1
|
Liu C, Ye Y, Guo Y, Zhou Y, Zhu Y, Liu X, Xu J, Zheng H, Liang D, Wang H. Wave-CAIPI Multiparameter MR Imaging in Neurology. NMR IN BIOMEDICINE 2025; 38:e5322. [PMID: 39873209 DOI: 10.1002/nbm.5322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 11/07/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025]
Abstract
In clinical practice, particularly in neurology assessments, imaging multiparametric MR images with a single-sequence scan is often limited by either insufficient imaging contrast or the constraints of accelerated imaging techniques. A novel single scan 3D imaging method, incorporating Wave-CAIPI and MULTIPLEX technologies and named WAMP, has been developed for rapid and comprehensive parametric imaging in clinical diagnostic applications. Featuring a hybrid design that includes wave encoding, the CAIPIRINHA sampling pattern, dual time of repetition (TR), dual flip angle (FA), multiecho, and optional flow modulation, the WAMP method captures information on RF B1t fields, proton density (PD), T1, susceptibility, and blood flow. This method facilitates the synthesis of multiple qualitative contrast-weighted images and relaxometric parametric maps. A single WAMP scan generates multiple contrast-weighted images and relaxometric parametric maps, including PD-weighted (PDW), T1-weighted (T1W), T2*-weighted (T2W), adjusted T1-weighted (aT1W), susceptibility-weighted imaging (SWI), B1t map, T1 map, T2/R2* map, PD map, and quantitative susceptibility mapping (QSM). Both phantom and in vivo experiments have demonstrated that the proposed method can achieve high image quality and quantification accuracy even at high acceleration factors of 4 and 9. The experiments have confirmed that the rapid single scan method can be effectively applied in clinical neurology, serving as a valuable diagnostic tool for conditions such as pediatric tuberous sclerosis complex (TSC)-related epilepsy, adult Parkinson's disease, and suspected stroke patient. The WAMP method holds substantial potential for advancing multiparametric MR imaging in clinical neurology, promising significant improvements in both diagnostic speed and accuracy.
Collapse
Affiliation(s)
- Congcong Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yongquan Ye
- United Imaging Healthcare, Houston, Texas, USA
| | - Yifan Guo
- Research Center for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yihang Zhou
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
- Research Center for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanjie Zhu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Xu
- United Imaging Healthcare, Houston, Texas, USA
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Dong Liang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
- Research Center for Medical AI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haifeng Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Lubbers K, Hiralal KR, Dieleman GC, Hagenaar DA, Dierckx B, Legerstee JS, de Nijs PFA, Rietman AB, Oostenbrink R, Bindels-de Heus KGCB, de Wit MCY, Hillegers MHJ, Ten Hoopen LW, Mous SE. Autism Spectrum Disorder Symptom Profiles in Fragile X Syndrome, Angelman Syndrome, Tuberous Sclerosis Complex and Neurofibromatosis Type 1. J Autism Dev Disord 2024:10.1007/s10803-024-06557-2. [PMID: 39395123 DOI: 10.1007/s10803-024-06557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/14/2024]
Abstract
Studying Autism Spectrum Disorder (ASD) heterogeneity in biologically homogeneous samples may increase our knowledge of ASD etiology. Fragile X syndrome (FXS), Angelman syndrome (AS), Tuberous Sclerosis Complex (TSC), and Neurofibromatosis type 1 (NF1) are monogenic disorders with high a prevalence of ASD symptomatology. This study aimed to identify ASD symptom profiles in a large group of children and adolescents (0;9-28 years) with FXS, AS, TSC, and NF1. Data on ASD symptomatology (Autism Diagnostic Observation Scale (ADOS-2) & Social Responsiveness Scale (SRS-2)) were collected from children and adolescents with FXS (n = 54), AS (n = 93), TSC (n = 112), and NF1 (n = 278). To identify groups of individuals with similar ASD profiles, we performed two latent profile analyses. We identified a four-profile model based on the ADOS-2, with a (1) 'Non-spectrum symptom profile', (2) 'Social Affect symptom profile', (3)'Restricted/Repetitive Behaviors symptom profile', and (4)'ASD symptom profile'. We also identified a four-profile model based on the SRS, with a (1)'Non-clinical symptom profile', (2)'Mild symptom profile', (3)'Moderate symptom profile', and (4)'Severe symptom profile'. Although each syndrome group exhibited varying degrees of severity, they also displayed heterogeneity in the profiles in which they were classified. We found distinct ASD symptom profiles in a population consisting of children and adolescents with FXS, AS, TSC, and NF1. Our study highlights the importance of a personalized approach to the identification and management of ASD symptoms in rare genetic syndromes. Future studies should aim to include more domains of functioning and investigate the stability of latent profiles over time.
Collapse
Affiliation(s)
- Kyra Lubbers
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands
| | - Kamil R Hiralal
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands
| | - Gwendolyn C Dieleman
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands
| | - Doesjka A Hagenaar
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, Rotterdam, The Netherlands
| | - Bram Dierckx
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands
| | - Jeroen S Legerstee
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands
- Research Institute of Child Development and Education, University of Amsterdam, Amsterdam, The Netherlands
- Department of Child and Adolescent Psychiatry, Amsterdam University Medical Center/Levvel, Amsterdam, The Netherlands
| | - Pieter F A de Nijs
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands
| | - André B Rietman
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands
| | - Rianne Oostenbrink
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, Rotterdam, The Netherlands
- Full Member of the European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS)-Project ID No 739547, Amsterdam, The Netherlands
| | - Karen G C B Bindels-de Heus
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, Rotterdam, The Netherlands
| | - Marie-Claire Y de Wit
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Manon H J Hillegers
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands
| | - Leontine W Ten Hoopen
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands
| | - Sabine E Mous
- Erasmus MC Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus MC, Rotterdam, The Netherlands.
- Department of Child and Adolescent Psychiatry and Psychology, Erasmus MC, Rotterdam, The Netherlands.
- Child Brain Center, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Lee HY, Lin CH, Wang XA, Tsai JD. Neuropsychiatric comorbidities in tuberous sclerosis complex patients with epilepsy: results of the TAND checklist survey. Acta Neurol Belg 2024; 124:973-979. [PMID: 38523222 DOI: 10.1007/s13760-024-02510-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 02/23/2024] [Indexed: 03/26/2024]
Abstract
PURPOSE In addition to epilepsy, individuals with tuberous sclerosis complex (TSC) experience a wide range of behavioral, psychiatric, intellectual, academic, and psychosocial problems. They usually exert a large psychological burden on individuals with these illnesses. METHODS This cross-sectional study used TSC-associated neuropsychiatric disorders (TAND) checklist interviews conducted at a single medical center. The enrollment of all subjects was > 6 years, and the comorbidities of neurodevelopmental disorders were assessed by clinical psychologists before enrollment. To assess the spectrum of TAND, the TAND checklist was applied as stated in the protocol, and the responses to the TAND checklist were evaluated by clinical psychologists. RESULTS In the behavioral concerns of patients with TSC without epilepsy, those with epilepsy had excessive shyness, language delay, lack of eye contact, rigid behavior, inattentiveness, and restlessness. In psychiatric disorders, autism spectrum disorder and attention-deficit/hyperactivity disorder are significantly correlated with epilepsy history. Diminished academic skills, including reading, writing, and mathematics skills, are significantly associated with epilepsy history. For intellectual ability, TSC patients without epilepsy is associated normal intelligence level. Among neuropsychological skills, deficits in attention, dual tasking/multi-tasking, visuospatial tasking, and executive skills are significantly associated with epilepsy history. CONCLUSIONS Epilepsy in patients with TSC contributes to comorbid neuropsychiatric disorders. In addition to epilepsy evaluation, it is crucial to evaluate the heterogeneous spectrum of neuropsychiatric disorders using a standard checklist during the annual clinical follow-up of patients with TSC.
