investigación Sanitaria de Navarra), Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Lucía Gayoso
- Basque Culinary Center, Faculty of Gastronomic Sciences, Mondragon Unibertsitatea, Donostia-San Sebastián, Spain; BCC Innovation, Technology Center in Gastronomy, Basque Culinary Center, Donostia-San Sebastián, Spain
| | - Cristina Razquin
- University of Navarra, Department of Preventive Medicine and Public Health, IdiSNA (Instituto de Investigación Sanitaria de Navarra), Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - María Teresa Sesma
- University of Navarra, Department of Preventive Medicine and Public Health, IdiSNA (Instituto de Investigación Sanitaria de Navarra), Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Usune Etxeberria
- Basque Culinary Center, Faculty of Gastronomic Sciences, Mondragon Unibertsitatea, Donostia-San Sebastián, Spain; BCC Innovation, Technology Center in Gastronomy, Basque Culinary Center, Donostia-San Sebastián, Spain
| | - Miguel Ruiz-Canela
- University of Navarra, Department of Preventive Medicine and Public Health, IdiSNA (Instituto de Investigación Sanitaria de Navarra), Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Sharma N, Kumar P, Shukla KS, Maheshwari S. AGE RAGE Pathways: Cardiovascular Disease and Oxidative Stress. Drug Res (Stuttg) 2023; 73:408-411. [PMID: 37308093 DOI: 10.1055/a-2047-3896] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is well established that Advanced Glycation End Products (AGEs) and their receptor (RAGE) are primarily responsible for the development of cardiovascular disease. As a result, diabetic therapy is very interested in therapeutic strategies that can target the AGE-RAGE axis. The majority of the AGE-RAGE inhibitors showed encouraging outcomes in animal experiments, but more information is needed to completely understand their clinical effects. The main mechanism implicated in the aetiology of cardiovascular disease in people with diabetes is oxidative stress and inflammation mediated by AGE-RAGE interaction. Numerous PPAR-agonists have demonstrated favourable outcomes in the treatment of cardio-metabolic illness situations by inhibiting the AGE-RAGE axis. The body's ubiquitous phenomena of inflammation occur in reaction to environmental stressors such tissue damage, infection by pathogens, or exposure to toxic substances. Rubor (redness), calor (heat), tumour (swelling), colour (pain), and in severe cases, loss of function, are its cardinal symptoms. When exposed, the lungs develop silicotic granulomas with the synthesis of collagen and reticulin fibres. A natural flavonoid called chyrsin has been found to have PPAR-agonist activity as well as antioxidant and anti-inflammatory properties. The RPE insod2+/animals underwent mononuclear phagocyte-induced apoptosis, which was accompanied with decreased superoxide dismutase 2 (SOD2) and increased superoxide generation. Injections of the serine proteinase inhibitor SERPINA3K decreased proinflammatory factor expression in mice with oxygen-induced retinopathy, decreased ROS production, and increased levels of SOD and GSH.
Collapse
Affiliation(s)
- Neeraj Sharma
- Department of Pharmacy, Bhagwant University, Ajmer, India
| | - Pavan Kumar
- Ph.D scholar of Department of Pharmacy, Bhagwant University, Ajmer, India
| | | | - Shubhrat Maheshwari
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Rama University, Kanpur, Uttar Pradesh, India
| |
Collapse
|
7
|
Ragazzi E, Burlina S, Cosma C, Chilelli NC, Lapolla A, Sartore G. Anti-diabetic combination therapy with pioglitazone or glimepiride added to metformin on the AGE-RAGE axis: a randomized prospective study. Front Endocrinol (Lausanne) 2023; 14:1163554. [PMID: 37635976 PMCID: PMC10453795 DOI: 10.3389/fendo.2023.1163554] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction The ratio between advanced glycation end products (AGEs) and soluble form of receptor (s-RAGE) has been proposed as a risk marker for renal and cardiovascular diseases. The aim of this study was to evaluate in the diabetes condition the influence of two different oral anti-diabetic treatments on the AGE/s-RAGE ratio, during a 5-year observation period. Methods Seventy-three patients with type 2 diabetes mellitus were randomly assigned to a drug therapy with pioglitazone or glimepiride, combined to metformin. Each subject was evaluated at baseline and after 5 years of treatment. Results In both groups s-RAGE levels did not significantly vary, while the levels of AGE and AGE/s-RAGE were both significantly reduced, basal compared to 5-year values. Within pioglitazone group, as well within glimepiride group, significant variations (Δ, as difference between 5 years of treatment minus basal) were observed for AGE (Δ= -21.1±13.4 µg/ml, P<0.001 for pioglitazone; Δ= -14.4±11.4 µg/ml, P<0.001 for glimepiride) and in AGE/s-RAGE (Δ= -0.037±0.022 µg/pg, P<0.001 for pioglitazone; Δ= -0.024±0.020µg/pg, P<0.001 for glimepiride), suggesting an average decrease of the parameters by more than 50% in both treatments. Pioglitazone was more effective than glimepiride in reducing AGE/s-RAGE ratio after 5 years of therapy. Conclusion These data can help to explain the benefits of oral anti-diabetic therapy in relation to the reduction of cardiovascular risk, as suggested by variations in AGE/s-RAGE ratio as biochemical marker of endothelial function; in particular, treatment with pioglitazone seems to offer greater long-term benefit on AGE-RAGE axis.
Collapse
Affiliation(s)
- Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Silvia Burlina
- Department of Medicine – DIMED, University of Padova, Padova, Italy
| | - Chiara Cosma
- Department of Medicine – DIMED, University of Padova, Padova, Italy
| | | | | | - Giovanni Sartore
- Department of Medicine – DIMED, University of Padova, Padova, Italy
| |
Collapse
|
8
|
Gutowska K, Czajkowski K, Kuryłowicz A. Receptor for the Advanced Glycation End Products ( RAGE) Pathway in Adipose Tissue Metabolism. Int J Mol Sci 2023; 24:10982. [PMID: 37446161 DOI: 10.3390/ijms241310982] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Advanced glycation end products (AGEs) are mediators in the process of cellular dysfunction in response to hyperglycemia. Numerous data indicate that the accumulation of AGEs in the extracellular matrix plays a key role in the development of obesity-related adipose tissue dysfunction. Through binding of their membrane receptor (RAGE), AGEs affect numerous intracellular pathways and impair adipocyte differentiation, metabolism, and secretory activity. Therefore, inhibiting the production and accumulation of AGEs, as well as interfering with the metabolic pathways they activate, may be a promising therapeutic strategy for restoring normal adipose tissue function and, thus, combating obesity-related comorbidities. This narrative review summarizes data on the involvement of the RAGE pathway in adipose tissue dysfunction in obesity and the development of its metabolic complications. The paper begins with a brief review of AGE synthesis and the RAGE signaling pathway. The effect of the RAGE pathway on adipose tissue development and activity is then presented. Next, data from animal and human studies on the involvement of the RAGE pathway in obesity, diabetes, and cardiovascular diseases are summarized. Finally, therapeutic perspectives based on interference with the RAGE pathway are discussed.
Collapse
Affiliation(s)
- Klaudia Gutowska
- II Faculty and Clinic of Obstetrics and Gynaecology, Medical University of Warsaw, 00-315 Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Zwirki i Wigury 81, 02-091 Warsaw, Poland
| | - Krzysztof Czajkowski
- II Faculty and Clinic of Obstetrics and Gynaecology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Alina Kuryłowicz
- Department of Human Epigenetics, Mossakowski Medical Research Centre PAS, 02-106 Warsaw, Poland
- Department of General Medicine and Geriatric Cardiology, Medical Centre of Postgraduate Education, 00-401 Warsaw, Poland
| |
Collapse
|
9
|
Zgutka K, Tkacz M, Tomasiak P, Tarnowski M. A Role for Advanced Glycation End Products in Molecular Ageing. Int J Mol Sci 2023; 24:9881. [PMID: 37373042 PMCID: PMC10298716 DOI: 10.3390/ijms24129881] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Ageing is a composite process that involves numerous changes at the cellular, tissue, organ and whole-body levels. These changes result in decreased functioning of the organism and the development of certain conditions, which ultimately lead to an increased risk of death. Advanced glycation end products (AGEs) are a family of compounds with a diverse chemical nature. They are the products of non-enzymatic reactions between reducing sugars and proteins, lipids or nucleic acids and are synthesised in high amounts in both physiological and pathological conditions. Accumulation of these molecules increases the level of damage to tissue/organs structures (immune elements, connective tissue, brain, pancreatic beta cells, nephrons, and muscles), which consequently triggers the development of age-related diseases, such as diabetes mellitus, neurodegeneration, and cardiovascular and kidney disorders. Irrespective of the role of AGEs in the initiation or progression of chronic disorders, a reduction in their levels would certainly provide health benefits. In this review, we provide an overview of the role of AGEs in these areas. Moreover, we provide examples of lifestyle interventions, such as caloric restriction or physical activities, that may modulate AGE formation and accumulation and help to promote healthy ageing.
Collapse
Affiliation(s)
- Katarzyna Zgutka
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, Żołnierska 54, 70-210 Szczecin, Poland
| | - Marta Tkacz
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, Żołnierska 54, 70-210 Szczecin, Poland
| | - Patrycja Tomasiak
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, Żołnierska 54, 70-210 Szczecin, Poland
| |
Collapse
|
10
|
Kim Y. Blood and Tissue Advanced Glycation End Products as Determinants of Cardiometabolic Disorders Focusing on Human Studies. Nutrients 2023; 15:nu15082002. [PMID: 37111220 PMCID: PMC10144557 DOI: 10.3390/nu15082002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Cardiometabolic disorders are characterised by a cluster of interactive risk determinants such as increases in blood glucose, lipids and body weight, as well as elevated inflammation and oxidative stress and gut microbiome changes. These disorders are associated with onset of type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). T2DM is strongly associated with CVD. Dietary advanced glycation end products (dAGEs) attributable from modern diets high in sugar and/or fat, highly processed foods and high heat-treated foods can contribute to metabolic etiologies of cardiometabolic disorders. This mini review aims to determine whether blood dAGEs levels and tissue dAGEs levels are determinants of the prevalence of cardiometabolic disorders through recent human studies. ELISA (enzyme-linked immunosorbent assay), high-performance liquid chromatography (HPLC), liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) for blood dAGEs measurement and skin auto fluorescence (SAF) for skin AGEs measurement can be used. Recent human studies support that a diet high in AGEs can negatively influence glucose control, body weight, blood lipid levels and vascular health through the elevated oxidative stress, inflammation, blood pressure and endothelial dysfunction compared with a diet low in AGEs. Limited human studies suggested a diet high in AGEs could negatively alter gut microbiota. SAF could be considered as one of the predictors affecting risks for cardiometabolic disorders. More intervention studies are needed to determine how dAGEs are associated with the prevalence of cardiometabolic disorders through gut microbiota changes. Further human studies are conducted to find the association between CVD events, CVD mortality and total mortality through SAF measurement, and a consensus on whether tissue dAGEs act as a predictor of CVD is required.
Collapse
Affiliation(s)
- Yoona Kim
- Department of Food and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Gyeongsangnam-do, Republic of Korea
| |
Collapse
|
11
|
Abstract
Neurofibrillary tangles and plaques containing tau serve as the biological markers for Alzheimer disease (AD) and pathogenesis is widely believed to be driven by the production and deposition of the β-amyloid peptide (Aβ). The β-amyloid peptide (Aβ) that results from the modification of the amyloid precursor protein (APP) by builds up as amyloid deposits in neuronal cells. Thus, a protein misfolding process is involved in the production of amyloid. In a native, aqueous buffer, amyloid fibrils are usually exceedingly stable and nearly insoluble. Although amyloid is essentially a foreign substance made of self-proteins, the immune system has difficulty identifying and eliminating it as such for unknown reasons. While the amyloidal deposit may have a direct role in the disease mechanism in some disease states involving amyloidal deposition, this is not always the case. Current research has shown that PS1 (presenilin 1) and BACE (beta-site APP-cleaving enzyme) have - and -secretase activity that increases β-amyloid peptide (Aβ). Wealth of data has shown that oxidative stress and AD are closely connected that causes the death of neuronal cells by producing reactive oxygen species (ROS). Additionally, it has been demonstrated that advanced glycation end products (AGEs) and β-amyloidal peptide (Aβ) together increase neurotoxicity. The objective of this review is to compile the most recent and intriguing data of AGEs and receptor for advanced glycation end products (RAGE) pathways which are responsible for AD.
