1
|
Ruggiero M, Motti ML, Meccariello R, Mazzeo F. Resveratrol and Physical Activity: A Successful Combination for the Maintenance of Health and Wellbeing? Nutrients 2025; 17:837. [PMID: 40077707 PMCID: PMC11902109 DOI: 10.3390/nu17050837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Physical exercise is an essential component of human health. In recent years, scientific research has focused on identifying natural compounds and formulating new supplements aimed at enhancing athletic performance, accelerating muscle recovery, and minimizing the damage caused by physical exertion. The use of antioxidants to counteract the formation of reactive oxygen species (ROS) following physical activity (PA) is already a widely adopted practice. Resveratrol (RES), a polyphenol belonging to the stilbene class, is well known for its potent antioxidant activity and anti-inflammatory effects primarily attributed to the activation of sirtuins. RES possesses multiple nutraceutical properties used for the prevention and treatment of inflammatory, cardiovascular, neoplastic, and infectious diseases, thus attracting attention to study its use in combination with physical exercise to promote well-being. Animal trials combining RES and PA have mainly reported improvements in muscle, energy, and cardiovascular functions. The data presented and discussed in this narrative review are from Pubmed, Scopus, and the Human Gene Database (search limited to 2011 to 2025 with the keywords RES, sirtuins, and physical activity altogether or in combination with each other). This review gathers several studies on RES focusing on its nutraceutical properties, epigenetic activities via sirtuins, and the potential benefits of combining RES with PA in maintaining health and well-being based on trials performed first in animals and later in humans. Human studies have been conducted on various populations, including active adults, sedentary individuals, patients with diseases, and elderly individuals. Some studies have confirmed the benefits of RES observed in animal experiments. However, in some cases, no substantial differences were found between RES supplementation and the control group. In conclusion, the benefits of RES on PA reported in the literature are still not fully evident, given the contrasting studies and the still limited number of trials, but both RES and PA are successful tools for the maintenance of health and wellbeing.
Collapse
Affiliation(s)
- Mario Ruggiero
- Department of Medical, Human Movement and Well-Being Sciences, University of Naples Parthenope, 80133 Naples, Italy; (M.R.); (M.L.M.); (R.M.)
| | - Maria Letizia Motti
- Department of Medical, Human Movement and Well-Being Sciences, University of Naples Parthenope, 80133 Naples, Italy; (M.R.); (M.L.M.); (R.M.)
| | - Rosaria Meccariello
- Department of Medical, Human Movement and Well-Being Sciences, University of Naples Parthenope, 80133 Naples, Italy; (M.R.); (M.L.M.); (R.M.)
| | - Filomena Mazzeo
- Department of Economics, Law, Cybersecurity and Sports Sciences, University of Naples Parthenope, 80035 Nola, Italy
| |
Collapse
|
2
|
Aguilar-Garcia IG, Alpirez J, Castañeda-Arellano R, Dueñas-Jiménez JM, Toro Castillo C, León-Moreno LC, Osuna-Carrasco LP, Dueñas-Jiménez SH. Resveratrol and Exercise Produce Recovered Ankle and Metatarsus Joint Movements after Penetrating Lesion in Hippocampus in Male Rats. Brain Sci 2024; 14:980. [PMID: 39451994 PMCID: PMC11506448 DOI: 10.3390/brainsci14100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction: This study investigates how traumatic injuries alter joint movements in the ankle and foot. We used a brain injury model in rats, focusing on the hippocampus between the CA1 and dentate gyrus. Materials and Methods: We assessed the dissimilarity factor (DF) and vertical displacement (VD) of the ankle and metatarsus joints before and after the hippocampal lesion. We analyzed joint movements in rats after the injury or in rats treated with resveratrol, exercise, or a combination of both. Results: Resveratrol facilitated the recovery of DF in both legs, showing improvements in the ankle and metatarsus joints on the third and seventh days post-injury. The hippocampal lesion affected VD in both legs, observed on the third or seventh day after the injury. Both exercise and resveratrol partially recovered VD in the ankle and metatarsus joints on these days. These effects may be linked to increased hippocampal neurogenesis and reduced neuroinflammation. Conclusions: The study highlights the benefits of resveratrol and exercise in motor recovery following brain injury, suggesting their potential to enhance the quality of life for patients with neurological disorders affecting motor function and locomotion. These findings also suggest that resveratrol could offer a promising or complementary alternative in managing chronic pain and inflammation associated with orthopedic conditions, thus improving overall patient management.
Collapse
Affiliation(s)
- Irene Guadalupe Aguilar-Garcia
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (I.G.A.-G.); (J.A.)
| | - Jonatan Alpirez
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (I.G.A.-G.); (J.A.)
| | - Rolando Castañeda-Arellano
- Laboratorio de Farmacología, Centro de Investigación Multidisciplinario en Salud, Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá 45425, Mexico;
| | - Judith Marcela Dueñas-Jiménez
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Carmen Toro Castillo
- Bioingenieria Traslacional, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico; (C.T.C.); (L.P.O.-C.)
| | - Lilia Carolina León-Moreno
- Unidad de Evaluación Preclinica, Biotecnología Médica y Farmacéutica, CIATEJ, Guadalajara 44270, Mexico;
| | - Laura Paulina Osuna-Carrasco
- Bioingenieria Traslacional, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico; (C.T.C.); (L.P.O.-C.)
| | - Sergio Horacio Dueñas-Jiménez
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (I.G.A.-G.); (J.A.)
| |
Collapse
|
3
|
Hwang SM, Kim TY, Kim A, Kim YG, Park JW, Lee JM, Kim JY, Suh JY. Resveratrol facilitates bone formation in high-glucose conditions. Front Physiol 2024; 15:1347756. [PMID: 38706943 PMCID: PMC11066205 DOI: 10.3389/fphys.2024.1347756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
Periodontitis is known to be affected by high-glucose conditions, which poses a challenge to periodontal tissue regeneration, particularly in bone formation. In this study, the potential effects of resveratrol (3,5,4'-trihydroxystilbene, RSV) in facilitating bone formation under high-glucose conditions after periodontitis has been investigated. We focused on the analysis of osteoblasts and periodontal ligament cells, which are essential for bone formation including cell proliferation and differentiation. And we aimed to investigate the impact of RSV on bone healing, employed diabetic mouse model induced by streptozotocin and confirmed through histological observation. High-glucose conditions adversely affected cell proliferation and ALP activity in both MC3T3-E1 and hPDLF in vitro, with more significant impact on MC3T3-E1 cells. RSV under high-glucose conditions had positive effects on both, showing early-stage effects for MC3T3-E1 cells and later-stage effects for hPDLF cells. RSV seemed to have a more pronounced rescuing role in MC3T3-E1 cells. Increased ALP activity was observed and the expression levels of significant genes, such as Col 1, TGF-β1, ALP, and OC, in osteogenic differentiation were exhibited stage-specific expression patterns. Upregulated Col 1 and TGF-β1 were detected in the early stage, and then ALP and OC expressions became more pronounced in the later stages. Similarly, stronger positive reactions against RUNX2 were detected in the RSV-treated group compared to the control. Furthermore, in in vivo experiment, RSV stimulates the growth and differentiation of osteoblasts, thereby promoting bone formation. High-glucose levels have the potential to impair cellular functions and the regenerative capacity to facilitate bone formation with MC3T3-E1 rather than hPDLF cells. Resveratrol appears to facilitate the inherent abilities of MC3T3-E1 cells compared with hPDLF cells, indicating its potential capacity to restore functionality during periodontal regeneration.
Collapse
Affiliation(s)
- Sung-Min Hwang
- Department of Periodontology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Tae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Anna Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Yong-Gun Kim
- Department of Periodontology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Jin-Woo Park
- Department of Periodontology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Mok Lee
- Department of Periodontology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Jo-Young Suh
- Department of Periodontology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
4
|
Wajima CS, Pitol-Palin L, de Souza Batista FR, Dos Santos PH, Matsushita DH, Okamoto R. Morphological and biomechanical characterization of long bones and peri-implant bone repair in type 2 diabetic rats treated with resveratrol. Sci Rep 2024; 14:2860. [PMID: 38310154 PMCID: PMC10838324 DOI: 10.1038/s41598-024-53260-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/30/2024] [Indexed: 02/05/2024] Open
Abstract
Type 2 diabetes interferes with bone remodeling mechanisms, requiring studies to reverse this damage, and resveratrol is a polyphenol with rich properties. This study aimed to characterize the long bone morphology and peri-implant biomechanics of normoglycemic and type 2 diabetic animals treated with resveratrol. Thirty-two male Wistar rats were used and divided into normoglycemic and diabetic with or without treatment. They had the installation of implants in the tibia and treatment with oral resveratrol within 45 days. Resveratrol was responsible for weight homeostasis and decreased glycemic levels in rats with type 2 diabetes. The three-point bending testing, resveratrol showed positive effects on the biomechanics of long bones, corroborating a more resistant bone in comparison to untreated diabetics. Micro-ct revealed how bone metabolism is affected by systemic disease, decreasing bone quality. The counter-torque of normoglycemic animals showed superior osseointegration to diabetes, with no differences in the administration of the polyphenol, showing the sovereignty of the deleterious effects of the disease when there is a tissue lesion and an inflammatory picture installed. Overall, resveratrol acted positively in the etiopathogenesis of type 2 diabetes and revealed positive effects on the strength of long bones.
Collapse
Affiliation(s)
- Carolina Sayuri Wajima
- Department of Basic Science, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Letícia Pitol-Palin
- Department of Diagnosis and Surgery, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Fábio Roberto de Souza Batista
- Department of Diagnosis and Surgery, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | | | - Doris Hissako Matsushita
- Department of Basic Science, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Roberta Okamoto
- Department of Basic Science, Araçatuba School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil.
| |
Collapse
|
5
|
Shibata S, Kon S. Functional Ingredients Associated with the Prevention and Suppression of Locomotive Syndrome: A Review. Biol Pharm Bull 2024; 47:1978-1991. [PMID: 39617444 DOI: 10.1248/bpb.b24-00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
In 2007, the Japanese Orthopaedic Association proposed the concept of locomotive syndrome, a comprehensive description of conditions involving the functional decline of the locomotor system. Locomotive syndrome includes bone-related diseases such as osteoporosis, joint cartilage and disc-related diseases such as osteoarthritis and lumbar spondylosis, and sarcopenia and locomotive syndrome-related diseases. If left untreated, these diseases are likely to reduce mobility, necessitating nursing care. To prevent the progression of locomotive syndrome, a daily exercise routine and well-balanced diet are important, in addition to recognizing one's own decline in mobility. Therefore, research on the effectiveness of functional ingredients in the prevention and suppression of locomotive syndrome progression is ongoing. In this review, we summarize the latest reports on the effectiveness of five functional ingredients, namely, epigallocatechin gallate, resveratrol, curcumin, ellagic acid, and carnosic acid, in the treatment of osteoarthritis, osteoporosis, and rheumatoid arthritis, which are considered representative diseases of the locomotive syndrome.