Collapse
Affiliation(s)
- Hom-Yi Lee
- Department of Psychology, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Room of Psychology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chien-Heng Lin
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Paediatrics, China Medical University Hospital, Taichung, Taiwan
| | - Xing-An Wang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Paediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jeng-Dau Tsai
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.
- Department of Paediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
4
|
O'Sullivan R, Bissell S, Agar G, Spiller J, Surtees A, Heald M, Clarkson E, Khan A, Oliver C, Bagshaw AP, Richards C. Exploring an objective measure of overactivity in children with rare genetic syndromes. J Neurodev Disord 2024; 16:18. [PMID: 38637764 PMCID: PMC11025271 DOI: 10.1186/s11689-024-09535-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 04/05/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Overactivity is prevalent in several rare genetic neurodevelopmental syndromes, including Smith-Magenis syndrome, Angelman syndrome, and tuberous sclerosis complex, although has been predominantly assessed using questionnaire techniques. Threats to the precision and validity of questionnaire data may undermine existing insights into this behaviour. Previous research indicates objective measures, namely actigraphy, can effectively differentiate non-overactive children from those with attention-deficit hyperactivity disorder. This study is the first to examine the sensitivity of actigraphy to overactivity across rare genetic syndromes associated with intellectual disability, through comparisons with typically-developing peers and questionnaire overactivity estimates. METHODS A secondary analysis of actigraphy data and overactivity estimates from The Activity Questionnaire (TAQ) was conducted for children aged 4-15 years with Smith-Magenis syndrome (N=20), Angelman syndrome (N=26), tuberous sclerosis complex (N=16), and typically-developing children (N=61). Actigraphy data were summarized using the M10 non-parametric circadian rhythm variable, and 24-hour activity profiles were modelled via functional linear modelling. Associations between actigraphy data and TAQ overactivity estimates were explored. Differences in actigraphy-defined activity were also examined between syndrome and typically-developing groups, and between children with high and low TAQ overactivity scores within syndromes. RESULTS M10 and TAQ overactivity scores were strongly positively correlated for children with Angelman syndrome and Smith-Magenis syndrome. M10 did not substantially differ between the syndrome and typically-developing groups. Higher early morning activity and lower evening activity was observed across all syndrome groups relative to typically-developing peers. High and low TAQ group comparisons revealed syndrome-specific profiles of overactivity, persisting throughout the day in Angelman syndrome, occurring during the early morning and early afternoon in Smith-Magenis syndrome, and manifesting briefly in the evening in tuberous sclerosis complex. DISCUSSION These findings provide some support for the sensitivity of actigraphy to overactivity in children with rare genetic syndromes, and offer syndrome-specific temporal descriptions of overactivity. The findings advance existing descriptions of overactivity, provided by questionnaire techniques, in children with rare genetic syndromes and have implications for the measurement of overactivity. Future studies should examine the impact of syndrome-related characteristics on actigraphy-defined activity and overactivity estimates from actigraphy and questionnaire techniques.
Collapse
Affiliation(s)
- Rory O'Sullivan
- School of Psychology, University of Birmingham, Birmingham, UK.
- Cerebra Network for Neurodevelopmental Disorders, University of Birmingham, Birmingham, UK.
| | - Stacey Bissell
- School of Psychology, University of Birmingham, Birmingham, UK
- Cerebra Network for Neurodevelopmental Disorders, University of Birmingham, Birmingham, UK
| | - Georgie Agar
- School of Life & Health Sciences, Aston University, Birmingham, UK
| | - Jayne Spiller
- School of Psychology and Vision Sciences, University of Leicester, Leicester, UK
| | - Andrew Surtees
- School of Psychology, University of Birmingham, Birmingham, UK
| | - Mary Heald
- Blackpool Teaching Hospitals NHS Foundation Trust, Blackpool, Lancashire, UK
| | | | - Aamina Khan
- Cerebra Network for Neurodevelopmental Disorders, University of Birmingham, Birmingham, UK
- School of Life & Health Sciences, Aston University, Birmingham, UK
| | | | - Andrew P Bagshaw
- School of Psychology, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Caroline Richards
- School of Psychology, University of Birmingham, Birmingham, UK
- Cerebra Network for Neurodevelopmental Disorders, University of Birmingham, Birmingham, UK
| |
Collapse
|
5
|
Bosetti C, Ferrini L, Ferrari AR, Bartolini E, Calderoni S. Children with Autism Spectrum Disorder and Abnormalities of Clinical EEG: A Qualitative Review. J Clin Med 2024; 13:279. [PMID: 38202286 PMCID: PMC10779511 DOI: 10.3390/jcm13010279] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/22/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
Over the last decade, the comorbidity between Autism Spectrum Disorder (ASD) and epilepsy has been widely demonstrated, and many hypotheses regarding the common neurobiological bases of these disorders have been put forward. A variable, but significant, prevalence of abnormalities on electroencephalogram (EEG) has been documented in non-epileptic children with ASD; therefore, several scientific studies have recently tried to demonstrate the role of these abnormalities as a possible biomarker of altered neural connectivity in ASD individuals. This narrative review intends to summarize the main findings of the recent scientific literature regarding abnormalities detected with standard EEG in children/adolescents with idiopathic ASD. Research using three different databases (PubMed, Scopus and Google Scholar) was conducted, resulting in the selection of 10 original articles. Despite an important lack of studies on preschoolers and a deep heterogeneity in results, some authors speculated on a possible association between EEG abnormalities and ASD characteristics, in particular, the severity of symptoms. Although this correlation needs to be more strongly elucidated, these findings may encourage future studies aimed at demonstrating the role of electrical brain abnormalities as an early biomarker of neural circuit alterations in ASD, highlighting the potential diagnostic, prognostic and therapeutic value of EEG in this field.
Collapse
Affiliation(s)
- Chiara Bosetti
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.B.); (L.F.); (A.R.F.); (S.C.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Luca Ferrini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.B.); (L.F.); (A.R.F.); (S.C.)
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Anna Rita Ferrari
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.B.); (L.F.); (A.R.F.); (S.C.)
| | - Emanuele Bartolini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.B.); (L.F.); (A.R.F.); (S.C.)
- Tuscany PhD Programme in Neurosciences, 50139 Florence, Italy
| | - Sara Calderoni
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (C.B.); (L.F.); (A.R.F.); (S.C.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
6
|
Gipson TT, Oller DK, Messinger DS, Perry LK. Understanding speech and language in tuberous sclerosis complex. Front Hum Neurosci 2023; 17:1149071. [PMID: 37323931 PMCID: PMC10267356 DOI: 10.3389/fnhum.2023.1149071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Tuberous Sclerosis Complex (TSC), is a neurocutaneous disorder, associated with a high prevalence of autism spectrum disorder (ASD; ∼50% of individuals). As TSC is a leading cause of syndromic ASD, understanding language development in this population would not only be important for individuals with TSC but may also have implications for those with other causes of syndromic and idiopathic ASD. In this mini review, we consider what is known about language development in this population and how speech and language in TSC are related to ASD. Although up to 70% of individuals with TSC report language difficulties, much of the limited research to date on language in TSC has been based on summary scores from standardized assessments. Missing is a detailed understanding of the mechanisms driving speech and language in TSC and how they relate to ASD. Here, we review recent work suggesting that canonical babbling and volubility-two precursors of language development that predict the emergence of speech and are delayed in infants with idiopathic ASD-are also delayed in infants with TSC. We then look to the broader literature on language development to identify other early precursors of language development that tend to be delayed in children with autism as a guide for future research on speech and language in TSC. We argue that vocal turn-taking, shared attention, and fast mapping are three such skills that can provide important information about how speech and language develop in TSC and where potential delays come from. The overall goal of this line of research is to not only illuminate the trajectory of language in TSC with and without ASD, but to ultimately find strategies for earlier recognition and treatment of the pervasive language difficulties in this population.