Collapse
Affiliation(s)
- Shubhrat Maheshwari
- Faculty of Pharmaceutical Sciences, Rama University, Kanpur, Uttar Pradesh, India
| |
Collapse
|
12
|
Patel SH, Carroll CC. Impact of elevated serum advanced glycation end products and exercise on intact and injured murine tendons. Connect Tissue Res 2023; 64:161-174. [PMID: 36282002 PMCID: PMC9992287 DOI: 10.1080/03008207.2022.2135508] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/09/2022] [Indexed: 02/03/2023]
Abstract
OVERVIEW Delayed tendon healing is a significant clinical challenge for those with diabetes. We explored the role of advanced glycation end-products (AGEs), a protein modification present at elevated levels in serum of individuals with diabetes, on injured and intact tendons using a mouse model. Cell proliferation following tissue injury is a vital component of healing. Based on our previous work demonstrating that AGEs limit cell proliferation, we proposed that AGEs are responsible for the delayed healing process commonly observed in diabetic patients. Further, in pursuit of interventional strategies, we suggested that moderate treadmill exercise may support a healing environment in the presence of AGEs as exercise has been shown to stimulate cell proliferation in tendon tissue. MATERIALS AND METHODS Mice began receiving daily intraperitoneal injections of bovine serum albumin (BSA)-Control or AGE-BSA injections (200μg/ml) at 16-weeks of age. A tendon injury was created in the central third of both patellar tendons. Animals assigned to an exercise group began a moderate treadmill protocol one week following injury. The intact Achilles tendon and soleus muscle were also evaluated to assess the effect of BSA and AGE-BSA on un-injured muscle and tendon. RESULTS We demonstrate that our injection dosing and schedule lead to an increase in serum AGEs. Our findings imply that AGEs indeed modulate gene expression following a patellar tendon injury and have modest effects on gene expression in intact muscle and tendon. CONCLUSIONS While additional biomechanical analysis is warranted, these data suggest that elevated serum AGEs in persons with diabetes may impact tendon health.
Collapse
Affiliation(s)
- Shivam H. Patel
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN
| | - Chad C. Carroll
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN
| |
Collapse
|
13
|
Beigrezaei S, Jambarsang S, Khayyatzadeh SS, Mirzaei M, Mehrparvar AH, Salehi-Abargouei A. A comparison of principal component analysis, partial least-squares, and reduced-rank regressions in the identification of dietary patterns associated with hypertension: YaHS-TAMYZ and Shahedieh cohort studies. Front Nutr 2023; 9:1076723. [PMID: 36712502 PMCID: PMC9879482 DOI: 10.3389/fnut.2022.1076723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Limited data exist on the advantage of data reduction hybrid methodologies for evaluating the relationship between dietary patterns (DPs) and chronic diseases and they have led to inconsistent results. This study aimed to investigate the association between DPs extracted using principal component analysis (PCA), partial least-squares (PLS), and reduced-rank regressions (RRRs) in identifying DPs associated with hypertension (HTN) risk. The current study was conducted in the context of two cohort studies accomplished in Iran. DPs were generated using PCA, PLS, and RRR methods. Log-binomial logistic regression test was used to assess the association between DPs and the risk of HTN. From a total of 12,403 included participants aged 20-70 years, 507 incident cases of confirmed HTN were identified. The PCA-DP2 was associated with HTN in the fully adjusted model (T3 vs. T1: RR: 0.737, 95% CI: 0.57-0.93, P trend = 0.013). The PLS-DP2 and HTN risk were inversely associated in the multivariate model (T3 vs. T1: RR: 0.704, 95% CI: 0.54-0.91, P trend = 0.013). The RRR-DP2 was associated with an increased risk of HTN (T3 vs. T1: RR: 1.412, 95% CI: 1.11-1.80, P trend = 0.007). Our findings suggest that the RRR method reveals stronger results in association with HTN risk. However, further investigations are required to confirm the association between DPs derived by PLS and RRR methods by incorporating biomarkers related to HTN as the response variables.
Collapse
Affiliation(s)
- Sara Beigrezaei
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, Faculty of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sara Jambarsang
- Center for Healthcare Data Modeling, Department of Biostatistics and Epidemiology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sayyed Saeid Khayyatzadeh
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, Faculty of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Mirzaei
- Yazd Cardiovascular Research Center, Non-communicable Disease Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Amin Salehi-Abargouei
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition, Faculty of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Cardiovascular Research Center, Non-communicable Disease Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
14
|
Liman PB, Anastasya KS, Salma NM, Yenny Y, Faradilla MA. Research Trends in Advanced Glycation End Products and Obesity: Bibliometric Analysis. Nutrients 2022; 14:nu14245255. [PMID: 36558414 PMCID: PMC9783605 DOI: 10.3390/nu14245255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to conduct a bibliometric analysis of the scientific articles on advanced glycation end products (AGEs) and obesity. English-language journal articles about AGEs and obesity were retrieved from the Scopus database. The OpenRefine application was used for data cleaning, the VOSviewer software program for analysis of the trends of year of publication, country, institution, journal, authors, references, and keywords. Microsoft Excel and Tableau Public were applied for the visualizing of the publication trends. Data collection was performed on 3 February 2022, from a total of 1170 documents. The Mann−Whitney test and Spearman test with software SPSS ver.28.0.1.1. were used to assess the relation between open access journal statuses, years of publications, and CiteScore. The results of the study showed that there was an increase in studies on processed foods, including AGEs and obesity. The United States was the country with the largest contribution in this field, with the highest number of citations. The Nutrients journal published the largest number of articles on this topic, particularly in the last two years. The present focus of the studies is on ultra-processed foods. The open access journals have younger medians of the year of publication and higher medians for number of citations than do closed access journals (p < 0.001 and p < 0.05, respectively). A strong negative association was seen between CiteScore and the year of publication (r = −0.64 [95% CI: −0.67, −0.60]), p < 0.001. We present this bibliometric analysis to furnish the most recent data on the description, visualization, and analysis of AGEs and obesity.
Collapse
Affiliation(s)
- Patricia Budihartanti Liman
- Department of Nutrition, Faculty of Medicine, Universitas Trisakti, Jakarta 11440, Indonesia
- Nutrition Study Center, Faculty of Medicine, Universitas Trisakti, Jakarta 11440, Indonesia
- Ciputra Hospital Tangerang, Tangerang 15710, Indonesia
- Correspondence:
| | - Karina Shasri Anastasya
- Department of Nutrition, Faculty of Medicine, Universitas Trisakti, Jakarta 11440, Indonesia
| | - Nabila Maudy Salma
- Department of Anatomy, Faculty of Medicine, Universitas Trisakti, Jakarta 11440, Indonesia
| | - Yenny Yenny
- Department of Pharmacology and Medical Pharmacy, Faculty of Medicine, Universitas Trisakti, Jakarta 11440, Indonesia
| | - Meutia Atika Faradilla
- Department of Biochemistry, Faculty of Medicine, Universitas Trisakti, Jakarta 11440, Indonesia
| |
Collapse
|
15
|
Dietary Advanced Glycation End Products in an Elderly Population with Diabetic Nephropathy: An Exploratory Investigation. Nutrients 2022; 14:nu14091818. [PMID: 35565786 PMCID: PMC9102870 DOI: 10.3390/nu14091818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023] Open
Abstract
Advanced glycation end products (AGEs) are important in pathophysiology of type 2 diabetes mellitus (T2DM) and diabetic kidney disease (DKD). Dietary AGEs (dAGEs) contribute to the overall AGE pool in the body. Forty elderly T2DM patients with DKD were randomly allocated to a low-AGE (n = 20) or regular diabetic (n = 20) diet group. A three-day meal questionnaire was used to estimate average quantity of dAGEs. AGE accumulation was measured using skin autofluorescence and urine spectroscopy. sRAGE (soluble receptor AGE) was quantified using ELISA. After 8 weeks, the mean consumption of dAGEs was considerably reduced, both in the low-AGE diet (p = 0.004) and the control (p = 0.019) group. The expected urinary emission peak at 490 nm was shifted to 520 nm in some spectra. dAGEs did not correspond with urine AGE output. An AGE-limited diet for two months did not affect AGE content in skin and urine, or sRAGE concentration in the blood. The role of glycemia is likely to be greater than the impact of dAGE consumption. The unique observation of a fluorescence pattern at 520 nm warrants further examination, since it might point to genetic differences in AGE regulation, which could have clinical consequences, as AGE content depends on its formation and elimination.
Collapse
|
16
|
Food-Related Carbonyl Stress in Cardiometabolic and Cancer Risk Linked to Unhealthy Modern Diet. Nutrients 2022; 14:nu14051061. [PMID: 35268036 PMCID: PMC8912422 DOI: 10.3390/nu14051061] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
Carbonyl stress is a condition characterized by an increase in the steady-state levels of reactive carbonyl species (RCS) that leads to accumulation of their irreversible covalent adducts with biological molecules. RCS are generated by the oxidative cleavage and cellular metabolism of lipids and sugars. In addition to causing damage directly, the RCS adducts, advanced glycation end-products (AGEs) and advanced lipoxidation end-products (ALEs), cause additional harm by eliciting chronic inflammation through receptor-mediated mechanisms. Hyperglycemia- and dyslipidemia-induced carbonyl stress plays a role in diabetic cardiovascular complications and diabetes-related cancer risk. Moreover, the increased dietary exposure to AGEs/ALEs could mediate the impact of the modern, highly processed diet on cardiometabolic and cancer risk. Finally, the transient carbonyl stress resulting from supraphysiological postprandial spikes in blood glucose and lipid levels may play a role in acute proinflammatory and proatherogenic changes occurring after a calorie dense meal. These findings underline the potential importance of carbonyl stress as a mediator of the cardiometabolic and cancer risk linked to today’s unhealthy diet. In this review, current knowledge in this field is discussed along with future research courses to offer new insights and open new avenues for therapeutic interventions to prevent diet-associated cardiometabolic disorders and cancer.
Collapse
|
17
|
Passarelli M, Machado UF. AGEs-Induced and Endoplasmic Reticulum Stress/Inflammation-Mediated Regulation of GLUT4 Expression and Atherogenesis in Diabetes Mellitus. Cells 2021; 11:104. [PMID: 35011666 PMCID: PMC8750246 DOI: 10.3390/cells11010104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/08/2023] Open
Abstract
In recent decades, complex and exquisite pathways involved in the endoplasmic reticulum (ER) and inflammatory stress responses have been demonstrated to participate in the development and progression of numerous diseases, among them diabetes mellitus (DM). In those pathways, several players participate in both, reflecting a complicated interplay between ER and inflammatory stress. In DM, ER and inflammatory stress are involved in both the pathogenesis of the loss of glycemic control and the development of degenerative complications. Furthermore, hyperglycemia increases the generation of advanced glycation end products (AGEs), which in turn refeed ER and inflammatory stress, contributing to worsening glycemic homeostasis and to accelerating the development of DM complications. In this review, we present the current knowledge regarding AGEs-induced and ER/inflammation-mediated regulation of the expression of GLUT4 (solute carrier family 2, facilitated glucose transporter member 4), as a marker of glycemic homeostasis and of cardiovascular disease (CVD) development/progression, as a leading cause of morbidity and mortality in DM.
Collapse
Affiliation(s)
- Marisa Passarelli
- Laboratório de Lípides (LIM-10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-000, Brazil;
- Programa de Pos-Graduação em Medicina, Universidade Nove de Julho, São Paulo 01525-000, Brazil
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
18
|
Diet-Derived Advanced Glycation End Products (dAGEs) Induce Proinflammatory Cytokine Expression in Cardiac and Renal Tissues of Experimental Mice: Protective Effect of Curcumin. Cardiovasc Toxicol 2021; 22:35-51. [PMID: 34655413 DOI: 10.1007/s12012-021-09697-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
The beneficial effect of curcumin (CU) on dietary AGEs (dAGEs) involves blocking the overexpression of proinflammatory cytokine genes in the heart and kidney tissues of experimental mice. The animals were divided into six groups (n = 6/group) and were fed a heat-exposed diet (dAGEs) with or without CU for 6 months. Their blood pressure (BP) was monitored by a computerized tail-cuff BP-monitoring system. The mRNA and protein expression levels of proinflammatory genes were analyzed by RT-PCR and western blot, respectively. A marked increase in BP (108 ± 12 mmHg vs 149 ± 15 mmHg) accompanied by a marked increase in the heart and kidney weight ratio was noted in the dAGE-fed mice. Furthermore, the plasma levels of proinflammatory molecules (C5a, ICAM-1, IL-6, MCP-1, IL-1β and TNF-α) were found to be elevated (3-fold) in dAGE-fed mice. mRNA expression analysis revealed a significant increase in the expression levels of inflammatory markers (Cox-2, iNOS, and NF-κB) (3-fold) in cardiac and renal tissues of dAGE-fed mice. Moreover, increased expression of RAGE and downregulation of AGER-1 (p < 0.001) were noticed in the heart and kidney tissues of dAGE-fed mice. Interestingly, the dAGE-induced proinflammatory genes and inflammatory responses were neutralized upon cotreatment with CU. The present study demonstrates that dietary supplementation with CU has the ability to neutralize dAGE-induced adverse effects and alleviate proinflammatory gene expression in the heart and kidney tissues of experimental mice.