Collapse
Affiliation(s)
- Sachi Shibata
- Department of Nutritional Science, Faculty of Health and Welfare Science, Okayama Prefectural University
| | - Shigeyuki Kon
- Department of Molecular Immunology, Faculty of Pharmaceutical Sciences, Fukuyama University
| |
Collapse
|
6
|
Ahmad Hairi H, Jayusman PA, Shuid AN. Revisiting Resveratrol as an Osteoprotective Agent: Molecular Evidence from In Vivo and In Vitro Studies. Biomedicines 2023; 11:1453. [PMID: 37239124 PMCID: PMC10216404 DOI: 10.3390/biomedicines11051453] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Resveratrol (RSV) (3,5,4'-trihydroxystilbene) is a stilbene found in abundance in berry fruits, peanuts, and some medicinal plants. It has a diverse range of pharmacological activities, underlining the significance of illness prevention and health promotion. The purpose of this review was to delve deeper into RSV's bone-protective properties as well as its molecular mechanisms. Several in vivo studies have found the bone-protective effects of RSV in postmenopausal, senile, and disuse osteoporosis rat models. RSV has been shown to inhibit NF-κB and RANKL-mediated osteoclastogenesis, oxidative stress, and inflammation while increasing osteogenesis and boosting differentiation of mesenchymal stem cells to osteoblasts. Wnt/β-catenin, MAPKs/JNK/ERK, PI3K/AKT, FoxOs, microRNAs, and BMP2 are among the possible kinases and proteins involved in the underlying mechanisms. RSV has also been shown to be the most potent SIRT1 activator to cause stimulatory effects on osteoblasts and inhibitory effects on osteoclasts. RSV may, thus, represent a novel therapeutic strategy for increasing bone growth and reducing bone loss in the elderly and postmenopausal population.
Collapse
Affiliation(s)
- Haryati Ahmad Hairi
- Department of Biochemistry, Faculty of Medicine, Manipal University College Malaysia, Jalan Batu Hampar, Bukit Baru, Melaka 75150, Malaysia;
| | - Putri Ayu Jayusman
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Ahmad Nazrun Shuid
- Department of Pharmacology, Faculty of Medicine, Universiti Teknologi Mara (UITM), Jalan Hospital, Sungai Buloh 47000, Malaysia
| |
Collapse
|
7
|
Ozturk S, Cuneyit I, Altuntas F, Karagur ER, Donmez AC, Ocak M, Unal M, Sarikanat M, Donmez BO. Resveratrol prevents ovariectomy-induced bone quality deterioration by improving the microarchitectural and biophysicochemical properties of bone. J Bone Miner Metab 2023:10.1007/s00774-023-01416-z. [PMID: 37031330 DOI: 10.1007/s00774-023-01416-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/01/2023] [Indexed: 04/10/2023]
Abstract
INTRODUCTION Osteoporosis is a major health problem that is very common worldwide and is characterized by both low bone density and deterioration in bone quality. New treatment options without side effects have become an active area of research in recent years. This study was designed to investigate the preventive effects of resveratrol on bone quality deterioration caused by ovariectomy. MATERIALS AND METHODS Sixty rats were randomly divided into five groups (12 animals per group): Control, Sham-operated (SHAM), ovariectomized (OVX), OVX + Resveratrol-40 mg/kg/day (OVX + Res40), OVX + Resveratrol-80 mg/kg/day (OVX + Res80). Resveratrol was administered by oral gavage (40 and 80 mg/kg/day) for ten weeks. Micro-CT measurements, biomechanical testing, Raman spectroscopy analysis, and RT-PCR analysis were performed. ALP, OCN, TAS, and TOS levels were also measured from blood serum. RESULTS Bone strength, bone volume/total volume, trabecular volume, and trabecular thickness were higher in the OVX + RES-80 group than in the OVX group. Resveratrol increased osteogenic differentiation, as the expression of osteogenic markers ALP, Col1A1, Runx2, OPG, OCN increased in both OVX + RES-80 and OVX + RES-40 groups compared to the OVX group. 80 mg/kg/day resveratrol administration decreased the levels of ALP, OCN and TOS in ovariectomized rats. Raman spectroscopy findings showed a preventive effect of resveratrol administration against ovariectomy-induced deterioration in biophysiochemical properties of bone tissue. CONCLUSION This study revealed that administration of different doses of 80 mg/kg/day and 40 mg/kg/day of resveratrol had protective effects on bone quality deterioration caused by ovariectomy.
Collapse
Affiliation(s)
- Sevval Ozturk
- School of Medicine, Department of Anatomy, Pamukkale University, 20070, Denizli, Turkey
| | - Ibrahim Cuneyit
- School of Medicine, Department of Anatomy, Pamukkale University, 20070, Denizli, Turkey
| | - Fatih Altuntas
- School of Medicine, Department of Physiology, Pamukkale University, 20070, Denizli, Turkey
| | - Ege Riza Karagur
- School of Medicine, Department of Medical Genetics, Pamukkale University, 20070, Denizli, Turkey
| | - Aysegul Cort Donmez
- School of Medicine, Department of Medical Biochemistry, Pamukkale University, 20070, Denizli, Turkey
| | - Mert Ocak
- School of Dentistry, Department of Anatomy, Ankara University, 06650, Ankara, Turkey
| | - Mustafa Unal
- School of Medicine, Department of Biophysics, Karamanoglu Mehmetbey University, 70200, Karaman, Turkey
- Faculty of Engineering, Department of Bioengineering, Karamanoglu Mehmetbey University, 70200, Karaman, Turkey
| | - Mehmet Sarikanat
- Faculty of Engineering, Department of Mechanical Engineering, Ege University, 35040, Izmir, Turkey
| | - Baris Ozgur Donmez
- School of Medicine, Department of Anatomy, Pamukkale University, 20070, Denizli, Turkey.
| |
Collapse
|
8
|
Ozawa J, Kaneguchi A, Ezumi S, Maeno T, Iwazawa J, Minanimoto K, Ikeda A. Effects of hindlimb suspension on development of proximal and distal femur morphological abnormalities in growing rats. J Orthop Res 2023; 41:364-377. [PMID: 35488739 DOI: 10.1002/jor.25352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 03/07/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023]
Abstract
Although morphological abnormalities of the femur are known predisposing factors for numerous musculoskeletal disorders, the etiology of these abnormalities is poorly understood. This study aimed to investigate whether femoral morphogenesis is affected by hindlimb suspension (HS) in growing rats. We used 41 four-week-old female rats in this study. In the HS groups, rats were suspended from their tails for 2, 4, and 8 weeks. Age-matched animals were used as controls. We examined morphological indices of the femur using three-dimensional reconstructed images from X-ray computed tomography. The femoral neck anteversion angle (AVA) was higher with growth in the experimental groups and did not differ in control groups. The AVAs in the HS groups were larger than controls at any time point. In the control groups, the trochlear angle (TA) was higher, rotating inward with growth, but did not differ in the HS groups. The TAs in the HS groups were smaller and rotated more outward compared with the control groups at any time point. The height ratios of the medial and lateral condyles (MC/LC), an asymmetry index, were larger in the HS groups compared to controls at any time point. There were strong relationships between proximal (AVA) and distal morphologies, such as the TA (Spearman's coefficient [rs ] = -0.80, p < 0.001) and MC/LC (rs = 0.79, p < 0.001). Our data suggest that sufficient physical activity in early life may protect against morphological femur abnormalities associated with hip and knee joint diseases.
Collapse
Affiliation(s)
- Junya Ozawa
- Major in Medical Engineering and Technology, Graduate School of Medical Technology and Health Welfare Sciences, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| | - Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| | - Shun Ezumi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| | - Takuma Maeno
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| | - Jukiya Iwazawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| | - Kengo Minanimoto
- Major in Medical Engineering and Technology, Graduate School of Medical Technology and Health Welfare Sciences, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| | - Airi Ikeda
- Major in Medical Engineering and Technology, Graduate School of Medical Technology and Health Welfare Sciences, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan.,Department of Judo Therapy, Takarazuka University of Medical and Health Care, Takarazuka, Hyogo, Japan
| |
Collapse
|
9
|
Effects of Extracellular Osteoanabolic Agents on the Endogenous Response of Osteoblastic Cells. Cells 2021; 10:cells10092383. [PMID: 34572032 PMCID: PMC8471159 DOI: 10.3390/cells10092383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
The complex multidimensional skeletal organization can adapt its structure in accordance with external contexts, demonstrating excellent self-renewal capacity. Thus, optimal extracellular environmental properties are critical for bone regeneration and inextricably linked to the mechanical and biological states of bone. It is interesting to note that the microstructure of bone depends not only on genetic determinants (which control the bone remodeling loop through autocrine and paracrine signals) but also, more importantly, on the continuous response of cells to external mechanical cues. In particular, bone cells sense mechanical signals such as shear, tensile, loading and vibration, and once activated, they react by regulating bone anabolism. Although several specific surrounding conditions needed for osteoblast cells to specifically augment bone formation have been empirically discovered, most of the underlying biomechanical cellular processes underneath remain largely unknown. Nevertheless, exogenous stimuli of endogenous osteogenesis can be applied to promote the mineral apposition rate, bone formation, bone mass and bone strength, as well as expediting fracture repair and bone regeneration. The following review summarizes the latest studies related to the proliferation and differentiation of osteoblastic cells, enhanced by mechanical forces or supplemental signaling factors (such as trace metals, nutraceuticals, vitamins and exosomes), providing a thorough overview of the exogenous osteogenic agents which can be exploited to modulate and influence the mechanically induced anabolism of bone. Furthermore, this review aims to discuss the emerging role of extracellular stimuli in skeletal metabolism as well as their potential roles and provide new perspectives for the treatment of bone disorders.
Collapse
|
10
|
Approaching Gravity as a Continuum Using the Rat Partial Weight-Bearing Model. Life (Basel) 2020; 10:life10100235. [PMID: 33049988 PMCID: PMC7599661 DOI: 10.3390/life10100235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022] Open
Abstract
For decades, scientists have relied on animals to understand the risks and consequences of space travel. Animals remain key to study the physiological alterations during spaceflight and provide crucial information about microgravity-induced changes. While spaceflights may appear common, they remain costly and, coupled with limited cargo areas, do not allow for large sample sizes onboard. In 1979, a model of hindlimb unloading (HU) was successfully created to mimic microgravity and has been used extensively since its creation. Four decades later, the first model of mouse partial weight-bearing (PWB) was developed, aiming at mimicking partial gravity environments. Return to the Lunar surface for astronauts is now imminent and prompted the need for an animal model closer to human physiology; hence in 2018, our laboratory created a new model of PWB for adult rats. In this review, we will focus on the rat model of PWB, from its conception to the current state of knowledge. Additionally, we will address how this new model, used in conjunction with HU, will help implement new paradigms allowing scientists to anticipate the physiological alterations and needs of astronauts. Finally, we will discuss the outstanding questions and future perspectives in space research and propose potential solutions using the rat PWB model.
