1
|
Kim HG, Lee BN, Jeong HJ, Kim HJ, Kwon J, Oh S, Kim DS, Choi KK, Kim RH, Jang JH. Effect of Bioactive Glass into Mineral Trioxide Aggregate on the Biocompatibility and Mineralization Potential of Dental Pulp Stem Cells. Biomater Res 2025; 29:0142. [PMID: 39925797 PMCID: PMC11803057 DOI: 10.34133/bmr.0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 02/11/2025] Open
Abstract
Introduction: Previous studies have shown that bioactive glass (BG) can enhance the formation of hydroxyapatite under simulated body fluid (SBF) conditions when combined with mineral trioxide aggregate (MTA). This study aims to assess the impact of BG-supplemented MTA on the biocompatibility and mineralization potential of dental pulp stem cells (DPSCs). Methods: We prepared ProRoot MTA (MTA) and MTA supplemented with 2% and 4% BG. Five passages of DPSCs were utilized for the experiments. The DPSCs were subjected to various tests to determine their morphology, viability, cell migration, and adhesion assay. Additionally, mineralization ability was assessed through SBF immersion treatment, alkaline phosphatase (ALP) activity test, Alizarin red S (ARS) staining, and real-time quantitative polymerase chain reaction (RT-qPCR) analysis. Results: The biocompatibility of BG-supplemented MTA was found to be comparable to that of conventional MTA, as demonstrated by the cell counting kit-8 (CCK-8) assay, cell migration, adhesion assays, and cell morphology on cement surfaces. Under SBF treatment, MTA supplemented with BG, particularly at a concentration of 4%, exhibited higher mineralization potential than conventional MTA in the ALP activity assay. This was supported by denser ARS staining, increased ALP activity, and higher expression of dentin sialophosphoprotein (DSPP), ALP, and bone morphogenetic protein-2 (BMP-2) in the SBF-treated MTABG group. Conclusion: Our study revealed that the biocompatibility of BG-supplemented MTA is similar to that of conventional MTA. Additionally, under SBF treatment, BG-supplemented MTA displayed enhanced mineralization potential, indicating that BG supplementation can augment the mineralization capabilities of MTA.
Collapse
Affiliation(s)
- Hee-Gyun Kim
- Department of Conservative Dentistry, Graduate School,
Kyung Hee University, Seoul, Korea
| | - Bin-Na Lee
- Department of Conservative Dentistry, School of Dentistry, Dental Science Research Institute,
Chonnam National University, Gwangju, Korea
| | - Hyun-Jeong Jeong
- Department of Conservative Dentistry, School of Dentistry,
Kyung Hee University, Seoul, Korea
| | - Hyun-Jung Kim
- Department of Conservative Dentistry, School of Dentistry,
Kyung Hee University, Seoul, Korea
| | - Jiyoung Kwon
- Department of Conservative Dentistry, School of Dentistry,
Kyung Hee University, Seoul, Korea
| | - Soram Oh
- Department of Conservative Dentistry, School of Dentistry,
Kyung Hee University, Seoul, Korea
| | - Duck-Su Kim
- Department of Conservative Dentistry, School of Dentistry,
Kyung Hee University, Seoul, Korea
| | - Kyoung-Kyu Choi
- Department of Conservative Dentistry, School of Dentistry,
Kyung Hee University, Seoul, Korea
| | - Reuben H. Kim
- Section of Restorative Dentistry, School of Dentistry,
University of California Los Angeles, Los Angeles, CA, USA
| | - Ji-Hyun Jang
- Department of Conservative Dentistry, School of Dentistry,
Kyung Hee University, Seoul, Korea
| |
Collapse
|
2
|
Kim YS, Lupatov AY, Burunova VV, Bagmet NN, Chardarov NK, Malov SL, Kholodenko RV, Shatverian GA, Manukyan GV, Yarygin KN, Kholodenko IV. Human Liver MSCs Retain Their Basic Cellular Properties in Chronically Inflamed Liver Tissue. Int J Mol Sci 2024; 25:13374. [PMID: 39769138 PMCID: PMC11676302 DOI: 10.3390/ijms252413374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Every 25th death worldwide is associated with liver pathology. The development of novel approaches to liver diseases therapy and protocols for maintaining the vital functions of patients on the liver transplant waiting list are urgently needed. Resident mesenchymal stem cells (MSCs) play a significant role in supporting liver tissue integrity and improve the liver condition after infusion. However, it remains unclear whether MSCs isolated from chronically inflamed livers are similar in their basic cellular properties to MSCs obtained from healthy livers. We applied a large array of tests to compare resident MSCs isolated from apparently normal liver tissue and from chronically inflamed livers of patients with fibrosis, cirrhosis, and viral hepatitis. Chronic inflammatory environment did not alter the major cellular characteristics of MSCs, including the expression of MSC markers, stem cell markers, adhesion molecules, and the hallmarks of senescence, as well as cell proliferation, migration, and secretome. Only the expression of some immune checkpoints and toll-like receptors was different. Evidently, MSCs with unchanged cellular properties are present in human liver even at late stages of inflammatory diseases. These cells can be isolated and used as starting material in the development of cell therapies of liver diseases.
Collapse
Affiliation(s)
- Yan S. Kim
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia (K.N.Y.)
| | - Alexey Yu. Lupatov
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia (K.N.Y.)
| | - Veronika V. Burunova
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia (K.N.Y.)
| | - Nikolay N. Bagmet
- Department of Abdominal Surgery and Oncology, Laboratory of Emergency Surgery and Portal Hypertension, Petrovsky National Research Centre of Surgery, 119435 Moscow, Russia
| | - Nikita K. Chardarov
- Department of Abdominal Surgery and Oncology, Laboratory of Emergency Surgery and Portal Hypertension, Petrovsky National Research Centre of Surgery, 119435 Moscow, Russia
| | - Svyatoslav L. Malov
- Department of Abdominal Surgery and Oncology, Laboratory of Emergency Surgery and Portal Hypertension, Petrovsky National Research Centre of Surgery, 119435 Moscow, Russia
| | - Roman V. Kholodenko
- Laboratory of Molecular Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Garnik A. Shatverian
- Department of Abdominal Surgery and Oncology, Laboratory of Emergency Surgery and Portal Hypertension, Petrovsky National Research Centre of Surgery, 119435 Moscow, Russia
| | - Garik V. Manukyan
- Department of Abdominal Surgery and Oncology, Laboratory of Emergency Surgery and Portal Hypertension, Petrovsky National Research Centre of Surgery, 119435 Moscow, Russia
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia (K.N.Y.)
- Department of General Pathology and Pathophysiology, Russian Medical Academy of Continuous Professional Education, 125284 Moscow, Russia
| | - Irina V. Kholodenko
- Laboratory of Cell Biology, V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia (K.N.Y.)
| |
Collapse
|
3
|
Xiao J, Gong X, Fu Z, Song X, Ma Q, Miao J, Cai R, Yan Z, Wang S, Li Q, Chen Y, Yang L, Bian X, Chen Y. The influence of inflammation on the characteristics of adipose-derived mesenchymal stem cells (ADMSCs) and tissue repair capability in a hepatic injury mouse model. Stem Cell Res Ther 2023; 14:334. [PMID: 37981679 PMCID: PMC10659042 DOI: 10.1186/s13287-023-03532-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/10/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are adult stem cells with self-renewal and multi-directional differentiation potential and possess the functions of immunomodulation, regulation of cell growth, and repair of damage. Over recent years, MSCs have been found to regulate the secretion of inflammatory factors and to exert regulatory effects on various lymphocytes in inflammatory states, and on the subsequent repair of tissue damage caused by inflammation. In the present study, we analyzed the effects of tissue inflammation on the characteristics of MSCs. METHODS Human fat derived from the infrapatellar fat pad (IPFP) of knees with differing degrees of inflammation was extracted from specimens derived from total knee arthroplasties. HE and immunohistochemical staining was performed to directly observe the evidence and degree of inflammation in human infrapatellar fat pad tissue in order to classify MSCs cells, by their origin, into highly inflamed and lowly inflamed groups, and to study the effect of tissue inflammation on cell acquisition rates via cellular counting data. Flow cytometry assays were performed to investigate the effect of tissue inflammation on MSC surface marker expression. Trilineage differentiation, including osteogenesis, adipogenesis, and chondrogenesis, was performed to assess the effect of tissue inflammation on the ability of MSCs to undergo directed differentiation. The effect of tissue inflammation on the ability of MSCs to proliferate was investigated via clone formation studies. RNA-sequencing was performed to evaluate the transcriptomes of MSCs derived from different areas of inflammation. The effect of tissue inflammation on tissue repair capacity and safety of MSCs was investigated via a murine model of acute liver injury. RESULTS The results of cell count data indicate that a high degree of tissue inflammation significantly decreases the acquisition rate of MSCs, and the proportion of CD34+ and CD146+ cells. The results of our trilineage differentiation assay show that a higher degree of inflammation decreases osteogenic differentiation and enhances adipogenic and chondrogenic differentiation of MSCs. However, these differences were not statistically significant. Clone formation assays indicate that the degree of tissue inflammation at the MSC source does not significantly affect the proliferative capacity of MSCs. The transcriptomes of MSCs remain relatively stable in fat pad tissues derived from both highly and lowly inflamed samples. The results of acute liver injury investigations in mice indicate that MSCs of high and low inflammatory tissue origin have no significant difference in their tissue repair capability. CONCLUSIONS High tissue inflammation at the source of MSCs reduces the acquisition rate of MSCs and the percentage of CD34+ and CD146+ cells acquisition. However, source tissue inflammation may not significantly affect trilineage differentiation potential and proliferative capacity of MSCs. Also, MSCs obtained from differing source degrees of inflammation retain stable and similar transcriptomic profile and are both safe and efficacious for tissue repair/regeneration without detectable differences.
Collapse
Affiliation(s)
- Jingfang Xiao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Zhenlan Fu
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Xiongbo Song
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Qinghua Ma
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Jingya Miao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Ruili Cai
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Zexuan Yan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Shuai Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Qian Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China
| | - Yaokai Chen
- Biobank and Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, People's Republic of China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China.
| | - Xiuwu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University, Chongqing, People's Republic of China.
| | - Yemiao Chen
- Biobank and Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, People's Republic of China.
| |
Collapse
|
4
|
Min Q, Yang L, Tian H, Tang L, Xiao Z, Shen J. Immunomodulatory Mechanism and Potential Application of Dental Pulp-Derived Stem Cells in Immune-Mediated Diseases. Int J Mol Sci 2023; 24:ijms24098068. [PMID: 37175774 PMCID: PMC10178746 DOI: 10.3390/ijms24098068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Dental pulp stem cells (DPSCs) are mesenchymal stem cells (MSCs) derived from dental pulp tissue, which have high self-renewal ability and multi-lineage differentiation potential. With the discovery of the immunoregulatory ability of stem cells, DPSCs have attracted much attention because they have similar or even better immunomodulatory effects than MSCs from other sources. DPSCs and their exosomes can exert an immunomodulatory ability by acting on target immune cells to regulate cytokines. DPSCs can also migrate to the lesion site to differentiate into target cells to repair the injured tissue, and play an important role in tissue regeneration. The aim of this review is to summarize the molecular mechanism and target cells of the immunomodulatory effects of DPSCs, and the latest advances in preclinical research in the treatment of various immune-mediated diseases, providing new reflections for their clinical application. DPSCs may be a promising source of stem cells for the treatment of immune-mediated diseases.