Collapse
|
19
|
Deo P, Dhillon VS, Thomas P, Fenech M. The association of N ε-Carboxymethyllysine with polyunsaturated and saturated fatty acids in healthy individuals. J Gerontol A Biol Sci Med Sci 2021; 77:462-470. [PMID: 34628492 DOI: 10.1093/gerona/glab307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Indexed: 11/14/2022] Open
Abstract
Red blood cell (RBC) fatty acids status is used as a biomarker of dietary intake of fats however, there is still a paucity of evidence regarding individual fatty acids and modulation of endogenous advanced glycation end-product (AGE) levels. Due to membrane PUFA being a well-known target for peroxidation, we hypothesized that cellular PUFAs are positively associated with circulatory N ε-carboxymethyllysine (CML) that is also influenced by glyoxal (GO) levels in healthy cohorts. To test this, we investigated the association between RBC fatty acids and circulatory AGEs biomarkers in healthy individuals. The results showed a negative association between saturated fatty acids (SFA) and CML and stepwise multivariate regression analysis indicated stearic acid was negatively associated with CML levels (β = -0.200, p=0.008) after adjusting for age, BMI, and gender. In addition, stearic acid: palmitic acid ratio was also negatively correlated with plasma concentrations of CML (rp= -0.191, p = 0.012) and glucose (rp= -0.288, p = 0.0001). Polyunsaturated fatty acids (PUFA) showed a positive association with CML levels particularly, docosapentaenoic acid, γ-Linolenic acid, arachidonic acid, and docosadienoic acid. However, these associations were not evident after the multiple regression analysis adjusted for age, BMI, and gender. A strong negative correlation (rp= -0.98, p< 0.0001) between total PUFA and total SFA was observed. Furthermore, the SFA:PUFA ratio was inversely correlated with CML (rp= -0.227, p< 0.003). Overall, this study indicates that different fats and their combinations may influence the formation of AGEs and that carefully controlled interventions are required to further test this hypothesis.
Collapse
Affiliation(s)
- Permal Deo
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Varinderpal S Dhillon
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Philip Thomas
- CSIRO Health and Biosecurity, Adelaide, South Australia
| | - Michael Fenech
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia.,Genome Health Foundation, North Brighton, Australia.,Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Linkens AMA, Houben AJHM, Kroon AA, Schram MT, Berendschot TTJM, Webers CAB, van Greevenbroek M, Henry RMA, de Galan B, Stehouwer CDA, Eussen SJMP, Schalkwijk CG. Habitual intake of dietary advanced glycation end products is not associated with generalized microvascular function-the Maastricht Study. Am J Clin Nutr 2021; 115:444-455. [PMID: 34581759 PMCID: PMC8827096 DOI: 10.1093/ajcn/nqab302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Endogenously formed advanced glycation end products (AGEs) may be important drivers of microvascular dysfunction and the microvascular complications of diabetes. AGEs are also formed in food products, especially during preparation methods involving dry heat. OBJECTIVES We aimed to assess cross-sectional associations between dietary AGE intake and generalized microvascular function in a population-based cohort. METHODS In 3144 participants of the Maastricht Study (mean ± SD age: 60 ± 8 y, 51% men) the dietary AGEs Nε-(carboxymethyl)lysine (CML), Nε-(1-carboxyethyl)lysine (CEL), and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1) were estimated using the combination of our ultra-performance LC-tandem MS dietary AGE database and an FFQ. Microvascular function was determined in the retina as flicker light-induced arteriolar and venular dilation and as central retinal arteriolar and venular equivalents, in plasma as a z score of endothelial dysfunction biomarkers (soluble vascular adhesion molecule 1 and soluble intracellular adhesion molecule 1, soluble E-selectin, and von Willebrand factor), in skin as the heat-induced skin hyperemic response, and in urine as 24-h albuminuria. Associations were evaluated using multiple linear regression adjusting for demographic, cardiovascular, lifestyle, and dietary factors. RESULTS Overall, intakes of CML, CEL, and MG-H1 were not associated with the microvascular outcomes. Although higher intake of CEL was associated with higher flicker light-induced venular dilation (β percentage change over baseline: 0.14; 95% CI: 0.02, 0.26) and lower plasma biomarker z score (β: -0.04 SD; 95% CI: -0.08, -0.00 SD), the effect sizes were small and their biological relevance can be questioned. CONCLUSIONS We did not show any strong association between habitual intake of dietary AGEs and generalized microvascular function. The contribution of dietary AGEs to generalized microvascular function should be further assessed in randomized controlled trials using specifically designed dietary interventions.
Collapse
Affiliation(s)
- Armand M A Linkens
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands,CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Alfons J H M Houben
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands,CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Abraham A Kroon
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands,CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Miranda T Schram
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands,CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Tos T J M Berendschot
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, Netherlands
| | - Carroll A B Webers
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, Netherlands
| | - Marleen van Greevenbroek
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands,CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Ronald M A Henry
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands,CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands,Heart and Vascular Center, Maastricht University Medical Center, Maastricht, Netherlands
| | - Bastiaan de Galan
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands,CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Coen D A Stehouwer
- Department of Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands,CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | - Simone J M P Eussen
- CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands,Department of Epidemiology, Maastricht University, Maastricht, Netherlands,CAPHRI School for Care and Public Health Research Unit, Maastricht University, Maastricht, Netherlands
| | | |
Collapse
|
21
|
Lotan R, Ganmore I, Livny A, Itzhaki N, Waserman M, Shelly S, Zacharia M, Moshier E, Uribarri J, Beisswenger P, Cai W, Troen AM, Beeri MS. Effect of Advanced Glycation End Products on Cognition in Older Adults with Type 2 Diabetes: Results from a Pilot Clinical Trial. J Alzheimers Dis 2021; 82:1785-1795. [PMID: 34250935 DOI: 10.3233/jad-210131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Dietary advanced glycation end-products (AGEs) are linked to cognitive decline. However, clinical trials have not tested the effect of AGEs on cognition in older adults. OBJECTIVE The aim of the current pilot trial was to examine the feasibility of an intervention to reduce dietary AGEs on cognition and on cerebral blood flow (CBF). METHODS The design is a pilot randomized controlled trial of dietary AGEs reduction in older adults with type 2 diabetes. Seventy-five participants were randomized to two arms. The control arm received standard of care (SOC) guidelines for good glycemic control; the intervention arm, in addition to SOC guidelines, were instructed to reduce their dietary AGEs intake. Global cognition and CBF were assessed at baseline and after 6 months of intervention. RESULTS At baseline, we found a reverse association between AGEs and cognitive functioning, possibly reflecting the long-term toxicity of AGEs on the brain. There was a significant improvement in global cognition at 6 months in both the intervention and SOC groups which was more prominent in participants with mild cognitive impairment. We also found that at baseline, higher AGEs were associated with increased CBF in the left inferior parietal cortex; however, 6 months of the AGEs lowering intervention did not affect CBF levels, despite lowering AGEs exposure in blood. CONCLUSION The current pilot trial focused on the feasibility and methodology of intervening through diet to reduce AGEs in older adults with type 2 diabetes. Our results suggest that participants with mild cognitive impairment may benefit from an intensive dietary intervention.
Collapse
Affiliation(s)
- Roni Lotan
- The Nutrition and Brain Health Laboratory, The Institute of Biochemistry, Food and Nutrition Science, The Robert H. Smith Faculty of Agriculture Food and the Environment, The Hebrew University of Jerusalem, Rehovot, Israel.,The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Ithamar Ganmore
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel.,Memory Clinic, Sheba Medical Center, Tel Hashomer, Israel.,Neurology department, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Abigail Livny
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel
| | - Nofar Itzhaki
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel
| | - Mark Waserman
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel
| | - Shahar Shelly
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel.,Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Moran Zacharia
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel
| | - Erin Moshier
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jaime Uribarri
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Weijing Cai
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aron M Troen
- The Nutrition and Brain Health Laboratory, The Institute of Biochemistry, Food and Nutrition Science, The Robert H. Smith Faculty of Agriculture Food and the Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
22
|
Garay-Sevilla ME, Rojas A, Portero-Otin M, Uribarri J. Dietary AGEs as Exogenous Boosters of Inflammation. Nutrients 2021; 13:2802. [PMID: 34444961 PMCID: PMC8401706 DOI: 10.3390/nu13082802] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
Most chronic modern non-transmissible diseases seem to begin as the result of low-grade inflammation extending over prolonged periods of time. The importance of diet as a source of many pro-inflammatory compounds that could create and sustain such a low-grade inflammatory state cannot be ignored, particularly since we are constantly exposed to them during the day. The focus of this review is on specific components of the diet associated with inflammation, specifically advanced glycation end products (AGEs) that form during thermal processing of food. AGEs are also generated in the body in normal physiology and are widely recognized as increased in diabetes, but many people are unaware of the potential importance of exogenous AGEs ingested in food. We review experimental models, epidemiologic data, and small clinical trials that suggest an important association between dietary intake of these compounds and development of an inflammatory and pro-oxidative state that is conducive to chronic diseases. We compare dietary intake of AGEs with other widely known dietary patterns, such as the Mediterranean and the Dietary Approaches to Stop Hypertension (DASH) diets, as well as the Dietary Inflammation Index (DII). Finally, we delineate in detail the pathophysiological mechanisms induced by dietary AGEs, both direct (i.e., non-receptor-mediated) and indirect (receptor-mediated).
Collapse
Affiliation(s)
| | - Armando Rojas
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad Catolica del Maule, Talca 3480005, Chile;
| | - Manuel Portero-Otin
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad de Lleida, 25196 Lleida, Spain;
| | - Jaime Uribarri
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
23
|
Sohouli MH, Fatahi S, Sharifi-Zahabi E, Santos HO, Tripathi N, Lari A, Pourrajab B, Kord-Varkaneh H, Găman MA, Shidfar F. The Impact of Low Advanced Glycation End Products Diet on Metabolic Risk Factors: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv Nutr 2021; 12:766-776. [PMID: 33253361 PMCID: PMC8166565 DOI: 10.1093/advances/nmaa150] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/10/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022] Open
Abstract
Several randomized clinical trials have investigated the effect of dietary advanced glycation end products (AGEs) on metabolic syndrome risk factors in adults. However, the results of these studies were conflicting. Therefore, our aim was to assess the effect of dietary AGEs on metabolic syndrome risk factors. We searched the PubMed-MEDLINE, Scopus, Cochrane Databases, Google Scholar, Web of Science, and Embase databases for papers published up to October 2019 that investigated the effect of dietary AGEs on metabolic syndrome risk factors. From the eligible trials, 13 articles were selected for inclusion in this systematic review and meta-analysis. The meta-analysis was performed using a random-effects model. Heterogeneity was determined by I2 statistics and Cochrane Q test. Pooled results from the random-effects model showed a significant reduction for insulin resistance [weighted mean difference (WMD): -1.204; 95% CI: -2.057, -0.358; P = 0.006], fasting insulin (WMD: -5.472 μU/mL; 95% CI: -9.718, -1.234 μU/mL; P = 0.011), total cholesterol (WMD: -5.486 mg/dL; 95% CI: -10.222, -0.747 mg/dL; P = 0.023), and LDL (WMD: -6.263 mg/dL; 95% CI: -11.659, -0.866 mg/dL; P = 0.023) in the low-AGEs groups compared with the high-AGEs groups. There were no changes in the other components of the metabolic syndrome. The results of this review suggest that a diet with a low AGEs content has beneficial effects on insulin resistance, fasting insulin, total cholesterol, and LDL. Moreover, following a diet low in AGEs may be a helpful strategy to decrease the burden of metabolic syndrome risk factors in adults and particularly in patients with diabetes.