Collapse
|
11
|
Metzger CE, Anand Narayanan S, Phan PH, Bloomfield SA. Hindlimb unloading causes regional loading-dependent changes in osteocyte inflammatory cytokines that are modulated by exogenous irisin treatment. NPJ Microgravity 2020; 6:28. [PMID: 33083525 PMCID: PMC7542171 DOI: 10.1038/s41526-020-00118-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
Disuse-induced bone loss is characterized by alterations in bone turnover. Accruing evidence suggests that osteocytes respond to inflammation and express and/or release pro-inflammatory cytokines; however, it remains largely unknown whether osteocyte inflammatory proteins are influenced by disuse. The goals of this project were (1) to assess osteocyte pro-inflammatory cytokines in the unloaded hindlimb and loaded forelimb of hindlimb unloaded rats, (2) to examine the impact of exogenous irisin during hindlimb unloading (HU). Male Sprague Dawley rats (8 weeks old, n = 6/group) were divided into ambulatory control, HU, and HU with irisin (HU + Ir, 3×/week). Lower cancellous bone volume, higher osteoclast surfaces (OcS), and lower bone formation rate (BFR) were present at the hindlimb and 4th lumbar vertebrae in the HU group while the proximal humerus of HU rats exhibited no differences in bone volume, but higher BFR and lower OcS vs. Con. Osteocyte tumor necrosis factor-α (TNF-α), interleukin-17 (IL-17), RANKL, and sclerostin were elevated in the cancellous bone of the distal femur of HU rats vs. Con, but lower at the proximal humerus in HU rats vs. Con. Exogenous irisin treatment increased BFR, and lowered OcS and osteocyte TNF-α, IL-17, RANKL, and sclerostin in the unloaded hindlimb of HU + Ir rats while having minimal changes in the humerus. In conclusion, there are site-specific and loading-specific alterations in osteocyte pro-inflammatory cytokines and bone turnover with the HU model of disuse bone loss, indicating a potential mechanosensory impact of osteocyte TNF-α and IL-17. Additionally, exogenous irisin significantly reduced the pro-inflammatory status of the unloaded hindlimb.
Collapse
Affiliation(s)
- Corinne E Metzger
- Department of Health and Kinesiology, Texas A&M University, College Station, TX USA
| | - S Anand Narayanan
- Department of Medical Physiology, Texas A&M Health Science Center, Temple, TX USA
| | - Peter H Phan
- Department of Health and Kinesiology, Texas A&M University, College Station, TX USA
| | - Susan A Bloomfield
- Department of Health and Kinesiology, Texas A&M University, College Station, TX USA
| |
Collapse
|
12
|
Tousen Y, Ichimaru R, Kondo T, Inada M, Miyaura C, Ishimi Y. The Combination of Soy Isoflavones and Resveratrol Preserve Bone Mineral Density in Hindlimb-Unloaded Mice. Nutrients 2020; 12:E2043. [PMID: 32660008 PMCID: PMC7400925 DOI: 10.3390/nu12072043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 01/13/2023] Open
Abstract
It is well known that physical inactivity during space flight or prolonged bed rest causes rapid bone loss. Soy isoflavones (ISOs) and resveratrol (RES) have been reported to be useful to maintain a positive balance for bone turnover. Therefore, we examined the combined effects of ISO and RES on bone loss that was induced by hindlimb-unloading in mice. Female eight-week-old ddY mice were divided into the following six groups (n = 6-8 each): normally housed mice, loading mice, hindlimb-unloading (UL) mice fed a control diet, UL mice fed a 0.16% ISO conjugates, UL mice fed a 0.15% RES diet, and UL mice fed a 0.16% ISO and 0.15% RES diet. After three weeks, femoral bone mineral density was markedly decreased in unloading mice. The combination of ISO and RES prevented bone loss and especially maintained the trabecular bone mineral density more effectively compared with cortical bones. ISO and/or RES inhibited the increase in the RANKL/OPG expression ratio in bone marrow cells in UL mice. These results suggest that the combination of ISO and RES had a preventive effect against bone loss induced by hindlimb-unloading in mice. These osteoprotective effects of ISO and RES may result from the inhibition of bone resorption.
Collapse
Affiliation(s)
- Yuko Tousen
- Department of Food Function and Labeling, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan; (Y.T.); (R.I.); (T.K.)
| | - Ryota Ichimaru
- Department of Food Function and Labeling, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan; (Y.T.); (R.I.); (T.K.)
- Cooperative Major in Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan.; (M.I.); (C.M.)
| | - Takashi Kondo
- Department of Food Function and Labeling, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan; (Y.T.); (R.I.); (T.K.)
| | - Masaki Inada
- Cooperative Major in Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan.; (M.I.); (C.M.)
| | - Chisato Miyaura
- Cooperative Major in Advanced Health Science, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588, Japan.; (M.I.); (C.M.)
| | - Yoshiko Ishimi
- Department of Food Function and Labeling, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan; (Y.T.); (R.I.); (T.K.)
- Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| |
Collapse
|
13
|
Ameen O, Yassien RI, Naguib YM. Activation of FoxO1/SIRT1/RANKL/OPG pathway may underlie the therapeutic effects of resveratrol on aging-dependent male osteoporosis. BMC Musculoskelet Disord 2020; 21:375. [PMID: 32532246 PMCID: PMC7293127 DOI: 10.1186/s12891-020-03389-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022] Open
Abstract
Background Age-dependent male osteoporosis remains a poorly studied medical problem despite its significance. It is estimated that at least 1 of 5 men will suffer from osteoporotic consequences. Given that multiple mechanisms are involved in the process of senescence, much attention has been given to compounds with polymodal actions. To challenge such a health problem, we tested here the therapeutic potential of resveratrol in male osteoporosis. We also studied the possible molecular mechanisms that may underlie resveratrol effects. Methods Thirty male Wistar albino rats were used in the present study. Rats were divided (10/group) into: control (3–4 months old weighing 150–200 g receiving vehicle), aged (18–20 months old, weighing 350–400 g and receiving vehicle), and resveratrol treated aged (18–20 months old, weighing 350–400 g and receiving resveratrol 20 mg/kg/day for 6 weeks) groups. Assessment of serum calcium, phosphate, bone specific alkaline phosphatase, inflammatory cytokines, oxidative stress markers, and rat femur gene expression of FoxO1, SIRT1, RANKL and OPG proteins was carried out. Histopathological assessment of different levels of rat femur was also performed. Results Age-dependent osteoporosis resulted in significant increase in serum levels of phosphate, bone specific alkaline phosphatase, hsCRP, IL-1β, IL-6, TNF-α, MDA, NO, and RANKL gene expression. However, there was significant decrease in serum level of GSH, and gene expression of FoxO1, SIRT1 and OPG. Osteoporotic changes were seen in femur epiphysis, metaphysis and diaphysis. Resveratrol restored significantly age-dependent osteoporotic changes. Conclusion We concluded that resveratrol can play an important role in the prevention of male osteoporosis. Resveratrol can counter the molecular changes in male osteoporosis via anti-inflammatory, anti-oxidant and gene modifying effects.
Collapse
Affiliation(s)
- Omnia Ameen
- Clinical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Rania I Yassien
- Histology and Cell Biology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Yahya M Naguib
- Clinical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt. .,Physiology Department, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain.
| |
Collapse
|
14
|
Yuan J, Wang X, Ma D, Gao H, Zheng D, Zhang J. Resveratrol rescues TNF‑α‑induced inhibition of osteogenesis in human periodontal ligament stem cells via the ERK1/2 pathway. Mol Med Rep 2020; 21:2085-2094. [PMID: 32186753 PMCID: PMC7115248 DOI: 10.3892/mmr.2020.11021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 01/08/2020] [Indexed: 01/09/2023] Open
Abstract
Periodontitis is a common inflammatory disorder affecting the tissues surrounding the teeth, which can lead to the destruction of periodontal tissue and tooth loss. Resveratrol, a natural phytoalexin, exerts multiple biological effects. For example, its anti-inflammatory activity has been widely studied for the treatment of inflammatory bowel disease for a number of years. However, its effect on bone repair and new bone formation in an inflammatory microenvironment is not well understood. Accordingly, the effect of resveratrol on inflammation-affected human periodontal ligament stem cells (hPDLSCs) requires further investigation. In the present study, the effect of tumor necrosis factor-α (TNF-α), resveratrol, or the combination of both on the osteogenic differentiation of hPDLSCs, as well as the underlying mechanisms involved, were investigated. Cell Counting Kit-8 assay, alkaline phosphatase staining, Alizarin red staining, Oil Red O staining, reverse transcription-quantitative PCR and western blotting were used in the present study. It was demonstrated that resveratrol enhanced hPDLSC osteogenesis and reversed the inhibitory effects of TNF-α on this process. Further mechanistic studies indicated that resveratrol exerted anti-inflammatory activity by activating the ERK1/2 pathway, decreasing the secretion of interleukin (IL)-6 and IL-8 induced by TNF-α, and enhancing hPDLSCs osteogenesis. The present study suggested that resveratrol may be a novel and promising therapeutic choice for periodontitis.
Collapse
Affiliation(s)
- Jiakan Yuan
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, P.R. China
| | - Xuxia Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, P.R. China
| | - Dan Ma
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, P.R. China
| | - Hui Gao
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, P.R. China
| | - Dehua Zheng
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, P.R. China
| | - Jun Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
15
|
Liu XC, Wang XX, Zhang LN, Yang F, Nie FJ, Zhang J. Inhibitory effects of resveratrol on orthodontic tooth movement and associated root resorption in rats. Arch Oral Biol 2019; 111:104642. [PMID: 31887570 DOI: 10.1016/j.archoralbio.2019.104642] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/25/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To investigate the effect of resveratrol (RSV) on orthodontic tooth movement (OTM) and orthodontic induced root resorption (OIRR) in rats. METHODS Thirty-six male Wistar rats used in this study were randomly divided into three groups of 12 animals each. All test subjects underwent a 50 g orthodontic force each, generated from a nickel-titanium closed-coil spring. The control group were fed carboxymethylcellulose (CMC) while rats in other two groups were fed 5 mg/kg/d RSV or 10 mg/kg/d RSV (dissolved in CMC). After 14 days of OTM, all rats were sacrificed, after which each group was randomly divided into two subgroups (6 test subjects in each subgroup). One subgroup was used to measure the amount of OTM and assessed by hematoxylin and eosin (HE) staining, tartrate-resistant acid phosphatase (TRAP) staining, and immunohistochemistry staining of Receptor Activator of Nuclear Factor-κ B Ligand (RANKL), Osteoprotegerin (OPG), Runt-related transcription factor 2 (RUNX2), as well as Osteocalcin (OCN). The second subgroup was used to analyze OIRR via scanning electron microscopy. RESULTS Compared with the control group, the RSV groups showed a significant decrease in the distance of OTM and the OIRR ratio (p<0.05). The number of TRAP positive osteoclasts and the expression of RANKL in periodontal tissue of the RSV groups were significantly inhibited (p<0.01) while the expression of OPG, RUNX2, and OCN were remarkably promoted (p<0.05). The effect of 10 mg/kg/d RSV group was more obvious than that of 5 mg/kg/d RSV group (p<0.05). CONCLUSIONS RSV could reduce the extent of OTM and root resorption areas.
