1
|
Choi YJ, Park J, Shin MG, Jung BK, Shin H, Cho S, Cho HI, Nah EH. Distribution and Characteristics of Oral Pathogens According to Blood Glucose Levels in South Korean Health Examinees. Int J Mol Sci 2025; 26:2638. [PMID: 40141280 PMCID: PMC11942294 DOI: 10.3390/ijms26062638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
The distribution of oral pathogens is influenced by genetic background, diet, socioeconomic status, and racial factors. This study aimed to assess the distribution and characteristics of oral pathogens based on blood glucose levels in a South Korean population. This cross-sectional, retrospective study included subjects from 17 health promotion centers in 13 South Korean cities between November 2021 and December 2022. Real-time multiplex PCR was used to detect 10 periodontitis-related pathogens, 6 dental caries-related pathogens, and 1 dental caries-protective bacterium. The most prevalent periodontitis-related pathogens were Parvimonas micra (97.6%), Porphyromonas endodontalis (96.8%), and Treponema socranskii (95.0%). Among dental caries-related pathogens, Streptococcus sanguinis and Veillonella parvula were found in all subjects. The prevalence of periodontitis-related pathogens was higher in males, while pathogens related to periodontitis and dental caries were more prevalent in older individuals. In the diabetes group, Aggregatibacter actinomycetemcomitans, red and orange complexes, and Streptococcus mutans were more prevalent. The relative amount of S. sanguinis was lower, while V. parvula was higher in individuals with diabetes mellitus. The prevalence and composition of oral pathogens vary by sex, age, and blood glucose levels. Diabetic individuals showed a pathogenic community structure linked to increased risks of periodontitis and dental caries.
Collapse
Affiliation(s)
- Yong Jun Choi
- Department of Laboratory Medicine, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea; (Y.J.C.); (M.G.S.)
| | - Jooheon Park
- Department of Laboratory Medicine, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea; (Y.J.C.); (M.G.S.)
| | - Myung Geun Shin
- Department of Laboratory Medicine, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea; (Y.J.C.); (M.G.S.)
| | - Bong-Kwang Jung
- MEDIcheck Research Institute, Korea Association of Health Promotion, Seoul 07572, Republic of Korea; (B.-K.J.); (H.S.); (S.C.)
| | - Hyejoo Shin
- MEDIcheck Research Institute, Korea Association of Health Promotion, Seoul 07572, Republic of Korea; (B.-K.J.); (H.S.); (S.C.)
| | - Seon Cho
- MEDIcheck Research Institute, Korea Association of Health Promotion, Seoul 07572, Republic of Korea; (B.-K.J.); (H.S.); (S.C.)
| | - Han-Ik Cho
- MEDIcheck LAB, Korea Association of Health Promotion, Seoul 07572, Republic of Korea;
| | - Eun-Hee Nah
- Department of Laboratory Medicine, Chonnam National University Hwasun Hospital, Hwasun 58128, Republic of Korea; (Y.J.C.); (M.G.S.)
- Department of Laboratory Medicine, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| |
Collapse
|
2
|
Khzam N, Kujan O, Haubek D, Arslan A, Johansson A, Oscarsson J, Razooqi Z, Miranda LA. The Effectiveness of Salivary Sampling for the Detection and Quantification of Aggregatibacter actinomycetemcomitans in Periodontitis Patients. Pathogens 2024; 13:1073. [PMID: 39770333 PMCID: PMC11728542 DOI: 10.3390/pathogens13121073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/21/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025] Open
Abstract
The objective was to evaluate using unstimulated saliva in detecting Aggregatibacter actinomycetemcomitans and to compare the saliva and subgingival and mucosa membrane occurrence of this periodontal pathogen in patients diagnosed with advanced periodontitis. Patients with advanced forms of periodontitis (n = 220; mean age: 54.03 ± 03 years) at stage III/IV were sampled. Unstimulated saliva, buccal cheek mucosa, and pooled subgingival plaque samples were collected. The identification of A. actinomycetemcomitans was performed using qPCR. A descriptive analysis and Wilcoxon test and analysis of variance were performed. A. actinomycetemcomitans was isolated from 28.18% of the subjects. A total of 660 samples were obtained, 220 from unstimulated saliva, 220 from buccal cheek mucosa surfaces, and 220 from pooled subgingival plaque samples. A. actinomycetemcomitans was isolated from 21.80% of unstimulated saliva, 19.50% of buccal cheek swabs, and 17.70% of subgingival samples. There was a statistically significant difference between the presence of A. actinomycetemcomitans in the unstimulated saliva samples and in the buccal cheek mucosa swab samples and pooled subgingival plaque samples (p < 0.001). These results suggest that in advanced periodontitis, unstimulated saliva is representative of pooled subgingival plaque/buccal cheek mucosa samples and its use is adequate in the oral detection of A. actinomycetemcomitans in a cohort of patients with stage III and IV periodontitis.
Collapse
Affiliation(s)
- Nabil Khzam
- Dental School, The University of Western Australia, Nedlands, WA 6009, Australia; (O.K.); (L.A.M.)
- NK Periodontics, Specialist Periodontal Private Practice, Applecross, WA 6152, Australia
| | - Omar Kujan
- Dental School, The University of Western Australia, Nedlands, WA 6009, Australia; (O.K.); (L.A.M.)
| | - Dorte Haubek
- Jammerbugt Municipal Dental Service, Skolevej 1, DK-9460 Brovst, Denmark;
| | - Aysen Arslan
- Department of Odontology, Umeå University, 901 87 Umeå, Sweden; (A.A.); (J.O.); (Z.R.)
| | - Anders Johansson
- Department of Odontology, Umeå University, 901 87 Umeå, Sweden; (A.A.); (J.O.); (Z.R.)
| | - Jan Oscarsson
- Department of Odontology, Umeå University, 901 87 Umeå, Sweden; (A.A.); (J.O.); (Z.R.)
| | - Zeinab Razooqi
- Department of Odontology, Umeå University, 901 87 Umeå, Sweden; (A.A.); (J.O.); (Z.R.)
| | - Leticia Algarves Miranda
- Dental School, The University of Western Australia, Nedlands, WA 6009, Australia; (O.K.); (L.A.M.)
| |
Collapse
|
3
|
Pignatelli P, Mrakic-Sposta S, Bondi D, D’Antonio DL, Piattelli A, Santangelo C, Verratti V, Curia MC. The Effect of Acute High-Altitude Exposure on Oral Pathogenic Bacteria and Salivary Oxi-Inflammatory Markers. J Clin Med 2024; 13:6266. [PMID: 39458216 PMCID: PMC11508378 DOI: 10.3390/jcm13206266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The environment can alter the homeostasis of humans and human microbiota. Oral health is influenced by high altitude through symptoms of periodontitis, barodontalgia, dental barotrauma, and a decrease in salivary flow. Microbiota and inflammatory state are connected in the oral cavity. This study aimed to explore the effect of acute high-altitude exposure on the salivary microbiome and inflammatory indicators. Methods: Fifteen healthy expeditioners were subjected to oral examination, recording the plaque index (PII), gingival index (GI), the simplified oral hygiene index (OHI-S), and the number of teeth; unstimulated saliva samples were collected at an altitude of 1191 m (T1) and 4556 m (T2). TNF-α, sICAM1, ROS, and the oral bacterial species Porphyromonas gingivalis (Pg) and Fusobacterium nucleatum (Fn) were quantified. Results: At T2, slCAM, TNF, and ROS increased by 85.5% (IQR 74%), 84% (IQR 409.25%), and 53.5% (IQR 68%), respectively, while Pg decreased by 92.43% (IQR 102.5%). The decrease in Pg was greater in the presence of low OHI-S. The increase in slCAM1 correlated with the reduction in Fn. Individuals with high GI and OHI-S had a limited increase in TNF-α at T2. Conclusion: Short-term exposures can affect the concentration of pathogenic periodontal bacteria and promote local inflammation.
Collapse
Affiliation(s)
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (IFC-CNR), 20162 Milan, Italy;
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” Chieti—Pescara, 66100 Chieti, Italy; (D.B.); (C.S.)
| | - Domenica Lucia D’Antonio
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti—Pescara, 66100 Chieti, Italy;
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy;
| | - Carmen Santangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” Chieti—Pescara, 66100 Chieti, Italy; (D.B.); (C.S.)
| | - Vittore Verratti
- Department of Psychology, University “G. d’Annunzio” Chieti—Pescara, 66100 Chieti, Italy;
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti—Pescara, 66100 Chieti, Italy;
| |
Collapse
|
4
|
Dass M, Ghai M. Development of a multiplex PCR assay and quantification of microbial markers by ddPCR for identification of saliva and vaginal fluid. Forensic Sci Int 2024; 362:112147. [PMID: 39067179 DOI: 10.1016/j.forsciint.2024.112147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/11/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
The identification of biological fluids at crime scenes contributes to crime scene reconstruction and provides investigative leads. Traditional methods for body fluid identification are limited in terms of sensitivity and are mostly presumptive. Emerging methods based on mRNA and DNA methylation require high quality template source. An exploitable characteristic of body fluids is their distinct microbial profiles allowing for the discrimination of body fluids based on microbiome content. Microbial DNA is highly abundant within the body, robust and stable and can persist in the environment long after human DNA has degraded. 16S rRNA sequencing is the gold standard for microbial analysis; however, NGS is costly, and requires intricate workflows and interpretation. Also, species level resolution is not always achievable. Based on the current challenges, the first objective of this study was to develop a multiplex conventional PCR assay to identify vaginal fluid and saliva by targeting species-specific 16S rRNA microbial markers. The second objective was to employ droplet digital PCR (ddPCR) as a novel approach to quantify bacterial species alone and in a mixture of body fluids. Lactobacillus crispatus and Streptococcus salivarius were selected because of high abundance within vaginal fluid and saliva respectively. While Fusobacterium nucleatum and Gardnerella vaginalis, though present in healthy humans, are also frequently found in oral and vaginal infections, respectively. The multiplex PCR assay detected L. crispatus and G. vaginalis in vaginal fluid while F. nucleatum and S. salivarius was detected in saliva. Multiplex PCR detected F. nucleatum, S. salivarius and L. crispatus in mixed body fluid samples while, G. vaginalis was undetected in mixtures containing vaginal fluid. For samples exposed at room temperature for 65 days, L. crispatus and G. vaginalis were detected in vaginal swabs while only S. salivarius was detected in saliva swabs. The limit of detection was 0.06 copies/µl for F. nucleatum (2.5 ×10-9 ng/µl) and S. salivarius (2.5 ×10-6 ng/µl). L. crispatus and G. vaginalis had detection limits of 0.16 copies/µl (2.5 ×10-4 ng/µl) and 0.48 copies/µl (2.5 ×10-7 ng/µl). All 4 bacterial species were detected in mixtures and aged samples by ddPCR. No significant differences were observed in quantity of bacterial markers in saliva and vaginal fluid. The present research reports for the first time the combination of the above four bacterial markers for the detection of saliva and vaginal fluid and highlights the sensitivity of ddPCR for bacterial quantification in pure and mixed body fluids.