Collapse
Affiliation(s)
- Mohammad Hasan Sohouli
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Somaye Fatahi
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
- Pediatric Gastroenterology, Hepatology and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Sharifi-Zahabi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Heitor O Santos
- School of Medicine, Federal University of Uberlândia, Uberlândia, Brazil
| | | | - Abolfazl Lari
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Pourrajab
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Kord-Varkaneh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mihnea-Alexandru Găman
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Center of Hematology and Bone Marrow Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Lotan R, Ganmore I, Livny A, Shelly S, Zacharia M, Uribarri J, Beisswenger P, Cai W, Schnaider Beeri M, Troen AM. Design and Feasibility of a Randomized Controlled Pilot Trial to Reduce Exposure and Cognitive Risk Associated With Advanced Glycation End Products in Older Adults With Type 2 Diabetes. Front Nutr 2021; 8:614149. [PMID: 33659267 PMCID: PMC7917071 DOI: 10.3389/fnut.2021.614149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/04/2021] [Indexed: 01/08/2023] Open
Abstract
Introduction: Advanced glycation end products (AGEs) in diet and serum are positively correlated with chronic conditions such as type 2 diabetes and cognitive decline. Dietary reduction of AGEs was shown to reduce their level in serum and to have a beneficial effect on metabolic biomarkers. However, in part due to limitations of feasibility, clinical trials have not tested its effect on cognition in elderly. The current pilot study examines the feasibility of AGE reduction in elderly with diabetes in terms of recruitment and retention. Methods: The design is a randomized controlled pilot trial of dietary AGEs in elderly with type 2 diabetes (clinicaltrials.gov NCT02739971). Recruitment followed two stages: we first recruited participants with mild cognitive impairment (MCI), and after expanding inclusion criteria, we later recruited cognitively normal participants with subjective memory complaints (SMCs). Participants were randomized to two arms. Participants in the control arm received standard of care (SOC) guidelines for good glycemic control; those in the experimental arm, in addition to SOC guidelines, were instructed to lower their dietary AGE intake, primarily by changing their cooking methods. Participants were closely followed for dietary adherence over 6 months and evaluated before and after the intervention for adherence to the assigned diet, blood tests, cognitive performance, and brain MRI. Results: Seventy-five participants (52 with MCI and 23 cognitively normal with SMCs) were recruited primarily through mass mailing and advertising in social media websites. Seventy participants finished the study, and dropout was similar in both groups (7.5% in control vs. 5.7% in intervention, p = 0.757). The majority (57.5%) of participants in the AGEs-lowering arm showed very high adherence with the dietary guidelines. Discussion: Targeting feasible lifestyle modifications in high-risk populations could prevent substantial cases of cognitive decline. Observational evidence supports that AGEs may contribute to cognitive decline; however, the cognitive effect of reducing AGEs exposure has yet to be evaluated in a randomized controlled trial (RCT). The results of our pilot trial delineate a methodology including effective recruitment strategies, population of choice, and ways to assure high adherence during lifestyle modifications, and significantly advance progress toward a definitive and well-powered future RCT.
Collapse
Affiliation(s)
- Roni Lotan
- The Nutrition and Brain Health Laboratory, The Robert H. Smith Faculty of Agriculture Food and the Environment, The Institute of Biochemistry, Food and Nutrition Science, The Hebrew University of Jerusalem, Rehovot, Israel.,The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel
| | - Ithamar Ganmore
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel.,Memory Clinic, Sheba Medical Center, Tel HaShomer, Israel.,Neurology Department, Sheba Medical Center, Tel HaShomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Abigail Livny
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Division of Diagnostic Imaging, Sheba Medical Center, Tel HaShomer, Israel
| | - Shahar Shelly
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel.,Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Moran Zacharia
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel
| | - Jaime Uribarri
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Weijing Cai
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel.,Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Aron M Troen
- The Nutrition and Brain Health Laboratory, The Robert H. Smith Faculty of Agriculture Food and the Environment, The Institute of Biochemistry, Food and Nutrition Science, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
25
|
Goudarzi R, Sedaghat M, Hedayati M, Hekmatdoost A, Sohrab G. Low advanced Glycation end product diet improves the central obesity, insulin resistance and inflammatory profiles in Iranian patients with metabolic syndrome: a randomized clinical trial. J Diabetes Metab Disord 2021; 19:1129-1138. [PMID: 33520830 DOI: 10.1007/s40200-020-00614-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 08/14/2020] [Indexed: 01/26/2023]
Abstract
The study aimed to investigate the effects of 8-weeks AGEs restricted diet on glycemic control as well as lipid profile, inflammatory and oxidative stress biomarkers and IR in overweight patients with Mets. In this randomized, controlled clinical trial 40 clients were randomly assigned to take either a low AGE (L-AGE) or a regular AGE (Reg-AGE) diet. Also, both groups were advised to follow an energy-restricted diet. At baseline and after 8-weeks of intervention, anthropometric parameters, dietary intake, plasma concentrations of malondialdehyde, carboxymethyllysine, TNF-α, hs-CRP and levels of serum glucose, lipid and insulin were assessed. AGEs restriction resulted in significant changes in mean differences levels of CML (p < 0.004), FBG (p < 0.01), HOMA-IR (p < 0.04), TNF-α (p < 0.01) and MDA (p < 0.02) in comparison to Reg-AGE. Moreover, weight (p < 0.0001) and WC (p < 0.001) significantly declined in the intervention group. Our results indicate that dAGEs restriction plus a low-calorie diet is superior to a low-calorie diet in amelioration of central obesity and IR at least partially through reduction of OS and inflammation in Mets subjects.
Collapse
Affiliation(s)
- Razieh Goudarzi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, 46, Hafezi St., Farahzadi Blvd., Shahrak Qods, P.O.Box: 19395-4741, Tehran, Islamic Republic of Iran
| | - Meghdad Sedaghat
- Internal Medicine Department, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute For Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, 46, Hafezi St., Farahzadi Blvd., Shahrak Qods, P.O.Box: 19395-4741, Tehran, Islamic Republic of Iran
| | - Golbon Sohrab
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, 46, Hafezi St., Farahzadi Blvd., Shahrak Qods, P.O.Box: 19395-4741, Tehran, Islamic Republic of Iran
| |
Collapse
|
26
|
Sohouli MH, Sharifi-Zahabi E, Lari A, Fatahi S, Shidfar F. The impact of low advanced glycation end products diet on obesity and related hormones: a systematic review and meta-analysis. Sci Rep 2020; 10:22194. [PMID: 33335235 PMCID: PMC7747626 DOI: 10.1038/s41598-020-79216-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
Several randomized clinical trials (RCTs) have investigated the effect of dietary advanced glycation end products (AGE) on obesity factors and related hormones in adults; results were conflicting. Therefore, a study was performed to assess the effect of low advanced glycation end products diet on obesity and related hormones. A comprehensive literature search without any limitation on language was conducted using the following bibliographical databases: Web of Science, Scopus, Ovid MEDLINE, Cochrane, and Embase up to October, 2019. From the eligible trials, 13 articles were selected for the systematic review and meta-analysis. Our systematic reviews and meta-analyses have shown a significant decrease in BMI (WMD: − 0.3 kg/m2; 95% CI: − 0.52, − 0.09, p = 0.005; I2 = 55.8%), weight (WMD: − 0.83 kg; 95% CI: − 1.55, − 0.10, p = 0.026; I2 = 67.0%), and leptin (WMD: − 19.85 ng/ml; 95% CI: − 29.88, − 9.82, p < 0.001; I2 = 81.8%) and an increase in adiponectin (WMD: 5.50 µg/ml; 95% CI: 1.33, 9.67, p = 0.010; I2 = 90.6%) levels after consumption of the low AGE diets compared to the high AGE diets. Also, the effect of intake of low AGE compared to high AGE diets was more pronounced in subgroup with duration > 8 weeks for the BMI and weight. Overall, according to our results, although low AGE diets appeared to be statistically significant in reducing the prevalence of obesity and chronic diseases compared to high consumption of dietary AGEs. But, no clinical significance was observed. Therefore, to confirm these results clinically, further prospective studies should be conducted in this regard. The study protocol was registered in the in International prospective register of systematic reviews (PROSPERO) database as CRD42020203734.
Collapse
Affiliation(s)
- Mohammad Hassan Sohouli
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran.,Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Hemmat Superhighway, Tehran, Iran
| | - Elham Sharifi-Zahabi
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran.,Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Hemmat Superhighway, Tehran, Iran
| | - Abolfazl Lari
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran.,Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Hemmat Superhighway, Tehran, Iran
| | - Somaye Fatahi
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran.,Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Hemmat Superhighway, Tehran, Iran
| | - Farzad Shidfar
- Student Research Committee, Faculty of Public Health Branch, Iran University of Medical Sciences, Tehran, Iran. .,Pediatric growth and development research center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Lotan R, Ganmore I, Shelly S, Zacharia M, Uribarri J, Beisswenger P, Cai W, Troen AM, Schnaider Beeri M. Long Term Dietary Restriction of Advanced Glycation End-Products (AGEs) in Older Adults with Type 2 Diabetes Is Feasible and Efficacious-Results from a Pilot RCT. Nutrients 2020; 12:nu12103143. [PMID: 33076217 PMCID: PMC7602440 DOI: 10.3390/nu12103143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction: High serum concentrations of advanced glycation end-products (AGEs) in older adults and diabetics are associated with an increased risk of cognitive impairment. The aim of this pilot study was to assess the feasibility of long-term adherence to a dietary intervention designed to decrease intake and exposure to circulating AGEs among older adults with type 2 diabetes. Methods: Herein, 75 participants were randomized to either a standard of care (SOC) control arm or to an intervention arm receiving instruction on reducing dietary AGEs intake. The primary outcome was a change in serum AGEs at the end of the intervention. Secondary and exploratory outcomes included adherence to diet and its association with circulating AGEs. Cognitive function and brain imaging were also assessed but were out of the scope of this article (ClinicalTrials.gov Identifier: NCT02739971). Results: The intervention resulted in a significant change over time in several serum AGEs compared to the SOC guidelines. Very high adherence (above 80%) to the AGE-lowering diet was associated with a greater reduction in serum AGEs levels. There were no significant differences between the two arms in any other metabolic markers. Conclusions: A long-term dietary intervention to reduce circulating AGEs is feasible in older adults with type 2 diabetes, especially in those who are highly adherent to the AGE-lowering diet.
Collapse
Affiliation(s)
- Roni Lotan
- The Nutrition and Brain Health Laboratory, The Institute of Biochemistry, Food and Nutrition Science, The Robert H. Smith Faculty of Agriculture Food and the Environment, The Hebrew University of Jerusalem, 7610001 Rehovot, Israel;
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, 5265601 Tel Hashomer, Israel; (I.G.); (S.S.); (M.Z.); (M.S.B.)
- Correspondence: ; Tel.: +972-3-5304753
| | - Ithamar Ganmore
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, 5265601 Tel Hashomer, Israel; (I.G.); (S.S.); (M.Z.); (M.S.B.)
- Memory Clinic, Sheba Medical Center, 5265601 Tel Hashomer, Israel
- Sheba Medical Center, Neurology Department, 5265601 Tel Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Shahar Shelly
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, 5265601 Tel Hashomer, Israel; (I.G.); (S.S.); (M.Z.); (M.S.B.)
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Moran Zacharia
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, 5265601 Tel Hashomer, Israel; (I.G.); (S.S.); (M.Z.); (M.S.B.)
| | - Jaime Uribarri
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.U.); (W.C.)
| | | | - Weijing Cai
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.U.); (W.C.)
| | - Aron M. Troen
- The Nutrition and Brain Health Laboratory, The Institute of Biochemistry, Food and Nutrition Science, The Robert H. Smith Faculty of Agriculture Food and the Environment, The Hebrew University of Jerusalem, 7610001 Rehovot, Israel;
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, 5265601 Tel Hashomer, Israel; (I.G.); (S.S.); (M.Z.); (M.S.B.)