Collapse
Affiliation(s)
- Qi Min
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Liqiong Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Hua Tian
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Lu Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| |
Collapse
|
5
|
Fan L, Wei A, Gao Z, Mu X. Current progress of mesenchymal stem cell membrane-camouflaged nanoparticles for targeted therapy. Biomed Pharmacother 2023; 161:114451. [PMID: 36870279 DOI: 10.1016/j.biopha.2023.114451] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/17/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Nanodrug delivery systems have been widely used in disease treatment. However, weak drug targeting, easy to be cleared by the immune system, and low biocompatibility are great obstacles for drug delivery. As an important part of cell information transmission and behavior regulation, cell membrane can be used as drug coating material which represents a promising strategy and can overcome these limitations. Mesenchymal stem cell (MSC) membrane, as a new carrier, has the characteristics of active targeting and immune escape of MSC, and has broad application potential in tumor treatment, inflammatory disease, tissue regeneration and other fields. Here, we review recent progress on the use of MSC membrane-coated nanoparticles for therapy and drug delivery, aiming to provide guidance for the design and clinical application of membrane carrier in the future.
Collapse
Affiliation(s)
- Lianlian Fan
- Department of Pharmacy, China-Japan Union Hospital, Jilin University, Changchun130033, China
| | - Anhui Wei
- Department of Regenerative Medicine, College of Pharmacy, Jilin University, Changchun130021, China
| | - Zihui Gao
- Changchun City Experimental High School, Changchun130117, China
| | - Xupeng Mu
- Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun130033, China.
| |
Collapse
|
6
|
Towards a New Concept of Regenerative Endodontics Based on Mesenchymal Stem Cell-Derived Secretomes Products. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010004. [PMID: 36671576 PMCID: PMC9854964 DOI: 10.3390/bioengineering10010004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The teeth, made up of hard and soft tissues, represent complex functioning structures of the oral cavity, which are frequently affected by processes that cause structural damage that can lead to their loss. Currently, replacement therapy such as endodontics or implants, restore structural defects but do not perform any biological function, such as restoring blood and nerve supplies. In the search for alternatives to regenerate the dental pulp, two alternative regenerative endodontic procedures (REP) have been proposed: (I) cell-free REP (based in revascularization and homing induction to remaining dental pulp stem cells (DPSC) and even stem cells from apical papilla (SCAP) and (II) cell-based REP (with exogenous cell transplantation). Regarding the last topic, we show several limitations with these procedures and therefore, we propose a novel regenerative approach in order to revitalize the pulp and thus restore homeostatic functions to the dentin-pulp complex. Due to their multifactorial biological effects, the use of mesenchymal stem cells (MSC)-derived secretome from non-dental sources could be considered as inducers of DPSC and SCAP to completely regenerate the dental pulp. In partial pulp damage, appropriate stimulate DPSC by MSC-derived secretome could contribute to formation and also to restore the vasculature and nerves of the dental pulp.
Collapse
|
7
|
Li W, Mao M, Hu N, Wang J, Huang J, Gu S. In vitro evaluation of periapical lesion-derived stem cells for dental pulp tissue engineering. FEBS Open Bio 2021; 12:270-284. [PMID: 34826215 PMCID: PMC8727956 DOI: 10.1002/2211-5463.13336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 11/02/2021] [Accepted: 11/25/2021] [Indexed: 11/12/2022] Open
Abstract
Dental pulp tissue engineering is a promising alternative treatment for pulpitis and periapical periodontitis, and dental pulp stem cells (DPSCs) are considered to be the gold standard for dental seed cell research. Periapical lesions harbor mesenchymal stem cells with the capacity for self-renewal and multilineage differentiation. However, it remains unknown whether these periapical lesion-derived stem cells (PLDSCs) are suitable for dental pulp tissue engineering. To investigate this possibility, PLDSCs and DPSCs were isolated using the tissue outgrowth method and cultured under identical conditions. We then performed in vitro experiments to investigate their biological characteristics. Our results indicate that PLDSCs proliferate actively in vitro and exhibit similar morphology, immunophenotype and multilineage differentiation ability as DPSCs. Simultaneously, PLDSCs exhibit stronger migrative ability and express more vascular endothelial growth factor and glial cell line-derived neurotrophic factor than DPSCs, and PLDSC-derived conditioned medium was more effective in tube formation assay. The mRNA expression levels of immunomodulatory genes HLA-G, IDO and ICAM-1 were also higher in PLDSCs. However, regarding osteo/odontogenic differentiation, PLDSCs showed weaker alkaline phosphatase staining and lower calcified nodule formation compared to DPSCs, as well as lower expression of ALP, RUNX2 and DSPP, as confirmed by a quantitative RT-PCR. The osteo/odontogenic protein expression levels of DSPP, RUNX2, DMP1 and SP7 were also higher in DPSCs. The present study demonstrates that PLDSCs demonstrate potential use as seed cells for dental pulp regeneration, especially for achieving enhanced neurovascularization.
Collapse
Affiliation(s)
- Weiping Li
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Oral and Maxillofacial Head & Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Mengying Mao
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Nan Hu
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jia Wang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jing Huang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Shensheng Gu
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
8
|
Fageeh HN. Preliminary Evaluation of Proliferation, Wound Healing Properties, Osteogenic and Chondrogenic Potential of Dental Pulp Stem Cells Obtained from Healthy and Periodontitis Affected Teeth. Cells 2021; 10:cells10082118. [PMID: 34440887 PMCID: PMC8393753 DOI: 10.3390/cells10082118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Dental pulp tissue within the central cavity of the tooth is composed of dental pulp stem cells (DPSC). These mesenchymal stem cells have good proliferative as well as differentiation potential. DPSC has been isolated even from teeth with inflamed pulps and is found to retain their proliferative and differentiation potential. Little research is available about the viability and differentiation potential of DPSC obtained from teeth with periodontitis. In the present study, the aim was to compare the morphological features, stem cell marker (MSC) expression, proliferation rate, migratory and wound healing properties, osteogenic and chondrogenic differentiation potential of DPSCs obtained from periodontally healthy teeth (hDPSCs) and periodontitis affected teeth (pDPSCs). Methods: Dental pulp tissue was obtained from periodontally healthy volunteers (n = 3) and patients with periodontitis undergoing extraction of mobile teeth (n = 3). DPSC were isolated using the explant technique and cultured. All the experiments were performed at early passage (Passage 2), late passage (Passage 6) and after cryopreservation. Morphological features of the hDPSCs and pDPSCs were ascertained using microscopy. The expression of cell surface stem cell markers was assessed by the flow cytometry method. The proliferation and growth rate of the cells were assayed by plotting a growth curve from 0–13 days of culture. The migratory characteristics were assessed by wound scratch assay. Osteogenic and chondrogenic differentiation of the cells was assessed using standard protocols with and without induction. Results: DPSCs were successfully obtained from periodontally healthy teeth (hDPSC) and periodontitis-affected teeth (pDPSCs). The data suggests that there were no morphological differences observed in early passage cells between the two cohorts. Cryopreservation did change the morphology of pDSPCs. There was no significant difference in the positive expression of mesenchymal markers CD73, CD90 and CD105 in early passage cells. However, serial passaging and cryopreservation affected the marker expression in pDPSCs. A faint expression of hematopoietic stem cell markers CD34, CD45 and MHC class II antigen HLA-DR was observed in both the cell types. The expression of HLA-DR is upregulated in pDPSCs compared to hDPSC. A significantly slower growth rate and slower wound healing properties was observed in pDPSCs compared to hDPSC. In late passage and after cryopreservation, the migratory ability of pDPSCs was found to be increased drastically. There was no significant difference in osteogenic potential between the two cell types. However, the chondrogenic potential of pDPSCs was significantly lower compared to hDPSc. Yet, pDPSCs showed enhanced osteogenesis and chondrogenesis at late passage as well as after cryopreservation. Conclusion: The results of this novel study shed light on the isolation of viable DPSC from periodontitis-affected teeth. These cells exhibit a slower growth rate and migratory characteristics compared to their healthy counterparts. There was no difference in osteogenic potential but a reduction in chondrogenic potential was seen in pDPSCs compared to hDPSC. The findings reveal that DPSC from periodontitis-affected teeth presents an easy and viable option for regenerative medicine application. Some additional nutritive factors and protocols may be required to attain better regenerative benefits while using pDPSCs.
Collapse
Affiliation(s)
- Hytham N Fageeh
- Department of Preventive Dental Science, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
9
|
Shang L, Shao J, Ge S. Immunomodulatory functions of oral mesenchymal stem cells: Novel force for tissue regeneration and disease therapy. J Leukoc Biol 2021; 110:539-552. [PMID: 34184321 DOI: 10.1002/jlb.3mr0321-766r] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs)-based therapeutic strategies have achieved remarkable efficacies. Oral tissue-derived MSCs, with powerful self-renewal and multilineage differentiation abilities, possess the features of abundant sources and easy accessibility and hold great potential in tissue regeneration and disease therapies. Oral MSCs mainly consist of periodontal ligament stem cells, gingival mesenchymal stem cells, dental pulp stem cells, stem cells from human exfoliated deciduous teeth, stem cells from the apical papilla, dental follicle stem cells, and alveolar bone-derived mesenchymal stem. Early immunoinflammatory response stage is the prerequisite phase of healing process. Besides the potent capacities of differentiation and regeneration, oral MSCs are capable of interacting with various immune cells and function as immunomodulatory regulators. Consequently, the immunomodulatory effects of oral MSCs during damage repair seem to be crucial for exploring novel immunomodulatory strategies to achieve disease recovery and tissue regeneration. Herein, we reviewed various oral MSCs with their immunomodulatory properties and the potential mechanism, as well as their effects on immunomodulation-mediated disease therapies and tissue regeneration.
Collapse
Affiliation(s)
- Lingling Shang
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Jinlong Shao
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| |
Collapse
|
10
|
Hagar MN, Yazid F, Luchman NA, Ariffin SHZ, Wahab RMA. Comparative evaluation of osteogenic differentiation potential of stem cells derived from dental pulp and exfoliated deciduous teeth cultured over granular hydroxyapatite based scaffold. BMC Oral Health 2021; 21:263. [PMID: 33992115 PMCID: PMC8126170 DOI: 10.1186/s12903-021-01621-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells isolated from the dental pulp of primary and permanent teeth can be differentiated into different cell types including osteoblasts. This study was conducted to compare the morphology and osteogenic potential of stem cells from exfoliated deciduous teeth (SHED) and dental pulp stem cells (DPSC) in granular hydroxyapatite scaffold (gHA). Preosteoblast cells (MC3T3-E1) were used as a control group. METHODOLOGY The expression of stemness markers for DPSC and SHED was evaluated using reverse transcriptase-polymerase chain reaction (RT-PCR). Alkaline phosphatase assay was used to compare the osteoblastic differentiation of these cells (2D culture). Then, cells were seeded on the scaffold and incubated for 21 days. Morphology assessment using field emission scanning electron microscopy (FESEM) was done while osteogenic differentiation was detected using ALP assay (3D culture). RESULTS The morphology of cells was mononucleated, fibroblast-like shaped cells with extended cytoplasmic projection. In RT-PCR study, DPSC and SHED expressed GAPDH, CD73, CD105, and CD146 while negatively expressed CD11b, CD34 and CD45. FESEM results showed that by day 21, dental stem cells have a round like morphology which is the morphology of osteoblast as compared to day 7. The osteogenic potential using ALP assay was significantly increased (p < 0.01) in SHED as compared to DPSC and MC3T3-E1 in 2D and 3D cultures. CONCLUSION gHA scaffold is an optimal scaffold as it induced osteogenesis in vitro. Besides, SHED had the highest osteogenic potential making them a preferred candidate for tissue engineering in comparison with DPSC.