Collapse
Affiliation(s)
- Mishka Dass
- Department of Genetics, School of Life Sciences, University of KwaZulu Natal - Westville Campus, Private Bag X 54001, Durban, KwaZulu Natal, South Africa.
| | - Meenu Ghai
- Department of Genetics, School of Life Sciences, University of KwaZulu Natal - Westville Campus, Private Bag X 54001, Durban, KwaZulu Natal, South Africa.
| |
Collapse
|
5
|
Miluna-Meldere S, Rostoka D, Broks R, Viksne K, Ciematnieks R, Skadins I, Kroica J. The Effects of Nicotine Pouches and E-Cigarettes on Oral Microbes: A Pilot Study. Microorganisms 2024; 12:1514. [PMID: 39203357 PMCID: PMC11356086 DOI: 10.3390/microorganisms12081514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
It remains uncertain whether nicotine pouches and electronic cigarettes alter the oral environment and result in a high presence of periodontopathogenic bacteria in saliva, compared to that among cigarette users or non-tobacco users. In this study, saliva samples were collected from respondents using nicotine pouches, electronic cigarettes, and conventional cigarettes, alongside a control group of non-tobacco users. Polymerase chain reaction was used to identify clinical isolates of the following periodontal bacteria: Porphyromonas gingivalis, Tannerella forsythia, Prevotella intermedia, Fusobacterium nucleatum, Fusobacterium periodonticum, Porphyromonas endodontalis, and Rothia mucilaginosa. The presence of some periodontal pathogens was detected in the saliva samples from users of nicotine pouches, electronic cigarettes, and conventional cigarettes but not in samples taken from the control group. Therefore, the initial results of this pilot study suggest that the presence of periodontopathogenic bacteria in the saliva of nicotine pouch and electronic cigarette users could alter the oral microbiome, leading to periodontal diseases. However, further quantitative investigation is needed.
Collapse
Affiliation(s)
| | - Dagnija Rostoka
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia; (R.B.); (I.S.); (J.K.)
| | - Renars Broks
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia; (R.B.); (I.S.); (J.K.)
| | - Kristine Viksne
- Institute on Oncology and Molecular Genetics, Riga Stradins University, LV-1007 Riga, Latvia; (K.V.); (R.C.)
| | - Rolands Ciematnieks
- Institute on Oncology and Molecular Genetics, Riga Stradins University, LV-1007 Riga, Latvia; (K.V.); (R.C.)
| | - Ingus Skadins
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia; (R.B.); (I.S.); (J.K.)
| | - Juta Kroica
- Department of Biology and Microbiology, Riga Stradins University, LV-1007 Riga, Latvia; (R.B.); (I.S.); (J.K.)
| |
Collapse
|
6
|
Chipirliu O, Crăciun MV, Matei MN. Clinical Study and Microbiological Analysis of Periodontopathogenic Microflora Analyzed among Children and Adolescents with Cardiovascular Diseases Compared to Group with Good General Status. Pediatr Rep 2024; 16:482-503. [PMID: 38921706 PMCID: PMC11206381 DOI: 10.3390/pediatric16020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Periodontal diseases, as an important part of oral pathology, present different characteristics when affecting children and adolescents or young adults. Studies have shown that adolescence and childhood are closely related to a high risk of periodontal disease, but the follow-up for periodontal health or damage at this age has been insufficiently appreciated until now. The aim of this study was to identify subgingival microorganisms using a real-time polymerase chain reaction (PCR) in a group of children and adolescents aged 7-17 years with and without cardiovascular disease. The group of 62 subjects with gingival inflammation and poor hygiene was divided into two groups according to general condition: 31 subjects with carduivascular disease (group A) and 31 subjects without cardiovascular disease (group C). Subjects were examined in the initial consultation, the state of hygiene and periodontal inflammation was assessed using the plaque index (PI) and gingival index (GI), and samples were taken from the gingival sulcus using sterile paper cones to determine nine subgingival microorganisms. Nine subgingival microorganisms were identified: Aggregatibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), Treponema denticola (Td), Tannerella forsythias (Tf), Prevotella intermedia (Pi), Peptostreptococcus (Micromonas) micros (Pm), Fusobacterium nucleatum (Fn), Eubacterium nodatum (En), and Capnocytophaga gingivalis (Cg). The patients were included in a specialist treatment program which aimed to relieve the inflammatory condition, remove local irritative factors, and train the patients to perform proper oral hygiene at home by using primary and secondary oral hygiene products. Subjects were reevaluated 3 months after treatment, when measurements for the PI and GI and microbiological determinations were repeated. The results showed a predominance of subjects aged 16-17 years (12.4%). Among the subjects with marked gingival inflammation, the male gender was predominant (58.06%). The PI values changed considerably after treatment, with lower values in patients presenting a general condition without cardiovascular disease (PI = 8.10%) compared with the patients with cardiovascular disease (PI = 13.77%). After treatment, the GI showed considerable changes in both groups. Red, orange, and purple complex microorganisms were found before treatment and decreased considerably after treatment in both groups. The highest values were found for Treponema denticola (140,000 (1.4 × 105)) in patients with cardiovascular disease and generalized gingival inflammation. Of the pathogenic microorganisms, the most common was Tannerella forsythia in 52 patients before treatment, and red microorganisms considerably appeared in only 10 patients after treatment. Capnocytophaga gingivalis remained constant both in the diseased state and after treatment and was consistent with periodontal health. Children with cardiovascular diseases had a higher prevalence of gingival manifestations. The composition of the subgingival microbial plaque was directly influenced by the degree of oral hygiene, but the response to specialized treatment was also influenced by the general health status. The results of this study support the conclusion that periodontal pathogens appear and multiply in the absence of proper hygiene in childhood after the eruption of permanent teeth, and their action leads to the initiation of periodontal diseases.
Collapse
Affiliation(s)
- Oana Chipirliu
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 47 Domneasca Str., 800181 Galati, Romania
| | - Marian Viorel Crăciun
- Research Centre in the Faculty of Automation, Computers, Electrical and Electronics Engineering, Dunarea de Jos University of Galati, 111 Domneasca Str., 800181 Galati, Romania
| | - Madalina Nicoleta Matei
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, Dunarea de Jos University of Galati, 47 Domneasca Str., 800181 Galati, Romania
| |
Collapse
|
7
|
Boreak N, Alrajab EA, Nahari RA, Najmi LE, Masmali MA, Ghawi AA, Al Moaleem MM, Alhazmi MY, Maqbul AA. Unveiling Therapeutic Potential: Targeting Fusobacterium nucleatum's Lipopolysaccharide Biosynthesis for Endodontic Infections-An In Silico Screening Study. Int J Mol Sci 2024; 25:4239. [PMID: 38673822 PMCID: PMC11049844 DOI: 10.3390/ijms25084239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Complex microbial communities have been reported to be involved in endodontic infections. The microorganisms invade the dental pulp leading to pulpitis and initiating pulp inflammation. Fusobacterium nucleatum is a dominant bacterium implicated in both primary and secondary endodontic infections. Drugs targeting the molecular machinery of F. nucleatum will minimize pulp infection. LpxA and LpxD are early acyltransferases involved in the formation of lipid A, a major component of bacterial membranes. The identification of leads which exhibit preference towards successive enzymes in a single pathway can also prevent the development of bacterial resistance. A stringent screening strategy utilizing physicochemical and pharmacokinetic parameters along with a virtual screening approach identified two compounds, Lomefloxacin and Enoxacin, with good binding affinity towards the early acyltransferases LpxA and LpxD. Lomefloxacin and Enoxacin, members of the fluoroquinolone antibiotic class, exhibit wide-ranging activity against diverse bacterial strains. Nevertheless, their effectiveness in the context of endodontic treatment requires further investigation. This study explored the potential of Lomefloxacin and Enoxacin to manage endodontic infections via computational analysis. Moreover, the compounds identified herein serve as a foundation for devising novel combinatorial libraries with enhanced efficacy for endodontic therapeutic strategies.
Collapse
Affiliation(s)
- Nezar Boreak
- College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia; (E.A.A.); (R.A.N.); (L.E.N.); (M.A.M.); (A.A.G.); (M.M.A.M.); (M.Y.A.); (A.A.M.)
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Laugisch O, Ruppert-Jungck MC, Auschill TM, Eick S, Sculean A, Heumann C, Timmermann L, Pedrosa DJ, Eggers C, Arweiler NB. Glucose-6-Phosphatase-Dehydrogenase activity as modulative association between Parkinson's disease and periodontitis. Front Cell Infect Microbiol 2024; 14:1298546. [PMID: 38404290 PMCID: PMC10885135 DOI: 10.3389/fcimb.2024.1298546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/12/2024] [Indexed: 02/27/2024] Open
Abstract
The association between periodontitis (PD) and Parkinson's disease (PK) is discussed due to the inflammatory component of neurodegenerative processes. PK severity and affected areas were determined using the following neuropsychological tests: Unified Parkinson's Disease Rating Score (UPDRS) and Hoehn and Yahr; non-motoric symptoms by Non-Motor Symptoms Scale (NMSS), and cognitive involvement by Mini-Mental State Examination (MMSE). Neuroinflammation and the resulting Glucose-6-Phosphatase-Dehydrogenase (G6PD) dysfunction are part of the pathophysiology of PK. This study aimed to evaluate these associations in periodontal inflammation. Clinical data and saliva-, serum-, and RNA-biobank samples of 50 well-characterized diametric patients with PK and five age- and sex-matched neurologically healthy participants were analyzed for G6PD function, periodontal pathogens (Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Prevotella intermedia, Campylobacter rectus, Fusobacterium nucleatum, and Filifactor alocis), monocyte chemoattractant protein (MCP) 1, and interleukin (IL) 1-beta. Regression analysis was used to identify associations between clinical and behavioral data, and t-tests were used to compare health and disease. Compared with PK, no pathogens and lower inflammatory markers (p < 0.001) were detectible in healthy saliva and serum, PK-severity/UPDRS interrelated with the occurrence of Prevotella intermedia in serum as well as IL1-beta levels in serum and saliva (p = 0.006, 0.019, 0.034), Hoehn and Yahr correlated with Porphyromonas gingivalis, Prevotella intermedia, RNA IL1-beta regulation, serum, and saliva IL1-beta levels, with p-values of 0.038, 0.011, 0.008, <0.001, and 0.010, while MMSE was associated with Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, serum MCP 1 levels, RNA IL1-beta regulation and G6PD serum activity (p = 0.036, 0.003, 0.045, <0.001, and 0.021). Cognitive and motor skills seem to be important as representative tests are associated with periodontal pathogens and oral/general inflammation, wherein G6PD-saliva dysfunction might be involved. Clinical trial registration https://www.bfarm.de/DE/Das-BfArM/Aufgaben/Deutsches-Register-Klinischer-Studien/_node.html, identifier DRKS00005388.