Collapse
Affiliation(s)
- Tanjala T Gipson
- Department of Pediatrics, Le Bonheur Children's Hospital, The Boling Center for Developmental Disabilities, University of Tennessee Health Science Center, Memphis, TN, United States
| | - D Kimbrough Oller
- School of Communication Sciences and Disorders, Institute for Intelligent Systems, The University of Memphis, Memphis, TN, United States
| | - Daniel S Messinger
- Department of Psychology, University of Miami, Miami, FL, United States
- Department of Pediatrics, University of Miami, Miami, FL, United States
- Department of Electrical and Computer Engineering, University of Miami, Miami, FL, United States
- Department of Music Engineering, University of Miami, Miami, FL, United States
| | - Lynn K Perry
- Department of Psychology, University of Miami, Miami, FL, United States
| |
Collapse
|
7
|
Berghoff NM, Wilmshurst JM, Page TA, Wessels M, Schlegel B, Malcolm‐Smith S. Determining the neurocognitive profile of children with tuberous sclerosis complex within the Western Cape region of South Africa. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2023; 67:427-446. [PMID: 36788658 PMCID: PMC10952874 DOI: 10.1111/jir.13009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/29/2022] [Accepted: 12/21/2022] [Indexed: 06/18/2023]
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is a multisystem genetic disorder associated with a wide spectrum of cognitive impairments that can often result in impaired academic, social and adaptive functioning. However, studies investigating TSC have found it difficult to determine whether TSC is associated with a distinct cognitive phenotype and more specifically which aspects of functioning are impaired. Furthermore, children with TSC living in low-income and middle-income countries, like South Africa, experience additional burdens due to low socio-economic status, high mortality rates and poor access to health care and education. Hence, the clinical population of South Africa may vary considerably from those populations from high-income countries discussed in the literature. METHODS A comprehensive neuropsychological battery composed of internationally recognised measures examining attention, working memory, language comprehension, learning and memory, areas of executive function and general intellectual functioning was administered to 17 children clinically diagnosed with TSC. RESULTS The exploration of descriptive data indicated generalised cognitive difficulties in most cognitive domains, aside from memory. With only two participants performing in the average to above-average ranges, the rest of the sample showed poor verbal comprehension, perceptual reasoning, working memory, processing speed, disinhibition, and problems with spatial planning, problem solving, frustration tolerance, set shifting and maintaining a set of rules. Furthermore, correlational findings indicated several associations between socio-demographic and cognitive variables. CONCLUSIONS Importantly, this is the first study to comprehensively examine multiple domains of neurocognitive functioning in a low-resource setting sample of children with TSC. Current study findings showed that children with TSC have generalised impairments across several cognitive domains, rather than domain-specific impairments. Therefore, although examining individual aspects of cognition, such as those found in previous literature, is important, this approach is limiting. With a comprehensive assessment, including understanding the associations between domains, appropriate and directed support can be provided to ensure all aspects of development are addressed and considered.
Collapse
Affiliation(s)
- N. M. Berghoff
- Psychology DepartmentUniversity of Cape TownCape TownSouth Africa
| | - J. M. Wilmshurst
- Department of Paediatric NeurologyUniversity of Cape Town and Red Cross War Memorial Children's HospitalCape TownSouth Africa
| | - T. A. Page
- Psychology DepartmentUniversity of Cape TownCape TownSouth Africa
| | - M. Wessels
- Department of Paediatric NeurologyUniversity of Cape Town and Red Cross War Memorial Children's HospitalCape TownSouth Africa
| | | | - S. Malcolm‐Smith
- Psychology DepartmentUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
8
|
Shaffer RC, Reisinger DL, Schmitt LM, Lamy M, Dominick KC, Smith EG, Coffman MC, Esbensen AJ. Systematic Review: Emotion Dysregulation in Syndromic Causes of Intellectual and Developmental Disabilities. J Am Acad Child Adolesc Psychiatry 2023; 62:518-557. [PMID: 36007813 DOI: 10.1016/j.jaac.2022.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 06/03/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To summarize the current state of the literature regarding emotion dysregulation (ED) in syndromic intellectual disabilities (S-IDs) in 6 of the most common forms of S-IDs-Down syndrome, fragile X syndrome (FXS), tuberous sclerosis complex, Williams syndrome, Prader-Willi syndrome, and Angelman syndrome-and to determine future research directions for identification and treatment of ED. METHOD PubMed bibliographic database was searched from date of inception to May 2021. PRISMA 2020 guidelines were followed with the flowchart, table of included studies, list of excluded studies, and checklist provided. Filters applied included human research and English. Only original research articles were included in the final set, but review articles were used to identify secondary citations of primary studies. All articles were reviewed for appropriateness by 2 authors and summarized. Inclusion criteria were met by 145 articles (Down syndrome = 29, FXS = 55, tuberous sclerosis complex = 11, Williams syndrome = 18, Prader-Willi syndrome = 24, Angelman syndrome = 8). RESULTS Each syndrome review was summarized separately and further subdivided into articles related to underlying neurobiology, behaviors associated with ED, assessment, and targeted intervention. FXS had the most thorough research base, followed by Down syndrome and Prader-Willi syndrome, with the other syndromes having more limited available research. Very limited research was available regarding intervention for all disorders except FXS. CONCLUSION Core underlying characteristics of S-IDs appear to place youth at higher risk for ED, but further research is needed to better assess and treat ED in S-IDs. Future studies should have a standard assessment measure of ED, such as the Emotion Dysregulation Inventory, and explore adapting established curricula for ED from the neurotypical and autism spectrum disorder fields.
Collapse
Affiliation(s)
- Rebecca C Shaffer
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; University of Cincinnati School of Medicine, Cincinnati, Ohio.
| | | | - Lauren M Schmitt
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - Martine Lamy
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - Kelli C Dominick
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; University of Cincinnati School of Medicine, Cincinnati, Ohio
| | - Elizabeth G Smith
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; University of Cincinnati School of Medicine, Cincinnati, Ohio
| | | | - Anna J Esbensen
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; University of Cincinnati School of Medicine, Cincinnati, Ohio
| |
Collapse
|
9
|
Tye C, McEwen FS, Liang H, Woodhouse E, Underwood L, Shephard E, Barker ED, Sheerin F, Higgins N, Steenbruggen J, Bolton PF. Epilepsy severity mediates association between mutation type and ADHD symptoms in tuberous sclerosis complex. Epilepsia 2023; 64:e30-e35. [PMID: 36633094 DOI: 10.1111/epi.17507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
The association between attention-deficit/hyperactivity disorder (ADHD) and tuberous sclerosis complex (TSC) is widely reported, with support for the role of epilepsy, yet the mechanisms underlying the association across development are unclear. The Tuberous Sclerosis 2000 Study is a prospective longitudinal study of TSC. In Phase 1 of the study, baseline measures of epilepsy, cortical tuber load, and mutation were obtained with 125 children ages 0-16 years. In Phase 2, at an average of 8 years later, ADHD symptoms were measured for 81 of the participants. Structural equation modeling revealed an indirect pathway from genetic mutation, to cortical tuber load, to epileptic spasm severity in infancy, to ADHD symptoms in middle childhood and adolescence, in addition to a pathway linking current seizure severity to ADHD symptoms. Findings were retained when intelligence quotient (IQ) was entered as a correlated factor. The findings support a cascading developmental pathway to ADHD symptoms mediated by early-onset and severe epilepsy in the first 2 years of life. This warrants detailed investigation of seizure characteristics and cognitive and behavioral sequelae associated with ADHD from early in life, to further the understanding of the association between ADHD and early-onset epilepsy across syndromic and non-syndromic populations.