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.U.); (W.C.)
| |
Collapse
|
28
|
Tavares JF, Ribeiro PVM, Coelho OGL, Silva LED, Alfenas RCG. Can advanced glycation end-products and their receptors be affected by weight loss? A systematic review. Obes Rev 2020; 21:e13000. [PMID: 31950676 DOI: 10.1111/obr.13000] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/28/2019] [Accepted: 12/12/2019] [Indexed: 01/08/2023]
Abstract
Advanced glycation end products (AGEs) have been implicated in the pathogenesis of most chronic diseases. Therefore, identification of treatments that can attenuate the effects of these compounds and prevent cardiometabolic complications is of extreme public health interest. Recently, body weight management interventions showed positive results on reducing serum AGE concentrations. Moreover, the soluble receptor for advanced glycation end products (sRAGE) is considered to be a novel biomarker to identify patients with obesity most likely to benefit from weight management interventions. This systematic review aimed to critically analyze papers evaluating the effects of weight loss on serum AGEs and its receptors in adults with excess body weight. MEDLINE, Cochrane, Scopus, and Lilacs databases were searched. Three studies evaluating the response of AGEs to energy-restricted diets and six assessing sRAGE as the primary outcome were included. Energy-restricted diets and bariatric surgery reduced serum AGE concentrations, but effects on endogenous secretory RAGE (esRAGE) and sRAGE concentrations are conflicting. These results may be associated with mechanisms related to changes in dietary intake and limiting endogenous AGE formation. Therefore, the role of energy-restricted diets and bariatric surgery on lowering serum AGE concentrations, as well as its effects on AGEs receptors, deserves further investigation.
Collapse
Affiliation(s)
- Juliana F Tavares
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Priscila V M Ribeiro
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Olívia G L Coelho
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Laís E da Silva
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Rita C G Alfenas
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
29
|
Omofuma OO, Turner DP, Peterson LL, Merchant AT, Zhang J, Steck SE. Dietary Advanced Glycation End-products (AGE) and Risk of Breast Cancer in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO). Cancer Prev Res (Phila) 2020; 13:601-610. [PMID: 32169887 PMCID: PMC7335328 DOI: 10.1158/1940-6207.capr-19-0457] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/03/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
Abstract
Advanced glycation end-products (AGEs) are implicated in the pathogenesis of several chronic diseases including cancer. AGEs are produced endogenously but can also be consumed from foods. AGE formation in food is accelerated during cooking at high temperatures. Certain high fat or highly processed foods have high AGE values. The objective of the study was to assign and quantify Nϵ-carboxymethyl-lysine (CML)-AGE content in food and investigate the association between dietary AGE intake and breast cancer risk in the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. The study included women enrolled in the intervention arm who were cancer-free at baseline and completed a baseline questionnaire and food frequency questionnaire (DQX). CML-AGE values were assigned and quantified to foods in the DQX using a published AGE database. Cox proportional hazards models were used to estimate the hazard ratios (HR) and 95% confidence intervals (CI) of breast cancer among all women, and stratified by race/ethnicity, invasiveness of disease, and hormone receptor status. After a median 11.5 years of follow-up, 1,592 women were diagnosed with breast cancer. Higher CML-AGE intake was associated with increased risk of breast cancer among all women (HRQ5VSQ1, 1.30; 95% CI, 1.04-1.62; P trend = 0.04) and in non-Hispanic white women (HRT3VST1, 1.21; 95% CI, 1.02-1.44). Increased CML-AGE intake was associated with increased risk of in situ (HRT3VST1, 1.49; 95% CI, 1.11-2.01) and hormone receptor-positive (HRT3VST1, 1.24; 95% CI, 1.01-1.53) breast cancers. In conclusion, high intake of dietary AGE may contribute to increased breast cancer.
Collapse
Affiliation(s)
- Omonefe O Omofuma
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina
| | - David P Turner
- Medical University of South Carolina, Charleston, South Carolina
| | - Lindsay L Peterson
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Anwar T Merchant
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina
| | - Jiajia Zhang
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina
| | - Susan E Steck
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina.
| |
Collapse
|
30
|
Almajwal AM, Alam I, Abulmeaty M, Razak S, Pawelec G, Alam W. Intake of dietary advanced glycation end products influences inflammatory markers, immune phenotypes, and antiradical capacity of healthy elderly in a little-studied population. Food Sci Nutr 2020; 8:1046-1057. [PMID: 32148813 PMCID: PMC7020308 DOI: 10.1002/fsn3.1389] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023] Open
Abstract
Dietary advanced glycation end products (dAGE) have profound negative effects on overall health, and their intake must be assessed. In this cross-sectional study, we investigated dAGE intake of 337 adult participants (180/157:M/F; age range 50-73 years). Data were collected on anthropometrics, body composition, dietary intake, selected blood biochemistry, immunological parameters, and antiradical capacity (50% hemolysis time; HT50). From the dietary data, dAGEs and phytochemical index (PI) were calculated. Mean BMI, % body fat (%BF), and fasting plasma glucose were all within the accepted normal range. Subjects with high dAGE intake had higher %BF, higher energy intake, and lower PI. They tended to have lower CD4/CD8 ratios and higher proportions of B cells and NK cells, but had significantly higher hs-CRP levels and lower HT50 values. Results on HT50 suggested that being >60 years of age enhanced dAGE-associated impairment of defense capacity in both those with low and high HT50 compared with those <60 years of age. Thus, overall dAGE consumption was high, but elderly participants had lower dAGE intake than younger adults. Indicators of nutritional status and immunological parameters of the subjects were found to be associated with dAGE intake, suggesting a potential impact on health.
Collapse
Affiliation(s)
- Ali Madi Almajwal
- Clinical Nutrition ProgramDepartment of Community Health SciencesCollege of Applied Medical SciencesKing Saud UniversityRiyadhSaudi Arabia
| | - Iftikhar Alam
- Clinical Nutrition ProgramDepartment of Community Health SciencesCollege of Applied Medical SciencesKing Saud UniversityRiyadhSaudi Arabia
- Department of Human Nutrition & DieteticsBacha Khan University CharsaddaCharsaddaPakistan
| | - Mahmoud Abulmeaty
- Clinical Nutrition ProgramDepartment of Community Health SciencesCollege of Applied Medical SciencesKing Saud UniversityRiyadhSaudi Arabia
| | - Suhail Razak
- Clinical Nutrition ProgramDepartment of Community Health SciencesCollege of Applied Medical SciencesKing Saud UniversityRiyadhSaudi Arabia
| | - Graham Pawelec
- Department of ImmunologyUniversity of TübingenTübingenGermany
- Health Sciences North Research InstituteSudburyONCanada
| | - Wajid Alam
- Oral and Maxillofacial SurgeryKhyber College of DentistryPeshawarPakistan
| |
Collapse
|
31
|
The Modern Western Diet Rich in Advanced Glycation End-Products (AGEs): An Overview of Its Impact on Obesity and Early Progression of Renal Pathology. Nutrients 2019; 11:nu11081748. [PMID: 31366015 PMCID: PMC6724323 DOI: 10.3390/nu11081748] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/15/2019] [Accepted: 07/25/2019] [Indexed: 01/12/2023] Open
Abstract
Advanced glycation end-products (AGEs) are an assorted group of molecules formed through covalent bonds between a reduced sugar and a free amino group of proteins, lipids, and nucleic acids. Glycation alters their structure and function, leading to impaired cell function. They can be originated by physiological processes, when not counterbalanced by detoxification mechanisms, or derive from exogenous sources such as food, cigarette smoke, and air pollution. Their accumulation increases inflammation and oxidative stress through the activation of various mechanisms mainly triggered by binding to their receptors (RAGE). So far, the pathogenic role of AGEs has been evidenced in inflammatory and chronic diseases such as chronic kidney disease, cardiovascular disease, and diabetic nephropathy. This review focuses on the AGE-induced kidney damage, by describing the molecular players involved and investigating its link to the excess of body weight and visceral fat, hallmarks of obesity. Research regarding interventions to reduce AGE accumulation has been of great interest and a nutraceutical approach that would help fighting chronic diseases could be a very useful tool for patients’ everyday lives.
Collapse
|
32
|
Lopez-Moreno J, Quintana-Navarro GM, Delgado-Lista J, Garcia-Rios A, Alcala-Diaz JF, Gomez-Delgado F, Camargo A, Perez-Martinez P, Tinahones FJ, Striker GE, Perez-Jimenez F, Villalba JM, Lopez-Miranda J, Yubero-Serrano EM. Mediterranean Diet Supplemented With Coenzyme Q10 Modulates the Postprandial Metabolism of Advanced Glycation End Products in Elderly Men and Women. J Gerontol A Biol Sci Med Sci 2019; 73:340-346. [PMID: 28329789 DOI: 10.1093/gerona/glw214] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/08/2016] [Indexed: 01/12/2023] Open
Abstract
Advanced glycation end products (AGEs) and oxidative stress are elevated with aging and dysmetabolic conditions. Because a Mediterranean (Med) diet reduces oxidative stress, serum AGEs levels, and gene expression related to AGEs metabolism in healthy elderly people, we studied whether supplementation with coenzyme Q10 (CoQ) was of further benefit. Twenty participants aged ≥ 65 (10 men and 10 women) were randomly assigned to each of three isocaloric diets for successive periods of 4 weeks in a crossover design: Med diet, Med + CoQ, and a Western high-saturated-fat diet (SFA diet). After a 12-hour fast, volunteers consumed a breakfast with a fat composition similar to the previous diet period. Analyses included dietary AGEs consumed, serum AGEs and AGE receptor-1 (AGER1), receptor for AGEs (RAGE), glyoxalase I (GloxI), and estrogen receptor α (ERα) mRNA levels. Med diet modulated redox-state parameters, reducing AGEs levels and increasing AGER1 and GloxI mRNA levels compared with the SFA diet. This benefit was accentuated by adding CoQ, in particular, in the postprandial state. Because elevated oxidative stress/inflammation and AGEs are associated with clinical disease in aging, the enhanced protection of a Med diet supplemented with CoQ should be assessed in a larger clinical trial in which clinical conditions in aging are measured.
Collapse
Affiliation(s)
- Javier Lopez-Moreno
- Lipids and Atherosclerosis Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Gracia M Quintana-Navarro
- Lipids and Atherosclerosis Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Delgado-Lista
- Lipids and Atherosclerosis Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Garcia-Rios
- Lipids and Atherosclerosis Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan F Alcala-Diaz
- Lipids and Atherosclerosis Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Gomez-Delgado
- Lipids and Atherosclerosis Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Camargo
- Lipids and Atherosclerosis Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Perez-Martinez
- Lipids and Atherosclerosis Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco J Tinahones
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Biomedical Research Institute of Malaga (IBIMA), Virgen de la Victoria Hospital, University of Malaga, Spain
| | - Gary E Striker
- Division of Experimental Diabetes and Aging, Department of Geriatrics, Icahn School of Medicine at Mount Sinai, New York.,Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York
| | - Francisco Perez-Jimenez
- Lipids and Atherosclerosis Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose M Villalba
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Spain
| | - Jose Lopez-Miranda
- Lipids and Atherosclerosis Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena M Yubero-Serrano
- Lipids and Atherosclerosis Unit, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
33
|
Viramontes Hörner D, Selby NM, Taal MW. The Association of Nutritional Factors and Skin Autofluorescence in Persons Receiving Hemodialysis. J Ren Nutr 2019; 29:149-155. [DOI: 10.1053/j.jrn.2018.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/05/2018] [Accepted: 07/22/2018] [Indexed: 01/12/2023] Open
|
34
|
Miranda ER, Fuller KNZ, Perkins RK, Beisswenger PJ, Farabi SS, Quinn L, Haus JM. Divergent Changes in Plasma AGEs and sRAGE Isoforms Following an Overnight Fast in T1DM. Nutrients 2019; 11:nu11020386. [PMID: 30781793 PMCID: PMC6413006 DOI: 10.3390/nu11020386] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 12/27/2022] Open
Abstract
Advanced glycation end products (AGEs) promote the development of diabetic complications through activation of their receptor (RAGE). Isoforms of soluble RAGE (sRAGE) sequester AGEs and protect against RAGE-mediated diabetic complications. We investigated the effect of an overnight fast on circulating metabolic substrates, hormones, AGEs, and sRAGE isoforms in 26 individuals with type 1 diabetes (T1DM). Blood was collected from 26 young (18–30 years) T1DM patients on insulin pumps before and after an overnight fast. Circulating AGEs were measured via LC-MS/MS and sRAGE isoforms were analyzed via ELISA. Glucose, insulin, glucagon, and eGFRcystatin-c decreased while cortisol increased following the overnight fast (p < 0.05). AGEs (CML, CEL, 3DG-H, MG-H1, and G-H1) decreased (21–58%, p < 0.0001) while total sRAGE, cleaved RAGE (cRAGE), and endogenous secretory RAGE (esRAGE) increased (22–24%, p < 0.0001) following the overnight fast. The changes in sRAGE isoforms were inversely related to MG-H1 (rho = −0.493 to −0.589, p < 0.05) and the change in esRAGE was inversely related to the change in G-H1 (rho = −0.474, p < 0.05). Multiple regression analyses revealed a 1 pg/mL increase in total sRAGE, cRAGE, or esRAGE independently predicted a 0.42–0.52 nmol/L decrease in MG-H1. Short-term energy restriction via an overnight fast resulted in increased sRAGE isoforms and may be protective against AGE accumulation.