Collapse
Affiliation(s)
- Oliver Laugisch
- Department of Periodontology and Peri-Implant Diseases, Universitätsklinikum Giessen und Marburg (UKGM), Philipps University, Marburg, Germany
| | - Marina C. Ruppert-Jungck
- Department of Neurology, University Hospital Giessen and Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Giessen and Marburg, Marburg, Germany
| | - Thorsten M. Auschill
- Department of Periodontology and Peri-Implant Diseases, Universitätsklinikum Giessen und Marburg (UKGM), Philipps University, Marburg, Germany
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Christian Heumann
- Department of Statistics, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital Giessen and Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Giessen and Marburg, Marburg, Germany
| | - David J. Pedrosa
- Department of Neurology, University Hospital Giessen and Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Giessen and Marburg, Marburg, Germany
| | - Carsten Eggers
- Department of Neurology, University Hospital Giessen and Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Giessen and Marburg, Marburg, Germany
- Department of Neurology, Knappschaftskrankenhaus Bottrop, Bottrop, Germany
| | - Nicole B. Arweiler
- Department of Periodontology and Peri-Implant Diseases, Universitätsklinikum Giessen und Marburg (UKGM), Philipps University, Marburg, Germany
| |
Collapse
|
9
|
Zhang J, Hu C, Zhang R, Xu J, Zhang Y, Yuan L, Zhang S, Pan S, Cao M, Qin J, Cheng X, Xu Z. The role of macrophages in gastric cancer. Front Immunol 2023; 14:1282176. [PMID: 38143746 PMCID: PMC10746385 DOI: 10.3389/fimmu.2023.1282176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023] Open
Abstract
As one of the deadliest cancers of the gastrointestinal tract, there has been limited improvement in long-term survival rates for gastric cancer (GC) in recent decades. The poor prognosis is attributed to difficulties in early detection, minimal opportunity for radical resection and resistance to chemotherapy and radiation. Macrophages are among the most abundant infiltrating immune cells in the GC stroma. These cells engage in crosstalk with cancer cells, adipocytes and other stromal cells to regulate metabolic, inflammatory and immune status, generating an immunosuppressive tumour microenvironment (TME) and ultimately promoting tumour initiation and progression. In this review, we summarise recent advances in our understanding of the origin of macrophages and their types and polarisation in cancer and provide an overview of the role of macrophages in GC carcinogenesis and development and their interaction with the GC immune microenvironment and flora. In addition, we explore the role of macrophages in preclinical and clinical trials on drug resistance and in treatment of GC to assess their potential therapeutic value in this disease.
Collapse
Affiliation(s)
- Jiaqing Zhang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Can Hu
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Ruolan Zhang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jingli Xu
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Yanqiang Zhang
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Li Yuan
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Shengjie Zhang
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Siwei Pan
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Mengxuan Cao
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jiangjiang Qin
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xiangdong Cheng
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zhiyuan Xu
- Department of Gastric Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, China
- Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
10
|
Ergün E, Toraman E, Barış Ö, Budak H, Demir T. Quantitative investigation of the bacterial content of periodontal abscess samples by real-time PCR. J Microbiol Methods 2023; 213:106826. [PMID: 37742798 DOI: 10.1016/j.mimet.2023.106826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
OBJECTIVES Periodontal abscesses, which are part of the acute periodontal disease group characterized by the destruction of periodontal tissue with deep periodontal pockets, bleeding on probing, suppuration, and localized pus accumulation, cause rapid destruction of tooth-supporting tissues. This study aimed to evaluate the microbial content of periodontal abscesses by specific and culture-independent qPCR. METHODS This study was conducted on 30 volunteers diagnosed with periodontal abscesses and presenting with complaints of localized pain, swelling, and tenderness in the gingiva. Genomic DNA was isolated from the samples taken. Escherichia coli bacteria were used for the standard curve created to calculate the prevalence of target bacteria in the total bacterial load. 16S rRNA Universal primers were used to assess the total bacterial load and prevalence. Bacterial counts were analyzed with Spearman's rank correlation coefficients (ρ) matrix. RESULTS From the analysis of Real-Time PCR, Porphyromonas gingivalis (30, 100%), Prevotella intermedia (30, 100%), and Fusobacterium nucleatum (30, 100%) were detected in all samples. Campylobacter rectus (29, 96.6%), Porphyromonas endodontalis (29, 96.6%), Tannerella forsythia (28, 93.3%), Filifactor alocis (28, 93.3%), and Actinomyces naeslundii (28, 93.3%) were also frequently detected. CONCLUSIONS Periodontal abscesses were found to be polymicrobial, and not only periodontal pathogens appeared to be associated with the development of periodontal abscesses. The presence, prevalence, and number of Porphyromonas endodontalis and Propionibacterium acnes in the contents of periodontal abscesses were determined for the first time in our study. Further studies are needed to better understand the roles of bacteria in periodontal disease, including abscesses.
Collapse
Affiliation(s)
- Ercan Ergün
- Atatürk University, Department of Periodontology, Faculty of Dentistry, Erzurum, Turkey
| | - Emine Toraman
- Atatürk University, Science Faculty, Department of Molecular Biology and Genetics, Erzurum, Turkey
| | - Özlem Barış
- Atatürk University, Science Faculty, Department of Biology, Erzurum, Turkey
| | - Harun Budak
- Atatürk University, Science Faculty, Department of Molecular Biology and Genetics, Erzurum, Turkey
| | - Turgut Demir
- Atatürk University, Department of Periodontology, Faculty of Dentistry, Erzurum, Turkey.
| |
Collapse
|
11
|
Morsy BM, El Domiaty S, Meheissen MAM, Heikal LA, Meheissen MA, Aly NM. Omega-3 nanoemulgel in prevention of radiation-induced oral mucositis and its associated effect on microbiome: a randomized clinical trial. BMC Oral Health 2023; 23:612. [PMID: 37648997 PMCID: PMC10470147 DOI: 10.1186/s12903-023-03276-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Oral mucositis (OM) is recognized as one of the most frequent debilitating sequelae encountered by head and neck cancer (HNC) patients treated by radiotherapy. This results in severe mucosal tissue inflammation and oral ulcerations that interfere with patient's nutrition, quality of life (QoL) and survival. Omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) have recently gained special interest in dealing with oral diseases owing to its anti-inflammatory, anti-oxidant and wound healing properties. Thus, this study aims to assess topical Omega-3 nanoemulgel efficacy in prevention of radiation-induced oral mucositis and regulation of oral microbial dysbiosis. MATERIALS AND METHODS Thirty-four head and neck cancer patients planned to receive radiotherapy were randomly allocated into two groups: Group I: conventional preventive treatment and Group II: topical Omega-3 nanoemulgel. Patients were evaluated at baseline, three and six weeks after treatment using the World Health Organization (WHO) grading system for oral mucositis severity, Visual Analogue Scale (VAS) for perceived pain severity, and MD-Anderson Symptom Inventory for Head and Neck cancer (MDASI-HN) for QoL. Oral swabs were collected to assess oral microbiome changes. RESULTS VAS scores and WHO mucositis grades were significantly lower after six weeks of treatment with topical Omega-3 nanoemulgel when compared to the conventional treatment. The total MDASI score was significantly higher in the control group after three weeks of treatment, and the head and neck subscale differed significantly at both three and six weeks. A significant reduction in Firmicutes/Bacteroidetes ratio was observed after six weeks in the test group indicating less microbial dysbiosis. CONCLUSIONS Topical Omega-3 nanoemulgel demonstrated a beneficial effect in prevention of radiation-induced oral mucositis with a possibility of regulating oral microbial dysbiosis.
Collapse
Affiliation(s)
- Basma M Morsy
- Oral Medicine, Periodontology, Oral Diagnosis, and Oral Radiology Department, Faculty of Dentistry, Alexandria University, Champolion St, 21527, Alexandria Governorate, Egypt.
| | - Shahira El Domiaty
- Oral Medicine, Periodontology, Oral Diagnosis, and Oral Radiology Department, Faculty of Dentistry, Alexandria University, Champolion St, 21527, Alexandria Governorate, Egypt
| | - Mohamed A M Meheissen
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Alexandria University, Alexandria Governorate, Egypt
| | - Lamia A Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria Governorate, Egypt
| | - Marwa A Meheissen
- Medical Microbiology and Immunology Department, Faculty of Medicine, Alexandria University, Alexandria Governorate, Egypt
| | - Nourhan M Aly
- Pediatric Dentistry and Dental Public Health Department, Faculty of Dentistry, Alexandria University, Alexandria Governorate, Egypt
| |
Collapse
|
12
|
Dass M, Singh Y, Ghai M. A Review on Microbial Species for Forensic Body Fluid Identification in Healthy and Diseased Humans. Curr Microbiol 2023; 80:299. [PMID: 37491404 PMCID: PMC10368579 DOI: 10.1007/s00284-023-03413-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/08/2023] [Indexed: 07/27/2023]
Abstract
Microbial communities present in body fluids can assist in distinguishing between types of body fluids. Metagenomic studies have reported bacterial genera which are core to specific body fluids and are greatly influenced by geographical location and ethnicity. Bacteria in body fluids could also be due to bacterial infection; hence, it would be worthwhile taking into consideration bacterial species associated with diseases. The present review reports bacterial species characteristic of diseased and healthy body fluids across geographical locations, and bacteria described in forensic studies, with the aim of collating a set of bacteria to serve as the core species-specific markers for forensic body fluid identification. The most widely reported saliva-specific bacterial species are Streptococcus salivarius, Prevotella melaninogenica, Neisseria flavescens, with Fusobacterium nucleatum associated with increased diseased state. Lactobacillus crispatus and Lactobacillus iners are frequently dominant in the vaginal microbiome of healthy women. Atopobium vaginae, Prevotella bivia, and Gardnerella vaginalis are more prevalent in women with bacterial vaginosis. Semen and urine-specific bacteria at species level have not been reported, and menstrual blood bacteria are indistinguishable from vaginal fluid. Targeting more than one bacterial species is recommended for accurate body fluid identification. Although metagenomic sequencing provides information of a broad microbial profile, the specific bacterial species could be used to design biosensors for rapid body fluid identification. Validation of microbial typing methods and its application in identifying body fluids in a mixed sample would allow regular use of microbial profiling in a forensic workflow.