Collapse
Affiliation(s)
- Xiao-Can Liu
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xu-Xia Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Li-Na Zhang
- Department of Orthodontics, Faculty of Stomatology, Liaocheng People's Hospital, Liaocheng, China
| | - Fan Yang
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Fu-Jiao Nie
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.
| |
Collapse
|
16
|
Min KK, Neupane S, Adhikari N, Sohn WJ, An SY, Kim JY, An CH, Lee Y, Kim YG, Park JW, Lee JM, Kim JY, Suh JY. Effects of resveratrol on bone-healing capacity in the mouse tooth extraction socket. J Periodontal Res 2019; 55:247-257. [PMID: 31797379 DOI: 10.1111/jre.12710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/23/2019] [Accepted: 10/27/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE After tooth extraction, the extraction socket undergoes several steps of soft and hard tissue healing. The healing process of the extraction socket is modulated by a range of signaling factors and biochemical agents. It has been reported that resveratrol, a polyphenolic compound, exhibits various biological effects, including anti-inflammatory, anti-carcinogenic, antioxidant, and anti-aging effects, and protects cardiovascular and bone tissues. In this study, we examined the cellular effects of resveratrol on human periodontal ligament (hPDL) cells and osteoblast-like (MC3T3-E1) cells and evaluated the bone-healing capacity of tooth extraction sockets in mice. MATERIAL AND METHODS Resveratrol was applied to hPDL and MC3T3-E1 cells to detect cell proliferation and alkaline phosphatase (ALP) activity, and qPCR was employed to understand the gene expression level in vitro. For in vivo experiment, six-week-old C57BL/6 male mice were randomly divided into control (n = 15) and experimental (n = 15) groups and maxillary first molars were extracted by surgery. Experimental groups received 50-µM resveratrol on extraction sockets and analyzed the degree of new bone formation. RESULTS Treatment of hPDL and MC3T3-E1 cells with resveratrol increased the cell proliferation and ALP activity and enhanced the expression of ALP, BMP-2, BMP-4, and OC genes. Resveratrol enhanced new bone formation in the lingual extraction socket in mice. CONCLUSION These results suggest that resveratrol increases the cellular physiology of PDL and osteoblast including their proliferation and differentiation and may play an important role in bone-healing capacity after tooth extraction.
Collapse
Affiliation(s)
- Kyung-Kon Min
- Department of Periodontology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Sanjiv Neupane
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Nirpesh Adhikari
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Wern-Joo Sohn
- Pre-Major of Cosmetics and Pharmaceutics, Daegu Haany University, Gyeongsan, Korea
| | - Seo-Young An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Ji-Youn Kim
- Department of Dental Hygiene, Gachon University, Incheon, Korea
| | - Chang-Hyeon An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Yong-Gun Kim
- Department of Periodontology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Jin-Woo Park
- Department of Periodontology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Jae-Mok Lee
- Department of Periodontology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | - Jo-Young Suh
- Department of Periodontology, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| |
Collapse
|
17
|
Laçin N, Deveci E. Short-term use of resveratrol in alloplastic graft material applied with calvarial bone defects in rats. Acta Cir Bras 2019; 34:e201900704. [PMID: 31531539 PMCID: PMC6746564 DOI: 10.1590/s0102-865020190070000004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/23/2019] [Indexed: 11/22/2022] Open
Abstract
PURPOSE The effects of resveratrol administration on calvarial bone defects with alloplastic graft material was investigated for osteoinductive reaction and bone development in rats. METHODS Healthy male rats were randomly divided into 3 groups consisting of 10 rats. Groups were as follows: control (defect) group, defect + graft group, and defect + graft + resveratrol group. A calvarial bone defect was created in all groups, alloplastic bone grafts were applied to the defect in the 2nd and 3rd group, resveratrol (5 mg/kg/day) was added to the drinking water of the animals following graft application for 28 days in the 3rd group. RESULTS Increase in osteoclasts and necrotic changes were observed histopathologically in the control group. In the 2nd group, reduction of inflammation, congestion of blood vessels, increased osteblastic activity, osteoinductive effect, progression of osteocyte development and increased collagen fibers in connective tissue were observed. In the 3rd group, osteoblasts seemed to secrete bone matrix and accelerate osteoinductive effect with increased osteopregenitor activity and positive osteopontin and osteonectin expressions. CONCLUSION Resveratrol treatment was thought to be an alternative and supportive drug for implant application by inducing new bone formation in the calvaral defect region as a result of short-term treatment.
Collapse
Affiliation(s)
- Nihat Laçin
- PhD, Assistant Professor, Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Katip Çelebi, İzmir, Turkey. Technical procedures, manuscript preparation and writing, final approval
| | - Engin Deveci
- PhD, Professor, Department of Histology and Embryology, Faculty of Medicine, Dicle University, Diyarbakir, Turkey. Technical procedures, histopathological examinations, manuscript preparation and writing, final approval
| |
Collapse
|
18
|
Mortreux M, Riveros D, Bouxsein ML, Rutkove SB. A Moderate Daily Dose of Resveratrol Mitigates Muscle Deconditioning in a Martian Gravity Analog. Front Physiol 2019; 10:899. [PMID: 31379604 PMCID: PMC6656861 DOI: 10.3389/fphys.2019.00899] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/27/2019] [Indexed: 11/22/2022] Open
Abstract
While there is a relatively good understanding of the effects of microgravity on human physiology based on five decades of experience, the physiological consequences of partial gravity remain far less well understood. Until recently, no model had been able to replicate partial gravity such as that experienced on Mars (0.38 g), which would be critical to help sustain long-term missions and ensure a safe return to Earth. Recent development of two partial weight bearing (PWB) models, one in mice and one in rats, now allows for quadrupedal partial unloading that mimics Martian gravity. Resveratrol (RSV), a polyphenol most commonly found in grapes and blueberries, has been extensively investigated for its health benefits, including its anti-inflammatory, anti-oxidative, and anti-diabetic effects. In the context of mechanical unloading, RSV has also been shown to preserve bone and muscle mass. However, there is a lack of research regarding its effect on the musculoskeletal system in partial gravity. We hypothesized that a moderate daily dose of RSV (150 mg/kg/day) would help mitigate muscle deconditioning in a Mars gravity analog. Indeed, our results demonstrate that RSV treatment during partial unloading significantly preserves muscle function (e.g., the average change in grip force after 14 days of PWB40 was of −6.18, and +10.92% when RSV was administered) and mitigates muscle atrophy (e.g., RSV supplementation led to an increase of 21.6% in soleus weight for the unloaded animals). This work suggests the potential of a nutraceutical approach to reduce musculoskeletal deconditioning on a long-term mission to Mars.
Collapse
Affiliation(s)
- Marie Mortreux
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Daniela Riveros
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Mary L Bouxsein
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
19
|
Murgia D, Mauceri R, Campisi G, De Caro V. Advance on Resveratrol Application in Bone Regeneration: Progress and Perspectives for Use in Oral and Maxillofacial Surgery. Biomolecules 2019; 9:94. [PMID: 30857241 PMCID: PMC6468380 DOI: 10.3390/biom9030094] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 12/22/2022] Open
Abstract
The natural polyphenol Resveratrol (RSV) claims numerous positive effects on health due to the well documented biological effects demonstrating its potential as a disease-preventing agent and as adjuvant for treatment of a wide variety of chronic diseases. Since several studies, both in vitro and in vivo, have highlighted the protective bone aptitude of RSV both as promoter of osteoblasts' proliferation and antagonist of osteoclasts' differentiation, they could be interesting in view of applications in the field of dentistry and maxillofacial surgery. This review has brought together experimental findings on the use of RSV in the regeneration of bone tissue comprising also its application associated with scaffolds and non-transfusional hemocomponents.
Collapse
Affiliation(s)
- Denise Murgia
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy.
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Rodolfo Mauceri
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Giuseppina Campisi
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Viviana De Caro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy.
| |
Collapse
|
20
|
Bo S, Gambino R, Ponzo V, Cioffi I, Goitre I, Evangelista A, Ciccone G, Cassader M, Procopio M. Effects of resveratrol on bone health in type 2 diabetic patients. A double-blind randomized-controlled trial. Nutr Diabetes 2018; 8:51. [PMID: 30237505 PMCID: PMC6147949 DOI: 10.1038/s41387-018-0059-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/26/2018] [Accepted: 08/22/2018] [Indexed: 12/19/2022] Open
Abstract
Objectives Patients with type 2 diabetes (T2DM) are at increased fracture risk. Resveratrol has shown beneficial effects on bone health in few studies. The aim of this trial was to investigate the effects of resveratrol on bone mineral density (BMD) and on calcium metabolism biomarkers in T2DM patients. Methods In this double-blind randomized placebo-controlled trial 192 T2DM outpatients were randomized to receive resveratrol 500 mg/day (Resv500 arm), resveratrol 40 mg/day (Resv40 arm) or placebo for 6 months. BMD, bone mineral content (BMC), serum calcium, phosphorus, alkaline phosphatase, and 25-hydroxy vitamin D were measured at baseline and after 6 months. Results At follow-up, calcium concentrations increased in all patients, while within-group variations in alkaline phosphatase were higher in both resveratrol arms, and 25-hydroxy vitamin D increased in the Resv500 arm only, without between-group differences. Whole-body BMD significantly decreased in the placebo group, while whole-body BMC decreased in both the placebo and Resv40 arms. No significant changes in BMD and BMC values occurred in the Resv500 arm. The adjusted mean differences of change from baseline were significantly different in the Resv500 arm vs placebo for whole-body BMD (0.01 vs −0.03 g/cm2, p = 0.001), whole-body BMC (4.04 vs −58.8 g, p < 0.001), whole-body T-score (0.15 vs −0.26), and serum phosphorus (0.07 vs −0.01 µmol/L, p = 0.002). In subgroup analyses, in Resv500 treated-patients BMD values increased to higher levels in those with lower calcium and 25-hydroxy vitamin D values, and in alcohol drinkers. Conclusions Supplementation with 500 mg resveratrol prevented bone density loss in patients with T2DM, in particular, in those with unfavorable conditions at baseline.