Collapse
Affiliation(s)
- Manal Nabil Hagar
- Department of Family Oral Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Farinawati Yazid
- Department of Family Oral Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Nur Atmaliya Luchman
- Department of Family Oral Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Shahrul Hisham Zainal Ariffin
- School of Bioscience and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Rohaya Megat Abdul Wahab
- Department of Family Oral Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia.
| |
Collapse
|
11
|
Dental Mesenchymal Stem/Progenitor Cells: A New Prospect in Regenerative Medicine. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Sismanoglu S, Ercal P. Dentin-Pulp Tissue Regeneration Approaches in Dentistry: An Overview and Current Trends. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1298:79-103. [PMID: 32902726 DOI: 10.1007/5584_2020_578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Conventional treatment approaches in irreversible pulpitis and apical periodontitis include the disinfection of the pulp space followed by filling with various materials, which is commonly known as the root canal treatment. Disadvantages including the loss of tooth vitality and defense mechanism against carious lesions, susceptibility to fractures, discoloration and microleakage led to the development of regenerative therapies for the dentin pulp-complex. The goal of dentin-pulp tissue regeneration is to reestablish the physiological pulp function such as pulp sensibility, pulp repair capability by mineralization and pulp immunity. Recent dentin-pulp tissue regeneration approaches can be divided into cell homing and cell transplantation. Cell based approaches include a suitable scaffold for the delivery of potent stem cells with or without bioactive molecules into the root canal system while cell homing is based on the recruitment of host endogenous stem cells from the resident tissue including periapical region or dental pulp. This review discusses the recent treatment modalities in dentin-pulp tissue regeneration through tissue engineering and current challenges and trends in this field of research.
Collapse
Affiliation(s)
- Soner Sismanoglu
- Department of Restorative Dentistry, Faculty of Dentistry, Altinbas University, Istanbul, Turkey
| | - Pınar Ercal
- Department of Oral Surgery, Faculty of Dentistry, Altinbas University, Istanbul, Turkey.
| |
Collapse
|
13
|
Mesenchymal Stem/Progenitor Cells: The Prospect of Human Clinical Translation. Stem Cells Int 2020; 2020:8837654. [PMID: 33953753 PMCID: PMC8063852 DOI: 10.1155/2020/8837654] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/19/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/progenitor cells (MSCs) are key players in regenerative medicine, relying principally on their differentiation/regeneration potential, immunomodulatory properties, paracrine effects, and potent homing ability with minimal if any ethical concerns. Even though multiple preclinical and clinical studies have demonstrated remarkable properties for MSCs, the clinical applicability of MSC-based therapies is still questionable. Several challenges exist that critically hinder a successful clinical translation of MSC-based therapies, including but not limited to heterogeneity of their populations, variability in their quality and quantity, donor-related factors, discrepancies in protocols for isolation, in vitro expansion and premodification, and variability in methods of cell delivery, dosing, and cell homing. Alterations of MSC viability, proliferation, properties, and/or function are also affected by various drugs and chemicals. Moreover, significant safety concerns exist due to possible teratogenic/neoplastic potential and transmission of infectious diseases. Through the current review, we aim to highlight the major challenges facing MSCs' human clinical translation and shed light on the undergoing strategies to overcome them.
Collapse
|
14
|
Tavakoli S, Ghaderi Jafarbeigloo HR, Shariati A, Jahangiryan A, Jadidi F, Jadidi Kouhbanani MA, Hassanzadeh A, Zamani M, Javidi K, Naimi A. Mesenchymal stromal cells; a new horizon in regenerative medicine. J Cell Physiol 2020; 235:9185-9210. [PMID: 32452052 DOI: 10.1002/jcp.29803] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/03/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022]
Abstract
In recent decades, mesenchymal stromal cells (MSCs) biomedical utilizing has attracted worldwide growing attention. After the first report of the human MSCs obtaining from the bone marrow (BM) tissue, these cells were isolated from wide types of the other tissues, ranging from adipose tissue to dental pulp. Their specific characteristics, comprising self-renewality, multipotency, and availability accompanied by their immunomodulatory properties and little ethical concern denote their importance in the context of regenerative medicine. Considering preclinical studies, MSCs can modify immune reactions during tissue repair and restoration, providing suitable milieu for tissue recovery; on the other hand, they can be differentiated into comprehensive types of the body cells, such as osteoblast, chondrocyte, hepatocyte, cardiomyocyte, fibroblast, and neural cells. Though a large number of studies have investigated MSCs capacities in regenerative medicine in varied animal models, the oncogenic capability of unregulated MSCs differentiation must be more assessed to enable their application in the clinic. In the current review, we provide a brief overview of MSCs sources, isolation, and expansion as well as immunomodulatory activities. More important, we try to collect and discuss recent preclinical and clinical research and evaluate current challenges in the context of the MSC-based cell therapy for regenerative medicine.
Collapse
Affiliation(s)
- Shirin Tavakoli
- Department of Toxicology and Pharmacology, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ali Shariati
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Afsaneh Jahangiryan
- Immunology Department, Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine (IBTO), Tehran, Iran
| | - Faezeh Jadidi
- Student Research Committee, Zarand School of Nursing, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammd Amin Jadidi Kouhbanani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hassanzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Kamran Javidi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Adel Naimi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| |
Collapse
|
15
|
Inostroza C, Vega-Letter AM, Brizuela C, Castrillón L, Saint Jean N, Duran CM, Carrión F. Mesenchymal Stem Cells Derived from Human Inflamed Dental Pulp Exhibit Impaired Immunomodulatory Capacity In Vitro. J Endod 2020; 46:1091-1098.e2. [PMID: 32422164 DOI: 10.1016/j.joen.2020.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/02/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Dental pulp stem cells (DPSC) are very attractive in regenerative medicine. In this study, we focused on the characterization of the functional properties of mesenchymal stem cells derived from DPSCs. Currently, it is unknown whether inflammatory conditions present in an inflamed dental pulp tissue could alter the immunomodulatory properties of DPSCs. This study aimed to evaluate the immunomodulatory capacity in vitro of DPSCs derived from healthy and inflamed dental pulp. METHODS DPSCs from 10 healthy and inflamed dental pulps (irreversible pulpitis) were characterized according to the minimal criteria of the International Society for Cell Therapy, proliferation, differential potential, and colony-forming units. Furthermore, the immunomodulatory capacity of DPSCs was tested on the proliferation of T lymphocytes by flow cytometry and the in vitro enzyme activity of indoleamine 2, 3-dioxygenase. RESULTS There were no significant differences in the DPSC characteristics and properties such as immunophenotype, tridifferentiation, colony-forming units, and proliferation of the DPSCs derived from normal and inflamed pulp tissue. Furthermore, there were significant differences in the immunomodulatory capacity of DPSCs obtained from human healthy dental pulp and with the diagnosis of irreversible pulpitis. CONCLUSIONS Our results showed that DPSCs isolated from inflamed dental pulp showed typical characteristics of MSCs and diminished immunosuppressive capacity in vitro in comparison with MSCs derived from healthy dental pulp. Further investigation in vivo is needed to clarify the mechanism of this diminished immunosuppressive capacity.
Collapse
Affiliation(s)
| | - Ana María Vega-Letter
- Programa de Inmunología Traslacional, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Lo Barnechea, Santiago, Chile
| | - Claudia Brizuela
- Dental School, Universidad de Los Andes, Las Condes, Santiago, Chile
| | - Luis Castrillón
- Dental School, Universidad de Los Andes, Las Condes, Santiago, Chile
| | - Nicole Saint Jean
- Dental School, Universidad de Los Andes, Las Condes, Santiago, Chile
| | - Carol Mira Duran
- Dental School, Universidad de Los Andes, Las Condes, Santiago, Chile
| | - Flavio Carrión
- Programa de Inmunología Traslacional, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Lo Barnechea, Santiago, Chile.
| |
Collapse
|
16
|
Mesenchymal Stem Cells from Human Exfoliated Deciduous Teeth and the Orbicularis Oris Muscle: How Do They Behave When Exposed to a Proinflammatory Stimulus? Stem Cells Int 2020; 2020:3670412. [PMID: 32184831 PMCID: PMC7060870 DOI: 10.1155/2020/3670412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/04/2020] [Accepted: 02/01/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been studied as a promising type of stem cell for use in cell therapies because of their ability to regulate the immune response. Although they are classically isolated from the bone marrow, many studies have sought to isolate MSCs from noninvasive sources. The objective of this study was to evaluate how MSCs isolated from the dental pulp of human exfoliated deciduous teeth (SHED) and fragments of the orbicularis oris muscle (OOMDSCs) behave when treated with an inflammatory IFN-γ stimulus, specifically regarding their proliferative, osteogenic, and immunomodulatory potentials. The results demonstrated that the proliferation of SHED and OOMDSCs was inhibited by the addition of IFN-γ to their culture medium and that treatment with IFN-γ at higher concentrations resulted in a greater inhibition of the proliferation of these cells than treatment with IFN-γ at lower concentrations. SHED and OOMDSCs maintained their osteogenic differentiation potential after stimulation with IFN-γ. Additionally, SHED and OOMDSCs have been shown to have low immunogenicity because they lack expression of HLA-DR and costimulatory molecules such as CD40, CD80, and CD86 before and after IFN-γ treatment. Last, SHED and OOMDSCs expressed the immunoregulatory molecule HLA-G, and the expression of this antigen increased after IFN-γ treatment. In particular, an increase in intracellular HLA-G expression was observed. The results obtained suggest that SHED and OOMDSCs lack immunogenicity and have immunomodulatory properties that are enhanced when they undergo inflammatory stimulation with IFN-γ, which opens new perspectives for the therapeutic use of these cells.
Collapse
|
17
|
The Immunomodulatory Potential of Wharton's Jelly Mesenchymal Stem/Stromal Cells. Stem Cells Int 2019; 2019:3548917. [PMID: 31281372 PMCID: PMC6594275 DOI: 10.1155/2019/3548917] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/01/2019] [Accepted: 05/22/2019] [Indexed: 12/13/2022] Open
Abstract
The benefits attributed to mesenchymal stem/stromal cells (MSC) in cell therapy applications are mainly attributed to the secretion of factors, which exhibit immunomodulatory and anti-inflammatory effects and stimulate angiogenesis. Despite the desirable features such as high proliferation levels, multipotency, and immune response regulation, there are important variables that must be considered. Although presenting similar morphological aspects, MSC collected from different tissues can form heterogeneous cellular populations and, therefore, manifest functional differences. Thus, the source of MSC should be a factor to be considered in the development of novel therapies. The following text presents an updated review of recent research outcomes related to Wharton's jelly mesenchymal stem/stromal cells (WJ-MSC), harvested from umbilical cords and considered novel and potential candidates for the development of cell-based approaches. This text highlights information on how WJ-MSC affect immune responses in comparison with other sources of MSC.
Collapse
|
18
|
Medina-Fernandez I, Celiz AD. Acellular biomaterial strategies for endodontic regeneration. Biomater Sci 2019; 7:506-519. [PMID: 30569918 DOI: 10.1039/c8bm01296b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Dental decay is treated by removing infected dental tissues such as dentine and restoring the tooth with a material. However, the vast majority of these materials have been designed to be mechanically robust and bioinert, whereas the potential regenerative properties of a biomaterial have not been considered. In endodontics for example, materials are used to seal the pulp cavity to avoid bacterial colonisation of the tooth and prevent further infection. While these treatments are effective in the short term, many of these materials have not been designed to interface with the pulp tissue in a biocompatible manner and are often cytotoxic. This can lead to less favourable long-term outcomes such as devitalisation of the tooth via root-canal therapy or extraction of the tooth. Clinical outcomes could be improved if regenerative approaches were followed whereby the biology of the tooth is engineered for repair and regeneration often with the support of a biomaterial. Within these, acellular or cell homing approaches are particularly interesting, as some regulatory hurdles associated with cellular therapies could be circumvented which may aid their clinical translation. In this review, we highlight progress in regenerative dentistry and focus on exciting developments using acellular biomaterials for regenerating dental tissues.