Collapse
Affiliation(s)
- Mishka Dass
- Department of Genetics, School of Life Sciences, University of KwaZulu Natal, Westville Campus, Private Bag X 54001, Durban, KwaZulu-Natal South Africa
| | - Yashna Singh
- Department of Genetics, School of Life Sciences, University of KwaZulu Natal, Westville Campus, Private Bag X 54001, Durban, KwaZulu-Natal South Africa
| | - Meenu Ghai
- Department of Genetics, School of Life Sciences, University of KwaZulu Natal, Westville Campus, Private Bag X 54001, Durban, KwaZulu-Natal South Africa
| |
Collapse
|
13
|
Ye Y, Xu X, Mao B, Tang X, Cui S, Zhao J, Zhang Q. Evaluation of heat-inactivated Limosilactobacillus fermentum CCFM1139 and its supernatant for the relief of experimental periodontitis in rats. Food Funct 2023; 14:2847-2856. [PMID: 36880339 DOI: 10.1039/d2fo02938c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Periodontitis is a chronic inflammatory disease induced by subgingival microbial dysbiosis, characterised by inflammation of the soft tissues of the periodontium and progressive loss of alveolar bone. Limosilactobacillus fermentum CCFM1139 is a probiotic with the potential to relieve periodontitis in vitro and in vivo. Due to the cost of active strain in production applications, we considered the effectiveness of bacterial components and metabolites in alleviating experimental periodontitis. Therefore, this study investigated the effect of heat-inactivated Limosilactobacillus fermentum CCFM1139 and its supernatant in the development of experimental periodontitis through animal experiments. The results showed that active, heat-inactivated Limosilactobacillus fermentum CCFM1139 and its supernatant all significantly reduced IL-1β levels in gingival tissue and serum (p < 0.05). Micro-computed tomography (micro CT) analysis showed that the active and heat-inactivated Limosilactobacillus fermentum CCFM1139 reduced alveolar bone loss in rats with periodontitis by 25.6% and 15.9% respectively (p < 0.05), with no change in percentage of bone volume (p > 0.05). In histomorphometric analysis, active Limosilactobacillus fermentum CCFM1139 showed better results in reducing alveolar bone loss and reducing inflammatory cell recruitment at the second molar. In addition, there was no significant difference in the number of tartrate-resistant acid phosphatase (TRAP) positive cells after in all experimental groups (p > 0.05). Therefore, heat-inactivated Limosilactobacillus fermentum CCFM1139 or its supernatant also have the ability to relieve periodontitis, and their alleviating effect may focus on the regulation of inflammatory response.
Collapse
Affiliation(s)
- Yuhan Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai 200436, China
| | - Xianyin Xu
- Department of Stomatology, Wuxi Children's Hospital, Wuxi, Jiangsu 214023, P. R. China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai 200436, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai 200436, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai 200436, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai 200436, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai 200436, China
| |
Collapse
|
14
|
qPCR Detection and Quantification of Aggregatibacter actinomycetemcomitans and Other Periodontal Pathogens in Saliva and Gingival Crevicular Fluid among Periodontitis Patients. Pathogens 2023; 12:pathogens12010076. [PMID: 36678429 PMCID: PMC9861831 DOI: 10.3390/pathogens12010076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE The detection of special bacterial species in patients with periodontitis is considered useful for clinical diagnosis and treatment. The aim of this study was to investigate the presence of specific periopathogens and investigate whether there is a correlation between the results of different bacterial species in whole saliva and pooled subgingival plaque samples (healthy and diseased sites) from individuals with periodontitis and periodontally healthy subjects. MATERIALS AND METHODS In total, 52 patients were recruited and divided into two groups: non-periodontitis and periodontitis patients. For each group, the following periodontal pathogens were detected using real-time polymerase chain reaction: A. actinomycetemcomitans JP2 clone, A. actinomycetemcomitans non JP2 clone, Porphyromonasgingivalis, and total eubacteria. RESULTS Higher levels of the various studied bacteria were present in both saliva and plaque samples from the periodontitis group in comparison to non-periodontitis subjects. There were significant differences in P. gingivalis and A. actinomycetemcomitans JP2 clones in the saliva of periodontitis patient compared to the control group. Subgingival plaque of diseased sites presented a significant and strong positive correlation between A. actinomycetemcomitans and P. gingivalis. In saliva samples, there was a significant positive correlation between A. actinomycetemcomitans JP2 clone and P. gingivalis (p ≤ 0.002). CONCLUSION Quantifying and differentiating these periodontal species from subgingival plaque and saliva samples showed a good potential as diagnostic markers for periodontal disease. Regarding the prevalence of the studied bacteria, specifically A. actinomycetemcomitans JP2 clone, found in this work, and the high rate of susceptibility to periodontal species in Africa, future larger studies are recommended.
Collapse
|
15
|
Liao M, Shi Y, Chen E, Shou Y, Dai D, Xian W, Ren B, Xiao S, Cheng L. The Bio-Aging of Biofilms on Behalf of Various Oral Status on Different Titanium Implant Materials. Int J Mol Sci 2022; 24:332. [PMID: 36613775 PMCID: PMC9820730 DOI: 10.3390/ijms24010332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The properties of titanium implants are affected by bio-aging due to long-term exposure to the oral microenvironment. This study aimed to investigate probable changes in titanium plates after different biofilm bio-aging processes, representing various oral status. Titanium plates with different surface treatments were used, including polish, sandblasted with large grit and acid etched (SLA), microarc oxidation (MAO), and hydroxyapatite coating (HA). We established dual-species biofilms of Staphylococcus aureus (S. aureus)-Candida albicans (C. albicans) and saliva biofilms from the healthy and patients with stage III-IV periodontitis, respectively. After bio-aging with these biofilms for 30 days, the surface morphology, chemical composition, and water contact angles were measured. The adhesion of human gingival epithelial cells, human gingival fibroblasts, and three-species biofilms (Streptococcus sanguis, Porphyromonas gingivalis, and Fusobacterium nucleatum) were evaluated. The polished specimens showed no significant changes after bio-aging with these biofilms. The MAO- and SLA-treated samples showed mild corrosion after bio-aging with the salivary biofilms. The HA-coated specimens were the most vulnerable. Salivary biofilms, especially saliva from patients with periodontitis, exhibited a more distinct erosion on the HA-coating than the S. aureus-C. albicans dual-biofilms. The coating became thinner and even fell from the substrate. The surface became more hydrophilic and more prone to the adhesion of bacteria. The S. aureus-C. albicans dual-biofilms had a comparatively mild corrosion effect on these samples. The HA-coated samples showed more severe erosion after bio-aging with the salivary biofilms from patients with periodontitis compared to those of the healthy, which emphasized the importance of oral hygiene and periodontal health to implants in the long run.
Collapse
Affiliation(s)
- Min Liao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yangyang Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Enni Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
- Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuke Shou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dongyue Dai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenpan Xian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
| | - Shimeng Xiao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
- Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu 610064, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
16
|
Groeger S, Zhou Y, Ruf S, Meyle J. Pathogenic Mechanisms of Fusobacterium nucleatum on Oral Epithelial Cells. FRONTIERS IN ORAL HEALTH 2022; 3:831607. [PMID: 35478496 PMCID: PMC9037381 DOI: 10.3389/froh.2022.831607] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Periodontitis is an oral chronic inflammatory disease and may cause tooth loss in adults. Oral epithelial cells provide a barrier for bacteria and participate in the immune response. Fusobacterium nucleatum (F. nucleatum) is one of the common inhabitants of the oral cavity and has been identified as a potential etiologic bacterial agent of oral diseases, such as periodontitis and oral carcinomas. F. nucleatum has been shown to be of importance in the development of diverse human cancers. In the dental biofilm, it exhibits a structural role as a bridging organism, connecting primary colonizers to the largely anaerobic secondary colonizers. It expresses adhesins and is able to induce host cell responses, including the upregulation of defensins and the release of chemokines and interleukins. Like other microorganisms, its detection is achieved through germline-encoded pattern-recognition receptors (PRRs) and pathogen-associated molecular patterns (PAMPs). By identification of the pathogenic mechanisms of F. nucleatum it will be possible to develop effective methods for the diagnosis, prevention, and treatment of diseases in which a F. nucleatum infection is involved. This review summarizes the recent progress in research targeting F. nucleatum and its impact on oral epithelial cells.
Collapse
Affiliation(s)
- Sabine Groeger
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
- Department of Orthodontics, Justus-Liebig-University of Giessen, Giessen, Germany
- *Correspondence: Sabine Groeger
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Sabine Ruf
- Department of Orthodontics, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Joerg Meyle
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
| |
Collapse
|
17
|
Yang S, Yu W, Zhang J, Han X, Wang J, Sun D, Shi R, Zhou Y, Zhang H, Zhao J. The antibacterial property of zinc oxide/graphene oxide modified porous polyetheretherketone against S. sanguinis, F. nucleatum and P. gingivalis. Biomed Mater 2022; 17. [PMID: 35114651 DOI: 10.1088/1748-605x/ac51ba] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/03/2022] [Indexed: 11/11/2022]
Abstract
About 30% failures of implant are caused by peri-implantitis. Subgingival plaque, consisting of S. sanguinis, F. nucleatum, P. gingivalis et. al, is the initiating factor of peri-implantitis. Polyetheretherketone(PEEK) is widely used for the fabrication of implant abutment, healing cap and temporary abutment in dental applications. As a biologically inert material, PEEK has shown poor antibacterial properties. To promote the antibacterial activity of PEEK, we loaded ZnO/GO on sulfonated PEEK. We screened out that when mass ratio of ZnO/GO was 4:1, dip-coating time was 25 min, ZnO/GO modified SPEEK shown the best physical and chemical properties. At the meantime, the ZnO/GO-SPEEK samples possess a good biocompatibility. The ZnO/GO-SPEEK inhibits P. gingivalis obviously, and could exert an antibacterial activity to S. sanguinis in the early stage, prevents biofilm formation effectively. With the favorable in vitro performances, the modification of PEEK with ZnO/GO is promising for preventing peri-implantitis.
Collapse
Affiliation(s)
- Shihui Yang
- Hospital of Stomatology, Department of Dental Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, CHINA
| | - Wanqi Yu
- Hospital of Stomatology, Department of Dental Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, CHINA
| | - Jingjie Zhang
- Hospital of Stomatology, Department of Dental Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, CHINA
| | - Xiao Han
- Hospital of Stomatology, Department of Dental Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, CHINA
| | - Junyan Wang
- Hospital of Stomatology, Department of Dental Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, CHINA
| | - Duo Sun
- Hospital of Stomatology, Department of Dental Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, CHINA
| | - Ruining Shi
- Hospital of Stomatology, Department of Dental Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, CHINA
| | - Yanmin Zhou
- Hospital of Stomatology, Department of Dental Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, CHINA
| | - Haibo Zhang
- Engineering Research Center of High Performance Plastic, Ministry of Education, College of Chemistry, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, CHINA
| | - Jinghui Zhao
- Hospital of Stomatology, Department of Dental Implantology, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, 1500 Qinghua Road, Changchun, Jilin, 130021, CHINA
| |
Collapse
|
18
|
Suzuki R, Kamio N, Kaneko T, Yonehara Y, Imai K. Fusobacterium nucleatum exacerbates chronic obstructive pulmonary disease in elastase-induced emphysematous mice. FEBS Open Bio 2022; 12:638-648. [PMID: 35034433 PMCID: PMC8886332 DOI: 10.1002/2211-5463.13369] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/14/2021] [Accepted: 01/13/2022] [Indexed: 12/03/2022] Open
Abstract
Exacerbation of chronic obstructive pulmonary disease (COPD) is associated with disease progression and increased mortality. Periodontal disease is a risk factor for exacerbation of COPD, but little is known about the role of periodontopathic bacteria in this process. Here, we investigated the effects of intratracheal administration of Fusobacterium nucleatum, a periodontopathic bacteria species, on COPD exacerbation in elastase‐induced emphysematous mice. The administration of F. nucleatum to elastase‐treated mice enhanced inflammatory responses, production of alveolar wall destruction factors, progression of emphysema, and recruitment of mucin, all of which are symptoms observed in patients with COPD exacerbation. Hence, we propose that F. nucleatum may play a role in exacerbation of COPD.