Collapse
Affiliation(s)
- Charlotte Tye
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Fiona S McEwen
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Holan Liang
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Emma Woodhouse
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Lisa Underwood
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Elizabeth Shephard
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Edward D Barker
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Fintan Sheerin
- Department of Neuroradiology, Oxford University Hospital NHS Foundation Trust, Oxford, UK
| | - Nicholas Higgins
- Department of Radiology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Juul Steenbruggen
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | | | - Patrick F Bolton
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
10
|
Ellis K, Pearson E, Murray C, Jenner L, Bissell S, Trower H, Smith K, Groves L, Jones B, Williams N, McCourt A, Moss J. The importance of refined assessment of communication and social functioning in people with intellectual disabilities: Insights from neurogenetic syndrome research. INTERNATIONAL REVIEW OF RESEARCH IN DEVELOPMENTAL DISABILITIES 2023:97-170. [DOI: 10.1016/bs.irrdd.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
Dougherty JD, Marrus N, Maloney SE, Yip B, Sandin S, Turner TN, Selmanovic D, Kroll KL, Gutmann DH, Constantino JN, Weiss LA. Can the "female protective effect" liability threshold model explain sex differences in autism spectrum disorder? Neuron 2022; 110:3243-3262. [PMID: 35868305 PMCID: PMC9588569 DOI: 10.1016/j.neuron.2022.06.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/09/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022]
Abstract
Male sex is a strong risk factor for autism spectrum disorder (ASD). The leading theory for a "female protective effect" (FPE) envisions males and females have "differing thresholds" under a "liability threshold model" (DT-LTM). Specifically, this model posits that females require either a greater number or larger magnitude of risk factors (i.e., greater liability) to manifest ASD, which is supported by the finding that a greater proportion of females with ASD have highly penetrant genetic mutations. Herein, we derive testable hypotheses from the DT-LTM for ASD, investigating heritability, familial recurrence, correlation between ASD penetrance and sex ratio, population traits, clinical features, the stability of the sex ratio across diagnostic changes, and highlight other key prerequisites. Our findings reveal that several key predictions of the DT-LTM are not supported by current data, requiring us to establish a different conceptual framework for evaluating alternate models that explain sex differences in ASD.
Collapse
Affiliation(s)
- Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA.
| | - Natasha Marrus
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Benjamin Yip
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Sven Sandin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Seaver Autism Center for Research and Treatment at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tychele N Turner
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Din Selmanovic
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristen L Kroll
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - John N Constantino
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Lauren A Weiss
- Institute for Human Genetics, Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
12
|
Mitchell RA, Mitchell M, Williams K. The autism spectrum disorder phenotype in children with tuberous sclerosis complex: A systematic review and meta-analysis. Dev Med Child Neurol 2022; 64:1214-1229. [PMID: 35724267 DOI: 10.1111/dmcn.15307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/18/2022]
Abstract
AIM To investigate the phenotype in autistic children with tuberous sclerosis complex (TSC), specifically autism spectrum disorder (ASD) severity and characteristics, intellectual ability, adaptive and executive function, language skills, attention-deficit/hyperactivity disorder features, and internalizing and externalizing behaviours. METHOD MEDLINE, Embase, and the Cochrane Library were searched up to March 2021. Studies that investigated predefined phenotypic factors in children with TSC-ASD were included according to the Preferred Reporting Items for Systematic review and Meta-Analysis Protocols (PRISMA-P) guidelines. Two authors independently reviewed titles, abstracts, full texts, and extracted the data. Risk of bias and GRADE assessments were completed. RESULTS Thirty-four studies with 3160 children with TSC, 30% with ASD, were included. Meta-analysis found that 90% (95% confidence interval 86%-94%) of children with TSC-ASD have an intellectual disability. There was some evidence to suggest that young children with TSC-ASD and idiopathic ASD have a similar pattern of severity and behaviour. Overall, data about phenotypic characteristics were limited. INTERPRETATION A greater proportion of children with TSC-ASD are reported to have an intellectual disability than children with idiopathic ASD. Early intervention should consider the needs of children with a high likelihood of intellectual disability. Research is needed to better understand the impacts of intellectual disability and other co-occurring difficulties on adaptive function, participation, and quality of life in TSC-ASD. WHAT THIS PAPER ADDS Most children with tuberous sclerosis complex (TSC) and autism spectrum disorder (ASD) have an intellectual disability. TSC-ASD early intervention planning should consider the high likelihood of intellectual disability. Quality of life and the functional impact of intellectual disability in TSC-ASD are not understood. Little is known about co-occurring difficulties in TSC-ASD.
Collapse
Affiliation(s)
- Rebecca A Mitchell
- The Royal Children's Hospital, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Murdoch Children's Research Institute, Parkville, Australia
| | - Marijke Mitchell
- The Royal Children's Hospital, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- Department of Paediatrics, Monash University, Clayton, Australia
| | - Katrina Williams
- The Royal Children's Hospital, Parkville, Australia
- Department of Paediatrics, Monash University, Clayton, Australia
- Monash Health, Monash Children's Hospital, Clayton, Australia
| |
Collapse
|
13
|
Vanes LD, Tye C, Tournier JD, Combes AJE, Shephard E, Liang H, Barker GJ, Nosarti C, Bolton P. White matter disruptions related to inattention and autism spectrum symptoms in tuberous sclerosis complex. Neuroimage Clin 2022; 36:103163. [PMID: 36037661 PMCID: PMC9434133 DOI: 10.1016/j.nicl.2022.103163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/08/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022]
Abstract
Tuberous sclerosis complex is a rare genetic multisystem condition that is associated with a high prevalence of neurodevelopmental disorders such as autism and attention-deficit/hyperactivity disorder. The underlying neural mechanisms of the emergence of these symptom domains in tuberous sclerosis complex remain unclear. Here, we use fixel-based analysis of diffusion-weighted imaging, which allows for the differentiation between multiple fibre populations within a voxel, to compare white matter properties in 16 participants with tuberous sclerosis complex (aged 11-19) and 12 age and sex matched control participants. We further tested associations between white matter alterations and autism and inattention symptoms as well as cognitive ability in participants with tuberous sclerosis complex. Compared to controls, participants with tuberous sclerosis complex showed reduced fibre density cross-section (FDC) in the dorsal branch of right superior longitudinal fasciculus and bilateral inferior longitudinal fasciculus, reduced fibre density (FD) in bilateral tapetum, and reduced fibre cross-section (FC) in the ventral branch of right superior longitudinal fasciculus. In participants with tuberous sclerosis complex, the extent of FDC reductions in right superior longitudinal fasciculus was significantly associated with autism traits (social communication difficulties and restricted, repetitive behaviours), whereas FDC reductions in right inferior longitudinal fasciculus were associated with inattention. The observed white matter alterations were unrelated to cognitive ability. Our findings shed light on the fibre-specific biophysical properties of white matter alterations in tuberous sclerosis complex and suggest that these regional changes are selectively associated with the severity of neurodevelopmental symptoms.