Collapse
|
19
|
Li Y, Nan X, Zhong TY, Li T, Li A. Treatment of Periodontal Bone Defects with Stem Cells from Inflammatory Dental Pulp Tissues in Miniature Swine. Tissue Eng Regen Med 2019; 16:191-200. [PMID: 30989045 DOI: 10.1007/s13770-018-00175-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/04/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023] Open
Abstract
Background Containing a certain proportion of mesenchymal stem cells, inflammatory dental tissue showed great tissue regeneration potential in recent years. However, whether it is applicable to promote tissue regeneration in vivo remains to be elucidated. Therefore, we evaluated the feasibility of stem cells from inflammatory dental pulp tissues (DPSCs-IPs) to reconstruct periodontal defects in miniature pigs. Methods The autologous pig DPSCs-IPs were first cultured, appraised and loaded onto β-tricalcium phosphate (β-TCP). The compounds were then engrafted into an artificially-created periodontal defect. Three months later, the extent of periodontal regeneration was evaluated. Clinical examination, radiological examination and immunohistochemical staining were used to assess periodontal regeneration. Results The data collectively showed that DPSCs-IPs from miniature pigs expressed moderate to high levels of STRO-1 and CD146 as well as low levels of CD34 and CD45. DPSCs-IPs have osteogentic, adipogenic and chondrogenic differentiation abilities. DPSCs-IPs were engrafted onto β-TCP and regenerated bone to repair periodontal defects by 3 months' post-surgical reconstruction. Conclusion Autologous DPSCs-IPs may be a feasible means of periodontal regeneration in miniature pigs.
Collapse
Affiliation(s)
- Ye Li
- 1Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi China.,2Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi Wu Road No. 98, Xi'an, 710004 Shaanxi China
| | - Xi Nan
- 2Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi Wu Road No. 98, Xi'an, 710004 Shaanxi China
| | - Tian-Yu Zhong
- 3Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi Wu Road No. 98, Xi'an, 710004 Shaanxi China
| | - Tong Li
- 1Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi China.,3Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi Wu Road No. 98, Xi'an, 710004 Shaanxi China
| | - Ang Li
- 1Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi China.,2Department of Periodontology, College of Stomatology, Xi'an Jiaotong University, Xi Wu Road No. 98, Xi'an, 710004 Shaanxi China
| |
Collapse
|
20
|
Angiogenic effect of platelet-rich concentrates on dental pulp stem cells in inflamed microenvironment. Clin Oral Investig 2019; 23:3821-3831. [PMID: 30687907 DOI: 10.1007/s00784-019-02811-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/11/2019] [Indexed: 01/04/2023]
Abstract
OBJECTIVE In this study, we aimed to determine the suitable concentrations of human platelet lysate (HPL) and platelet-rich plasma (PRP) for maintaining the in vitro proliferative and angiogenic potential of inflamed dental pulp stem cells. MATERIALS AND METHODS Lipopolysaccharide (LPS)-induced inflamed dental pulp-derived stem cells (iDPSCs) were treated with different concentrations of HPL and PRP (10% and 20%) followed by determination of viability using Alamar Blue assay. Expression of angiogenesis-, adhesion-, and inflammation-regulating genes was also analyzed using RT-qPCR array. Furthermore, expression of growth factors at protein level in the cell culture microenvironment was measured using multiplex assay. RESULTS Viability of iDPSCs was significantly (p < 0.05) higher in 20% HPL-supplemented media compared to iDPSCs. Expression of 10 out of 12 selected angiogenic genes, four out of seven adhesion molecules, and seven out of nine cytokine-producing genes were significantly (p < 0.05) higher in cells maintained in 20% HPL-supplemented media compared to that in FBS-supplemented media. Furthermore, expression of all the selected growth factors was significantly higher (p < 0.05) in the supernatants from 20% HPL media at 12 and 24 h post-incubation. CONCLUSION This study suggests that 20% HPL could be optimum to stimulate angiogenesis-related factors in iDPSCs while maintaining their viability. CLINICAL RELEVANCE This data may suggest the potential use of 20% HPL for expanding DPSCs scheduled for clinical trials for regenerative therapies including dental pulp regeneration.
Collapse
|
21
|
Effect of matrix metalloproteinase 8 inhibitor and chlorhexidine on the cytotoxicity, oxidative stress and cytokine level of MDPC-23. Dent Mater 2018; 34:e301-e308. [DOI: 10.1016/j.dental.2018.08.295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/23/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023]
|
22
|
Lipoxin A 4 Attenuates the Inflammatory Response in Stem Cells of the Apical Papilla via ALX/FPR2. Sci Rep 2018; 8:8921. [PMID: 29892010 PMCID: PMC5995968 DOI: 10.1038/s41598-018-27194-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/25/2018] [Indexed: 01/01/2023] Open
Abstract
Similar to the onset phase of inflammation, its resolution is a process that unfolds in a manner that is coordinated and regulated by a panel of mediators. Lipoxin A4 (LXA4) has been implicated as an anti-inflammatory, pro-resolving mediator. We hypothesized that LXA4 attenuates or prevents an inflammatory response via the immunosuppressive activity of Stem Cells of the Apical Papilla (SCAP). Here, we report for the first time in vitro that in a SCAP population, lipoxin receptor ALX/FPR2 was constitutively expressed and upregulated after stimulation with lipopolysaccharide and/or TNF-α. Moreover, LXA4 significantly enhanced proliferation, migration, and wound healing capacity of SCAP through the activation of its receptor, ALX/FPR2. Cytokine, chemokine and growth factor secretion by SCAP was inhibited in a dose dependent manner by LXA4. Finally, LXA4 enhanced immunomodulatory properties of SCAP towards Peripheral Blood Mononuclear Cells. These findings provide the first evidence that the LXA4-ALX/FPR2 axis in SCAP regulates inflammatory mediators and enhances immunomodulatory properties. Such features of SCAP may also support the role of these cells in the resolution phase of inflammation and suggest a novel molecular target for ALX/FPR2 receptor to enhance a stem cell-mediated pro-resolving pathway.
Collapse
|
23
|
Apatzidou DA, Nile C, Bakopoulou A, Konstantinidis A, Lappin DF. Stem cell-like populations and immunoregulatory molecules in periodontal granulation tissue. J Periodontal Res 2018; 53:610-621. [PMID: 29687448 DOI: 10.1111/jre.12551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVES Determine the presence of mesenchymal stem cells (MSCs) in healthy periodontal tissue and periodontal granulation tissue (GT) and explore associations between immuno-regulatory molecules and selected subgingival microorganisms. MATERIAL AND METHODS Mesenchymal stem cells were isolated, propagated and characterised by flow cytometry from a region of healthy gingival tissue and inflamed GT of 10 systemically healthy non-smokers with chronic periodontitis. Tissue levels of immunoregulatory molecules were determined by qPCR and Gingival Crevicular Fluid (GCF) levels by ELISA. Subgingival plaque levels of periodontal pathogens were determined by qPCR RESULTS: Cells with MSC-properties were isolated from both inflamed GT and healthy gingival (G) tissue. A pro-inflammatory process predominated in GT which was partly reflected in GCF and putative periodontal pathogens were higher at diseased sites. However, there was no significant difference in surface levels of mesenchymal (CD90, CD73, CD146, CD271, STRO-1), endothelial (CD105, CD106), hematopoietic (CD34, CD45) and embryonic (SSEA-4) stem cell markers between MSCs isolated from GT and G tissue. CONCLUSION Periodontal lesions, albeit inflamed, retain healing potential as inferred by the presence of MSC-like cells with similar immunophenotypic characteristics to those found in healthy periodontal tissue. Therefore, there might be merits for healing in preserving sufficient GT in-situ during periodontal surgery.
Collapse
Affiliation(s)
- D A Apatzidou
- Department of Preventive Dentistry, Periodontology and Implant Biology, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki (AUTh), Thessaloniki, Greece
| | - C Nile
- Infection and Immunity Research group, Glasgow Dental Hospital & School, University of Glasgow, Glasgow, UK
| | - A Bakopoulou
- Department of Prosthodontics, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A Konstantinidis
- Department of Preventive Dentistry, Periodontology and Implant Biology, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki (AUTh), Thessaloniki, Greece
| | - D F Lappin
- Infection and Immunity Research group, Glasgow Dental Hospital & School, University of Glasgow, Glasgow, UK
| |
Collapse
|
24
|
Bindal P, Ramasamy TS, Kasim NHA, Gnanasegaran N, Chai WL. Immune responses of human dental pulp stem cells in lipopolysaccharide-induced microenvironment. Cell Biol Int 2018; 42:832-840. [PMID: 29363846 DOI: 10.1002/cbin.10938] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/22/2018] [Indexed: 12/18/2022]
Abstract
This study aimed to investigate the effect of inflammatory stimuli on dental pulp stem cells (DPSCs) by assessing their proliferation and expression of genes as well as proteins in lipopolysaccharide (LPS)-induced microenvironment (iDPSCs). DPSCs were first characterized for their mesenchymal properties prior to challenging them with a series of LPS concentrations from 12 to 72 h. Following to this, their proliferation and inflammatory based genes as well as protein expression were assessed. iDPSCs had demonstrated significant expression of mesenchymal markers. Upon exposure to LPS, the viability dropped distinctly with increasing concentration, as compared to control (P < 0.05). The expression of pro-inflammatory genes such as interleukin 6, interleukin 8 were augmented with exposure to LPS (P < 0.05). Similarly, cytokines like tumour necrosis factor (TNF) α and interleukin 1α had increased in dose dependant manner upon LPS exposure (P < 0.05). Our results suggest that LPS concentration between 1 and 2 μg/mL demonstrated inflammation induction in DPSCs that may simulate inflamed microenvironment of dental pulp in clinical scenario. Thus, optimizing iDPSCs secretome profile could be a promising approach to test various regenerative protocols in inflamed microenvironment.
Collapse
Affiliation(s)
- Priyadarshini Bindal
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Thamil Selvee Ramasamy
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Nareshwaran Gnanasegaran
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Wen Lin Chai
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
25
|
Soancă A, Lupse M, Moldovan M, Pall E, Cenariu M, Roman A, Tudoran O, Surlin P, Șorițău O. Applications of inflammation-derived gingival stem cells for testing the biocompatibility of dental restorative biomaterials. Ann Anat 2018; 218:28-39. [PMID: 29604386 DOI: 10.1016/j.aanat.2018.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 01/24/2018] [Accepted: 02/12/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Normal or inflamed gingival tissues are regarded as a source of mesenchymal stem cells (MSCs) abundant and easily accessible through minimally invasive dental procedures. Due to the proximity of dental resin composites to gingival tissues and to the possible local cytotoxic effect of the eluted components, gingiva-derived MSCs could be used to investigate the biocompatibility of dental biomaterials. PURPOSE The present research aimed to isolate (MSCs) from inflamed and normal gingiva, to fully characterize them and to observe their behavior in relation with some commercial resin composite materials and one experimental material. MATERIAL AND METHODS Following their isolation, putative MSCs from both gingival sources were grown under the same culture conditions and characterized by immunophenotyping of cell surface antigens by flow-cytometry and transcription factors by immunocytochemical staining. Moreover, stemness gene expression was evaluated by RT-PCR analysis. Multipotent mesenchymal differentiation potential was investigated. Osteogenic and neurogenic differentiated cells were highlighted by immunocytochemical staining, chondrogenic cells by cytochemical staining, and adipocytes by cytochemical staining and spectrophotometry, respectively. Resin composite cytotoxicity was evaluated by cell membrane fluorescent labeling with PKH 26 and MTT assay. The results of PKH labeling were statistically analysed using two-way RM ANOVA with Bonferroni post-tests. For MTT assay, two-way RM ANOVA with Bonferroni post-tests and unpaired t test with Welch's correction were used. RESULTS A similar expression pattern of surface markers was observed. The cells were positive for CD105, CD73, CD90, CD49e, CD29, CD44 and CD166 and negative for CD45, CD34, CD14, CD79, HLA-DR and CD117 indicating a mesenchymal stem cell phenotype. The qRT-PCR analysis revealed a low gene expression for NOG, BMP4 and Oct3/4 and an increased expression for Nanog in both cells lines. Immunocytochemical analysis highlighted a more intense protein expression for Nanog, Oct3/4 and Sox-2 in MSCs derived from normal gingiva than from inflamed gingiva. Multipotent differentiation capacity of MSCs isolated from both sources was highlighted. The tested materials had no hazardous effect on MSCs as the two cell lines developed well onto resin composite substrates. Cell counting revealed some significant differences in the number of PKH-labeled MSCs at some experimental moments. Also, some differences in cell viability were recorded indicating better developmental conditions offered by some of the tested biomaterials. CONCLUSIONS The experimental resin composite behaved like the most biocompatible commercial material. Inflamed gingiva-derived MSCs retain their stem cell properties and could be used as a valuable cell line for testing dental biomaterials.