Collapse
Affiliation(s)
- Ryuta Suzuki
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry, Tokyo, Japan.,Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Noriaki Kamio
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Tadayoshi Kaneko
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry, Tokyo, Japan
| | - Yoshiyuki Yonehara
- Department of Oral and Maxillofacial Surgery II, Nihon University School of Dentistry, Tokyo, Japan
| | - Kenichi Imai
- Department of Microbiology, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
19
|
Jung WR, Joo JY, Lee JY, Kim HJ. Prevalence and abundance of 9 periodontal pathogens in the saliva of periodontally healthy adults and patients undergoing supportive periodontal therapy. J Periodontal Implant Sci 2021; 51:316-328. [PMID: 34713993 PMCID: PMC8558008 DOI: 10.5051/jpis.2006640332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/07/2021] [Accepted: 03/05/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE This study aimed to examine the prevalence and abundance of 9 representative periodontal pathogens in the saliva samples of periodontally healthy subjects (PH) and patients with periodontitis who underwent supportive periodontal therapy (SPT). The age-specific distribution of these pathogens in periodontally healthy individuals was also analyzed. METHODS One hundred subjects (aged >35 years) were recruited (50 each in the PH and SPT groups) between August 2016 and April 2019. The prevalence and abundance of periodontal pathogens in the PH group were compared with those in periodontally healthy young subjects (94 subjects; aged <35 years), who were included in our previous study. DNA copy numbers of Aggregatibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), Tannerella forsythia (Tf), Treponema denticola (Td), Prevotella intermedia (Pi), Fusobacterium nucleatum (Fn), Campylobacter rectus (Cr), Peptostreptococcus anaerobius (Pa), and Eikenella corrodens (Ec) were analyzed using real-time polymerase chain reaction. RESULTS The detection frequencies of all pathogens, except Aa, were high in the PH and SPT groups. The ranking order of pathogen DNA copy numbers was similar in both groups. In both groups, Fn had the highest abundance, Aa had the lowest abundance. Additionally, Td was significantly more abundant in men than in women in both groups (P<0.05). Compared with the PH group, the SPT group exhibited significantly lower total bacteria and Fn abundance and higher Pg abundance (P<0.05). The age-specific pathogen distribution analysis revealed a significantly low Aa abundance and high Tf and Cr abundance in the PH group. CONCLUSIONS The clinical parameters and microbial profiles were similar between the SPT and PH groups. However, patients with periodontitis require supportive care to prevent recurrence. As the abundance of some bacteria varied with age, future studies must elucidate the correlation between age-related physiological changes and periodontal bacterial composition.
Collapse
Affiliation(s)
- Woo-Ri Jung
- Department of Periodontology, Dental and Life Science Institute, Pusan National University School of Dentistry, Yangsan, Korea.,Department of Periodontology, Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Korea
| | - Ji-Young Joo
- Department of Periodontology, Dental and Life Science Institute, Pusan National University School of Dentistry, Yangsan, Korea.,Department of Periodontology, Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Korea
| | - Ju-Youn Lee
- Department of Periodontology, Dental and Life Science Institute, Pusan National University School of Dentistry, Yangsan, Korea.,Department of Periodontology, Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Korea.
| | - Hyun-Joo Kim
- Department of Periodontology, Dental and Life Science Institute, Pusan National University School of Dentistry, Yangsan, Korea.,Department of Periodontology, Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Korea.
| |
Collapse
|
20
|
Shridhar K, Aggarwal A, Rawal I, Gupta R, Masih S, Mehrotra R, Gillespie TW, Dhillon PK, Michaud DS, Prabhakaran D, Goodman M. Feasibility of investigating the association between bacterial pathogens and oral leukoplakia in low and middle income countries: A population-based pilot study in India. PLoS One 2021; 16:e0251017. [PMID: 33914825 PMCID: PMC8084244 DOI: 10.1371/journal.pone.0251017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/17/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Certain oral bacterial pathogens may play a role in oral carcinogenesis. We assessed the feasibility of conducting a population-based study in India to examine the distributions and levels of Porphyromonas gingivalis, Fusobacterium nucleatum and Prevotella intermedia in relation to oral leukoplakia (a potentially malignant disorder) and other participant characteristics. METHODS This exploratory case-control study was nested within a large urban Indian cohort and the data included 22 men and women with oral leukoplakia (cases) and 69 leukoplakia-free controls. Each participant provided a salivary rinse sample, and a subset of 34 participants (9 cases; 25 controls) also provided a gingival swab sample from keratinized gingival surface for quantitative polymerase chain reaction (qPCR). RESULTS Neither the distribution nor the levels of pathogens were associated with oral leukoplakia; however, individual pathogen levels were more strongly correlated with each other in cases compared to controls. Among controls, the median level of total pathogens was the highest (7.55×104 copies/ng DNA) among persons of low socioeconomic status. Salivary rinse provided better DNA concentration than gingival swab for qPCR analysis (mean concentration: 1.8 ng/μl vs. 0.2 ng/μl). CONCLUSIONS This study confirms the feasibility of population studies evaluating oral microbiome in low-resource settings and identifies promising leads for future research.
Collapse
Affiliation(s)
- Krithiga Shridhar
- Centre for Chronic Conditions and Injuries, Public Health Foundation of India, Gurugram, India
- Centre for Chronic Disease Control, New Delhi, India
| | - Aastha Aggarwal
- Centre for Chronic Conditions and Injuries, Public Health Foundation of India, Gurugram, India
- Centre for Chronic Disease Control, New Delhi, India
| | - Ishita Rawal
- Centre for Chronic Disease Control, New Delhi, India
| | - Ruby Gupta
- Centre for Chronic Conditions and Injuries, Public Health Foundation of India, Gurugram, India
- Centre for Chronic Disease Control, New Delhi, India
| | - Shet Masih
- Molecular Diagnostics Research Laboratory, Chandigarh, India
| | - Ravi Mehrotra
- India Cancer Research Consortium, Indian Council of Medical Research, New Delhi, India
- Emory University Rollins School of Public Health, Atlanta, Georgia, United States of America
| | - Theresa W. Gillespie
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Preet K. Dhillon
- Centre for Chronic Conditions and Injuries, Public Health Foundation of India, Gurugram, India
- Centre for Chronic Disease Control, New Delhi, India
- Genentech Roche, California, United States of America
| | - Dominique S. Michaud
- Department of Public Health & Community Medicine, Tufts University School of Medicine, Boston, MA, United States of America
| | - Dorairaj Prabhakaran
- Centre for Chronic Conditions and Injuries, Public Health Foundation of India, Gurugram, India
- Centre for Chronic Disease Control, New Delhi, India
- Emory University Rollins School of Public Health, Atlanta, Georgia, United States of America
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael Goodman
- Emory University Rollins School of Public Health, Atlanta, Georgia, United States of America
| |
Collapse
|
21
|
Pignatelli P, Iezzi L, Pennese M, Raimondi P, Cichella A, Bondi D, Grande R, Cotellese R, Di Bartolomeo N, Innocenti P, Piattelli A, Curia MC. The Potential of Colonic Tumor Tissue Fusobacterium nucleatum to Predict Staging and Its Interplay with Oral Abundance in Colon Cancer Patients. Cancers (Basel) 2021; 13:1032. [PMID: 33804585 PMCID: PMC7957509 DOI: 10.3390/cancers13051032] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Intestinal microbiota dysbiosis may enhance the carcinogenicity of colon cancer (CC) by the proliferation and differentiation of epithelial cells. Oral Fusobacterium nucleatum (Fn) and Porphyromonas gingivalis (Pg) have the ability to invade the gut epithelium, promoting tumor progression. The aim of the study was to assess whether the abundance of these odontopathogenic bacteria was associated with colon cancer. We also investigated how lifestyle factors could influence the oral Fn and Pg abundance and CC. METHODS Thirty-six CC patients were included in the study to assess the Pg and Fn oral and colon tissue abundance by qPCR. Oral health data, food habits and lifestyles were also recorded. RESULTS Patients had a greater quantity of Fn in the oral cavity than matched CC and adjacent non-neoplastic mucosa (adj t) tissues (p = 0.004 and p < 0.001). Instead, Pg was not significantly detected in colonic tissues. There was an association between the Fn quantity in the oral and CC tissue and a statistically significant relation between the Fn abundance in adenocarcinoma (ADK) and staging (p = 0.016). The statistical analysis revealed a tendency towards a greater Fn quantity in CC (p = 0.073, η2p = 0.12) for high-meat consumers. CONCLUSION In our study, Pg was absent in colon tissues but was correlated with the oral inflammation gingival and plaque indices. For the first time, there was evidence that the Fn oral concentration can influence colon tissue concentrations and predict CC prognosis.
Collapse
Affiliation(s)
- Pamela Pignatelli
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (P.P.); (L.I.); (M.P.); (R.C.); (A.P.)
| | - Lorena Iezzi
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (P.P.); (L.I.); (M.P.); (R.C.); (A.P.)
| | - Martina Pennese
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (P.P.); (L.I.); (M.P.); (R.C.); (A.P.)
| | - Paolo Raimondi
- Department of General Surgery, Private Hospital “Villa Serena”, Città Sant’Angelo, 65013 Pescara, Italy; (P.R.); (A.C.); (N.D.B.); (P.I.)
| | - Anna Cichella
- Department of General Surgery, Private Hospital “Villa Serena”, Città Sant’Angelo, 65013 Pescara, Italy; (P.R.); (A.C.); (N.D.B.); (P.I.)
| | - Danilo Bondi
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy;
| | - Rossella Grande
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy;
| | - Roberto Cotellese
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (P.P.); (L.I.); (M.P.); (R.C.); (A.P.)
- Villa Serena Foundation for Research, Città Sant’Angelo, 65013 Pescara, Italy
| | - Nicola Di Bartolomeo
- Department of General Surgery, Private Hospital “Villa Serena”, Città Sant’Angelo, 65013 Pescara, Italy; (P.R.); (A.C.); (N.D.B.); (P.I.)
| | - Paolo Innocenti
- Department of General Surgery, Private Hospital “Villa Serena”, Città Sant’Angelo, 65013 Pescara, Italy; (P.R.); (A.C.); (N.D.B.); (P.I.)
- Villa Serena Foundation for Research, Città Sant’Angelo, 65013 Pescara, Italy
| | - Adriano Piattelli
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (P.P.); (L.I.); (M.P.); (R.C.); (A.P.)