Collapse
Affiliation(s)
- Lucy D Vanes
- Department of Neuroimaging, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, UK; Department of Perinatal Imaging and Health, School of Biomedical Engineering & Imaging Sciences, King's College London, UK.
| | - Charlotte Tye
- Department of Psychology, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, UK
| | - Jacques-Donald Tournier
- Department of Perinatal Imaging and Health, School of Biomedical Engineering & Imaging Sciences, King's College London, UK; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, UK
| | - Anna J E Combes
- Department of Neuroimaging, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, UK; Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, UK
| | - Elizabeth Shephard
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, UK; Department of Psychiatry, Faculdade de Medicina, Universidade de São Paulo, Brazil
| | - Holan Liang
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, UK
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, UK
| | - Chiara Nosarti
- Department of Perinatal Imaging and Health, School of Biomedical Engineering & Imaging Sciences, King's College London, UK; Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, UK
| | - Patrick Bolton
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, UK
| |
Collapse
|
14
|
Scheper M, Romagnolo A, Besharat ZM, Iyer AM, Moavero R, Hertzberg C, Weschke B, Riney K, Feucht M, Scholl T, Petrak B, Maulisova A, Nabbout R, Jansen AC, Jansen FE, Lagae L, Urbanska M, Ferretti E, Tempes A, Blazejczyk M, Jaworski J, Kwiatkowski DJ, Jozwiak S, Kotulska K, Sadowski K, Borkowska J, Curatolo P, Mills JD, Aronica E, EPISTOP Consortium Members. miRNAs and isomiRs: Serum-Based Biomarkers for the Development of Intellectual Disability and Autism Spectrum Disorder in Tuberous Sclerosis Complex. Biomedicines 2022; 10:biomedicines10081838. [PMID: 36009385 PMCID: PMC9405248 DOI: 10.3390/biomedicines10081838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare multi-system genetic disorder characterized by a high incidence of epilepsy and neuropsychiatric manifestations known as tuberous-sclerosis-associated neuropsychiatric disorders (TANDs), including autism spectrum disorder (ASD) and intellectual disability (ID). MicroRNAs (miRNAs) are small regulatory non-coding RNAs that regulate the expression of more than 60% of all protein-coding genes in humans and have been reported to be dysregulated in several diseases, including TSC. In the current study, RNA sequencing analysis was performed to define the miRNA and isoform (isomiR) expression patterns in serum. A Receiver Operating Characteristic (ROC) curve analysis was used to identify circulating molecular biomarkers, miRNAs, and isomiRs, able to discriminate the development of neuropsychiatric comorbidity, either ASD, ID, or ASD + ID, in patients with TSC. Part of our bioinformatics predictions was verified with RT-qPCR performed on RNA isolated from patients’ serum. Our results support the notion that circulating miRNAs and isomiRs have the potential to aid standard clinical testing in the early risk assessment of ASD and ID development in TSC patients.
Collapse
Affiliation(s)
- Mirte Scheper
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.S.); (A.R.); (A.M.I.)
| | - Alessia Romagnolo
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.S.); (A.R.); (A.M.I.)
| | - Zein Mersini Besharat
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (Z.M.B.); (E.F.)
| | - Anand M. Iyer
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.S.); (A.R.); (A.M.I.)
- Internal Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Romina Moavero
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, 00133 Rome, Italy; (R.M.); (P.C.)
- Child Neurology Unit, Neuroscience Department, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Christoph Hertzberg
- Diagnose-und Behandlungszentrum für Kinder, Vivantes-Klinikum Neukölln, 12351 Berlin, Germany;
| | - Bernhard Weschke
- Department of Neuropediatrics, Charité University Medicine Berlin, 13353 Berlin, Germany;
| | - Kate Riney
- Faculty of Medicine, The University of Queensland, Herston, QLD 4029, Australia;
- Neurosciences Unit, Queensland Children’s Hospital, South Brisbane, QLD 4101, Australia
| | - Martha Feucht
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, “Member of ERN EpiCARE”, 1090 Vienna, Austria; (M.F.); (T.S.)
| | - Theresa Scholl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, “Member of ERN EpiCARE”, 1090 Vienna, Austria; (M.F.); (T.S.)
| | - Borivoj Petrak
- Motol University Hospital, Charles University, 15000 Prague, Czech Republic; (B.P.); (A.M.)
| | - Alice Maulisova
- Motol University Hospital, Charles University, 15000 Prague, Czech Republic; (B.P.); (A.M.)
| | - Rima Nabbout
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades University Hospital, APHP, Member of ERN EpiCARE, Université de Paris, 149 Rue de Sèvres, 75015 Paris, France;
| | - Anna C. Jansen
- Department of Translational Neurosciences, University of Antwerp, 2000 Antwerp, Belgium;
| | - Floor E. Jansen
- Department of Child Neurology, Brain Center University Medical Center, Member of ERN EpiCare, 3584 BA Utrecht, The Netherlands;
| | - Lieven Lagae
- Department of Development and Regeneration Section Pediatric Neurology, University Hospitals KU Leuven, 3000 Leuven, Belgium;
| | - Malgorzata Urbanska
- Department of Neurology and Epileptology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.U.); (S.J.); (K.K.); (K.S.); (J.B.)
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (Z.M.B.); (E.F.)
| | - Aleksandra Tempes
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland; (A.T.); (M.B.); (J.J.)
| | - Magdalena Blazejczyk
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland; (A.T.); (M.B.); (J.J.)
| | - Jacek Jaworski
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland; (A.T.); (M.B.); (J.J.)
| | | | - Sergiusz Jozwiak
- Department of Neurology and Epileptology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.U.); (S.J.); (K.K.); (K.S.); (J.B.)
- Department of Child Neurology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Katarzyna Kotulska
- Department of Neurology and Epileptology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.U.); (S.J.); (K.K.); (K.S.); (J.B.)
| | - Krzysztof Sadowski
- Department of Neurology and Epileptology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.U.); (S.J.); (K.K.); (K.S.); (J.B.)
| | - Julita Borkowska
- Department of Neurology and Epileptology, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.U.); (S.J.); (K.K.); (K.S.); (J.B.)
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, 00133 Rome, Italy; (R.M.); (P.C.)
| | - James D. Mills
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.S.); (A.R.); (A.M.I.)
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1E 6BT, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter SL9 0RJ, UK
- Correspondence: (J.D.M.); (E.A.)
| | - Eleonora Aronica
- Department of (Neuro)Pathology Amsterdam Neuroscience, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (M.S.); (A.R.); (A.M.I.)
- Correspondence: (J.D.M.); (E.A.)
| | | |
Collapse
|
15
|
Vanclooster S, Bissell S, van Eeghen AM, Chambers N, De Waele L, Byars AW, Capal JK, Cukier S, Davis P, Flinn J, Gardner-Lubbe S, Gipson T, Heunis TM, Hook D, Kingswood JC, Krueger DA, Kumm AJ, Sahin M, Schoeters E, Smith C, Srivastava S, Takei M, Waltereit R, Jansen AC, de Vries PJ. The research landscape of tuberous sclerosis complex-associated neuropsychiatric disorders (TAND)-a comprehensive scoping review. J Neurodev Disord 2022; 14:13. [PMID: 35151277 PMCID: PMC8853020 DOI: 10.1186/s11689-022-09423-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Tuberous sclerosis complex (TSC)-associated neuropsychiatric disorders (TAND) is an umbrella term for the behavioural, psychiatric, intellectual, academic, neuropsychological and psychosocial manifestations of TSC. Although TAND affects 90% of individuals with TSC during their lifetime, these manifestations are relatively under-assessed, under-treated and under-researched. We performed a comprehensive scoping review of all TAND research to date (a) to describe the existing TAND research landscape and (b) to identify knowledge gaps to guide future TAND research. METHODS The study was conducted in accordance with stages outlined within the Arksey and O'Malley scoping review framework. Ten research questions relating to study characteristics, research design and research content of TAND levels and clusters were examined. RESULTS Of the 2841 returned searches, 230 articles published between 1987 and 2020 were included (animal studies = 30, case studies = 47, cohort studies = 153), with more than half published since the term TAND was coined in 2012 (118/230; 51%). Cohort studies largely involved children and/or adolescents (63%) as opposed to older adults (16%). Studies were represented across 341 individual research sites from 45 countries, the majority from the USA (89/341; 26%) and the UK (50/341; 15%). Only 48 research sites (14%) were within low-middle income countries (LMICs). Animal studies and case studies were of relatively high/high quality, but cohort studies showed significant variability. Of the 153 cohort studies, only 16 (10%) included interventions. None of these were non-pharmacological, and only 13 employed remote methodologies (e.g. telephone interviews, online surveys). Of all TAND clusters, the autism spectrum disorder-like cluster was the most widely researched (138/230; 60%) and the scholastic cluster the least (53/200; 27%). CONCLUSIONS Despite the recent increase in TAND research, studies that represent participants across the lifespan, LMIC research sites and non-pharmacological interventions were identified as future priorities. The quality of cohort studies requires improvement, to which the use of standardised direct behavioural assessments may contribute. In human studies, the academic level in particular warrants further investigation. Remote technologies could help to address many of the TAND knowledge gaps identified.