Collapse
Affiliation(s)
- A Soancă
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 15 V. Babeş St., 400012 Cluj-Napoca, Romania
| | - M Lupse
- Department of Infectious Diseases, Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 23 Iuliu Moldovan St., 400349 Cluj-Napoca, Romania
| | - M Moldovan
- Raluca Ripan Institute for Research in Chemistry, Babes-Bolyai University, 30 Fântânele St., 400294 Cluj-Napoca, Romania
| | - E Pall
- Department of Veterinary Reproduction, Obstetrics and Gynecology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania
| | - M Cenariu
- Department of Veterinary Reproduction, Obstetrics and Gynecology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, 3-5 Mănăştur St., 400372 Cluj-Napoca, Romania
| | - A Roman
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 15 V. Babeş St., 400012 Cluj-Napoca, Romania.
| | - O Tudoran
- Department of Functional Genomics and Experimental Pathology, Prof. Dr. Ion Chiricuţă Oncology Institute, 34-36 Republicii St., 400015 Cluj-Napoca, Romania
| | - P Surlin
- Department of Periodontology, University of Medicine and Pharmacy, 2 Petru Rareş St., 200349 Craiova, Romania
| | - O Șorițău
- Laboratory of Radiotherapy, Tumor and Radiobiology, Prof. Dr. Ion Chiricuţă Oncology Institute, 34-36 Republicii St., 400015 Cluj-Napoca, Romania
| |
Collapse
|
26
|
Molecular differences between mature and immature dental pulp cells: Bioinformatics and preliminary results. Exp Ther Med 2018; 15:3362-3368. [PMID: 29545856 PMCID: PMC5841066 DOI: 10.3892/etm.2018.5847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/05/2018] [Indexed: 12/26/2022] Open
Abstract
Although previous studies have demonstrated that dental pulp stem cells (DPSCs) from mature and immature teeth exhibit potential for multi-directional differentiation, the molecular and biological difference between the DPSCs from mature and immature permanent teeth has not been fully investigated. In the present study, 500 differentially expressed genes from dental pulp cells (DPCs) in mature and immature permanent teeth were obtained from the Gene Expression Omnibus online database. Based on bioinformatics analysis using the Database for Annotation, Visualization and Integrated Discovery, these genes were divided into a number of subgroups associated with immunity, inflammation and cell signaling. The results of the present study suggest that immune features, response to infection and cell signaling may be different in DPCs from mature and immature permanent teeth; furthermore, DPCs from immature permanent teeth may be more suitable for use in tissue engineering or stem cell therapy. The Online Mendelian Inheritance in Man database stated that Sonic Hedgehog (SHH), a differentially expressed gene in DPCs from mature and immature permanent teeth, serves a crucial role in the development of craniofacial tissues, including teeth, which further confirmed that SHH may cause DPCs from mature and immature permanent teeth to exhibit different biological characteristics. The Search Tool for the Retrieval of Interacting Genes/Proteins database revealed that SHH has functional protein associations with a number of other proteins, including Glioma-associated oncogene (GLI)1, GLI2, growth arrest-specific protein 1, bone morphogenetic protein (BMP)2 and BMP4, in mice and humans. It was also demonstrated that SHH may interact with other genes to regulate the biological characteristics of DPCs. The results of the present study may provide a useful reference basis for selecting suitable DPSCs and molecules for the treatment of these cells to optimize features for tissue engineering or stem cell therapy. Quantitative polymerase chain reaction should be performed to confirm the differential expression of these genes prior to the beginning of a functional study.
Collapse
|
27
|
Soares DG, Zhang Z, Mohamed F, Eyster TW, de Souza Costa CA, Ma PX. Simvastatin and nanofibrous poly(l-lactic acid) scaffolds to promote the odontogenic potential of dental pulp cells in an inflammatory environment. Acta Biomater 2018; 68:190-203. [PMID: 29294374 DOI: 10.1016/j.actbio.2017.12.037] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/15/2017] [Accepted: 12/22/2017] [Indexed: 12/17/2022]
Abstract
In this study, we investigated the anti-inflammatory, odontogenic and pro-angiogenic effects of integrating simvastatin and nanofibrous poly(l-lactic acid) (NF-PLLA) scaffolds on dental pulp cells (DPCs). Highly porous NF-PLLA scaffolds that mimic the nanofibrous architecture of extracellular matrix were first fabricated, then seeded with human DPCs and cultured with 0.1 μM simvastatin and/or 10 μg/mL pro-inflammatory stimulator lipopolysaccharide (LPS). The gene expression of pro-inflammatory mediators (TNF-α, IL-1β and MMP-9 mRNA) and odontoblastic markers (ALP activity, calcium content, DSPP, DMP-1 and BMP-2 mRNA) were quantified after long-term culture in vitro. In addition, we evaluated the scaffold's pro-angiogenic potential after 24 h of in vitro co-culture with endothelial cells. Finally, we assessed the combined effects of simvastatin and NF-PLLA scaffolds in vivo using a subcutaneous implantation mouse model. The in vitro studies demonstrated that, compared with the DPC/NF-PLLA scaffold constructs cultured only with pro-inflammatory stimulator LPS, adding simvastatin significantly repress the expression of pro-inflammatory mediators. Treating LPS+ DPC/NF-PLLA constructs with simvastatin also reverted the negative effects of LPS on expression of odontoblastic markers in vitro and in vivo. Western blot analysis demonstrated that these effects were related to a reduction in NFkBp65 phosphorylation and up-regulation of PPARγ expression, as well as to increased phosphorylation of pERK1/2 and pSmad1, mediated by simvastatin on LPS-stimulated DPCs. The DPC/NF-PLLA constructs treated with LPS/simvastatin also led to an increase in vessel-like structures, correlated with increased VEGF expression in both DPSCs and endothelial cells. Therefore, the combination of low dosage simvastatin and NF-PLLA scaffolds appears to be a promising strategy for dentin regeneration with inflamed dental pulp tissue, by minimizing the inflammatory reaction and increasing the regenerative potential of resident stem cells. STATEMENT OF SIGNIFICANCE The regeneration potential of stem cells is dependent on their microenvironment. In this study, we investigated the effect of the microenvironment of dental pulp stem cells (DPSCs), including 3D structure of a macroporous and nanofibrous scaffold, the inflammatory stimulus lipopolysaccharide (LPS) and a biological molecule simvastatin, on their regenerative potential of mineralized dentin tissue. The results demonstrated that LPS upregulated inflammatory mediators and suppressed the odontogenic potential of DPSCs. Known as a lipid-lowing agent, simvastatin was excitingly found to repress the expression of pro-inflammatory mediators, up-regulate odontoblastic markers, and exert a pro-angiogenic effect on endothelial cells, resulting in enhanced vascularization and mineralized dentin tissue regeneration in a biomimetic 3D tissue engineering scaffold. This novel finding is significant for the fields of stem cells, inflammation and dental tissue regeneration.
Collapse
|
28
|
Jun SK, Mahapatra C, Lee HH, Kim HW, Lee JH. Biological Effects of Provisional Resin Materials on Human Dental Pulp Stem Cells. Oper Dent 2018; 42:E81-E92. [PMID: 28257256 DOI: 10.2341/16-137-l] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES This study investigated the in vitro cytotoxicity as well as the proinflammatory cytokine expression of provisional resin materials on primary cultured human dental pulp stem cells (hDPSCs). METHODS Five commercially available provisional resin materials were chosen (SNAP [SN], Luxatemp [LT], Jet [JE], Revotek LC [RL], and Vipi block [VB]). Eluates that were either polymerizing or already set were added to hDPSCs under serially diluted conditions divided into three different setting times (25% set, 50% set, and 100% set) and incubated for 24 hours with 2× concentrated culture media. Cell cytotoxicity tests were performed by LDH assay and live and dead confocal microscope images. The expression of proinflammatory cytokines in SN and VB was measured using cytokine antibody arrays. Data were analyzed using repeated measures analysis of variance (ANOVA) or ANOVA followed by the Tukey post hoc test at a significance level of p<0.05. RESULTS Cytotoxicity greater than 30% was observed in the 50% diluted culture in SN, LT, and JE in the already set stage (p<0.05), while it was detected in SN and LT in early or intermediate stage samples. The cytotoxicity of SN, JE, and LT was greater with eluates from the polymerizing phase compared to that from already set samples (p<0.05), as observed by live and dead images. On the other hand, RL and VB did not exhibit cytotoxicity greater than 30%. Proinflammatory cytokines were not detected in 12.5% diluted culture with eluates from VB and early set stage SN. CONCLUSIONS The eluates from chemical-activated provisional resin materials during polymerization (SN, LT, and JE) were cytotoxic to hDPSCs and may adversely affect pulp tissue.