- Villa Serena Foundation for Research, Città Sant’Angelo, 65013 Pescara, Italy
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (P.P.); (L.I.); (M.P.); (R.C.); (A.P.)
| |
Collapse
|
22
|
Payne MS, Newnham JP, Doherty DA, Furfaro LL, Pendal NL, Loh DE, Keelan JA. A specific bacterial DNA signature in the vagina of Australian women in midpregnancy predicts high risk of spontaneous preterm birth (the Predict1000 study). Am J Obstet Gynecol 2021; 224:206.e1-206.e23. [PMID: 32861687 DOI: 10.1016/j.ajog.2020.08.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/23/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Intrauterine infection accounts for a quarter of the cases of spontaneous preterm birth; however, at present, it is not possible to efficiently identify pregnant women at risk to deliver preventative treatments. OBJECTIVE This study aimed to establish a vaginal microbial DNA test for Australian women in midpregnancy that will identify those at increased risk of spontaneous preterm birth. STUDY DESIGN A total of 1000 women with singleton pregnancies were recruited in Perth, Australia. Midvaginal swabs were collected between 12 and 23 weeks' gestation. DNA was extracted for the detection of 23 risk-related microbial DNA targets by quantitative polymerase chain reaction. Obstetrical history, pregnancy outcome, and demographics were recorded. RESULTS After excluding 64 women owing to losses to follow-up and insufficient sample for microbial analyses, the final cohort consisted of 936 women of predominantly white race (74.3%). The overall preterm birth rate was 12.6% (118 births); the spontaneous preterm birth rate at <37 weeks' gestation was 6.2% (2.9% at ≤34 weeks' gestation), whereas the preterm premature rupture of the membranes rate was 4.2%. No single individual microbial target predicted increased spontaneous preterm birth risk. Conversely, women who subsequently delivered at term had higher amounts of Lactobacillus crispatus, Lactobacillus gasseri, or Lactobacillus jensenii DNA in their vaginal swabs (13.8% spontaneous preterm birth vs 31.2% term; P=.005). In the remaining women, a specific microbial DNA signature was identified that was strongly predictive of spontaneous preterm birth risk, consisting of DNA from Gardnerella vaginalis (clade 4), Lactobacillus iners, and Ureaplasma parvum (serovars 3 and 6). Risk prediction was improved if Fusobacterium nucleatum detection was included in the test algorithm. The final algorithm, which we called the Gardnerella Lactobacillus Ureaplasma (GLU) test, was able to detect women at risk of spontaneous preterm birth at <37 and ≤34 weeks' gestation, with sensitivities of 37.9% and 44.4%, respectively, and likelihood ratios (plus or minus) of 2.22 per 0.75 and 2.52 per 0.67, respectively. Preterm premature rupture of the membranes was more than twice as common in GLU-positive women. Adjusting for maternal demographics, ethnicity, and clinical history did not improve prediction. Only a history of spontaneous preterm birth was more effective at predicting spontaneous preterm birth than a GLU-positive result (odds ratio, 3.6). CONCLUSION We have identified a vaginal bacterial DNA signature that identifies women with a singleton pregnancy who are at increased risk of spontaneous preterm birth and may benefit from targeted antimicrobial therapy.
Collapse
Affiliation(s)
- Matthew S Payne
- Division of Obstetrics and Gynaecology, The University of Western Australia, Subiaco, Australia; Women and Infants Research Foundation, Subiaco, Australia.
| | - John P Newnham
- Division of Obstetrics and Gynaecology, The University of Western Australia, Subiaco, Australia; Women and Infants Research Foundation, Subiaco, Australia
| | - Dorota A Doherty
- Division of Obstetrics and Gynaecology, The University of Western Australia, Subiaco, Australia; Women and Infants Research Foundation, Subiaco, Australia
| | - Lucy L Furfaro
- Division of Obstetrics and Gynaecology, The University of Western Australia, Subiaco, Australia
| | - Narisha L Pendal
- Division of Obstetrics and Gynaecology, The University of Western Australia, Subiaco, Australia
| | - Diane E Loh
- Women and Infants Research Foundation, Subiaco, Australia
| | - Jeffrey A Keelan
- Division of Obstetrics and Gynaecology, The University of Western Australia, Subiaco, Australia; Women and Infants Research Foundation, Subiaco, Australia
| |
Collapse
|
23
|
Boehm ET, Thon C, Kupcinskas J, Steponaitiene R, Skieceviciene J, Canbay A, Malfertheiner P, Link A. Fusobacterium nucleatum is associated with worse prognosis in Lauren's diffuse type gastric cancer patients. Sci Rep 2020; 10:16240. [PMID: 33004953 PMCID: PMC7530997 DOI: 10.1038/s41598-020-73448-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Fusobacterium nucleatum (F. nucleatum) is frequently detected in primary colorectal cancer (CRC) and matching metastasis, and has been linked to a worse prognosis. We investigated the presence of F. nucleatum in gastric cancer (GC) and gastric preneoplastic conditions of the stomach, and its potential prognostic value in GC patients. Fusobacterium spp. and F. nucleatum were quantified in various specimens from gastrointestinal tract including paired CRC and GC tissues using probe-based qPCR. Fusobacterium spp. and F. nucleatum were more frequently found in tumorous tissue of CRC and GC compared to non-tumorous tissues. The frequency and bacterial load were higher in CRC compared to GC patients. F. nucleatum positivity showed no association to chronic gastritis or preneoplastic conditions such as intestinal metaplasia. F. nucleatum-positivity was associated with significantly worse overall survival in patients with Lauren's diffuse type, but not with intestinal type GC. There was no association with gender, Helicobacter pylori-status, tumor stage or tumor localization. However, F. nucleatum was positively associated with patient's age and a trend for a lower global long interspersed element-1 DNA methylation. In conclusion, our work provides novel evidence for clinical relevance of F. nucleatum in GC by showing an association between F. nucleatum positivity with worse prognosis of patients with Laurens's diffuse type gastric cancer. Further studies are necessary to explore related mechanistic insights and potential therapeutic benefit of targeted antibiotic treatment in GC patients.
Collapse
Affiliation(s)
- Ellen Teresa Boehm
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Cosima Thon
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Juozas Kupcinskas
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Gastroenterology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ruta Steponaitiene
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jurgita Skieceviciene
- Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ali Canbay
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
| |
Collapse
|
24
|
Microbial Analysis of Saliva to Identify Oral Diseases Using a Point-of-Care Compatible qPCR Assay. J Clin Med 2020; 9:jcm9092945. [PMID: 32933084 PMCID: PMC7565348 DOI: 10.3390/jcm9092945] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Oral health is maintained by a healthy microbiome, which can be monitored by state-of-the art diagnostics. Therefore, this study evaluated the presence and quantity of ten oral disease-associated taxa (P. gingivalis, T. forsythia, T. denticola, F. nucleatum, C. rectus, P. intermedia, A. actinomycetemcomitans, S. mutans, S. sobrinus, oral associated Lactobacilli) in saliva and their clinical status association in 214 individuals. Upon clinical examination, study subjects were grouped into healthy, caries and periodontitis and their saliva was collected. A highly specific point-of-care compatible dual color qPCR assay was developed and used to study the above-mentioned bacteria of interest in the collected saliva. Assay performance was compared to a commercially available microbial reference test. Eight out of ten taxa that were investigated during this study were strong discriminators between the periodontitis and healthy groups: C. rectus, T. forsythia, P. gingivalis, S. mutans, F. nucleatum, T. denticola, P. intermedia and oral Lactobacilli (p < 0.05). Significant differentiation between the periodontitis and caries group microbiome was only shown for S. mutans (p < 0.05). A clear distinction between oral health and disease was enabled by the analysis of quantitative qPCR data of target taxa levels in saliva.
Collapse
|
25
|
Hashavya S, Pines N, Gayego A, Schechter A, Gross I, Moses A. The use of bacterial DNA from saliva for the detection of GAS pharyngitis. J Oral Microbiol 2020; 12:1771065. [PMID: 33312447 PMCID: PMC7717604 DOI: 10.1080/20002297.2020.1771065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Background Acute tonsillitis is a very common medical condition. Despite different methods of detection, all tests are based on GAS sampling using a throat swab. However, obtaining the swab can elicit vomiting and is often accompanied by fear and apprehension in children. The aim of this study was to find a non-invasive method for the detection of GAS pharyngitis. Methods A classic throat swab was obtained for culture, and a saliva sample was taken from 100 subjects recruited from Meuhedet Health Care Organization clinic. Real time PCR was performed to detect GAS dnaseB specific gene in the saliva samples. Results 56% of the throat cultures and 48% of the PCR samples were positive for GAS. The overall sensitivity and specificity of the saliva PCR method was 79% and 91% respectively; NPV and PPV were 77% and 92% respectively. When excluding patients who presented on the first day of fever, sensitivity and specificity increased to 90% and 100% respectively. No other anamnestic or clinical findings increased the yield of the test. Conclusion Saliva-based PCR amplification of GAS DNA method is effective in detection of GAS pharyngitis. Further studies are needed to achieve detection rates to replace the traditional throat swab-based approach.
Collapse
Affiliation(s)
- Saar Hashavya
- Department of Pediatric Emergency Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Naama Pines
- Department of Pediatrics, Hadassah and Hebrew University Hospital, Jerusalem, Israel
| | - Ayelet Gayego
- Department of Microbiology and Infectious Diseases, Hadassah and Hebrew University Hospital, Jerusalem, Israel
| | | | - Itai Gross
- Department of Pediatric Emergency Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Alon Moses
- Department of Microbiology and Infectious Diseases, Hadassah and Hebrew University Hospital, Jerusalem, Israel
| |
Collapse
|
26
|
Tada A, Nakayama-Imaohji H, Yamasaki H, Elahi M, Nagao T, Yagi H, Ishikawa M, Shibuya K, Kuwahara T. Effect of thymoquinone on Fusobacterium nucleatum‑associated biofilm and inflammation. Mol Med Rep 2020; 22:643-650. [PMID: 32626941 PMCID: PMC7339527 DOI: 10.3892/mmr.2020.11136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/29/2020] [Indexed: 01/29/2023] Open
Abstract
Periodontitis affects oral tissues and induces systemic inflammation, which increases the risk of cardiovascular disease and metabolic syndrome. Subgingival plaque accumulation is a trigger of periodontitis. Fusobacterium nucleatum (FN) contributes to subgingival biofilm complexity by intercalating with early and late bacterial colonizers on tooth surfaces. In addition, inflammatory responses to FN are associated with the progression of periodontitis. Nigella sativa Lin. seed, which is known as black cumin (BC), has been used as a herbal medicine to treat ailments such as asthma and infectious diseases. The current study examined the inhibitory effect of BC oil and its active constituents, thymol (TM) and thymoquinone (TQ), on FN-associated biofilm and inflammation. FN-containing biofilms were prepared by co-cultivation with an early dental colonizer, Actinomyces naeslundii (AN). The stability and biomass of FN/AN dual species biofilms were significantly higher compared with FN alone. This effect was retained even with prefixed cells, indicating that FN/AN co-aggregation is mediated by physicochemical interactions with cell surface molecules. FN/AN biofilm formation was significantly inhibited by 0.1% TM or TQ. Confocal laser scanning microscopy indicated that treatment of preformed FN/AN biofilm with 0.01% of BC, TM or TQ significantly reduced biofilm thickness, and TQ demonstrated a cleansing effect equivalent to that of isopropyl methylphenol. TQ dose-dependently suppressed TNF-α production from a human monocytic cell line, THP-1 exposed to FN, yet showed no toxicity to THP-1 cells. These results indicated that oral hygiene care using TQ could reduce FN-associated biofilm and inflammation in gingival tissue.