Collapse
Affiliation(s)
- Simona Bo
- Department of Medical Sciences, University of Turin, Turin, Italy.
| | - Roberto Gambino
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Valentina Ponzo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Iolanda Cioffi
- Department of Clinical Medicine and Surgery, Federico II University Hospital, Naples, Italy
| | - Ilaria Goitre
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Andrea Evangelista
- Unit of Clinical Epidemiology, CPO, "Città della Salute e della Scienza" Hospital of Turin, Turin, Italy
| | - Giovannino Ciccone
- Unit of Clinical Epidemiology, CPO, "Città della Salute e della Scienza" Hospital of Turin, Turin, Italy
| | | | - Massimo Procopio
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
21
|
Ozcan-Kucuk A, Alan H, Gul M, Yolcu U. Evaluating the Effect of Resveratrol on the Healing of Extraction Sockets in Cyclosporine A-Treated Rats. J Oral Maxillofac Surg 2018; 76:1404-1413. [PMID: 29605535 DOI: 10.1016/j.joms.2018.02.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/02/2018] [Accepted: 02/27/2018] [Indexed: 12/15/2022]
Abstract
PURPOSE The objective of this study was to investigate the effects of resveratrol on alveolar socket healing after tooth extraction in normal and cyclosporin A (CsA)-treated rats. MATERIALS AND METHODS Seventy-two female Sprague-Dawley rats were separated into 4 groups of 18. Group 1 was injected with a placebo solution intraperitoneally. Group 2 was injected with resveratrol (10 μmol/kg) intraperitoneally. Groups 3 and 4 were injected with CsA (10 mg/kg) subcutaneously for 8 days once daily before tooth extraction. Next, the teeth were extracted and CsA injection continued until the animals were sacrificed. Eight days after commencing the CsA injections, group 4 was injected with resveratrol while continuing with CsA injections. Nine rats from each group were sacrificed on days 14 and 28, and sections were examined to assess the degree of inflammation, formation of connective tissue, and new bone formation. Immunohistochemical analysis was used to evaluate the alveolar socket healing process using osteocalcin and osteopontin markers. A P value less than .05 was considered significant. RESULTS There was more new bone formation in group 2 than in the other 3 groups on day 14 after tooth extraction (P < .05), and there was more new bone formation in group 2 than in groups 3 and 4 on day 28 after extraction (P < .05). Based on the immunohistochemical assessment, the amount of osteocalcin and osteopontin labeling was greater in group 2 compared with the other 3 groups on day 14 (P < .05); however, on day 28 after extraction, it was greater in group 4 compared with group 3 (P < .05). CONCLUSIONS Resveratrol improves alveolar socket healing in normal and CsA-treated rats. Resveratrol also increases levels of osteocalcin and osteopontin in normal and CsA-treated rats. These results suggest that this natural compound is useful for alveolar socket healing after tooth extraction.
Collapse
Affiliation(s)
- Ayse Ozcan-Kucuk
- Assistant Professor, Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Mersin University, Mersin, Turkey.
| | - Hilal Alan
- Associate Professor, Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Inonu University, Malatya, Turkey
| | - Mehmet Gul
- Professor, Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Umit Yolcu
- Associate Professor, Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Inonu University, Malatya, Turkey
| |
Collapse
|
22
|
Matsumoto Y, Tousen Y, Ishimi Y. β-Carotene prevents bone loss in hind limb unloading mice. J Clin Biochem Nutr 2018; 63:42-49. [PMID: 30087543 PMCID: PMC6064820 DOI: 10.3164/jcbn.17-86] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/09/2017] [Indexed: 11/29/2022] Open
Abstract
β-Carotene has been reported to be useful to maintain a positive balance of bone turnover. However, the effects of β-carotene on bone loss remain to be elucidated in mice with hind limb unloading. Therefore, we investigated whether β-carotene prevented bone loss induced by skeletal hind limb unloading in mice. Female 8-week-old ddY mice were divided into six groups (n = 6–8 each) and subjected to: (1) normal housing, (2) sham unloading fed a control diet, (3) hind limb unloading fed a control diet, (4) hind limb unloading fed a 0.025% β-carotene-containing diet, (5) hind limb unloading fed a 0.05% β-carotene-containing diet, and (6) hind limb unloading fed a 0.25% β-carotene-containing diet. After 3 weeks, bone mineral density of the tibia was markedly reduced by unloading, which was prevented by 0.025% β-carotene. Histological analysis revealed a hind limb unloading-induced decrease in the calcified bone of the femur, which was slightly prevented by 0.025% β-carotene. The 0.025% β-carotene-containing diet increased the gene expression of osteoprotegerin in the bone marrow cells in unloading mice. These results suggest that a β-carotene-containing diet may preserve bone health in subjects with disabilities as well as in astronauts.
Collapse
Affiliation(s)
- Yu Matsumoto
- Department of Food Function and Labeling, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan.,Department of Applied Biology and Chemistry, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Yuko Tousen
- Department of Food Function and Labeling, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan
| | - Yoshiko Ishimi
- Department of Food Function and Labeling, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan
| |
Collapse
|
23
|
Ma J, Wang Z, Zhao J, Miao W, Ye T, Chen A. Resveratrol Attenuates Lipopolysaccharides (LPS)-Induced Inhibition of Osteoblast Differentiation in MC3T3-E1 Cells. Med Sci Monit 2018; 24:2045-2052. [PMID: 29624568 PMCID: PMC5903312 DOI: 10.12659/msm.905703] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background LPS-inhibited osteoblastic differentiation plays an important role in the pathogenesis of osteomyelitis. Thus, searching for drugs that affect LPS-mediated osteoblastic differentiation may be crucial in developing therapies for osteomyelitis. The purpose of this study was to investigate the role and mechanisms of resveratrol, a natural polyphenol present in red wine, on LPS-inhibited osteoblastic differentiation. Material/Methods Cell viability was measured by MMT assay. Mitochondrial ATP levels, membrane potential, and superoxide production were measured to evaluate the effects of LPS and resveratrol on mitochondrial functions in osteoblast-like MC3T3-E1 cells. Osteoblast-related genes, including ALP, OCN, OPN, and RUNX2, were measured by ELISA analysis and RT-PCR in differentiated osteoblast cells treated with LPS and resveratrol. Cellular Sirt1 and PCG-1α levels were measured by Western blot to probe the impact of resveratrol treatment in LPS-stimulated MC3T3-E1 osteoblasts. Results The results showed that LPS caused significant mitochondrial dysfunctions of MC3T3-E1 cells in a dose-dependent manner, which were attenuated by resveratrol. Furthermore, LPS markedly decreased the expression of ALP, OCN, OPN, and RUNX2 in MC3T3-E1 cells cultivated in osteoblast differentiation medium, suggesting that LPS inhibited the osteoblastic differentiation of MC3T3-E1 cells. However, resveratrol obviously alleviated the suppressive impact of LPS on osteoblast differentiation. In addition, resveratrol increased expression of Sirt1 and PGC-1α in MC3T3-E1 cells treated with LPS. Conclusions Taken together, these results show that resveratrol alleviated the suppression of LPS on osteoblast differentiation by improving, at least in part, mitochondrial function.
Collapse
Affiliation(s)
- Jun Ma
- Department of Orthopedic Trauma Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China (mainland)
| | - Zhu Wang
- Department of Orthopedic Trauma Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China (mainland)
| | - Jianquan Zhao
- Department of Orthopaedic Trauma Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China (mainland)
| | - WuJun Miao
- Department of Orthopedic Trauma Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China (mainland)
| | - TianWen Ye
- Department of Orthopedic Trauma Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China (mainland)
| | - Aimin Chen
- Department of Orthopedic Trauma Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China (mainland)
| |
Collapse
|
24
|
Novel treatment strategies for chronic kidney disease: insights from the animal kingdom. Nat Rev Nephrol 2018; 14:265-284. [PMID: 29332935 DOI: 10.1038/nrneph.2017.169] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many of the >2 million animal species that inhabit Earth have developed survival mechanisms that aid in the prevention of obesity, kidney disease, starvation, dehydration and vascular ageing; however, some animals remain susceptible to these complications. Domestic and captive wild felids, for example, show susceptibility to chronic kidney disease (CKD), potentially linked to the high protein intake of these animals. By contrast, naked mole rats are a model of longevity and are protected from extreme environmental conditions through mechanisms that provide resistance to oxidative stress. Biomimetic studies suggest that the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) offers protection in extreme environmental conditions and promotes longevity in the animal kingdom. Similarly, during months of fasting, immobilization and anuria, hibernating bears are protected from muscle wasting, azotaemia, thrombotic complications, organ damage and osteoporosis - features that are often associated with CKD. Improved understanding of the susceptibility and protective mechanisms of these animals and others could provide insights into novel strategies to prevent and treat several human diseases, such as CKD and ageing-associated complications. An integrated collaboration between nephrologists and experts from other fields, such as veterinarians, zoologists, biologists, anthropologists and ecologists, could introduce a novel approach for improving human health and help nephrologists to find novel treatment strategies for CKD.
Collapse
|
25
|
Cielen N, Maes K, Heulens N, Troosters T, Carmeliet G, Janssens W, Gayan-Ramirez GN. Interaction between Physical Activity and Smoking on Lung, Muscle, and Bone in Mice. Am J Respir Cell Mol Biol 2017; 54:674-82. [PMID: 26448063 DOI: 10.1165/rcmb.2015-0181oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Physical inactivity is an important contributor to skeletal muscle weakness, osteoporosis, and weight loss in chronic obstructive pulmonary disease. However, the effects of physical inactivity, in interaction with smoking, on lung, muscle, and bone are poorly understood. To address this issue, male mice were randomly assigned to an active (daily running), moderately inactive (space restriction), or extremely inactive group (space restriction followed by hindlimb suspension to mimic bed rest) during 24 weeks and simultaneously exposed to either cigarette smoke or room air. The effects of different physical activity levels and smoking status and their respective interaction were examined on lung function, body composition, in vitro limb muscle function, and bone parameters. Smoking caused emphysema, reduced food intake with subsequent loss of body weight, and fat, lean, and muscle mass, but increased trabecular bone volume. Smoking induced muscle fiber atrophy, which did not result in force impairment. Moderate inactivity only affected lung volumes and compliance, whereas extreme inactivity increased lung inflammation, lowered body and fat mass, induced fiber atrophy with soleus muscle dysfunction, and reduced exercise capacity and all bone parameters. When combined with smoking, extreme inactivity also aggravated lung inflammation and emphysema, and accelerated body and muscle weight loss. This study shows that extreme inactivity, especially when imposed by absolute rest, accelerates lung damage and inflammation. When combined with smoking, extreme inactivity is deleterious for muscle bulk, bone, and lungs. These data highlight that the consequences of physical inactivity during the course of chronic obstructive pulmonary disease should not be neglected.