Collapse
Affiliation(s)
- Edwin R Miranda
- School of Kinesiology, University of Michigan, 401 Washtenaw Ave., Ann Arbor, MI 48109, USA.
| | - Kelly N Z Fuller
- Department of Molecular and Integrative Physiology, Kansas University Medical Center, 3901 Rainbow Blvd. Kansas City, KS 66160, USA.
| | - Ryan K Perkins
- School of Kinesiology, University of Michigan, 401 Washtenaw Ave., Ann Arbor, MI 48109, USA.
| | - Paul J Beisswenger
- Geisel School of Medicine, Dartmouth College, 1 Rope Ferry Rd., Hanover, NH 03755, USA.
| | - Sarah S Farabi
- Endocrine, Metabolism, & Diabetes, Division of Medicine, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl., Aurora, CO 80045, USA.
| | - Lauretta Quinn
- Department of Biobehavioral Health Science, University of Illinois at Chicago, 845 Damen Ave., Chicago, IL 60612, USA.
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, 401 Washtenaw Ave., Ann Arbor, MI 48109, USA.
| |
Collapse
|
35
|
Chen XJ, Wu WJ, Zhou Q, Jie JP, Chen X, Wang F, Gong XH. Retracted: Advanced glycation end-products induce oxidative stress through the Sirt1/Nrf2 axis by interacting with the receptor of AGEs under diabetic conditions. J Cell Biochem 2019; 120:2159-2170. [PMID: 30324763 DOI: 10.1002/jcb.27524] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/30/2018] [Indexed: 02/02/2023]
Abstract
Despite the administration of exogenous insulin and other medications used to control many aspects of diabetes mellitus (DM), increased oxidative stress has been increasingly acknowledged in DM development and complications. Therefore, this study aims to investigate the role of advanced glycation end-products (AGEs) in oxidative stress (OS) of thyroid cells in patients with DM. Patients with DM with or without thyroid dysfunction (TD) were enrolled. Thyroid toxic damage was induced by adding AGE-modified bovine serum albumin (AGE-BSA) to normal human thyroid follicular epithelial cells. The cell viability, cell cycle, and cell apoptosis, as well as the content of reactive oxygen species (ROS), catalase (CAT), and malondialdehyde (MDA) in cells were measured. Thyroid hormones, T3, T4, FT3, and FT4 levels were measured by enzyme-linked immunosorbent assay. Receptor for advanced glycation end products (RAGE), sirtuin1 ( Sirt1), and NF-E2-related factor 2 ( Nrf2) expressions were detected, and the mitochondrial membrane potential was measured. We found increased AGEs in the serum of DM patients with TD. By increasing AGE-BSA concentration, cell viability; the thyroid hormones T3, T4, FT3, and FT4 levels; and mitochondrial membrane potential all significantly decreased. However, the increase in AGE-BSA concentration led to an increase in cell apoptosis, RAGE, and nuclear factor-κB expressions but produced the opposite effect on Sirt1, Nrf2, and heme oxygenase-1 expressions, as well as a decrease in antioxidant response element protein levels. The AGE-BSA increased ROS and MDA levels and reduced CAT level in normal human thyroid follicular epithelial cells on a dose independence basis. Our results demonstrated that AGEs-mediated direct increase of RAGE produced OS in thyroid cells of DM by inactivating the Sirt1/Nrf2 axis.
Collapse
Affiliation(s)
- Xiao-Jun Chen
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wen-Jun Wu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qi Zhou
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jin-Ping Jie
- Department of Endocrinology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Xiong Chen
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fang Wang
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao-Hua Gong
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
36
|
Association of Dietary Advanced Glycation End Products with Metabolic Syndrome in Young Mexican Adults. MEDICINES 2018; 5:medicines5040128. [PMID: 30513741 PMCID: PMC6313307 DOI: 10.3390/medicines5040128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 01/13/2023]
Abstract
Background: Consumption of dietary advanced glycation end products is linked to metabolic syndrome. The objective was to describe the association between dietary advanced glycation end products intake and metabolic syndrome in young Mexican adults. Methods: The present was a cross-sectional study in 126 Mexican adults 18–35 years old evaluating metabolic syndrome through the harmonized criteria. Macronutrients and dietary advanced glycation end products intake were estimated through three 24-hour dietary recalls and food composition tables. Association between metabolic syndrome and high advanced glycation end products intake (≥10,000 kU/day) was evaluated through three logistic regression models adjusted by sex, age, family history of cardiometabolic diseases and energy intake. Results: Subjects with a higher advanced glycation end products intake were more likely to have impaired fasting glucose (OR: 4.91, 95% CI 1.29–18.60, p < 0.05) and metabolic syndrome (OR: 2.67, 95% CI 0.96–7.44, p = 0.059) than those participants with low consumption of these products after adjustment of sex, age, family history of cardiovascular disease and energy intake. Conclusions: High intake of dietary advanced glycation end products was significantly associated with impaired fasting glucose and marginally with metabolic syndrome in young Mexican adults regardless of sex, age, family history of cardiovascular disease and energy intake.
Collapse
|
37
|
Šebeková K, Brouder Šebeková K. Glycated proteins in nutrition: Friend or foe? Exp Gerontol 2018; 117:76-90. [PMID: 30458224 DOI: 10.1016/j.exger.2018.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 09/20/2018] [Accepted: 11/16/2018] [Indexed: 12/18/2022]
Abstract
Advanced glycation end products (AGEs) are formed in in vivo, and accumulate in tissues and body fluids during ageing. Endogenous AGE-modified proteins show altered structure and function, and may interact with receptor for AGEs (RAGE) resulting in production of reactive oxygen species, inflammatory, atherogenic and diabetogenic responses. AGEs are also formed in thermally processed foods. Studies in rodents document that dietary AGEs are partially absorbed into circulation, and accumulate in different tissues. Knowledge on the health effects of high dietary intake of AGEs is incomplete and contradictory. In this overview we discuss the data from experimental and clinical studies, either those supporting the assumption that restriction of dietary AGEs associated with health benefits, or data suggesting that dietary intake of AGEs associates with positive health outcomes. We polemicize whether the effects of exaggerated intake or restriction of highly thermally processed foods might be straightforward interpreted as the effects of AGEs-rich vs. AGEs-restricted diets. We also underline the lack of studies, and thus a poor knowledge, on the effects of different single chemically defined AGEs administration, concurrent intake of different dietary AGEs, of load with dietary AGEs corresponding to the habitual diet in humans, and on those of dietary AGEs in vulnerable populations, such as infants and particularly elderly.
Collapse
Affiliation(s)
- Katarína Šebeková
- Institute of Molecular Biomedicine, Medical Faculty, Comenius University, Bratislava, Slovakia.
| | - Katarína Brouder Šebeková
- Intensive Care Unit, John Radcliffe Hospital, Oxford, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
38
|
Miranda ER, Fuller KNZ, Perkins RK, Kroeger CM, Trepanowski JF, Varady KA, Haus JM. Endogenous secretory RAGE increases with improvements in body composition and is associated with markers of adipocyte health. Nutr Metab Cardiovasc Dis 2018; 28:1155-1165. [PMID: 30297199 PMCID: PMC6231965 DOI: 10.1016/j.numecd.2018.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS The receptor for advanced glycation end products (RAGE) is implicated in obesogenesis. Conversely, soluble RAGE (sRAGE) competitively inhibits RAGE. Our aim was to determine the effects of weight-loss via alternate day fasting (ADF) on sRAGE isoforms and evaluate potential relationships with body composition. METHODS AND RESULTS 42 obese participants were randomized to control (CON) or ADF. For 24 weeks, the ADF group consumed 25% or 125% of their caloric requirements on alternating days while the CON group did not change their diet. Body fat was measured via DXA, visceral fat (VAT) via MRI and subcutaneous fat (SAT) was derived by subtracting VAT from total fat. sRAGE isoforms were measured via ELISAs. After 24 weeks, ADF -6.8 (-9.5, -3.5)kg (Median, IQR) lost more weight than CON -0.3 (-1.9, 1.0)kg (p < 0.05). The change in endogenous secretory RAGE (esRAGE) was different between ADF 15 (-30, 78)pg/mL and CON -21 (-72, 16)pg/mL after 24 weeks (p < 0.05). To examine the effect of changes in body composition, the cohort was stratified by median weight-, fat-, SAT-, and VAT-loss. The changes in all sRAGE isoforms were different between those above and below median weight-loss (p < 0.05) with sRAGE isoforms tending to decrease in individuals below the median. Changes in total sRAGE and esRAGE were different between individuals above compared to below median fat- and SAT-loss (p < 0.05). Those above median fat-loss increased esRAGE by 29 (-5, 66)pg/mL (p < 0.05). CONCLUSION Improvements in body composition are related to increased sRAGE isoforms, implicating sRAGE as a potential target for the treatment of obesity. CLINICAL TRIAL REGISTRATION NCT00960505.
Collapse
Affiliation(s)
- E R Miranda
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| | - K N Z Fuller
- Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, United States
| | - R K Perkins
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| | - C M Kroeger
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, IN, United States
| | - J F Trepanowski
- Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, United States
| | - K A Varady
- Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, United States
| | - J M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
39
|
Nowotny K, Schröter D, Schreiner M, Grune T. Dietary advanced glycation end products and their relevance for human health. Ageing Res Rev 2018; 47:55-66. [PMID: 29969676 DOI: 10.1016/j.arr.2018.06.005] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 12/23/2022]
Abstract
Due to their bioactivity and harmful potential, advanced glycation end products (AGEs) are discussed to affect human health. AGEs are compounds formed endogenously in the human body andexogenously, especially, in foods while thermal processing. In contrast to endogenous AGEs, dietary AGEs are formed in much higher extent. However, their risk potential is also depending on absorption, distribution, metabolism and elimination. For over 10 years an intense debate on the risk of dietary AGEs on human health is going on. On the one hand, studies provided evidence that dietary AGEs contribute to clinical outcomes. On the other hand, human studies failed to observe any association. Because it was not possible to draw a final conclusion, the call for new interdisciplinary approaches arose. In this review, we will give an overview on the current state of scientific knowledge in this field. In particular, we focus on (I) the occurrence of AGEs in foods and the daily uptake of AGEs, (II) contribution to endogenous levels and (III) the effect on health-/disease-related biomarkers in humans.
Collapse
Affiliation(s)
- Kerstin Nowotny
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
| | - David Schröter
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; Leibniz Institute of Vegetable and Ornamental Crops Grossbeeren e.V. (IGZ), 14979 Grossbeeren, Germany; Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, 20146 Hamburg, Germany
| | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental Crops Grossbeeren e.V. (IGZ), 14979 Grossbeeren, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14458 Nuthetal, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; Institute of Nutrition, University of Potsdam, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, 14458 Nuthetal, Germany.
| |
Collapse
|
40
|
Csongová M, Gurecká R, Koborová I, Celec P, Domonkos E, Uličná O, Somoza V, Šebeková K. The effects of a maternal advanced glycation end product-rich diet on somatic features, reflex ontogeny and metabolic parameters of offspring mice. Food Funct 2018; 9:3432-3446. [PMID: 29877548 DOI: 10.1039/c8fo00183a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Maternal exposure to a Western type diet during pregnancy might predispose the offspring to manifestation of metabolic and behavioral disturbances in later life. The Western type diet contains large amounts of advanced glycation end products (AGEs). In humans and experimental rodents, the intake of an AGE-rich diet (AGE-RD) negatively affected glucose homeostasis, and initiated the production of reactive oxygen species. Rats consuming the AGE-RD presented changes in behavior. It remains unclear whether maternal intake of the AGE-RD might affect developmental plasticity in offspring. We examined early somatic (weight, incisor eruption, ear unfolding, and eye opening) and neuromotor development, oxidative status, insulin sensitivity (HOMA index) and locomotor activity assessed in PhenoTyper cages in the offspring of mice fed during pregnancy with either the AGE-RD (25% bread crusts/75% control chow) or control chow. Until weaning, the somatic development of offspring did not differ between the two dietary groups. The AGE-RD offspring manifested physiological reflexes (auditory startle, eye lid, ear twitch and righting reflexes) earlier. As young adults, the male offspring of the AGE-RD dams were heavier and less insulin sensitive compared with their control counterparts. The AGE-RD offspring showed higher locomotor activity during the active phase. Our data indicate that the maternal AGE-RD during pregnancy might accelerate the maturation of reflexes in offspring, predispose the male progeny to weight gain and affect their glucose homeostasis. These effects manifest without the direct consumption of the AGE-RD by offspring. Further work is needed to determine the mechanisms by which the maternal AGE-RD affects neurobehavioral pathways in offspring, as well as sex differences in adverse metabolic responses.