Collapse
Affiliation(s)
- Stephanie Vanclooster
- Department of Public Health, Mental Health and Wellbeing Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stacey Bissell
- Cerebra Network for Neurodevelopmental Disorders, University of Birmingham, Birmingham, UK
| | - Agnies M. van Eeghen
- Emma Children’s Hospital, Amsterdam University Medical Center, Amsterdam, The Netherlands
- TAND Expert Centre, ‘s Heeren Loo, Hoofddorp, The Netherlands
| | - Nola Chambers
- Division of Child & Adolescent Psychiatry, Centre for Autism Research in Africa (CARA), University of Cape Town, Cape Town, South Africa
| | - Liesbeth De Waele
- Department of Paediatric Neurology, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Anna W. Byars
- Department of Pediatrics, Division of Neurology, Cincinnati Children’s Hospital Medical Center/University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Jamie K. Capal
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Sebastián Cukier
- Argentine Program for Children, Adolescents and Adults with Autism Spectrum Disorders (PANAACEA), Buenos Aires, Argentina
| | - Peter Davis
- Department of Neurology, Harvard Medical School & Boston Children’s Hospital, Boston, MA USA
| | | | | | - Tanjala Gipson
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN USA
- Le Bonheur Children’s Hospital and Boling Center for Developmental Disabilities, Memphis, TN USA
| | - Tosca-Marie Heunis
- Department of Public Health, Mental Health and Wellbeing Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | - Darcy A. Krueger
- TSC Clinic Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, Clinical Pediatrics and Neurology, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Aubrey J. Kumm
- Division of Child & Adolescent Psychiatry, Centre for Autism Research in Africa (CARA), University of Cape Town, Cape Town, South Africa
| | - Mustafa Sahin
- Department of Neurology, Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | | | | | - Shoba Srivastava
- Division of Child & Adolescent Psychiatry, Centre for Autism Research in Africa (CARA), University of Cape Town, Cape Town, South Africa
- Tuberous Sclerosis Alliance India, Mumbai, India
| | - Megumi Takei
- Japanese Society of Tuberous Sclerosis Complex, Tokyo, Japan
| | - Robert Waltereit
- Child and Adolescent Psychiatry, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Anna C. Jansen
- Department of Public Health, Mental Health and Wellbeing Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Pediatrics, Pediatric Neurology Unit, Antwerp University Hospital, Edegem, Belgium
| | - Petrus J. de Vries
- Division of Child & Adolescent Psychiatry, Centre for Autism Research in Africa (CARA), University of Cape Town, Cape Town, South Africa
| |
Collapse
|
16
|
Arciniegas Ruiz SM, Eldar-Finkelman H. Glycogen Synthase Kinase-3 Inhibitors: Preclinical and Clinical Focus on CNS-A Decade Onward. Front Mol Neurosci 2022; 14:792364. [PMID: 35126052 PMCID: PMC8813766 DOI: 10.3389/fnmol.2021.792364] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022] Open
Abstract
The protein kinase, GSK-3, participates in diverse biological processes and is now recognized a promising drug discovery target in treating multiple pathological conditions. Over the last decade, a range of newly developed GSK-3 inhibitors of diverse chemotypes and inhibition modes has been developed. Even more conspicuous is the dramatic increase in the indications that were tested from mood and behavior disorders, autism and cognitive disabilities, to neurodegeneration, brain injury and pain. Indeed, clinical and pre-clinical studies were largely expanded uncovering new mechanisms and novel insights into the contribution of GSK-3 to neurodegeneration and central nerve system (CNS)-related disorders. In this review we summarize new developments in the field and describe the use of GSK-3 inhibitors in the variety of CNS disorders. This remarkable volume of information being generated undoubtedly reflects the great interest, as well as the intense hope, in developing potent and safe GSK-3 inhibitors in clinical practice.
Collapse
|
17
|
Lubbers K, Stijl EM, Dierckx B, Hagenaar DA, Ten Hoopen LW, Legerstee JS, de Nijs PFA, Rietman AB, Greaves-Lord K, Hillegers MHJ, Dieleman GC, Mous SE. Autism Symptoms in Children and Young Adults With Fragile X Syndrome, Angelman Syndrome, Tuberous Sclerosis Complex, and Neurofibromatosis Type 1: A Cross-Syndrome Comparison. Front Psychiatry 2022; 13:852208. [PMID: 35651825 PMCID: PMC9149157 DOI: 10.3389/fpsyt.2022.852208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/26/2022] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE The etiology of autism spectrum disorder (ASD) remains unclear, due to genetic heterogeneity and heterogeneity in symptoms across individuals. This study compares ASD symptomatology between monogenetic syndromes with a high ASD prevalence, in order to reveal syndrome specific vulnerabilities and to clarify how genetic variations affect ASD symptom presentation. METHODS We assessed ASD symptom severity in children and young adults (aged 0-28 years) with Fragile X Syndrome (FXS, n = 60), Angelman Syndrome (AS, n = 91), Neurofibromatosis Type 1 (NF1, n = 279) and Tuberous Sclerosis Complex (TSC, n = 110), using the Autism Diagnostic Observation Schedule and Social Responsiveness Scale. Assessments were part of routine clinical care at the ENCORE expertise center in Rotterdam, the Netherlands. First, we compared the syndrome groups on the ASD classification prevalence and ASD severity scores. Then, we compared individuals in our syndrome groups with an ASD classification to a non-syndromic ASD group (nsASD, n = 335), on both ASD severity scores and ASD symptom profiles. Severity scores were compared using MANCOVAs with IQ and gender as covariates. RESULTS Overall, ASD severity scores were highest for the FXS group and lowest for the NF1 group. Compared to nsASD, individuals with an ASD classification in our syndrome groups showed less problems on the instruments' social domains. We found a relative strength in the AS group on the social cognition, communication and motivation domains and a relative challenge in creativity; a relative strength of the NF1 group on the restricted interests and repetitive behavior scale; and a relative challenge in the FXS and TSC groups on the restricted interests and repetitive behavior domain. CONCLUSION The syndrome-specific strengths and challenges we found provide a frame of reference to evaluate an individual's symptoms relative to the larger syndromic population and to guide treatment decisions. Our findings support the need for personalized care and a dimensional, symptom-based diagnostic approach, in contrast to a dichotomous ASD diagnosis used as a prerequisite for access to healthcare services. Similarities in ASD symptom profiles between AS and FXS, and between NF1 and TSC may reflect similarities in their neurobiology. Deep phenotyping studies are required to link neurobiological markers to ASD symptomatology.