Collapse
Affiliation(s)
- Nele Cielen
- 1 Department of Clinical and Experimental Medicine, Laboratory of Respiratory Diseases, Catholic University (KU) of Leuven, Leuven, Belgium
| | - Karen Maes
- 1 Department of Clinical and Experimental Medicine, Laboratory of Respiratory Diseases, Catholic University (KU) of Leuven, Leuven, Belgium
| | - Nele Heulens
- 1 Department of Clinical and Experimental Medicine, Laboratory of Respiratory Diseases, Catholic University (KU) of Leuven, Leuven, Belgium
| | - Thierry Troosters
- 1 Department of Clinical and Experimental Medicine, Laboratory of Respiratory Diseases, Catholic University (KU) of Leuven, Leuven, Belgium.,2 Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium; and
| | - Geert Carmeliet
- 3 Department of Clinical and Experimental Medicine, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Wim Janssens
- 1 Department of Clinical and Experimental Medicine, Laboratory of Respiratory Diseases, Catholic University (KU) of Leuven, Leuven, Belgium
| | - Ghislaine N Gayan-Ramirez
- 1 Department of Clinical and Experimental Medicine, Laboratory of Respiratory Diseases, Catholic University (KU) of Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Zainabadi K, Liu CJ, Guarente L. SIRT1 is a positive regulator of the master osteoblast transcription factor, RUNX2. PLoS One 2017; 12:e0178520. [PMID: 28542607 PMCID: PMC5444833 DOI: 10.1371/journal.pone.0178520] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/15/2017] [Indexed: 11/25/2022] Open
Abstract
Activation of SIRT1 has previously been shown to protect mice against osteoporosis through yet ill-defined mechanisms. In this study, we outline a role for SIRT1 as a positive regulator of the master osteoblast transcription factor, RUNX2. We find that ex vivo deletion of sirt1 leads to decreased expression of runx2 downstream targets, but not runx2 itself, along with reduced osteoblast differentiation. Reciprocally, treatment with a SIRT1 agonist promotes osteoblast differentiation, as well as the expression of runx2 downstream targets, in a SIRT1-dependent manner. Biochemical and luciferase reporter assays demonstrate that SIRT1 interacts with and promotes the transactivation potential of RUNX2. Intriguingly, mice treated with the SIRT1 agonist, resveratrol, show similar increases in the expression of RUNX2 targets in their calvaria (bone tissue), validating SIRT1 as a physiologically relevant regulator of RUNX2.
Collapse
Affiliation(s)
- Kayvan Zainabadi
- Glenn Center for the Science of Aging, Department of Biology, Koch Institute, MIT, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Cassie J. Liu
- Glenn Center for the Science of Aging, Department of Biology, Koch Institute, MIT, Cambridge, Massachusetts, United States of America
| | - Leonard Guarente
- Glenn Center for the Science of Aging, Department of Biology, Koch Institute, MIT, Cambridge, Massachusetts, United States of America
| |
Collapse
|
27
|
Li J, Yang S, Li X, Liu D, Wang Z, Guo J, Tan N, Gao Z, Zhao X, Zhang J, Gou F, Yokota H, Zhang P. Role of endoplasmic reticulum stress in disuse osteoporosis. Bone 2017; 97:2-14. [PMID: 27989543 DOI: 10.1016/j.bone.2016.12.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/28/2016] [Accepted: 12/14/2016] [Indexed: 12/14/2022]
Abstract
Osteoporosis is a major skeletal disease with low bone mineral density, which leads to an increased risk of bone fracture. Salubrinal is a synthetic chemical that inhibits dephosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) in response to endoplasmic reticulum (ER) stress. To understand possible linkage of osteoporosis to ER stress, we employed an unloading mouse model and examined the effects of salubrinal in the pathogenesis of disuse osteoporosis. The results presented several lines of evidence that osteoclastogenesis in the development of osteoporosis was associated with ER stress, and salubrinal suppressed unloading-induced bone loss. Compared to the age-matched control, unloaded mice reduced the trabecular bone area/total area (B.Ar/T.Ar) as well as the number of osteoblasts, and they increased the osteoclasts number on the trabecular bone surface in a time-dependent way. Unloading-induced disuse osteoporosis significantly increased the expression of Bip, p-eIF2α and ATF4 in short-term within 6h of tail suspension, but time-dependent decreased in HU2d to HU14d. Furthermore, a significant correlation of ER stress with the differentiation of osteoblasts and osteoclasts was observed. Administration of salubrinal suppressed the unloading-induced decrease in bone mineral density, B.Ar/T.Ar and mature osteoclast formation. Salubrinal also increased the colony-forming unit-fibroblasts and colony-forming unit-osteoblasts. It reduced the formation of mature osteoclasts, suppressed their migration and adhesion, and increased the expression of Bip, p-eIF2α and ATF4. Electron microscopy showed that rough endoplasmic reticulum expansion and a decreased number of ribosomes on ER membrane were observed in osteoblast of unloading mice, and the abnormal ER expansion was significantly improved by salubrinal treatment. A TUNEL assay together with CCAAT/enhancer binding protein homologous protein (CHOP) expression indicated that ER stress-induced osteoblast apoptosis was rescued by salubrinal. Collectively, the results support the notion that ER stress plays a key role in the pathogenesis of disuse osteoporosis, and salubrinal attenuates unloading-induced bone loss by altering proliferation and differentiation of osteoblasts and osteoclasts via eIF2α signaling.
Collapse
Affiliation(s)
- Jie Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300457, China
| | - Shuang Yang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300457, China
| | - Xinle Li
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300457, China; Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China
| | - Daquan Liu
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300457, China; Department of Pharmacology, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Zhaonan Wang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jialu Guo
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Nian Tan
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhe Gao
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoyu Zhao
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jiuguo Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Fanglin Gou
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN 46202, USA
| | - Ping Zhang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin 300457, China; Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin 300070, China; Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, IN 46202, USA.
| |
Collapse
|
28
|
Baltaci SB, Mogulkoc R, Baltaci AK. Resveratrol and exercise. Biomed Rep 2016; 5:525-530. [PMID: 27882212 PMCID: PMC5103661 DOI: 10.3892/br.2016.777] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 09/30/2016] [Indexed: 12/22/2022] Open
Abstract
Although it is recommended for a healthy lifestyle, moderate exercise is known to lead to oxidative stress, inflammation and muscle injury. Hence there are efforts to develop dietary strategies to counter the oxidative stress caused by physical activity. Recently, there has been an interest in the capability of resveratrol (RES) to modulate physical performance and prevent oxidative stress. Despite the inconsistency among reports regarding the topic, it has been suggested that RES delays fatigue by hindering lipid peroxidation. It is hypothesized that RES administration produces favorable effects on hepatic cell rejuvenation, exerts a regulatory effect on glucose metabolism, and preserves liver glycogen reserves that are diminished during physical activity. Consequently, there is a growing interest in the association between RES and exercise. The aim of the current review is to interpret the association between RES and exercise.
Collapse
Affiliation(s)
- Saltuk Bugra Baltaci
- Department of Physiology, Faculty of Medicine, Selçuk University, Konya 42031, Turkey
| | - Rasim Mogulkoc
- Department of Physiology, Faculty of Medicine, Selçuk University, Konya 42031, Turkey
| | | |
Collapse
|
29
|
Ornstrup MJ, Harsløf T, Sørensen L, Stenkjær L, Langdahl BL, Pedersen SB. Resveratrol Increases Osteoblast Differentiation In Vitro Independently of Inflammation. Calcif Tissue Int 2016; 99:155-63. [PMID: 27000750 DOI: 10.1007/s00223-016-0130-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/10/2016] [Indexed: 10/22/2022]
Abstract
Low-grade inflammation negatively affects bone. Resveratrol is a natural compound proven to possess both anti-inflammatory and bone protective properties. However, it is uncertain if the bone effects are mediated though anti-inflammatory effects. Firstly, we investigated if resveratrol affects proliferation and differentiation of human bone marrow-derived mesenchymal stem cells. Secondly, we investigated if inflammation negatively affects proliferation and differentiation, and if resveratrol counteracts this through anti-inflammatory effects. Mesenchymal stem cells were obtained from bone marrow aspiration in 13 healthy individuals and cultured towards the osteoblast cell lineage. The cells were stimulated with resveratrol, lipopolysaccharide (LPS), LPS + resveratrol, or vehicle (control) for 21 days. Compared to control, resveratrol decreased cell number by 35 % (p < 0.05) and induced differentiation (a 3-fold increase in alkaline phosphatase (p < 0.002), while P1NP and OPG showed similar trends). LPS induced inflammation with a 44-fold increase in interleukin-6 (p < 0.05) and an extremely prominent increase in interleukin-8 production (p < 0.05) relative to control. In addition, LPS increased cell count (p < 0.05) and decreased differentiation (a reduction in P1NP production (p < 0.02)). Co-stimulation with LPS + resveratrol did not reduce interleukin-6 or interleukin-8, but nonetheless, cell count was reduced (p < 0.05) and alkaline phosphatase, P1NP, and OPG increased (p < 0.05 for all). Thus, resveratrol stimulates osteoblast differentiation independently of inflammation.
Collapse
Affiliation(s)
- Marie Juul Ornstrup
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Tage-Hansens Gade 2, Entrance 3C, 8000, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Nordre Ringgade 1, 8000, Aarhus, Denmark.
| | - Torben Harsløf
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Tage-Hansens Gade 2, Entrance 3C, 8000, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Nordre Ringgade 1, 8000, Aarhus, Denmark
| | - Lotte Sørensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Tage-Hansens Gade 2, Entrance 3C, 8000, Aarhus, Denmark
| | - Liselotte Stenkjær
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Tage-Hansens Gade 2, Entrance 3C, 8000, Aarhus, Denmark
| | - Bente Lomholt Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Tage-Hansens Gade 2, Entrance 3C, 8000, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Nordre Ringgade 1, 8000, Aarhus, Denmark
| | - Steen Bønløkke Pedersen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Tage-Hansens Gade 2, Entrance 3C, 8000, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Nordre Ringgade 1, 8000, Aarhus, Denmark
| |
Collapse
|
30
|
Che CT, Wong MS, Lam CWK. Natural Products from Chinese Medicines with Potential Benefits to Bone Health. Molecules 2016; 21:239. [PMID: 26927052 PMCID: PMC6274145 DOI: 10.3390/molecules21030239] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/03/2016] [Accepted: 02/12/2016] [Indexed: 01/23/2023] Open
Abstract
Osteoporosis is a progressive, systemic bone disorder characterized by loss of bone mass and microstructure, leading to reduced bone strength and increased risk of fracture. It is often associated with reduced quality of life and other medical complications. The disease is common in the aging population, particularly among postmenopausal women and patients who receive long-term steroidal therapy. Given the rapid growth of the aging population, increasing life expectancy, the prevalence of bone loss, and financial burden to the healthcare system and individuals, demand for new therapeutic agents and nutritional supplements for the management and promotion of bone health is pressing. With the advent of global interest in complementary and alternative medicine and natural products, Chinese medicine serves as a viable source to offer benefits for the improvement and maintenance of bone health. This review summarizes the scientific information obtained from recent literatures on the chemical ingredients of Chinese medicinal plants that have been reported to possess osteoprotective and related properties in cell-based and/or animal models. Some of these natural products (or their derivatives) may become promising leads for development into dietary supplements or therapeutic drugs.