Collapse
Affiliation(s)
- Melinda Csongová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhu Y, Snooks H, Sang S. Complexity of Advanced Glycation End Products in Foods: Where Are We Now? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1325-1329. [PMID: 29378411 DOI: 10.1021/acs.jafc.7b05955] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent clinical trials indicate that consumption of dietary advanced glycation end products (AGEs) may promote the development of major chronic diseases. However, the outcomes of human studies have proven inconclusive as a result of estimates of the total AGE intake being taken with a single AGE in most of the studies. In this perspective, we summarized the major types of AGEs derived from proteins, nucleic acids, and phospholipids during food processing and suggested a panel of AGEs as markers to better measure the intake of total dietary AGEs in human studies.
Collapse
Affiliation(s)
- Yingdong Zhu
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University , North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Hunter Snooks
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University , North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University , North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| |
Collapse
|
42
|
Santos-Bezerra DP, Machado-Lima A, Monteiro MB, Admoni SN, Perez RV, Machado CG, Shimizu MH, Cavaleiro AM, Thieme K, Queiroz MS, Machado UF, Giannella-Neto D, Passarelli M, Corrêa-Giannella ML. Dietary advanced glycated end-products and medicines influence the expression of SIRT1 and DDOST in peripheral mononuclear cells from long-term type 1 diabetes patients. Diab Vasc Dis Res 2018; 15:81-89. [PMID: 29027826 DOI: 10.1177/1479164117733918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Quantitative polymerase chain reaction was employed to quantify expression of two genes coding for advanced glycation end-product receptors [RAGE ( AGER) and AGER1 ( DDOST)] and of the gene coding the deacetylase SIRT1 ( SIRT1) in peripheral blood mononuclear cells from type 1 diabetes patients without [Group A, n = 35; 28.5 (24-39) years old; median (interquartile interval)] or with at least one microvascular complication [Group B, n = 117; 34.5 (30-42) years old]; 31 healthy controls were also included. In a subgroup of 48 patients, daily advanced glycation end-products intake before blood collection was assessed. Lower expression of DDOST was found in patients than in controls after adjustment for sex, age, use of statins, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. Higher expressions of AGER, DDOST and SIRT1 were observed in Group A. Stratifying by complications, AGER and DDOST expressions were higher in those without retinopathy and without diabetic kidney disease, respectively, compared to patients with these complications. Patients using statins or angiotensin receptor blockers presented higher expression of DDOST. Expression of SIRT1 was higher in patients consuming ≥12,872 KU daily of advanced glycation end-products. Although AGER, DDOST and SIRT1 are differently expressed in peripheral blood mononuclear cells from type 1 diabetes patients with and without microvascular complications, they are also influenced by dietary advanced glycation end-products and by statins and angiotensin receptor blockers.
Collapse
Affiliation(s)
- Daniele P Santos-Bezerra
- 1 Laboratório de Carboidratos e Radioimunoensaios (LIM-18), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Adriana Machado-Lima
- 2 Laboratório de Lípides (LIM-10), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Maria Beatriz Monteiro
- 1 Laboratório de Carboidratos e Radioimunoensaios (LIM-18), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Sharon N Admoni
- 1 Laboratório de Carboidratos e Radioimunoensaios (LIM-18), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Ricardo V Perez
- 1 Laboratório de Carboidratos e Radioimunoensaios (LIM-18), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Cleide G Machado
- 3 Divisão de Oftalmologia, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Maria Heloíza Shimizu
- 4 Laboratório de Pesquisa Básica em Doenças Renais (LIM-12), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Ana M Cavaleiro
- 1 Laboratório de Carboidratos e Radioimunoensaios (LIM-18), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Karina Thieme
- 1 Laboratório de Carboidratos e Radioimunoensaios (LIM-18), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Márcia S Queiroz
- 5 Divisão de Endocrinologia, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, Brazil
| | - Ubiratan F Machado
- 6 Laboratório de Metabolismo e Endocrinologia, Instituto de Ciências Biomédicas da Universidade de São Paulo, São Paulo, Brazil
| | - Daniel Giannella-Neto
- 7 Programa de Pós-Graduação em Medicina, Universidade Nove de Julho, São Paulo, Brazil
| | - Marisa Passarelli
- 2 Laboratório de Lípides (LIM-10), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Maria Lúcia Corrêa-Giannella
- 1 Laboratório de Carboidratos e Radioimunoensaios (LIM-18), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- 7 Programa de Pós-Graduação em Medicina, Universidade Nove de Julho, São Paulo, Brazil
- 8 Núcleo de Estudos e Terapia Celular e Molecular (NUCEL/NETCEM) da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
43
|
Luévano-Contreras C, Gómez-Ojeda A, Macías-Cervantes MH, Garay-Sevilla ME. Dietary Advanced Glycation End Products and Cardiometabolic Risk. Curr Diab Rep 2017; 17:63. [PMID: 28695383 DOI: 10.1007/s11892-017-0891-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW This report analyzes emerging evidence about the role of dietary advanced glycation end products (AGEs) as a cardiometabolic risk factor. Two important aspects are discussed: First, the modulation of AGE load by dietary AGEs; second, if the evidence of clinical and observational studies is enough to make dietary recommendations towards lowering AGE intake. RECENT FINDINGS Clinical studies in subjects with diabetes mellitus have shown that high intake of dietary AGEs increases inflammation markers, oxidative stress, and could impair endothelial function. In subjects at risk for cardiometabolic diseases (with overweight, obesity, or prediabetes), dietary AGE restriction decreases some inflammatory molecules and improves insulin sensitivity. However, studies in healthy subjects are limited, and not all of the studies have shown a decrease in circulating AGEs. Therefore, it is still unclear if dietary AGEs represent a health concern for people potentially at risk for cardiometabolic diseases. The evidence shows that dietary AGEs are bioavailable and absorbed, and the rate of excretion depends on dietary intake. The metabolic fate of most dietary AGEs remains unknown. Regardless, most studies have shown that by diminishing AGE intake, circulating levels will also decrease. Thus, dietary AGEs can modulate the AGE load at least in patients with DM, overweight, or obesity. Studies with specific clinical outcomes and large-scale observational studies are needed for a better risk assessment of dietary AGEs and to establish dietary recommendations accordingly.
Collapse
Affiliation(s)
- Claudia Luévano-Contreras
- Department of Medical Sciences, University of Guanajuato, 20 de Enero 929, León, Guanajuato, Mexico.
| | - Armando Gómez-Ojeda
- Department of Medical Sciences, University of Guanajuato, 20 de Enero 929, León, Guanajuato, Mexico
| | | | - Ma Eugenia Garay-Sevilla
- Department of Medical Sciences, University of Guanajuato, 20 de Enero 929, León, Guanajuato, Mexico
| |
Collapse
|
44
|
Baye E, de Courten MP, Walker K, Ranasinha S, Earnest A, Forbes JM, de Courten B. Effect of dietary advanced glycation end products on inflammation and cardiovascular risks in healthy overweight adults: a randomised crossover trial. Sci Rep 2017; 7:4123. [PMID: 28646140 PMCID: PMC5482825 DOI: 10.1038/s41598-017-04214-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/03/2017] [Indexed: 01/11/2023] Open
Abstract
Diets high in advanced glycation end products (AGEs) are thought to be detrimental to cardiovascular health. However, there remains uncertainty about the beneficial effect of a low AGE diet on cardiovascular risk factors and inflammatory markers in overweight individuals. We thus performed a randomised, double blind, crossover trial to determine whether consumption of low AGE diets reduce inflammation and cardiovascular risks in overweight and obese otherwise healthy adults. All participants (n = 20) consumed low and high AGE diets alternately for two weeks and separated by a four week washout period. Low AGE diets did not change systolic (p = 0.2) and diastolic blood pressure (p = 0.3), mean arterial pressure (p = 0.8) and pulse pressure (p = 0.2) compared to high AGE diets. Change in total cholesterol (p = 0.3), low-density lipoprotein (p = 0.7), high-density lipoprotein (p = 0.2), and triglycerides (p = 0.4) also did not differ and there was no difference in inflammatory markers: interleukin-6 (p = 0.6), monocyte chemoattractant protein-1 (p = 0.9), tumour necrosis factor α (p = 0.2), C-reactive protein (p = 0.6) and nuclear factor kappa beta (p = 0.2). These findings indicate that consumption of low AGE diets for two weeks did not improve the inflammatory and cardiovascular profiles of overweight and obese adults.
Collapse
Affiliation(s)
- Estifanos Baye
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Maximilian Pj de Courten
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Karen Walker
- Department of Nutrition and Dietetics, School of Clinical Sciences, Monash University, Melbourne, Australia
| | - Sanjeeva Ranasinha
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Arul Earnest
- Biostatistics Unit, School of Public Health & Preventive Medicine, Monash University, Melbourne, Australia
| | - Josephine M Forbes
- Mater Clinical School, University of Queensland, Brisbane, Australia
- Glycation and Diabetes, Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
- Diabetes and Vascular Medicine Unit, Monash Health, Melbourne, Australia.
| |
Collapse
|
45
|
Baye E, Kiriakova V, Uribarri J, Moran LJ, de Courten B. Consumption of diets with low advanced glycation end products improves cardiometabolic parameters: meta-analysis of randomised controlled trials. Sci Rep 2017; 7:2266. [PMID: 28536448 PMCID: PMC5442099 DOI: 10.1038/s41598-017-02268-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/10/2017] [Indexed: 01/05/2023] Open
Abstract
Studies examining the effects of consumption of diets low in advanced glycation end products (AGEs) on cardiometabolic parameters are conflicting. Hence, we performed a meta-analysis to determine the effect of low AGE diets in reducing cardiometabolic risk factors. Seventeen randomised controlled trials comprising 560 participants were included. Meta-analyses using random effects models were used to analyse the data. Low AGE diets decreased insulin resistance (mean difference [MD] −1.3, 95% CI −2.3, −0.2), total cholesterol (MD −8.5 mg/dl, 95% CI −9.5, −7.4) and low-density lipoprotein (MD −2.4 mg/dl, 95% CI −3.4, −1.3). There were no changes in weight, fasting glucose, 2-h glucose and insulin, haemoglobin A1c, high-density lipoprotein or blood pressure. In a subgroup of patients with type 2 diabetes, a decrease in fasting insulin (MD −7 µU/ml, 95% CI −11.5, −2.5) was observed. Tumour necrosis factor α, vascular cell adhesion molecule-1, 8-isoprostane, leptin, circulating AGEs and receptor for AGEs were reduced after consumption of low AGE diets with increased adiponectin and sirtuin-1. Our findings suggest that diets low in AGEs may be an effective strategy for improving cardiometabolic profiles in individuals with and without type 2 diabetes.
Collapse
Affiliation(s)
- Estifanos Baye
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, 43-51 Kanooka Grove, Clayton, VIC 3168, Australia
| | - Velislava Kiriakova
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, 43-51 Kanooka Grove, Clayton, VIC 3168, Australia
| | - Jaime Uribarri
- Department of Medicine, The Mount Sinai School of Medicine, One Gustave Levy Place, New York, NY, 10029, USA
| | - Lisa J Moran
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, 43-51 Kanooka Grove, Clayton, VIC 3168, Australia
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, 43-51 Kanooka Grove, Clayton, VIC 3168, Australia.
| |
Collapse
|
46
|
Lopez-Moreno J, Quintana-Navarro GM, Camargo A, Jimenez-Lucena R, Delgado-Lista J, Marin C, Tinahones FJ, Striker GE, Roche HM, Perez-Martinez P, Lopez-Miranda J, Yubero-Serrano EM. Dietary fat quantity and quality modifies advanced glycation end products metabolism in patients with metabolic syndrome. Mol Nutr Food Res 2017; 61. [PMID: 28233454 DOI: 10.1002/mnfr.201601029] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/07/2017] [Accepted: 02/15/2017] [Indexed: 12/17/2022]
Abstract
SCOPE Advanced glycation end products (AGEs) increase in dysmetabolic conditions. Lifestyle, including diet, has shown be effective in preventing the development of metabolic syndrome (MetS). We investigated whether AGE metabolism is affected by diets with different fat quantity and quality in MetS patients. METHODS AND RESULTS A randomized, controlled trial assigned 75 MetS patients to one of four diets: high SFA (HSFA), high MUFA (HMUFA), and two low-fat, high-complex carbohydrate diets (LFHCC) supplemented with long-chain n-3 PUFA or placebo for 12-weeks each. Dietary and serum AGE [methylglyoxal (MG: lysine-MG-H1) and N-carboxymethyllysine] levels and gene expression related to AGE metabolism in peripheral blood mononuclear cells (AGER1, RAGE, GloxI, and Sirt1 mRNA) were determined. HMUFA diet reduced serum AGE (sAGE) and RAGE mRNA, increased AGER1 and GloxI mRNA levels compared to the other diets. LFHCC n-3 diet reduced sAGE levels and increased AGER1 mRNA levels compared to LFHCC and HSFA diets. Multiple regression analyses showed that sMG and AGER1 mRNA appeared as significant predictors of oxidative stress/inflammation-related parameters. CONCLUSIONS Low AGE content in HMUFA diet reduces sAGEs and modulates the gene expression related to AGE metabolism in MetS patients, which may be used as a therapeutic approach to reduce the incidence of MetS and related chronic diseases.