Collapse
Affiliation(s)
- Kyra Lubbers
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Eefje M Stijl
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Bram Dierckx
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Doesjka A Hagenaar
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of General Paediatrics, Erasmus MC, Rotterdam, Netherlands
| | - Leontine W Ten Hoopen
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeroen S Legerstee
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Pieter F A de Nijs
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - André B Rietman
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Kirstin Greaves-Lord
- Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Clinical Psychology and Experimental Psychopathology Unit, Department of Psychology, Rijksuniversiteit Groningen, Groningen, Netherlands.,Yulius Mental Health, Dordrecht, Netherlands.,Jonx Autism Team Northern-Netherlands, Lentis Mental Health, Groningen, Netherlands
| | - Manon H J Hillegers
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Gwendolyn C Dieleman
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Sabine E Mous
- ENCORE Expertise Centre for Neurodevelopmental Disorders, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Child- and Adolescent Psychiatry and Psychology, Erasmus University Medical Center, Rotterdam, Netherlands.,Child Brain Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | | |
Collapse
|
18
|
Alperin S, Krueger DA, Franz DN, Agricola KD, Stires G, Horn PS, Capal JK. Symptom rates and profile clustering in tuberous sclerosis complex-associated neuropsychiatric disorders (TAND). J Neurodev Disord 2021; 13:60. [PMID: 34903167 PMCID: PMC8903711 DOI: 10.1186/s11689-021-09408-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tuberous Sclerosis Complex (TSC) is associated with a range of neuropsychiatric difficulties, appropriately termed TSC-Associated Neuropsychiatric Disorders (TAND). The objectives of the study were to analyze the rates of TAND symptoms in a cohort of patients seen at the TSC Center of Excellence at Cincinnati Children's Hospital and to identify clinically meaningful profiles based on TAND symptoms. METHODS Data from the TAND Checklist was obtained from participants seen at the TSC Center of Excellence at Cincinnati Children's Hospital Medical Center from June 2015 to August 2018. Cluster and factor analyses for each TAND symptom were performed. Factor scores were then calculated for participants, and a K-means cluster analysis of these scores was used to empirically identify distinct overall TAND symptom profiles occurring in TSC. RESULTS A total of 1545 checklists was completed for 668 participants (37% adults and 63% children). Approximately 90% of participants reported at least one TAND symptom with an average of 12 symptoms (out of 29). Symptom rates ranged between 5 and 60%. The most common symptoms were neuropsychologic symptoms. A seven-cluster and seven-factor solution were found to be optimal. K-means cluster analysis resulted in a seven-profile solution, ranging from low to high symptom burden. CONCLUSION This study is the first to identify natural phenotypic profiles of TAND symptoms. Study of specific TAND subpopulations with shared profiles may facilitate better understanding of the underlying biology of TAND and better assessment of more targeted treatments.
Collapse
Affiliation(s)
- Samuel Alperin
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Darcy A Krueger
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David N Franz
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Karen D Agricola
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gabrielle Stires
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Paul S Horn
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jamie K Capal
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
19
|
Gipson TT, Ramsay G, Ellison EE, Bene E, Long HL, Oller DK. Early Vocal Development in Tuberous Sclerosis Complex. Pediatr Neurol 2021; 125:48-52. [PMID: 34628143 PMCID: PMC8557126 DOI: 10.1016/j.pediatrneurol.2021.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Our goal was to assess for the first time early vocalizations as precursors to speech in audio-video recordings of infants with tuberous sclerosis complex (TSC). METHODS We randomly selected 40 infants with TSC from the TSC Autism Center of Excellence Research Network dataset. Using human observers, we analyzed 74 audio-video recordings within a flexible software-based coding environment. During the recordings, infants were engaged in developmental testing. We determined syllables per minute (volubility), the number of consonant-vowel combinations, such as 'ba' (canonical babbling), and the canonical babbling ratio (canonical syllables/total syllables) and compared the data with two groups of typically developing (TD) infants. One comparison group's data had come from a laboratory setting, while the other's had come from all-day Language Environment Analysis recordings at home. RESULTS Compared with TD infants in laboratory and all-day Language Environment Analysis recordings, entry into the canonical babbling stage was delayed in the majority of infants with TSC, and the canonical babbling ratio was low (TD mean = 0.346, SE = 0.19; TSC mean = 0.117, SE = 0.023). Volubility level in infants with TSC was less than half that of TD infants (TD mean = 9.82, SE = 5.78; TSC mean = 3.99, SE = 2.16). CONCLUSIONS Entry into the canonical stage and other precursors of speech development were delayed in infants with TSC and may signal poor language and developmental outcomes. Future studies are planned to assess prediction of language and developmental outcomes using these measures in a larger sample and in more precisely comparable recording circumstances.
Collapse
Affiliation(s)
- Tanjala T. Gipson
- University of Tennessee Health Sciences Center, Boling Center for Disabilities, Le Bonheur Children’s Hospital, 50 N. Dunlap St., Memphis, TN 38105
| | - Gordon Ramsay
- Department of Pediatrics, Emory University School of Medicine Atlanta GA, & Marcus Autism Center, Children’s Healthcare of Atlanta, Atlanta GA
| | - Ellen E. Ellison
- University of Tennessee Health Sciences Center, Boling Center for Disabilities, Le Bonheur Children’s Hospital, Memphis, TN
| | - Edina Bene
- School of Communication Sciences and Disorders, University of Memphis, Memphis, TN
| | - Helen L. Long
- School of Communication Sciences and Disorders, University of Memphis, Memphis, TN
| | - D. Kimbrough Oller
- University of Memphis, School of Communication Sciences and Disorders, Institute for Intelligent Systems, Memphis, TN,Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria
| |
Collapse
|
20
|
de Vries PJ, Leclezio L, Gardner-Lubbe S, Krueger D, Sahin M, Sparagana S, De Waele L, Jansen A. Multivariate data analysis identifies natural clusters of Tuberous Sclerosis Complex Associated Neuropsychiatric Disorders (TAND). Orphanet J Rare Dis 2021; 16:447. [PMID: 34689816 PMCID: PMC8543869 DOI: 10.1186/s13023-021-02076-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/10/2021] [Indexed: 12/04/2022] Open
Abstract
Background Tuberous Sclerosis Complex (TSC), a multi-system genetic disorder, is associated with a wide range of TSC-Associated Neuropsychiatric Disorders (TAND). Individuals have apparently unique TAND profiles, challenging diagnosis, psycho-education, and intervention planning. We proposed that identification of natural TAND clusters could lead to personalized identification and treatment of TAND. Two small-scale studies showed cluster and factor analysis could identify clinically meaningful natural TAND clusters. Here we set out to identify definitive natural TAND clusters in a large, international dataset. Method Cross-sectional, anonymized TAND Checklist data of 453 individuals with TSC were collected from six international sites. Data-driven methods were used to identify natural TAND clusters. Mean squared contingency coefficients were calculated to produce a correlation matrix, and various cluster analyses and exploratory factor analysis were examined. Statistical robustness of clusters was evaluated with 1000-fold bootstrapping, and internal consistency calculated with Cronbach’s alpha. Results Ward’s method rendered seven natural TAND clusters with good robustness on bootstrapping. Cluster analysis showed significant convergence with an exploratory factor analysis solution, and, with the exception of one cluster, internal consistency of the emerging clusters was good to excellent. Clusters showed good clinical face validity. Conclusions Our findings identified a data-driven set of natural TAND clusters from within highly variable TAND Checklist data. The seven natural TAND clusters could be used to train families and professionals and to develop tailored approaches to identification and treatment of TAND. Natural TAND clusters may also have differential aetiological underpinnings and responses to molecular and other treatments.