Collapse
Affiliation(s)
- Chun-Tao Che
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Man Sau Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Christopher Wai Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
31
|
Resveratrol prevents alveolar bone loss in an experimental rat model of periodontitis. Acta Biomater 2016; 29:398-408. [PMID: 26497626 DOI: 10.1016/j.actbio.2015.10.031] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/14/2015] [Accepted: 10/19/2015] [Indexed: 11/23/2022]
Abstract
Resveratrol is an antioxidant and anti-inflammatory polyphenol. Periodontitis is induced by oral pathogens, where a systemic inflammatory response accompanied by oxidative stress is the major event initiating disease. We investigated how resveratrol modulates cellular responses and the mechanisms related to this modulation in lipopolysaccharide (LPS)-stimulated human gingival fibroblasts (hGFs). We also explored whether resveratrol protects rats against alveolar bone loss in an experimental periodontitis model. Periodontitis was induced around the first upper molar of the rats by applying ligature infused with LPS. Stimulating hGFs with 5μg/ml LPS augmented the expression of cyclooxygenase-2, matrix metalloproteinase (MMP)-2, MMP-9, and Toll-like receptor-4. LPS treatment also stimulated the production of reactive oxygen species (ROS) and the phosphorylation of several protein kinases in the cells. However, the expression of heme oxygenase-1 (HO-1) and nuclear factor-E2 related factor 2 (Nrf2) was inhibited by the addition of LPS. Resveratrol treatment almost completely inhibited all of these changes in LPS-stimulated cells. Specifically, resveratrol alone augmented HO-1 induction via Nrf2-mediated signaling. Histological and micro-CT analyses revealed that administration of resveratrol (5mg/kg body weight) improved ligature/LPS-mediated alveolar bone loss in rats. Resveratrol also attenuated the production of inflammation-related proteins, the formation of osteoclasts, and the production of circulating ROS in periodontitis rats. Furthermore, resveratrol suppressed LPS-mediated decreases in HO-1 and Nrf2 levels in the inflamed periodontal tissues. Collectively, our findings suggest that resveratrol protects rats from periodontitic tissue damage by inhibiting inflammatory responses and by stimulating antioxidant defense systems. STATEMENT OF SIGNIFICANCE The aims of this study were to investigate how resveratrol modulates cellular responses and the mechanisms related to this modulation in lipopolysaccharide (LPS)-stimulated human gingival fibroblasts (hGFs) and protects rats against alveolar bone disruption in an experimental periodontitis model. Our findings suggest that resveratrol protects rats from periodontitic tissue damage by inhibiting inflammatory responses and by stimulating antioxidant defense systems. On the basis of our experiment studies, we proposed that resveratrol could be used as novel bioactive materials or therapeutic drug for the treatment of periodontitis or other inflammatory bone diseases like osteoporosis, arthritis etc. Furthermore, it could be also used for the modification or coating of implant materials as an antiinflammatory molecules which will help to accelerate bone formation. There are a few of reports suggesting antioxidant and anti-inflammatory potentials of resveratrol. However, our results highlight the cellular mechanisms by which resveratrol inhibits LPS-mediated cellular damages using human-originated gingival fibroblasts and also support the potential of resveratrol to suppress periodontitis-mediated tissue damages. We believe that the present findings might improve a clinical approach of using of resveratrol on human, although further detailed experiments will be needed.
Collapse
|
32
|
Multiple Integrated Complementary Healing Approaches: Energetics & Light for bone. Med Hypotheses 2016; 86:18-29. [DOI: 10.1016/j.mehy.2015.10.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/30/2015] [Indexed: 02/08/2023]
|
33
|
Su Y, Chen Y, Liu Y, Yang Y, Deng Y, Gong Z, Chen J, Wu T, Lin S, Cui L. Antiosteoporotic effects of Alpinia officinarum Hance through stimulation of osteoblasts associated with antioxidant effects. J Orthop Translat 2016; 4:75-91. [PMID: 30035068 PMCID: PMC5987006 DOI: 10.1016/j.jot.2015.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/15/2015] [Accepted: 09/28/2015] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND/OBJECTIVE Alpinia officinarum Hance (AOH) is a traditional herbal medicine specific to south China and serves as a civil medication application of an antioxidant. Growing evidence demonstrates that antioxidants are beneficial for the treatment of osteoporosis. This study was designed to investigate the antiosteoporotic effects of total extracts from AOH in ovariectomised (OVX) rats and the different fractions in AOH on primary osteoblasts activities. METHODS The total extract of AOH was extracted by refluxing using 95% ethanol, then the five fractions (F1-F5) were separated from AOH using thin-layer chromatography according to polarity from high to low, and the galangin content was determined using high performance liquid chromatography. In an in vivo study, 36 4-month-old female Sprague-Dawley rats were used as a Sham-operated group, OVX with vehicle (OVX), OVX with epimedium flavonoids (EF, 150 mg/kg/d), and OVX with AOH (AOH, 300 mg/kg/d), respectively. Daily oral administration started on Day 3 after OVX and lasted for 12 weeks. In the in vitro study, primary osteoblasts were incubated with AOH, galangin, and five different fractions (F1-F5) with or without hydrogen peroxide (H2O2), respectively. RESULTS Treatment with AOH significantly attenuated osteopenia accompanied by a decreased percentage of osteoclast perimeter and bone formation rate per unit of bone surface, enhanced the bone strength, and prevented the deterioration of trabecular microarchitecture associated with a decrease in biochemical parameters of oxidative stress. Furthermore, treatment with AOH, F3, F4, and galangin increased cell viability, differentiation, and mineralisation in osteoblasts with or without H2O2 and rescued the deleterious effects of H2O2 on cell apoptosis and intracellular reactive oxygen species level. The effects on osteoblast formation were highly aligned with the amounts of flavonoids within AOH. CONCLUSION These data demonstrate that ethanol extracts from AOH significantly reverse bone loss, partially by increasing bone formation, and by suppressing bone resorption associated with antioxidant effects, suggesting that AOH can be developed as a promising agent for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Yanjie Su
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
- Shenzhen Key Laboratory of R&D Laboratory of Space Medicine and Engineering Technology, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yahui Chen
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Yanzhi Liu
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Yajun Yang
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Yifeng Deng
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Zhongqin Gong
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Jingfeng Chen
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Tie Wu
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| | - Sien Lin
- Shenzhen Key Laboratory of R&D Laboratory of Space Medicine and Engineering Technology, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Liao Cui
- Department of Pharmacology, Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
34
|
Zeng Y, Yang K. Sirtuin 1 participates in the process of age-related retinal degeneration. Biochem Biophys Res Commun 2015; 468:167-72. [PMID: 26522222 DOI: 10.1016/j.bbrc.2015.10.139] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 10/26/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND The process of aging involves retinal cell damage that leads to visual dysfunction. Sirtuin (Sirt) 1 can prevent oxidative stress, DNA damage, and apoptosis. In the present study, we measured the expression of Sirt1 as a functional regulator in the retina during the aging process. METHODS The visual function and Sirt1 expression in young (1 month) and old (19 months) Sprague-Dawley (SD) rats. Electroretinogram (ERG) and real-time polymerase chain reaction (PCR) or Western blotting were performed. Resveratrol, an activator of Sirt1, was orally administered to SD rats at a dose of 5 mg/kg/day for 19 months. The expression of Sirt1, brain-derived neurotrophic factor (BDNF), and tropomyosin receptor kinase B (TrkB) was evaluated in the retinas of mice that did and did not receive resveratrol treatment. Apoptosis was detected by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay. RESULTS With decreasing b-wave amplitude, the expression level of Sirt1 was significantly reduced in aged retinas compared to that in young retinas. After 19 months of treatment with resveratrol, the Sirt1 expression level and b-wave amplitude increased. In old rats treated with resveratrol, the expression levels of BDNF and TrkB were up-regulated. Compared to young retinas, the aged retinas exhibited higher apoptosis, but resveratrol delayed this process. CONCLUSIONS Our data demonstrated a reduction of Sirt1 expression during the aging process of the retina, but enhancing Sirt1 expression reversed the degeneration of the retina. These results suggested that increasing Sirt1 expression may protect retinal neurons and visual function via regulating neurotrophin and its receptor.
Collapse
Affiliation(s)
- Ying Zeng
- Department of Ophthalmology of the Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Laboratory of Clinical Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China; Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China.
| | - Ke Yang
- Institute of Cardiovascular Disease, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
35
|
Tou JC. Evaluating resveratrol as a therapeutic bone agent: preclinical evidence from rat models of osteoporosis. Ann N Y Acad Sci 2015. [PMID: 26200189 DOI: 10.1111/nyas.12840] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Resveratrol (RSV) is a naturally occurring plant polyphenol that has potential to attenuate osteoporosis with distinct pathologies. This review evaluates preclinical evidence regarding the efficacy and safety of RSV as a therapeutic bone agent using different rat models. Limitations of these animal models are discussed, and suggestions for strengthening the experimental design of future studies are provided. The ovariectomized rat model of postmenopausal osteoporosis reported that RSV supplementation attenuated estrogen deficiency-induced bone loss and trabecular structural deterioration. RSV safety was indicated by the absence of stimulation of estrogen-sensitive tissue. Providing RSV to rats aged >6 months attenuated age-related bone mass loss and structural deterioration but produced inconsistent effects on bones in rats aged <6 months. The hindlimb-suspension rat model of disuse osteoporosis reported that RSV attenuated bone loss in old rats, but higher doses and longer duration supplementation before mechanical loading were required for younger rats. Limitations common to studies using rat models of osteoporosis include requirements to include animals that are skeletally mature, longer study durations, and to adjust for potential confounding effects due to altered body weight and endocrine function. Strengthening experimental design can contribute to translation of animal results to clinically relevant recommendations for humans.
Collapse
Affiliation(s)
- Janet C Tou
- Human Nutrition and Foods, Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
36
|
Tresguerres IF, Tamimi F, Eimar H, Barralet J, Torres J, Blanco L, Tresguerres JAF. Resveratrol as anti-aging therapy for age-related bone loss. Rejuvenation Res 2015; 17:439-45. [PMID: 24956408 DOI: 10.1089/rej.2014.1551] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Previous studies have indicated that resveratrol, a natural phytoestrogen, can act as an anti-aging therapy to resist age-related changes of several body tissues. However, the anti-aging effects of resveratrol on bone have been poorly investigated in this natural aging population. Accordingly, this study was design to evaluate the effects of resveratrol on bone mass and biomechanical properties in old rat femora. METHODS Twenty 22-month-old male Wistar rats were divided into two randomly assigned groups (n=10). The first group was treated for 10 weeks with resveratrol (10 mg/kg per day) and the second group was left untreated (control). Rat femora were collected. Bone mass and bone microestructure were investigated by microcomputed tomography and histomorphometry. Biomechanical properties were determined by a three-point bending test. Plasma levels of CTX (carboxy-terminal telopeptide of type I collagen) and osteocalcin were also determined. Statistical analyses were performed by a Student two-tailed unpaired t-test. In all experiments, a value of p<0.05 was considered significant. RESULTS Microcomputed tomography analyses demonstrated that resveratrol-treated rats had significant higher bone volume, bone trabecular number, and cortical thickness and lower spacing between trabeculae in comparison to the control group. Histomorphometric analyses confirmed the increase of bone volume in resveratrol-treated rats compared to controls. Resveratrol-treated rats had significant higher bone flexural modulus, stiffness, and ultimate load compared to control group. Treatment was not associated with changes in plasma CTX or osteocalcin. CONCLUSION These findings demonstrate that resveratrol increases bone microstructure and bone mechanical properties in old male rats, suggesting that resveratrol might be used as anti-aging therapy to resist age-induced bone loss.