Collapse
Affiliation(s)
- Ayano Tada
- Department of Microbiology, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa 761‑0793, Japan
| | - Haruyuki Nakayama-Imaohji
- Department of Microbiology, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa 761‑0793, Japan
| | - Hisashi Yamasaki
- Division of Biology, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Miad Elahi
- Department of Microbiology, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa 761‑0793, Japan
| | - Tamiko Nagao
- Faculty of Nursing, Shikoku University, Ohjin, Tokushima 771‑1192, Japan
| | - Hirofumi Yagi
- Department of Microbiology, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa 761‑0793, Japan
| | - Masao Ishikawa
- Laboratory for Oral Health Science, Tokyo 103‑0012, Japan
| | - Koji Shibuya
- Laboratory for Oral Health Science, Tokyo 103‑0012, Japan
| | - Tomomi Kuwahara
- Department of Microbiology, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa 761‑0793, Japan
| |
Collapse
|
27
|
Mitova N, Rashkova MR, Popova CL. Saliva diagnostics of sex hormones and subgingival microflora in children in puberty. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1688190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Nadezhda Mitova
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Maya Rasheva Rashkova
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Christina Lazarova Popova
- Department of Periodontology, Faculty of Dental Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
28
|
Guven DC, Dizdar O, Alp A, Akdoğan Kittana FN, Karakoc D, Hamaloglu E, Lacin S, Karakas Y, Kilickap S, Hayran M, Yalcin S. Analysis of Fusobacterium nucleatum and Streptococcus gallolyticus in saliva of colorectal cancer patients. Biomark Med 2019; 13:725-735. [PMID: 31157977 DOI: 10.2217/bmm-2019-0020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/10/2019] [Indexed: 02/08/2023] Open
Abstract
Aim: The aim of the study was to examine the prevalence and amount of Fusobacterium nucleatum (Fn), Porphyromonas gingivalis (Pg) and Streptococcus gallolyticus (Sg) in the saliva of colorectal cancer (CRC) patients and controls. Methods: PCR analyses performed in 71 CRC patients and 77 controls. Results: Saliva samples of patients had higher amounts of Fn (p = 0.001) and Sg (p < 0.001) compared with controls. Amount of Fn and Sg were lower in the microsatellite instability (+) group. Evaluation of salivary Sg amount by receiver operating characteristics analysis found to have diagnostic value for CRC (AUC: 0.84, 95% CI: 0.72-0.96). Conclusion: We found higher amounts of Fn and Sg in the saliva of CRC patients. Salivary Sg could helpful in distinction of CRC.
Collapse
Affiliation(s)
- Deniz Can Guven
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara 06230, Turkey
| | - Omer Dizdar
- Department of Preventive Oncology, Hacettepe University Cancer Institute, Ankara 06230, Turkey
| | - Alpaslan Alp
- Department of Medical Microbiology, Hacettepe University Faculty of Medicine, Ankara 06230, Turkey
| | | | - Derya Karakoc
- Department of General Surgery, Hacettepe University Faculty of Medicine, Ankara 06230, Turkey
| | - Erhan Hamaloglu
- Department of General Surgery, Hacettepe University Faculty of Medicine, Ankara 06230, Turkey
| | - Sahin Lacin
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara 06230, Turkey
| | - Yusuf Karakas
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara 06230, Turkey
| | - Saadettin Kilickap
- Department of Preventive Oncology, Hacettepe University Cancer Institute, Ankara 06230, Turkey
| | - Mutlu Hayran
- Department of Preventive Oncology, Hacettepe University Cancer Institute, Ankara 06230, Turkey
| | - Suayib Yalcin
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara 06230, Turkey
| |
Collapse
|
29
|
Mitova N, Rashkova M, Popova C. Quantity, diversity and complexity of subgingival microorganisms in children with plaque-induced gingivitis. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1604156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Nadezhda Mitova
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Maya Rashkova
- Department of Pediatric Dentistry, Faculty of Dental Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Christina Popova
- Department of Periodontology, Faculty of Dental Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
30
|
Choi H, Kim E, Kang J, Kim HJ, Lee JY, Choi J, Joo JY. Real-time PCR quantification of 9 periodontal pathogens in saliva samples from periodontally healthy Korean young adults. J Periodontal Implant Sci 2018; 48:261-271. [PMID: 30202609 PMCID: PMC6125667 DOI: 10.5051/jpis.2018.48.4.261] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/20/2018] [Indexed: 11/29/2022] Open
Abstract
Purpose Few studies have examined periodontal pathogens from saliva samples in periodontally healthy young adults. The purposes of this study were to determine the prevalence of periodontopathic bacteria and to quantify periodontal pathogens in saliva samples using real-time polymerase chain reaction (PCR) assays in periodontally healthy Korean young adults under 35 years of age. Methods Nine major periodontal pathogens were analyzed by real-time PCR in saliva from 94 periodontally healthy young adults. Quantification of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Prevotella intermedia, Fusobacterium nucleatum, Campylobacter rectus, Peptostreptococcus anaerobius, and Eikenella corrodens was performed by DNA copy number measurement. Results F. nucleatum and E. corrodens were detected in all subjects; the numbers of positive samples were 87 (92.6%), 91 (96.8%), and 90 (95.7%) for P. gingivalis, P. anaerobius, and C. rectus, respectively. Other pathogens were also detected in periodontally healthy subjects. Analysis of DNA copy numbers revealed that the most abundant periodontal pathogen was F. nucleatum, which was significantly more prevalent than all other bacteria (P<0.001), followed by P. anaerobius, P. gingivalis, E. corrodens, C. rectus, and T. denticola. There was no significant difference in the prevalence of each bacterium between men and women. The DNA copy number of total bacteria was significantly higher in men than in women. Conclusions Major periodontal pathogens were prevalent in the saliva of periodontally healthy Korean young adults. Therefore, we suggest that the development of periodontal disease should not be overlooked in periodontally healthy young people, as it can arise due to periodontal pathogen imbalance and host susceptibility.
Collapse
Affiliation(s)
- Heeyoung Choi
- Department of Periodontology, Institute of Translational Dental Sciences, Pusan National University School of Dentistry, Yangsan, Korea
| | | | | | - Hyun-Joo Kim
- Department of Periodontology, Institute of Translational Dental Sciences, Pusan National University School of Dentistry, Yangsan, Korea
| | - Ju-Youn Lee
- Department of Periodontology, Institute of Translational Dental Sciences, Pusan National University School of Dentistry, Yangsan, Korea.,Department of Periodontology and Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Korea
| | - Jeomil Choi
- Department of Periodontology, Institute of Translational Dental Sciences, Pusan National University School of Dentistry, Yangsan, Korea.,Department of Periodontology and Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Korea
| | - Ji-Young Joo
- Department of Periodontology, Institute of Translational Dental Sciences, Pusan National University School of Dentistry, Yangsan, Korea.,Department of Periodontology and Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Korea
| |
Collapse
|
31
|
Belstrøm D, Grande MA, Sembler-Møller ML, Kirkby N, Cotton SL, Paster BJ, Holmstrup P. Influence of periodontal treatment on subgingival and salivary microbiotas. J Periodontol 2018. [DOI: 10.1002/jper.17-0377] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Daniel Belstrøm
- Section for Periodontology; Microbiology and Community Dentistry; Department of Odontology; Faculty of Health Sciences; University of Copenhagen; Copenhagen Denmark
| | - Maria Anastasia Grande
- Section for Periodontology; Microbiology and Community Dentistry; Department of Odontology; Faculty of Health Sciences; University of Copenhagen; Copenhagen Denmark
| | - Maria Lynn Sembler-Møller
- Section for Oral Medicine; Department of Odontology; Faculty of Health Sciences; University of Copenhagen; Copenhagen Denmark
| | - Nikolai Kirkby
- Department of Medical Microbiology; Copenhagen University Hospital; Copenhagen Denmark
| | | | - Bruce J. Paster
- The Forsyth Institute; Cambridge MA United States
- Department of Oral Medicine; Infection & Immunity; Harvard School of Dental Medicine; Boston MA United States
| | - Palle Holmstrup
- Section for Periodontology; Microbiology and Community Dentistry; Department of Odontology; Faculty of Health Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
32
|
Marin MJ, Ambrosio N, Herrera D, Sanz M, Figuero E. Validation of a multiplex qPCR assay for the identification and quantification of Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis: In vitro and subgingival plaque samples. Arch Oral Biol 2018; 88:47-53. [PMID: 29407751 DOI: 10.1016/j.archoralbio.2018.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To validate a multiplex qPCR (m-qPCR) assay for the simultaneous identification and quantification of Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis in subgingival samples. MATERIAL AND METHODS In vitro samples: DNA combinations of A. actinomycetemcomitans and P. gingivalis in similar or different concentrations were prepared. qPCR and m-qPCR were performed using the same primers and hydrolysis probes specific for 16SrRNA genes. Results were analyzed using intra-class (ICCs) and Lin's correlation coefficients (r) based on quantification cycle (Cq) values. Subgingival plaque samples: a cross-sectional study analyzing subgingival plaque samples harvested from periodontally-healthy and chronic periodontitis patients. Samples were processed by either qPCR or m-qPCR targeting both bacteria. Sensitivity, specificity, predictive values and Lińs correlation coefficients (r) were calculated using CFU/mL as primary outcome. RESULTS In vitro samples: m-qPCR yielded a good reproducibility (coefficients of variation around 1% and ICCs > 0.99) for both bacterial species. m-qPCR achieved detection limits and specificity similar to qPCR. An excellent concordance (r = 0.99) was observed between m-qPCR and qPCR for A. actinomycetemcomitans and P. gingivalis without statistical significant differences between both methods Subgingival plaque samples: a high sensitivity (above 80%) and specificity (100%) was obtained with the m-qPCR for both bacteria. The m-qPCR yielded a good concordance in Cq values, showing a good level of agreement between qPCR and m-qPCR. CONCLUSION The tested m-qPCR method was successful in the simultaneous quantification of A. actinomycetemcomitans and P. gingivalis, with a high degree of sensitivity and specificity on subgingival plaque samples.