Collapse
|
29
|
Gnanasegaran N, Govindasamy V, Kathirvaloo P, Musa S, Abu Kasim NH. Effects of cell cycle phases on the induction of dental pulp stem cells toward dopaminergic-like cells. J Tissue Eng Regen Med 2017; 12:e881-e893. [PMID: 28079995 DOI: 10.1002/term.2401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/16/2016] [Accepted: 01/09/2017] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) is characterized by tremors and cognitive issues, and is due to the death of dopaminergic (DA-ergic) neurons in brain circuits that are responsible for producing neurotransmitter dopamine (DA). Currently, cell replacement therapies are underway to improve upon existing therapeutic approaches such as drug treatments and electrical stimulation. Among the widely available sources, dental pulp stem cells (DPSCs) from deciduous teeth have gained popularity because of their neural crest origin and inherent propensity toward neuronal lineage. Despite the various pre-clinical studies conducted, an important factor yet to be elucidated is the influence of growth phases in a typical trans-differentiation process. This study selected DPSCs at three distinct time points with variable growth phase proportions (G0/G1, S and G2/M) for in vitro trans-differentiation into DA-ergic-like cells. Using commercially available PCR arrays, we identified distinct gene profiles pertaining to cell cycles in these phases. The differentiation outcomes were assessed in terms of morphology and gene and protein expression, as well as with functional assays. It was noted that DPSCs with the highest G0/G1 phase were comparatively the best, representing at least a 2-fold up regulation (p < 0.05) of DA-ergic molecular cues compared to those from the remaining time points. Further investigations in terms of protein expression and DA-release assays also revealed a similar phenomenon (p < 0.05). These findings are expected to provide vital information for consideration in improving standard operating procedures in future cell transplantation work. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nareshwaran Gnanasegaran
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Vijayendran Govindasamy
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Premasangery Kathirvaloo
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Sabri Musa
- Department of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
30
|
Gnanasegaran N, Govindasamy V, Mani V, Abu Kasim NH. Neuroimmunomodulatory properties of DPSCs in anin vitromodel of Parkinson's disease. IUBMB Life 2017; 69:689-699. [DOI: 10.1002/iub.1655] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/16/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Nareshwaran Gnanasegaran
- Department of Restorative Dentistry; Faculty of Dentistry, University of Malaya; Kuala Lumpur Malaysia
| | - Vijayendran Govindasamy
- Department of Restorative Dentistry; Faculty of Dentistry, University of Malaya; Kuala Lumpur Malaysia
| | - Vasudevan Mani
- Department of Pharmacology and Toxicology; College of Pharmacy, Qassim University; Buraidah Kingdom of Saudi Arabia
| | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry; Faculty of Dentistry, University of Malaya; Kuala Lumpur Malaysia
| |
Collapse
|
31
|
Alkharobi H, Beattie J, Meade J, Devine D, El-Gendy R. Dental Pulp Cells Isolated from Teeth with Superficial Caries Retain an Inflammatory Phenotype and Display an Enhanced Matrix Mineralization Potential. Front Physiol 2017; 8:244. [PMID: 28503150 PMCID: PMC5408163 DOI: 10.3389/fphys.2017.00244] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/07/2017] [Indexed: 01/09/2023] Open
Abstract
We have isolated dental pulp cells (DPCs) from three healthy (hDPCs) and three carious (cDPCs) donors and shown that compared to hDPCs cells isolated from superficial carious lesions show higher clonogenic potential; show an equivalent proportion of cells with putative stem cell surface markers; show enhanced matrix mineralization capability; have enhanced angiogenic marker expression and retain the inflammatory phenotype in vitro characteristic of superficial caries lesions in vivo. Our findings suggest that cDPCs may be used for further investigation of the cross talk between inflammatory, angiogenic and mineralization pathways in repair of carious pulp. In addition cells derived from carious pulps (almost always discarded) may have potential for future applications in mineralized tissue repair and regeneration.
Collapse
Affiliation(s)
- Hanaa Alkharobi
- Division of Oral Biology, Leeds School of Dentistry, St. James University Hospital, University of LeedsLeeds, UK.,Department Oral Biology, Faculty of Dentistry, King AbdulAziz UniversityJeddah, Saudi Arabia
| | - James Beattie
- Division of Oral Biology, Leeds School of Dentistry, St. James University Hospital, University of LeedsLeeds, UK
| | - Josie Meade
- Division of Oral Biology, Leeds School of Dentistry, St. James University Hospital, University of LeedsLeeds, UK
| | - Deirdre Devine
- Division of Oral Biology, Leeds School of Dentistry, St. James University Hospital, University of LeedsLeeds, UK
| | - Reem El-Gendy
- Division of Oral Biology, Leeds School of Dentistry, St. James University Hospital, University of LeedsLeeds, UK.,Department of Oral Pathology, Faculty of Dentistry, Suez Canal UniversityIsmailia, Egypt
| |
Collapse
|
32
|
Human dental follicle cells express embryonic, mesenchymal and neural stem cells markers. Arch Oral Biol 2017; 73:121-128. [DOI: 10.1016/j.archoralbio.2016.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 09/21/2016] [Accepted: 10/06/2016] [Indexed: 12/13/2022]
|
33
|
Roman A, Páll E, Moldovan M, Rusu D, Şoriţău O, Feştilă D, Lupşe M. Cytotoxicity of Experimental Resin Composites on Mesenchymal Stem Cells Isolated from Two Oral Sources. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:1018-1033. [PMID: 27608930 DOI: 10.1017/s1431927616011624] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Resin composite materials that are used to restore tooth cervical lesions associated with gingival recessions can hamper healing after root coverage surgeries. This study evaluates the in vitro cytotoxic effect of five resin composites (two commercial and three experimental) on oral mesenchymal stem cells (MSCs) and the persistence of stemness properties in high passage MSCs. Sorption and solubility tests were made for all materials. MSCs were isolated from re-entry palatal and periodontal granulation tissues and were characterized and cultured on composite discs. Cytotoxicity of the materials was evaluated by the Alamar Blue viability test, by Paul Karl Horan (PKH) labeling, and by immunocytochemical staining for actin. Water and saliva sorption and solubility data revealed that two of the experimental materials behaved comparable with the marketed resin composites. The Alamar Blue viability test shows that both cell lines grew well on composite discs that seemed to induce no apparent toxic effects. No signs of disruption of cytoskeleton organization was seen. Experimental resin composites can be recommended for further investigation for obtaining approval for use. The standard minimal criteria were fulfilled for high passage MSCs. Palatal tissue regains its regenerative properties in terms of MSC presence in the re-entry area after 6 months of healing.
Collapse
Affiliation(s)
- Alexandra Roman
- 1Department of Periodontology,Iuliu Haţieganu University of Medicine and Pharmacy,15 V. Babeş St.,400012 Cluj-Napoca,Romania
| | - Emöke Páll
- 2Department of Veterinary Reproduction, Obstetrics and Gynecology,University of Agricultural Sciences and Veterinary Medicine,3-5 Mănăştur St.,400372 Cluj-Napoca,Romania
| | - Mărioara Moldovan
- 3Raluca Ripan Institute for Research in Chemistry,Babes-Bolyai University,30 Fântânele St.,400294 Cluj-Napoca,Romania
| | - Darian Rusu
- 4Periodontology Department,Victor Babes University of Medicine and Pharmacy,Bv. Revolutiei nr.9,300014 Timisoara,Romania
| | - Olga Şoriţău
- 5Laboratory of Tumor Biology and Radiobiology,Prof. Dr. Ion Chiricuţă Oncology Institute,34-36 Republicii,400015 Cluj-Napoca,Romania
| | - Dana Feştilă
- 6Department of Orthodontics,Iuliu Haţieganu University of Medicine and Pharmacy,33 Motilor St.,400001 Cluj-Napoca,Romania
| | - Mihaela Lupşe
- 7Department of Infectious Diseases, Faculty of Medicine,Iuliu Haţieganu University of Medicine and Pharmacy,23 Iuliu Moldovan St.,400349 Cluj-Napoca,Romania
| |
Collapse
|
34
|
Yu Y, Yin Y, Wu RX, He XT, Zhang XY, Chen FM. Hypoxia and low-dose inflammatory stimulus synergistically enhance bone marrow mesenchymal stem cell migration. Cell Prolif 2016; 50. [PMID: 27679423 DOI: 10.1111/cpr.12309] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/11/2016] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Cell migration is necessary for numerous physiological cell processes. Although either inflammatory or hypoxic stimuli of certain dose and duration have positive influence on cell migration, their combination has not been shown to result in a synergistic effect. MATERIALS AND METHODS In this study, we investigated combined effects of hypoxia and low-dose inflammatory stimulus (one-tenth of that of a previously used concentration) on migration of human bone marrow-derived mesenchymal stem cells (BMMSCs). RESULTS Our results from real-time PCR, Western blot analysis and an immunofluorescence assay, showed that dual stimulation up-regulated CXCR4 expression. Based on tablet scratch experimentation and transwell assay, the dual stimuli exhibited greater positive effects on cell migration than a single inflammatory or hypoxic stimulus. When effects of various pre-treatments on cell proliferation, differentiation and immunosuppression were screened, cells subjected to the hypoxic stimulus or dual stimuli had increased cell proliferation, while short-term inflammatory stimulus and/or hypoxic stimulus had no negative effect on cell differentiation and immunosuppression. CONCLUSIONS These findings suggest that the combination of hypoxia and low-dose inflammatory stimuli enhances the potential of BMMSCs to migrate, thus identifying cell pre-treatment conditions that could enhance future stem cell-based therapeutics.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China.,Department of Stomatology, Jinan Military General Hospital, Jinan, Shandong Province, China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Rui-Xin Wu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xiao-Tao He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Xi-Yu Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
35
|
Abd Rahman F, Mohd Ali J, Abdullah M, Abu Kasim NH, Musa S. Aspirin Enhances Osteogenic Potential of Periodontal Ligament Stem Cells (PDLSCs) and Modulates the Expression Profile of Growth Factor–Associated Genes in PDLSCs. J Periodontol 2016; 87:837-47. [DOI: 10.1902/jop.2016.150610] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
36
|
Hou Q, Li M, Lu YH, Liu DH, Li CC. Burn wound healing properties of asiaticoside and madecassoside. Exp Ther Med 2016; 12:1269-1274. [PMID: 27588048 PMCID: PMC4997909 DOI: 10.3892/etm.2016.3459] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 03/17/2016] [Indexed: 02/07/2023] Open
Abstract
The healing of burn wounds has been widely characterized to be highly intricate, involving processes such as neo-vascularization, granulation, re-epithelialization, inflammation and wound contraction. Various therapies are available for the management of burn wounds; however, a truly effective therapeutic strategy has yet to be identified due to safety issues. The aim of the present study was to assess and confirm the burn wound healing properties of the compounds asiaticoside (AE) and madecassoside (MA), which are found in the herb Centella asiatica. The cytotoxic nature of the AE and MA were inspected and were confirmed to be non-toxic up to 500 ppm. The compounds AE and MA increased monocyte chemoattractant protein-1 production, but caused no significant effect on vascular endothelial growth factor production. In addition, an in vivo animal burn model was employed to represent the features of burn wound healing. Hence, the present results warrant the further investigation of C. asiatica extracts for use in burn healing.
Collapse
Affiliation(s)
- Qiang Hou
- Department of Burns, Affiliated Hospital of Taishan Medical College, Tai'an, Shandong 271000, P.R. China
| | - Ming Li
- Department of Burns, Affiliated Hospital of Taishan Medical College, Tai'an, Shandong 271000, P.R. China
| | - Yan-Hua Lu
- Department of Burns, Affiliated Hospital of Taishan Medical College, Tai'an, Shandong 271000, P.R. China
| | - Dong-Hong Liu
- Department of Burns, Affiliated Hospital of Taishan Medical College, Tai'an, Shandong 271000, P.R. China
| | - Cheng-Cun Li
- Department of Burns, Affiliated Hospital of Taishan Medical College, Tai'an, Shandong 271000, P.R. China
| |
Collapse
|
37
|
Bianco J, De Berdt P, Deumens R, des Rieux A. Taking a bite out of spinal cord injury: do dental stem cells have the teeth for it? Cell Mol Life Sci 2016; 73:1413-37. [PMID: 26768693 PMCID: PMC11108394 DOI: 10.1007/s00018-015-2126-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/16/2015] [Accepted: 12/22/2015] [Indexed: 12/15/2022]
Abstract
Dental stem cells are an emerging star on a stage that is already quite populated. Recently, there has been a lot of hype concerning these cells in dental therapies, especially in regenerative endodontics. It is fitting that most research is concentrated on dental regeneration, although other uses for these cells need to be explored in more detail. Being a true mesenchymal stem cell, their capacities could also prove beneficial in areas outside their natural environment. One such field is the central nervous system, and in particular, repairing the injured spinal cord. One of the most formidable challenges in regenerative medicine is to restore function to the injured spinal cord, and as yet, a cure for paralysis remains to be discovered. A variety of approaches have already been tested, with graft-based strategies utilising cells harbouring appropriate properties for neural regeneration showing encouraging results. Here we present a review focusing on properties of dental stem cells that endorse their use in regenerative medicine, with particular emphasis on repairing the damaged spinal cord.
Collapse
Affiliation(s)
- John Bianco
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier, 73, B1 73.12, 1200, Brussels, Belgium.