Collapse
Affiliation(s)
- Javier Lopez-Moreno
- Lipids and Atherosclerosis Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Spain
| | - Gracia M Quintana-Navarro
- Lipids and Atherosclerosis Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Spain
| | - Antonio Camargo
- Lipids and Atherosclerosis Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Spain
| | - Rosa Jimenez-Lucena
- Lipids and Atherosclerosis Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Spain
| | - Javier Delgado-Lista
- Lipids and Atherosclerosis Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Spain
| | - Carmen Marin
- Lipids and Atherosclerosis Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Spain
| | - Francisco J Tinahones
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Spain.,Biomedical Research Institute of Malaga (IBIMA), Virgen de la Victoria Hospital, University of Malaga, Malaga, Spain
| | - Gary E Striker
- Division of Experimental Diabetes and Aging, Department of Geriatrics, Divisions of Icahn School of Medicine at Mount Sinai, New York, USA
| | - Helen M Roche
- Nutrigenomics Research Group, UCD Conway Institute/UCD Institute of Food and Health, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Pablo Perez-Martinez
- Lipids and Atherosclerosis Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Spain
| | - Jose Lopez-Miranda
- Lipids and Atherosclerosis Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Spain
| | - Elena M Yubero-Serrano
- Lipids and Atherosclerosis Unit, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital, University of Cordoba, Spain.,CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Spain
| |
Collapse
|
47
|
Vlassara H, Cai W, Tripp E, Pyzik R, Yee K, Goldberg L, Tansman L, Chen X, Mani V, Fayad ZA, Nadkarni GN, Striker GE, He JC, Uribarri J. Oral AGE restriction ameliorates insulin resistance in obese individuals with the metabolic syndrome: a randomised controlled trial. Diabetologia 2016; 59:2181-92. [PMID: 27468708 PMCID: PMC5129175 DOI: 10.1007/s00125-016-4053-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/14/2016] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS We previously reported that obese individuals with the metabolic syndrome (at risk), compared with obese individuals without the metabolic syndrome (healthy obese), have elevated serum AGEs that strongly correlate with insulin resistance, oxidative stress and inflammation. We hypothesised that a diet low in AGEs (L-AGE) would improve components of the metabolic syndrome in obese individuals, confirming high AGEs as a new risk factor for the metabolic syndrome. METHODS A randomised 1 year trial was conducted in obese individuals with the metabolic syndrome in two parallel groups: L-AGE diet vs a regular diet, habitually high in AGEs (Reg-AGE). Participants were allocated to each group by randomisation using random permuted blocks. At baseline and at the end of the trial, we obtained anthropometric variables, blood and urine samples, and performed OGTTs and MRI measurements of visceral and subcutaneous abdominal tissue and carotid artery. Only investigators involved in laboratory determinations were blinded to dietary assignment. Effects on insulin resistance (HOMA-IR) were the primary outcome. RESULTS Sixty-one individuals were randomised to a Reg-AGE diet and 77 to an L-AGE diet; the data of 49 and 51, respectively, were analysed at the study end in 2014. The L-AGE diet markedly improved insulin resistance; modestly decreased body weight; lowered AGEs, oxidative stress and inflammation; and enhanced the protective factors sirtuin 1, AGE receptor 1 and glyoxalase I. The Reg-AGE diet raised AGEs and markers of insulin resistance, oxidative stress and inflammation. There were no effects on MRI-assessed measurements. No side effects from the intervention were identified. HOMA-IR came down from 3.1 ± 1.8 to 1.9 ± 1.3 (p < 0.001) in the L-AGE group, while it increased from 2.9 ± 1.2 to 3.6 ± 1.7 (p < 0.002) in the Reg-AGE group. CONCLUSIONS/INTERPRETATION L-AGE ameliorates insulin resistance in obese people with the metabolic syndrome, and may reduce the risk of type 2 diabetes, without necessitating a major reduction in adiposity. Elevated serum AGEs may be used to diagnose and treat 'at-risk' obesity. TRIAL REGISTRATION ClinicalTrials.gov NCT01363141 FUNDING: The study was funded by the National Institute of Diabetes and Digestive and Kidney Diseases (DK091231).
Collapse
Affiliation(s)
- Helen Vlassara
- Department of Geriatrics, Division of Experimental Diabetes and Aging, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Weijing Cai
- Department of Geriatrics, Division of Experimental Diabetes and Aging, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Elizabeth Tripp
- Department of Geriatrics, Division of Experimental Diabetes and Aging, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Renata Pyzik
- Department of Geriatrics, Division of Experimental Diabetes and Aging, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Kalle Yee
- Department of Geriatrics, Division of Experimental Diabetes and Aging, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Laurie Goldberg
- Department of Geriatrics, Division of Experimental Diabetes and Aging, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Laurie Tansman
- Department of Geriatrics, Division of Experimental Diabetes and Aging, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Xue Chen
- Department of Geriatrics, Division of Experimental Diabetes and Aging, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Venkatesh Mani
- Translational and Molecular Imaging Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Girish N Nadkarni
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gary E Striker
- Department of Geriatrics, Division of Experimental Diabetes and Aging, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John C He
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jaime Uribarri
- Department of Medicine, Division of Nephrology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
48
|
Wu X, Cao N, Fenech M, Wang X. Role of Sirtuins in Maintenance of Genomic Stability: Relevance to Cancer and Healthy Aging. DNA Cell Biol 2016; 35:542-575. [DOI: 10.1089/dna.2016.3280] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Xiayu Wu
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Neng Cao
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, China
| | - Michael Fenech
- Genome Health and Personalized Nutrition, Commonwealth Scientific and Industrial Research Organization Food and Nutrition, Adelaide, South Australia, Australia
| | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, China
| |
Collapse
|
49
|
Calvo MS, Mehrotra A, Beelman RB, Nadkarni G, Wang L, Cai W, Goh BC, Kalaras MD, Uribarri J. A Retrospective Study in Adults with Metabolic Syndrome: Diabetic Risk Factor Response to Daily Consumption of Agaricus bisporus (White Button Mushrooms). PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2016; 71:245-251. [PMID: 27193019 DOI: 10.1007/s11130-016-0552-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Adults with metabolic syndrome from different race/ethnicities are often predisposed to developing type 2 diabetes (T2D); however, growing evidence suggests that healthy diets and lifestyle choices can significantly slow or prevent progression to T2D. This poorly understood relationship to healthy dietary patterns and prevention of T2D motivated us to conduct a retrospective analysis to determine the potential impact of a minor dietary lifestyle change (daily mushroom consumption) on known T2D risk factors in racially diverse adults with confirmed features of the metabolic syndrome. Retrospectively, we studied 37 subjects who had participated in a dietary intervention focused on vitamin D bioavailability from white button mushrooms (WBM). All 37 had previously completed a 16-week study where they consumed 100 g of WBM daily and were then followed-up for one month during which no mushrooms were consumed. We analyzed differences in serum risk factors from baseline to 16-week, and from baseline to one-month follow-up. Measurement of serum diabetic risk factors included inflammatory and oxidative stress markers and the antioxidant component naturally rich in mushrooms, ergothioneine. Significant beneficial health effects were observed at 16-week with the doubling of ergothioneine from baseline, increases in the antioxidant marker ORAC (oxygen radical absorption capacity) and anti-inflammatory hormone, adiponectin and significant decreases in serum oxidative stress inducing factors, carboxymethyllysine (CML) and methylglyoxal (MG), but no change in the lipid oxidative stress marker 8-isoprostane, leptin or measures of insulin resistance or glucose metabolism. We conclude that WBM contain a variety of compounds with potential anti-inflammatory and antioxidant health benefits that can occur with frequent consumption over time in adults predisposed to T2D. Well-controlled studies are needed to confirm these findings and identify the specific mushroom components beneficial to health.
Collapse
Affiliation(s)
- Mona S Calvo
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, MOD-1, HFS-025, 8301 Muirkirk Road, Laurel, MD, 20708, USA
| | - Anita Mehrotra
- Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1147, New York, NY, 10029, USA
| | - Robert B Beelman
- Department of Food Science, The Pennsylvania State University, 202 Rodney A. Erickson Food Science Building, University Park, PA, 16802, USA
| | - Girish Nadkarni
- Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1147, New York, NY, 10029, USA
| | - Lingzhi Wang
- Cancer Science Institute, National University Singapore, 14 Medical Dr, Singapore, 117599, Singapore
| | - Weijing Cai
- Department of Geriatrics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Boon Cher Goh
- Cancer Science Institute, National University Singapore, 14 Medical Dr, Singapore, 117599, Singapore
| | - Michael D Kalaras
- Department of Food Science, The Pennsylvania State University, 202 Rodney A. Erickson Food Science Building, University Park, PA, 16802, USA
| | - Jaime Uribarri
- Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1147, New York, NY, 10029, USA.
| |
Collapse
|
50
|
Pereira-Simon S, Rubio GA, Xia X, Cai W, Choi R, Striker GE, Elliot SJ. Inhibition of Advanced Glycation End Products (AGEs) Accumulation by Pyridoxamine Modulates Glomerular and Mesangial Cell Estrogen Receptor α Expression in Aged Female Mice. PLoS One 2016; 11:e0159666. [PMID: 27428057 PMCID: PMC4948910 DOI: 10.1371/journal.pone.0159666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/05/2016] [Indexed: 12/31/2022] Open
Abstract
Age-related increases in oxidant stress (OS) play a role in regulation of estrogen receptor (ER) expression in the kidneys. In this study, we establish that in vivo 17β-estradiol (E2) replacement can no longer upregulate glomerular ER expression by 21 months of age in female mice (anestrous). We hypothesized that advanced glycation end product (AGE) accumulation, an important source of oxidant stress, contributes to these glomerular ER expression alterations. We treated 19-month old ovariectomized female mice with pyridoxamine (Pyr), a potent AGE inhibitor, in the presence or absence of E2 replacement. Glomerular ERα mRNA expression was upregulated in mice treated with both Pyr and E2 replacement and TGFβ mRNA expression decreased compared to controls. Histological sections of kidneys demonstrated decreased type IV collagen deposition in mice receiving Pyr and E2 compared to placebo control mice. In addition, anti-AGE defenses Sirtuin1 (SIRT1) and advanced glycation receptor 1 (AGER1) were also upregulated in glomeruli following treatment with Pyr and E2. Mesangial cells isolated from all groups of mice demonstrated similar ERα, SIRT1, and AGER1 expression changes to those of whole glomeruli. To demonstrate that AGE accumulation contributes to the observed age-related changes in the glomeruli of aged female mice, we treated mesangial cells from young female mice with AGE-BSA and found similar downregulation of ERα, SIRT1, and AGER1 expression. These results suggest that inhibition of intracellular AGE accumulation with pyridoxamine may protect glomeruli against age-related oxidant stress by preventing an increase of TGFβ production and by regulation of the estrogen receptor.
Collapse
Affiliation(s)
- Simone Pereira-Simon
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Gustavo A. Rubio
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Xiaomei Xia
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Weijing Cai
- Division of Experimental Diabetes and Aging, Department of Geriatrics and Palliative Care, Mount Sinai School of Medicine, 1 Gustave Levy Place, New York, New York, United States of America
| | - Rhea Choi
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Gary E. Striker
- Division of Experimental Diabetes and Aging, Department of Geriatrics and Palliative Care, Mount Sinai School of Medicine, 1 Gustave Levy Place, New York, New York, United States of America
| | - Sharon J. Elliot
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|