Collapse
Affiliation(s)
- M J Marin
- Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, University Complutense, Madrid, Spain.
| | - N Ambrosio
- Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, University Complutense, Madrid, Spain
| | - D Herrera
- Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, University Complutense, Madrid, Spain
| | - M Sanz
- Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, University Complutense, Madrid, Spain
| | - E Figuero
- Etiology and Therapy of Periodontal Diseases (ETEP) Research Group, University Complutense, Madrid, Spain
| |
Collapse
|
33
|
Pan S, Liu Y, Si Y, Zhang Q, Wang L, Liu J, Wang C, Xiao S. Prevalence of fimA genotypes of Porphyromonas gingivalis in adolescent orthodontic patients. PLoS One 2017; 12:e0188420. [PMID: 29176857 PMCID: PMC5703466 DOI: 10.1371/journal.pone.0188420] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/07/2017] [Indexed: 11/24/2022] Open
Abstract
Background The placement of fixed orthodontic appliances may alter the composition of oral microbiota and has the potential risk of periodontal complication. Porphyromonas gingivalis fimbriae play a critical role in colonization of P. gingivalis in subgingival regions. In this study, we investigated the association between the prevalence of P. gingivalis-specific fimA genotypes and periodontal health status in adolescent orthodontic patients, to identify the pathogencity of P. gingivalis during orthodontic therapy. Methods Sixty-one adolescent orthodontic patients were enrolled in the case group, while the control group consisted of 56 periodontally healthy adolescents. At baseline (T0), clinical parameter (gingival index) was tested, and subgingival plaque samples were obtained from the lower incisors. The incidences of P. gingivalis and fimA genotypes were detected by polymerase chain reaction. All parameters were reassessed after 1 month (T1), 2 months (T2), 3 months (T3), and 6 months (T4) in the case group and then compared with those of the controls. Results Both microbiological and clinical parameters from orthodontic patients started to increase after placement of fixed appliances. Maximum values were reached at 3 months after placement and followed by their decreases at six months. However, the microbiological and clinical parameters in the case group were significantly higher than those of the control group. The GI of fimA II, IV-positive samples was significantly higher than that of negative samples. Conclusion P. gingivalis carrying fimA II or IV was closely related to orthodontic gingivitis. In addition, proper oral hygiene control could lead to little increase in dental plaque accumulation, and exert a beneficial effect to periodontal tissues.
Collapse
Affiliation(s)
- Shuang Pan
- Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
- Department of Orthodontics, Jinan Stomatological Hospital, Jinan, China
| | - Yi Liu
- Pediatric Research Institute, Qilu Children’s Hospital of Shandong University, Jinan, China
| | - Yi Si
- Department of Oral Medicine, Shandong Medical College, Jinan, China
| | - Qiang Zhang
- Department of Implantology, Jinan Stomatological Hospital, Jinan, China
| | - Lin Wang
- Department of Stomatology, the First Hospital of Jinan, Jinan, China
| | - Jianwei Liu
- Department of Orthodontics, Jinan Stomatological Hospital, Jinan, China
| | - Chunling Wang
- Department of Orthodontics, School of Stomatology, Shandong University, Jinan, China
- * E-mail: (CW); (SX)
| | - Shuiqing Xiao
- Department of Oral Medicine, Shandong Medical College, Jinan, China
- Department of Implantology, Jinan Stomatological Hospital, Jinan, China
- * E-mail: (CW); (SX)
| |
Collapse
|
34
|
Zhou X, Kattadiyil MT, Aprecio RM, Liu X, Zhang W, Li Y. Effect of opposing implant prostheses on periodontal pathogens in dentures: A pilot study. J Prosthet Dent 2017; 118:153-158. [DOI: 10.1016/j.prosdent.2016.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 10/14/2016] [Accepted: 10/14/2016] [Indexed: 01/04/2023]
|
35
|
Karched M, Bhardwaj RG, Pauline EM, George S, Asikainen S. Effect of preparation method and storage period on the stability of saliva DNA. Arch Oral Biol 2017; 81:21-25. [PMID: 28460249 DOI: 10.1016/j.archoralbio.2017.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 02/13/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022]
Abstract
Saliva is an attractive source for oral microbial detection and quantification since sampling is non-invasive and rapid. OBJECTIVES To determine whether different saliva preparation methods or preservation time periods affect DNA stability. METHODS Saliva samples from 4 healthy adult volunteers were processed to obtain 3 different preparations: whole saliva, and after centrifugation pellet and supernatant. Purified DNA (MasterPure™) from each sample was divided into 4 aliquots, one for immediate analysis and 3 (stored at -80°C) for later analyses after 1 week and 2 and 6 months. DNA concentrations and qPCR based quantities of Porphyromonas gingivalis, Prevotella intermedia, Parvimonas micra, Fusobacterium nucleatum, Filifactor alocis and Streptococcus mutans were determined. RESULTS DNA concentration did not decrease (P>0.05) during the 6-month period in any sample. Mean (SE) DNA concentrations (ng/μl) in whole saliva were 152.2 (51.2) and 147.8 (50) at day 0 and 6 months, respectively. Similarly, the values for pellet were 134.9 (42.5) and 133.6 (42.9), and for supernatant, 11 (1.9) and 8.9 (2.3), the difference being significant (P<0.001) between supernatant and whole saliva or pellet. The quantities of most bacterial species found at day 0 remained stable over the 6-month period in all saliva preparations. In supernatant, species quantities were lower (P<0.05) than in whole saliva or pellet. CONCLUSIONS DNA concentrations were comparable between whole saliva and pellet, suggesting that either of them can be used for DNA-based analyses. Our results also demonstrated that DNA extracted from saliva can be preserved at -80°C for at least 6 months without decrease in DNA concentration.
Collapse
Affiliation(s)
- Maribasappa Karched
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, PO Box 24923, Safat 13110, Kuwait.
| | - Radhika G Bhardwaj
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, PO Box 24923, Safat 13110, Kuwait
| | - Eunice M Pauline
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, PO Box 24923, Safat 13110, Kuwait
| | - Swapna George
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, PO Box 24923, Safat 13110, Kuwait
| | - Sirkka Asikainen
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, Faculty of Dentistry, Kuwait University, PO Box 24923, Safat 13110, Kuwait
| |
Collapse
|
36
|
Porphyromonas gingivalis oral infection promote T helper 17/Treg imbalance in the development of atherosclerosis. J Dent Sci 2016; 12:60-69. [PMID: 30895025 PMCID: PMC6395245 DOI: 10.1016/j.jds.2016.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 10/13/2016] [Indexed: 02/08/2023] Open
Abstract
Background/purpose Increasing studies have indicated the involvement of Porphyromonas gingivalis in atherosclerosis. T helper 17 (Th17)/Treg balance is critical during atherosclerosis. However, whether P. gingivalis oral infection is associated with Th17/Treg imbalance is unclear. The aim of the present study was to investigate the effect of P. gingivalis on Th17/Treg balance during atherosclerosis. Materials and methods ApoE–/– and C57BL/6 mice were inoculated orally with P. gingivalis ATCC 33277 for 9 weeks. The alveolar bone loss was assessed by microcomputerized tomography. The area of atherosclerosis plaque was identified by oil red O staining. Plaque stability was analyzed by CD68 and αSMA immunohistochemistry staining and Masson staining. The frequency of Th17 and Treg in spleen was detected by flow cytometry. The mRNA expression of Th17- and Treg-related factors was determined by quantitative polymerase chain reaction. Interleukin (IL)-6, a critical factor in modulating T-cell differentiation, was determined from spleen cells and mouse dendritic cells by enzyme-linked immunosorbent assay. Results Long-term P. gingivalis oral infection induced alveolar bone resorption. In ApoE–/– mice, P. gingivalis enhanced atherosclerotic lesion formation and plaque instability accompanied with a decreased Treg frequency and an increased Th17 cell frequency. In addition, mRNA expression of retinoic acid receptor-related orphan receptor γt and IL-17 was increased, and that of transforming growth factor (TGF) β and IL-10 was decreased in P. gingivalis-infected ApoE–/– mice. Furthermore, secretion of IL-6 was elevated in the spleen of P. gingivalis-infected ApoE–/– mice, as well as in mouse dendritic cells after P. gingivalis infection. Conclusion P. gingivalis oral infection may promote Th17/Treg imbalance by influencing T-cell differentiation during the process of atherosclerosis, with a larger lesion area and decreasing plaque instability.
Collapse
|
37
|
Hussain M, Stover CM, Dupont A. P. gingivalis in Periodontal Disease and Atherosclerosis - Scenes of Action for Antimicrobial Peptides and Complement. Front Immunol 2015; 6:45. [PMID: 25713575 PMCID: PMC4322733 DOI: 10.3389/fimmu.2015.00045] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/24/2015] [Indexed: 12/17/2022] Open
Abstract
According to the NHS, it is estimated that over 50% of the adult population are, to some extent, affected by gum disease and approximately 15% of UK population have been diagnosed with severe periodontitis. Periodontitis, a chronic polymicrobial disease of the gums, causes inflammation in its milder form, whereas in its severe form affects the surrounding tissues and can result in tooth loss. During periodontitis, plaque accumulates and sits between the junctional epithelium and the tooth itself, resulting in inflammation and the formation of a periodontal pocket. An interface is formed directly between the subgingival bacteria and the junctional epithelial cells. Bacterial pathogens commonly associated with periodontal disease are, among others, Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola, together known as the "red complex." This review will mostly concentrate on the role of P. gingivalis, a Gram-negative anaerobic bacterium and one of the major and most studied contributors of this disease. Because periodontal disease is associated with the development of atherosclerosis, it is important to understand the local immune response to P. gingivalis. Innate immune players, in particular, complement and antimicrobial peptides and their effects with regard to P. gingivalis during periodontitis and in the development of atherosclerosis will be presented.
Collapse
Affiliation(s)
- Mehak Hussain
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Cordula M. Stover
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Aline Dupont
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
38
|
Han YW. Fusobacterium nucleatum: a commensal-turned pathogen. Curr Opin Microbiol 2015; 23:141-7. [PMID: 25576662 DOI: 10.1016/j.mib.2014.11.013] [Citation(s) in RCA: 533] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 12/11/2022]
Abstract
Fusobacterium nucleatum is an anaerobic oral commensal and a periodontal pathogen associated with a wide spectrum of human diseases. This article reviews its implication in adverse pregnancy outcomes (chorioamnionitis, preterm birth, stillbirth, neonatal sepsis, preeclampsia), GI disorders (colorectal cancer, inflammatory bowel disease, appendicitis), cardiovascular disease, rheumatoid arthritis, respiratory tract infections, Lemierre's syndrome and Alzheimer's disease. The virulence mechanisms involved in the diseases are discussed, with emphasis on its colonization, systemic dissemination, and induction of host inflammatory and tumorigenic responses. The FadA adhesin/invasin conserved in F. nucleatum is a key virulence factor and a potential diagnostic marker for F. nucleatum-associated diseases.
Collapse
Affiliation(s)
- Yiping W Han
- Division of Periodontics, Section of Oral Diagnostics & Sciences, College of Dental Medicine, Columbia University Medical Center, United States; Department of Microbiology & Immunology, College of Physicians & Surgeons, Columbia University Medical Center, United States; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, United States.
| |
Collapse
|