- Integrated Center for Cell Therapy and Regenerative Medicine, International Clinical Research Center (FNUSA-ICRC), St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic.
| | - Pauline De Berdt
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier, 73, B1 73.12, 1200, Brussels, Belgium
| | - Ronald Deumens
- Institute of Neuroscience, Université catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium
| | - Anne des Rieux
- Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Université catholique de Louvain, Avenue Mounier, 73, B1 73.12, 1200, Brussels, Belgium
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium
| |
Collapse
|
38
|
Current Advance and Future Prospects of Tissue Engineering Approach to Dentin/Pulp Regenerative Therapy. Stem Cells Int 2016; 2016:9204574. [PMID: 27069484 PMCID: PMC4812497 DOI: 10.1155/2016/9204574] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/25/2016] [Accepted: 02/17/2016] [Indexed: 01/09/2023] Open
Abstract
Recent advances in biomaterial science and tissue engineering technology have greatly spurred the development of regenerative endodontics. This has led to a paradigm shift in endodontic treatment from simply filling the root canal systems with biologically inert materials to restoring the infected dental pulp with functional replacement tissues. Currently, cell transplantation has gained increasing attention as a scientifically valid method for dentin-pulp complex regeneration. This multidisciplinary approach which involves the interplay of three key elements of tissue engineering—stem cells, scaffolds, and signaling molecules—has produced an impressive number of favorable outcomes in preclinical animal studies. Nevertheless, many practical hurdles need to be overcome prior to its application in clinical settings. Apart from the potential health risks of immunological rejection and pathogenic transmission, the lack of a well-established banking system for the isolation and storage of dental-derived stem cells is the most pressing issue that awaits resolution and the properties of supportive scaffold materials vary across different studies and remain inconsistent. This review critically examines the classic triad of tissue engineering utilized in current regenerative endodontics and summarizes the possible techniques developed for dentin/pulp regeneration.
Collapse
|
39
|
Tang HN, Xia Y, Yu Y, Wu RX, Gao LN, Chen FM. Stem cells derived from "inflamed" and healthy periodontal ligament tissues and their sheet functionalities: a patient-matched comparison. J Clin Periodontol 2016; 43:72-84. [PMID: 26719165 DOI: 10.1111/jcpe.12501] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 12/31/2022]
Abstract
AIM The aim of this study was to compare the properties of stem cells derived from "inflamed" and healthy periodontal ligament (PDL) tissues from patient-matched groups. MATERIAL AND METHODS Patient-matched stem cells derived from root-attached "inflamed" and healthy PDL tissues from six donors, termed I-PDLSCs and H-PDLSCs, respectively, were investigated with regard to their stem cell properties, immunomodulatory effects and capacity to form robust cell sheets for therapeutic applications. RESULTS We found that cells derived from both sources exhibited typical mesenchymal stem cell (MSC) characteristics. However, compared with H-PDLSCs, I-PDLSCs demonstrated an increased capacity to proliferate, a greater potential to migrate and a decreased capacity to differentiate into osteoblasts in vitro. When I-PDLSCs and H-PDLSCs were co-cultured with peripheral blood mononuclear cells, the MSCs derived from "inflamed" PDL tissues exhibited impaired immunomodulation. Although I-PDLSCs led to increased collagen type I, periostin and integrin β1 content in the matrix, the cell sheets formed by I-PDLSCs were dysfunctional due to their impaired osteogenic/chondrogenic differentiation and tissue regeneration. CONCLUSIONS These data provide additional evidence that I-PDLSCs are functionally compromised compared with H-PDLSCs. Nonetheless, their dominant abundance in the available tissues indicates that stem cells derived from damaged teeth extracted due to periodontitis warrant further exploration.
Collapse
Affiliation(s)
- Hao-Ning Tang
- State Key Laboratory of Military Stomatology Biomaterials Unit, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Yu Xia
- State Key Laboratory of Military Stomatology Biomaterials Unit, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Yang Yu
- State Key Laboratory of Military Stomatology Biomaterials Unit, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Rui-Xin Wu
- State Key Laboratory of Military Stomatology Biomaterials Unit, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Li-Na Gao
- State Key Laboratory of Military Stomatology Biomaterials Unit, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology Biomaterials Unit, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
40
|
Interferon-gamma improves impaired dentinogenic and immunosuppressive functions of irreversible pulpitis-derived human dental pulp stem cells. Sci Rep 2016; 6:19286. [PMID: 26775677 PMCID: PMC4726054 DOI: 10.1038/srep19286] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/07/2015] [Indexed: 12/29/2022] Open
Abstract
Clinically, irreversible pulpitis is treated by the complete removal of pulp tissue followed by replacement with artificial materials. There is considered to be a high potential for autologous transplantation of human dental pulp stem cells (DPSCs) in endodontic treatment. The usefulness of DPSCs isolated from healthy teeth is limited. However, DPSCs isolated from diseased teeth with irreversible pulpitis (IP-DPSCs) are considered to be suitable for dentin/pulp regeneration. In this study, we examined the stem cell potency of IP-DPSCs. In comparison with healthy DPSCs, IP-DPSCs expressed lower colony-forming capacity, population-doubling rate, cell proliferation, multipotency, in vivo dentin regeneration, and immunosuppressive activity, suggesting that intact IP-DPSCs may be inadequate for dentin/pulp regeneration. Therefore, we attempted to improve the impaired in vivo dentin regeneration and in vitro immunosuppressive functions of IP-DPSCs to enable dentin/pulp regeneration. Interferon gamma (IFN-γ) treatment enhanced in vivo dentin regeneration and in vitro T cell suppression of IP-DPSCs, whereas treatment with tumor necrosis factor alpha did not. Therefore, these findings suggest that IFN-γ may be a feasible modulator to improve the functions of impaired IP-DPSCs, suggesting that autologous transplantation of IFN-γ-accelerated IP-DPSCs might be a promising new therapeutic strategy for dentin/pulp tissue engineering in future endodontic treatment.
Collapse
|
41
|
Cryopreservation and Banking of Dental Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 951:199-235. [DOI: 10.1007/978-3-319-45457-3_17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Gnanasegaran N, Govindasamy V, Abu Kasim NH. Differentiation of stem cells derived from carious teeth into dopaminergic-like cells. Int Endod J 2015; 49:937-49. [PMID: 26354006 DOI: 10.1111/iej.12545] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 09/05/2015] [Indexed: 12/23/2022]
Abstract
AIM To investigate whether dental pulp stem cells from carious teeth (DPSCs-CT) can differentiate into functional dopaminergic-like (DAergic) cells and provide an alternative cell source in regenerative medicine. METHODOLOGY Dental pulp stem cells from healthy (DPSCs) and carious teeth (DPSCs-CT) were isolated from young donors. Both cell lines were expanded in identical culture conditions and subsequently differentiated towards DAergic-like cells using pre-defined dopaminergic cocktails. The dopaminergic efficiencies were evaluated both at gene and protein as well as at secretome levels. RESULTS The efficiency of DPSCs-CT to differentiate into DAergic-like cells was not equivalent to that of DPSCs. This was further reflected in both gene and protein generation whereby key neuronal markers such as nestin, NURR1 and beta-III-tubulin were expressed significantly lower as compared to differentiated DPSCs (P < 0.05). In addition, expressions of transcriptomes related to neurogenesis revealed downregulation of more than 50% of the genes as compared to differentiated DPSC (P < 0.05). Amongst the notable genes were those from the transcription factors family (FLNA, MEF2C, NEUROG2), signalling pathway family (DLL1, Notch1, TGF-β1), neuro-inducer family (BDNF) and cell communication family (APBB1). CONCLUSIONS DPSCs-CT were able to differentiate into DAergic-like cells but not as efficiently as DPSCs. As such, prior to use in regenerative medicine, stem cells from any source should be thoroughly investigated beyond conventional benchmarks such as that proposed by the International Society for Cellular Therapy (ISCT).
Collapse
Affiliation(s)
- N Gnanasegaran
- GMP-compliant stem cells laboratory, Hygieia Innovation, Persiaran Seri Perdana, Federal Territory of Putrajaya, Putrajaya, Malaysia.,Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - V Govindasamy
- GMP-compliant stem cells laboratory, Hygieia Innovation, Persiaran Seri Perdana, Federal Territory of Putrajaya, Putrajaya, Malaysia.
| | - N H Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
43
|
Páll E, Florea A, Soriţău O, Cenariu M, Petruţiu AS, Roman A. Comparative Assessment of Oral Mesenchymal Stem Cells Isolated from Healthy and Diseased Tissues. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2015; 21:1249-1263. [PMID: 26315895 DOI: 10.1017/s1431927615014749] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The aim of the present study was to isolate human mesenchymal stem cells (MSCs) from palatal connective and periodontal granulation tissues and to comparatively evaluate their properties. MSCs were isolated using the explant culture method. Adherence to plastic, specific antigen makeup, multipotent differentiation potential, functionality, and ultrastructural characteristics were investigated. The frequency of colony-forming unit fibroblasts for palatal-derived mesenchymal stem cells (pMSCs) was significantly higher than that of granulation tissue-derived mesenchymal stem cells (gtMSCs). A significantly higher population doubling time and lower migration potential were recorded for gtMSCs than for pMSCs. Both cell lines were positive for CD105, CD73, CD90, CD44, and CD49f, and negative for CD34, CD45, and HLA-DR, but the level of expression was different. MSCs from both sources were relatively uniform in their ultrastructure. Generally, both cell lines possessed a large, irregular-shaped euchromatic nucleus, and cytoplasm rich in mitochondria, lysosomes, and endoplasmic reticulum. The periphery of the plasma membrane displayed many small filopodia. MSCs from both cell lines were successfully differentiated into osteogenic, adiopogenic, and chondrogenic lineages. Both healthy and diseased tissues may be considered as valuable sources of MSCs for regenerative medicine owing to the high acceptance and fewer complications during harvesting.
Collapse
Affiliation(s)
- Emöke Páll
- 1Department of Reproduction,Obstetrics and Veterinary Gynecology, Faculty of Veterinary Medicine,University of Agricultural Sciences and Veterinary Medicine,3-5 Mănăştur St.,400372 Cluj-Napoca,Romania
| | - Adrian Florea
- 3Department of Cell and Molecular Biology, Faculty of Medicine,"Iuliu Haţieganu" University of Medicine and Pharmacy,6 L. Pasteur St.,400349 Cluj-Napoca,Romania
| | - Olga Soriţău
- 4Laboratory of Radiotherapy, Tumor and Radiobiology,Prof. Dr. "Ion Chiricuţă" Oncology Institute,34-36 I. Creangă St.,400015 Cluj-Napoca,Romania
| | - Mihai Cenariu
- 1Department of Reproduction,Obstetrics and Veterinary Gynecology, Faculty of Veterinary Medicine,University of Agricultural Sciences and Veterinary Medicine,3-5 Mănăştur St.,400372 Cluj-Napoca,Romania
| | - Adrian S Petruţiu
- 2Department of Periodontology, Faculty of Dental Medicine,"Iuliu Haţieganu" University of Medicine and Pharmacy,15 V. Babeş St.,400012 Cluj-Napoca,Romania
| | - Alexandra Roman
- 2Department of Periodontology, Faculty of Dental Medicine,"Iuliu Haţieganu" University of Medicine and Pharmacy,15 V. Babeş St.,400012 Cluj-Napoca,Romania
| |
Collapse
|
44
|
Soares DG, Basso FG, Scheffel DS, Hebling J, de Souza Costa CA. Responses of human dental pulp cells after application of a low-concentration bleaching gel to enamel. Arch Oral Biol 2015; 60:1428-36. [DOI: 10.1016/j.archoralbio.2015.06.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/28/2015] [Accepted: 06/14/2015] [Indexed: 01/17/2023]
|
45
|
Roman A, Páll E, Mihu CM, Petruţiu AS, Barbu-Tudoran L, Câmpian RS, Florea A, Georgiu C. Tracing CD34+ Stromal Fibroblasts in Palatal Mucosa and Periodontal Granulation Tissue as a Possible Cell Reservoir for Periodontal Regeneration. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2015; 21:837-848. [PMID: 26040442 DOI: 10.1017/s1431927615000598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The aim of the present research was to trace CD34+ stromal fibroblastic cells (CD34+ SFCs) in the palatal connective tissue harvested for muco-gingival surgical procedures and in granulation tissues from periodontal pockets using immunohistochemical and transmission electron microscopy. Immunohistochemical analysis targeted the presence of three antigens: CD31, α-smooth muscle actin (α-SMA), and CD34. In the palate, CD31 staining revealed a colored inner ring of the vessels representing the endothelium, α-SMA+ was located in the medial layer of the vasculature, and CD34 was intensely expressed by endothelial cells and artery adventitial cells (considered to be CD34+ SFCs). Granulation tissue showed the same pattern for CD31+ and α-SMA, but a different staining pattern for CD34. Ultrastructural examination of the palatal tissue highlighted perivascular cells with fibroblast-like characteristics and pericytes in close spatial relationship to endothelial cells. The ultrastructural evaluation of granulation tissue sections confirmed the presence of neovasculature and the inflammatory nature of this tissue. The present study traced the presence of CD34+ SFCs and of pericytes in the palatal connective tissue thus highlighting once more its intrinsic regenerative capabilities. The clinical and systemic factors triggering mobilization and influencing the fate of local CD34+SCFs and other progenitors are issues to be further investigated.