Collapse
Affiliation(s)
- Isabel F Tresguerres
- 1 Department of Medicine and Oral Surgery. School of Dentistry. Complutense University , Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
37
|
Zhao L, Wang Y, Wang Z, Xu Z, Zhang Q, Yin M. Effects of dietary resveratrol on excess-iron-induced bone loss via antioxidative character. J Nutr Biochem 2015; 26:1174-82. [PMID: 26239832 DOI: 10.1016/j.jnutbio.2015.05.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 04/29/2015] [Accepted: 05/12/2015] [Indexed: 01/08/2023]
Abstract
Estrogen deficiency has been considered to be a major cause of osteoporosis, but recent epidemiological evidence and mechanistic studies have indicated that aging and the associated increase in reactive oxygen species (ROS) are the proximal pathogenic factors. Through ROS-mediated reactions, iron can induce disequilibrium of oxidation and antioxidation and can cause bone loss in mice. Therefore, we investigated the effects of resveratrol (RES) on bone mineral density, bone microstructure and the osteoblast functions under iron-overload conditions. Excess iron disrupted the antioxidant/prooxidant equilibrium of the mice and induced the defect and the lesion of the bone trabecula as well as disequilibrium between bone formation and bone resorption in iron-overload mice. Oral administration of RES significantly prevented bone loss in the osteoporotic mice. RES reversed the reduction of Runx2, OCN and type I collagen from excess iron; up-regulated the level of FOXO1; and maintained the antioxidant/prooxidant equilibrium in the mice. RES also reduced the ratio of OPG/RANKL in MC3T3-E1 cells and in mice and significantly inhibited subsequent osteoclastogenesis. These results provide new insights into the antiosteoporosis mechanisms of RES through antioxidative effects, suggesting that RES can be considered a potential natural resource for developing medicines or dietary supplements to prevent and treat osteoporosis.
Collapse
Affiliation(s)
- Lu Zhao
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| | - Yin Wang
- People's Liberation Army 455 Hospital, Shanghai 200050, China
| | - Zejian Wang
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China
| | - Zheng Xu
- Changzheng Hospital, Shanghai 200003, China
| | - Qiaoyan Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Ming Yin
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China.
| |
Collapse
|
38
|
Lee AMC, Shandala T, Nguyen L, Muhlhausler BS, Chen KM, Howe PR, Xian CJ. Effects of resveratrol supplementation on bone growth in young rats and microarchitecture and remodeling in ageing rats. Nutrients 2014; 6:5871-87. [PMID: 25521206 PMCID: PMC4277004 DOI: 10.3390/nu6125871] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/03/2014] [Accepted: 11/18/2014] [Indexed: 01/19/2023] Open
Abstract
Osteoporosis is a highly prevalent skeletal disorder in the elderly that causes serious bone fractures. Peak bone mass achieved at adolescence has been shown to predict bone mass and osteoporosis related risk fracture later in life. Resveratrol, a natural polyphenol compound, may have the potential to promote bone formation and reduce bone resorption. However, it is unclear whether it can aid bone growth and bone mass accumulation during rapid growth and modulate bone metabolism during ageing. Using rat models, the current study investigated the potential effects of resveratrol supplementation during the rapid postnatal growth period and in late adulthood (early ageing) on bone microarchitecture and metabolism. In the growth trial, 4-week-old male hooded Wistar rats on a normal chow diet were given resveratrol (2.5 mg/kg/day) or vehicle control for 5 weeks. In the ageing trial, 6-month-old male hooded Wistar rats were treated with resveratrol (20 mg/kg/day) or vehicle for 3 months. Treatment effects in the tibia were examined by μ-computer tomography (μ-CT) analysis, bone histomorphometric measurements and reverse transcription-polymerase chain reaction (RT-PCR) gene expression analysis. Resveratrol treatment did not affect trabecular bone volume and bone remodeling indices in the youth animal model. Resveratrol supplementation in the early ageing rats tended to decrease trabecular bone volume, Sirt1 gene expression and increased expression of adipogenesis-related genes in bone, all of which were statistically insignificant. However, it decreased osteocalcin expression (p = 0.03). Furthermore, serum levels of bone resorption marker C-terminal telopeptides type I collagen (CTX-1) were significantly elevated in the resveratrol supplementation group (p = 0.02) with no changes observed in serum levels of bone formation marker alkaline phosphatase (ALP). These results in rat models suggest that resveratrol supplementation does not significantly affect bone volume during the rapid growth phase but may potentially have negative effects on male skeleton during early ageing.
Collapse
Affiliation(s)
- Alice M C Lee
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia.
| | - Tetyana Shandala
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia.
| | - Long Nguyen
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia.
| | - Beverly S Muhlhausler
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia.
| | - Ke-Ming Chen
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of People's Liberation Army, Lanzhou 730050, China.
| | - Peter R Howe
- Clinical Nutrition Research Centre, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Cory J Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
39
|
Minagawa T, Okui T, Takahashi N, Nakajima T, Tabeta K, Murakami S, Yamazaki K. Resveratrol suppresses the inflammatory responses of human gingival epithelial cells in a SIRT1 independent manner. J Periodontal Res 2014; 50:586-93. [PMID: 25312218 DOI: 10.1111/jre.12238] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2014] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND OBJECTIVE In periodontitis, chronic infection by periodontopathic bacteria induces uncontrolled inflammation, which leads to periodontal tissue destruction. Human gingival epithelial cells (HGECs) constitute a critical first line of defense against periodontopathic bacteria, both as a physical barrier and as regulators of inflammation. Resveratrol, a polyphenol found in grapes and red wine, reportedly has anti-inflammatory properties. Therefore, we investigated the effects of resveratrol on the Porphyromonas gingivalis-induced inflammatory responses of HGECs and their mechanism. MATERIAL AND METHODS We stimulated the HGEC line, epi 4, with live or heat-killed P. gingivalis in the presence of resveratrol, and analyzed expressions of the interleukin-8, monocyte chemoattractant protein-1 and interleukin-1β genes. We determined the involvement of SIRT1 in the effect of resveratrol using sirtinol (a SIRT1 inhibitor) or SIRT1 knockdown. We also examined whether the effects were mediated by activation of AMP-activated kinase, suppression of reactive oxygen species, or inhibition of nuclear factor-κB (NF-κB). RESULTS Resveratrol treatment decreased the expression of inflammatory cytokines and slightly increased the expression of SIRT1. However, neither SIRT1 inhibition nor SIRT1 knockdown counteracted its anti-inflammatory effects. Although resveratrol did not affect AMP-activated kinase activation or reactive oxygen species production, it slightly suppressed NF-κB translocation when cells were stimulated with heat-killed P. gingivalis. CONCLUSION Resveratrol suppressed the inflammatory responses of P. gingivalis-stimulated HGECs, probably by inhibiting NF-κB signaling but independent of SIRT1.
Collapse
Affiliation(s)
- T Minagawa
- Laboratory of Periodontology and Immunology, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - T Okui
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - N Takahashi
- Laboratory of Periodontology and Immunology, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - T Nakajima
- General Dentistry and Clinical Education Unit, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - K Tabeta
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - S Murakami
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - K Yamazaki
- Laboratory of Periodontology and Immunology, Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
40
|
Resveratrol supplementation affects bone acquisition and osteoporosis: Pre-clinical evidence toward translational diet therapy. Biochim Biophys Acta Mol Basis Dis 2014; 1852:1186-94. [PMID: 25315301 DOI: 10.1016/j.bbadis.2014.10.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/03/2014] [Indexed: 12/24/2022]
Abstract
Osteoporosis is a major public health issue that is expected to rise as the global population ages. Resveratrol (RES) is a plant polyphenol with various anti-aging properties. RES treatment of bone cells results in protective effects, but dose translation from in vitro studies to clinically relevant doses is limited since bioavailability is not taken into account. The aims of this review is to evaluate in vivo evidence for a role of RES supplementation in promoting bone health to reduced osteoporosis risk and potential mechanisms of action. Due to multiple actions on both osteoblasts and osteoclasts, RES has potential to attenuate bone loss resulting from different etiologies and pathologies. Several animal models have investigated the bone protective effects of RES supplementation. Ovariectomized rodent models of rapid bone loss due to estrogen-deficiency reported that RES supplementation improved bone mass and trabecular bone without stimulating other estrogen-sensitive tissues. RES supplementation prior to age-related bone loss was beneficial. The hindlimb unloaded rat model used to investigate bone loss due to mechanical unloading showed RES supplementation attenuated bone loss in old rats, but had inconsistent bone effects in mature rats. In growing rodents, RES increased longitudinal bone growth, but had no other effects on bone. In the absence of human clinical trials, evidence for a role of RES on bone heath relies on evidence generated by animal studies. A better understanding of efficacy, safety, and molecular mechanisms of RES on bone will contribute to the determination of dietary recommendations and therapies to reduce osteoporosis. This article is part of a Special Issue entitled: Resveratol: Challenges in translating pre-clinical findings to improved patient outcomes.
Collapse
|
41
|
Alway SE, Myers MJ, Mohamed JS. Regulation of satellite cell function in sarcopenia. Front Aging Neurosci 2014; 6:246. [PMID: 25295003 PMCID: PMC4170136 DOI: 10.3389/fnagi.2014.00246] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/01/2014] [Indexed: 01/08/2023] Open
Abstract
The mechanisms contributing to sarcopenia include reduced satellite cell (myogenic stem cell) function that is impacted by the environment (niche) of these cells. Satellite cell function is affected by oxidative stress, which is elevated in aged muscles, and this along with changes in largely unknown systemic factors, likely contribute to the manner in which satellite cells respond to stressors such as exercise, disuse, or rehabilitation in sarcopenic muscles. Nutritional intervention provides one therapeutic strategy to improve the satellite cell niche and systemic factors, with the goal of improving satellite cell function in aging muscles. Although many elderly persons consume various nutraceuticals with the hope of improving health, most of these compounds have not been thoroughly tested, and the impacts that they might have on sarcopenia and satellite cell function are not clear. This review discusses data pertaining to the satellite cell responses and function in aging skeletal muscle, and the impact that three compounds: resveratrol, green tea catechins, and β-Hydroxy-β-methylbutyrate have on regulating satellite cell function and therefore contributing to reducing sarcopenia or improving muscle mass after disuse in aging. The data suggest that these nutraceutical compounds improve satellite cell function during rehabilitative loading in animal models of aging after disuse (i.e., muscle regeneration). While these compounds have not been rigorously tested in humans, the data from animal models of aging provide a strong basis for conducting additional focused work to determine if these or other nutraceuticals can offset the muscle losses, or improve regeneration in sarcopenic muscles of older humans via improving satellite cell function.
Collapse
Affiliation(s)
- Stephen E. Alway
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
- West Virginia Clinical and Translational Science Institute, Morgantown, WV, USA
- Center for Cardiovascular and Respiratory Sciences, Morgantown, WV, USA
| | - Matthew J. Myers
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Junaith S. Mohamed
- Laboratory of Muscle Biology and Sarcopenia, Department of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|