Collapse
Affiliation(s)
- Alexandra Roman
- 1Department of Periodontology, Faculty of Dental Medicine,Iuliu Haţieganu University of Medicine and Pharmacy,15 V. Babeş Street,400012 Cluj-Napoca,Romania
| | - Emőke Páll
- 1Department of Periodontology, Faculty of Dental Medicine,Iuliu Haţieganu University of Medicine and Pharmacy,15 V. Babeş Street,400012 Cluj-Napoca,Romania
| | - Carmen M Mihu
- 3Department of Histology, Faculty of Medicine,Iuliu Haţieganu University of Medicine and Pharmacy,6 L. Pasteur Street,400349 Cluj-Napoca,Romania
| | - Adrian S Petruţiu
- 1Department of Periodontology, Faculty of Dental Medicine,Iuliu Haţieganu University of Medicine and Pharmacy,15 V. Babeş Street,400012 Cluj-Napoca,Romania
| | - Lucian Barbu-Tudoran
- 4Department of Molecular Biology and Biotechnologies, Faculty of Biology and Geology,Babeş-Bolyai University,5-7 Clinicilor Street,400006 Cluj-Napoca,Romania
| | - Radu S Câmpian
- 5Department of Oral Rehabilitation, Faculty of Dental Medicine,Iuliu Haţieganu University of Medicine and Pharmacy,15 V. Babeş Street,400012 Cluj-Napoca,Romania
| | - Adrian Florea
- 6Department of Cell and Molecular Biology, Faculty of Medicine,Iuliu Haţieganu University of Medicine and Pharmacy,6 L. Pasteur Street,400349 Cluj-Napoca,Romania
| | - Carmen Georgiu
- 7Department of Pathology, Faculty of Medicine,Iuliu Haţieganu University of Medicine and Pharmacy,8 V. Babeş Street,400012 Cluj-Napoca,Romania
| |
Collapse
|
46
|
Zaganescu R, Barbu Tudoran L, Pall E, Florea A, Roman A, Soanca A, Mihaela Mihu C. Ultrastructural evaluation of mesenchymal stem cells from inflamed periodontium in different in vitro conditions. Microsc Res Tech 2015; 78:792-800. [PMID: 26179176 DOI: 10.1002/jemt.22542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/31/2015] [Accepted: 06/17/2015] [Indexed: 11/08/2022]
Abstract
This research aimed to observe the behavior of mesenchymal stem cells (MSCs) isolated from periodontal granulation tissue (gt) when manipulated ex vivo to induce three-dimensional (3D) spheroid (aggregates) formation as well as when seeded on two bone scaffolds of animal origin. Periodontal gt was chosen as a MSC source because of its availability, considering that it is eliminated as a waste material during conventional surgical therapies. 3D aggregates of cells were generated; they were grown for 3 and 7 days, respectively, and then prepared for transmission electron microscopic analysis. The two biomaterials were seeded for 72 h with gtMSCs and prepared for scanning electronic microscopic observation. The ultrastructural analysis of 3D spheroids remarked some differences between the inner and the outer cell layers, with a certain commitment observed at the inner cells. Both scaffolds showed a relatively smooth surface at low magnification. Macro- and micropores having a scarce distribution were observed on both bone substitutes. gtMSCs grew with relative difficulty on the biomaterials. After 72 h of proliferation, gtMSCs scarcely covered the surface of bovine bone scaffolds, demonstrating fibroblast-like or star-like shapes with elongated filiform extensions. Our results add other data on the possible usefulness of gtMSC and could question the current paradigm regarding the complete removal of chronically inflamed gts from the defects during periodontal surgeries. Until optimal protocols for ex vivo manipulation of MSCs are available for clinical settings, it is advisable to use biocompatible bone substitutes that allow the development of progenitor cells.
Collapse
Affiliation(s)
- Raluca Zaganescu
- Student, Faculty of Medicine, Department of Histology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, 400012, Romania
| | - Lucian Barbu Tudoran
- Department of Molecular Biology and Biotechnologies, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, 400006, Romania
| | - Emoke Pall
- Department of Veterinary Reproduction, Obstetrics, and Gynecology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, 400372, Romania
| | - Adrian Florea
- Department of Cell and Molecular Biology, Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, 400349, Romania
| | - Alexandra Roman
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, 400012, Romania
| | - Andrada Soanca
- Department of Periodontology, Faculty of Dental Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, 400012, Romania
| | - Carmen Mihaela Mihu
- Department of Histology, Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, 400349, Romania
| |
Collapse
|
47
|
Gładysz D, Hozyasz KK. Stem cell regenerative therapy in alveolar cleft reconstruction. Arch Oral Biol 2015; 60:1517-32. [PMID: 26263541 DOI: 10.1016/j.archoralbio.2015.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/23/2015] [Accepted: 07/04/2015] [Indexed: 12/17/2022]
Abstract
Achieving a successful and well-functioning reconstruction of craniofacial deformities still remains a challenge. As for now, autologous bone grafting remains the gold standard for alveolar cleft reconstruction. However, its aesthetic and functional results often remain unsatisfactory, which carries a long-term psychosocial and medical sequelae. Therefore, searching for novel therapeutic approaches is strongly indicated. With the recent advances in stem cell research, cell-based tissue engineering strategies move from the bench to the patients' bedside. Successful stem cell engineering employs a carefully selected stem cell source, a biodegradable scaffold with osteoconductive and osteoinductive properties, as well as an addition of growth factors or cytokines to enhance osteogenesis. This review highlights recent advances in mesenchymal stem cell tissue engineering, discusses animal models and case reports of stem cell enhanced bone regeneration, as well as ongoing clinical trials.
Collapse
Affiliation(s)
- Dominika Gładysz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland
| | - Kamil K Hozyasz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland.
| |
Collapse
|
48
|
Sun HH, Chen B, Zhu QL, Kong H, Li QH, Gao LN, Xiao M, Chen FM, Yu Q. Investigation of dental pulp stem cells isolated from discarded human teeth extracted due to aggressive periodontitis. Biomaterials 2014; 35:9459-72. [DOI: 10.1016/j.biomaterials.2014.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/01/2014] [Indexed: 01/09/2023]
|
49
|
Gnanasegaran N, Govindasamy V, Musa S, Abu Kasim NH. ReNCell VM conditioned medium enhances the induction of dental pulp stem cells into dopaminergic like cells. Cytotechnology 2014; 68:343-53. [PMID: 25322895 DOI: 10.1007/s10616-014-9787-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 09/13/2014] [Indexed: 12/21/2022] Open
Abstract
Among the debilitating diseases, neurological related diseases are the most challenging ones to be treated using cell replacement therapies. Recently, dental pulp stem cells (SHED) were found to be most suitable cell choice for neurological related diseases as evidenced with many preclinical studies. To enhance the neurological potential of SHED, we recapitulated one of the pharmacological therapeutic tools in cell replacement treatment, we pre-conditioned dental pulp stem cells (SHED) with culture medium of ReNCell VM, an immortalized neuron progenitor cell, prior to neurogenesis induction and investigated whether this practice enhances their neurogenesis potential especially towards dopaminergic neurons. We hypothesed that the integration of pharmacological practices such as co-administration of various drugs, a wide range of doses and duration as well as pre-conditioning into cell replacement may enhance the efficacy of stem cell therapy. In particular, pre-conditioning is shown to be involved in the protective effect from some membrano-tropic drugs, thereby improving the resistance of cell structures and homing capabilities. We found that cells pre-treated with ReNCell VM conditioned medium displayed bipolar structures with extensive branches resembling putative dopaminergic neurons as compared to non-treated cells. Furthermore, many neuronal related markers such as NES, NR4A2, MSI1, and TH were highly expressed (fold changes > 2; p < 0.05) in pre-treated cells. Similar observations were detected at the protein level. The results demonstrate for the first time that SHED pre-conditioning enhances neurological potential and we suggest that cells should be primed to their respective environment prior to transplantation.
Collapse
Affiliation(s)
- Nareshwaran Gnanasegaran
- cGMP-Compliant Stem Cell Laboratory, Hygieia Innovation Sdn. Bhd, Lot 1G-2G, Lanai Complex No. 2, Persiaran Seri Perdana, Precinct 10, 62250, Federal Territory of Putrajaya, Malaysia.,Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Vijayendran Govindasamy
- cGMP-Compliant Stem Cell Laboratory, Hygieia Innovation Sdn. Bhd, Lot 1G-2G, Lanai Complex No. 2, Persiaran Seri Perdana, Precinct 10, 62250, Federal Territory of Putrajaya, Malaysia.
| | - Sabri Musa
- Department of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
50
|
Comparative analysis of proliferation and differentiation potentials of stem cells from inflamed pulp of deciduous teeth and stem cells from exfoliated deciduous teeth. BIOMED RESEARCH INTERNATIONAL 2014; 2014:930907. [PMID: 25045714 PMCID: PMC4090480 DOI: 10.1155/2014/930907] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 05/23/2014] [Accepted: 05/28/2014] [Indexed: 01/09/2023]
Abstract
Stem cells isolated from exfoliated deciduous teeth (SHEDs) are highly capable of proliferation and differentiation, and they represent good cell sources for mesenchymal stem cell- (MSC-) mediated dental tissue regeneration, but the supply of SHEDs is limited. A previous study found that stem cells could be isolated from inflamed tissues, but it is unknown whether primary dental pulp diagnosed with irreversible pulpitis might contain stem cells with appropriate tissue regeneration capacity. In this study, we aimed to isolate stem cells from both inflamed pulps of deciduous teeth (SCIDs) and SHEDs from Chinese children and to compare their proliferation and differentiation potentials. Our results showed that SCIDs were positive for cell surface markers, including CD105, CD90, and CD146, and they had high proliferation ability and osteogenic, adipogenic, and chondrogenic differentiation potentials. There was no significant difference in proliferation and differentiation potentials between SCIDs and SHEDs. The mRNA of inflammatory factors, including IL-1β, IL-6, and TNF-α, was expressed at similar levels in SCIDs and SHEDs, but SCIDs secreted more TNF-α protein. In conclusion, our in vitro results showed that SCIDs have proliferation and differentiation potentials similar to those of SHEDs. Thus, SCIDs represent a new potentially applicable source for MSC mediated tissue regeneration.
Collapse
|