Collapse
Affiliation(s)
- Petrus J de Vries
- Division of Child and Adolescent Psychiatry, University of Cape Town, 46 Sawkins Road, Rondebosch, Cape Town, 7700, South Africa.
| | - Loren Leclezio
- Division of Child and Adolescent Psychiatry, University of Cape Town, 46 Sawkins Road, Rondebosch, Cape Town, 7700, South Africa
| | - Sugnet Gardner-Lubbe
- Department of Statistics and Actuarial Science, Stellenbosch University, Stellenbosch, South Africa
| | - Darcy Krueger
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Mustafa Sahin
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, USA
| | - Steven Sparagana
- Department of Neurology, Scottish Rite for Children, The University of Texas Southwestern Medical Center, Dallas, USA
| | - Liesbeth De Waele
- Department of Pediatric Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Anna Jansen
- Pediatric Neurology Unit, Department of Pediatrics, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
21
|
Capal JK, Williams ME, Pearson DA, Kissinger R, Horn PS, Murray D, Currans K, Kent B, Bebin M, Northrup H, Wu JY, Sahin M, Krueger DA. Profile of Autism Spectrum Disorder in Tuberous Sclerosis Complex: Results from a Longitudinal, Prospective, Multisite Study. Ann Neurol 2021; 90:874-886. [PMID: 34668231 DOI: 10.1002/ana.26249] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Tuberous sclerosis complex (TSC) is highly associated with autism spectrum disorder (ASD). Objectives of the study were to characterize autistic features in young children with TSC. METHODS Participants included 138 children followed from ages 3 to 36 months with TSC from the Tuberous Sclerosis Complex Autism Center of Excellence Research Network (TACERN), a multicenter, prospective observational study aimed at understanding the underlying mechanisms of ASD in TSC. Developmental and autism-specific assessments were administered, and a clinical diagnosis of ASD was determined for all participants at 36 months. Further analyses were performed on 117 participants with valid autism assessments based on nonverbal mental age greater than 15 months. RESULTS Prevalence of clinical diagnosis of ASD at 36 months was 25%. Nearly all autistic behaviors on the Autism Diagnostic Observation Schedule-2 (ADOS-2) and Autism Diagnostic Interview-Revised (ADI-R) were more prevalent in children diagnosed with ASD; however, autism-specific behaviors were also observed in children without ASD. Overall quality of social overtures, facial expressions, and abnormal repetitive interests and behaviors were characteristics most likely to distinguish children with ASD from those without an ASD diagnosis. Participants meeting ADOS-2 criteria but not a clinical ASD diagnosis exhibited intermediate developmental and ADOS-2 scores compared to individuals with and without ASD. INTERPRETATION ASD is highly prevalent in TSC, and many additional individuals with TSC exhibit a broad range of subthreshold autistic behaviors. Our findings reveal a broader autism phenotype that can be identified in young children with TSC, which provides opportunity for early targeted treatments. ANN NEUROL 2021.
Collapse
Affiliation(s)
- Jamie K Capal
- University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Marian E Williams
- Keck School of Medicine of USC, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA
| | - Deborah A Pearson
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX
| | - Robin Kissinger
- Keck School of Medicine of USC, University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA
| | - Paul S Horn
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Donna Murray
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
- Department of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Autism Speaks Inc, Boston, MA
| | - Kristn Currans
- Department of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Bridget Kent
- Department of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
| | - Hope Northrup
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX
| | - Joyce Y Wu
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Mustafa Sahin
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA
| | - Darcy A Krueger
- Department of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
22
|
Sato A, Ikeda K. Genetic and Environmental Contributions to Autism Spectrum Disorder Through Mechanistic Target of Rapamycin. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 2:95-105. [PMID: 36325164 PMCID: PMC9616270 DOI: 10.1016/j.bpsgos.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects an individual’s reciprocal social interaction and communication ability. Numerous genetic and environmental conditions are associated with ASD, including tuberous sclerosis complex, phosphatase and tensin homolog hamartoma tumor syndrome, fragile X syndrome, and neurofibromatosis 1. The pathogenic molecular mechanisms of these diseases are integrated into the hyperactivation of mTORC1 (mechanistic target of rapamycin complex 1). Rodent models of these diseases have shown high mTORC1 activity in the brain and ASD-related behavioral deficits, which were reversed by the mTORC1 inhibitor rapamycin. Environmental stress can also affect this signaling pathway. In utero exposure to valproate caused ASD in offspring and enhanced mTORC1 activity in the brain, which was sensitive to mTORC1 inhibition. mTORC1 is a signaling hub for diverse cellular functions, including protein synthesis, through the phosphorylation of its targets, such as ribosomal protein S6 kinases. Metabotropic glutamate receptor 5–mediated synaptic function is also affected by the dysregulation of mTORC1 activity, such as in fragile X syndrome and tuberous sclerosis complex. Reversing these downstream changes that are associated with mTORC1 activation normalizes behavioral defects in rodents. Despite abundant preclinical evidence, few clinical studies have investigated the treatment of ASD and cognitive deficits. Therapeutics other than mTORC1 inhibitors failed to show efficacy in fragile X syndrome and neurofibromatosis 1. mTORC1 inhibitors have been tested mainly in tuberous sclerosis complex, and their effects on ASD and neuropsychological deficits are promising. mTORC1 is a promising target for the pharmacological treatment of ASD associated with mTORC1 activation.
Collapse
|
23
|
Runicles AK, Tye C, Bolton PF. A comparison of two studies and the prevalence and sex ratio of Neurodevelopmental conditions in Tuberous Sclerosis Complex. Orphanet J Rare Dis 2021; 16:366. [PMID: 34407850 PMCID: PMC8371817 DOI: 10.1186/s13023-021-01984-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/27/2021] [Indexed: 11/18/2022] Open
Affiliation(s)
- Abigail K Runicles
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK. .,St Georges University of London, Cranmer Terrace, Tooting, London, UK.
| | - Charlotte Tye
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK. .,Department of Psychology, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK.
| | - Patrick F Bolton
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK.,Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
24
|
Mitchell RA, Barton SM, Harvey AS, Ure AM, Williams K. Factors associated with autism spectrum disorder in children with tuberous sclerosis complex: a systematic review and meta-analysis. Dev Med Child Neurol 2021; 63:791-801. [PMID: 33432576 DOI: 10.1111/dmcn.14787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/13/2020] [Indexed: 12/21/2022]
Abstract
AIM To investigate associations between clinical factors and the development of autism spectrum disorder (ASD) in children with tuberous sclerosis complex (TSC), specifically seizures, electroencephalogram abnormalities, tubers and other neurostructural abnormalities, and genetic factors. METHOD MEDLINE, Embase, PubMed, the Cochrane Library, and Web of Science were searched until January 2019. Studies that considered the predefined factors for development of ASD in children with TSC were included, following PRISMA-P guidelines. Two authors independently reviewed titles, abstracts, and full texts, extracted data, and assessed risk of bias. RESULTS Forty-two studies with 3542 children with TSC were included. ASD was associated with a history of seizures (odds ratio [OR] 3.79, 95% confidence interval [CI] 1.77-8.14), infantile spasms compared with other seizure types (OR 3.04, 95% CI 2.17-4.27), onset of any seizure type during infancy (OR 2.65, 95% CI 1.08-6.54), and male sex (OR 1.62, 95% CI 1.23-2.14). There was no association with tuber number, tuber location, or genotype. INTERPRETATION While a causal link between seizures and ASD in children with TSC cannot be inferred, a strong association between seizures and ASD in children with TSC, particularly with seizure onset during infancy and specifically infantile spasms, is present. Children with TSC and infant-onset seizures should be monitored for emerging features of ASD. What this paper adds Seizures and autism spectrum disorder (ASD) strongly associate in children with tuberous sclerosis complex (TSC). Infant-onset seizures and infantile spasms are particularly strongly associated with ASD in TSC.
Collapse
Affiliation(s)
- Rebecca A Mitchell
- Department of Neurodevelopment and Disability, The Royal Children's Hospital, Parkville, VIC, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.,Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Sarah M Barton
- Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Neurology, The Royal Children's Hospital, Parkville, VIC, Australia
| | - A Simon Harvey
- Murdoch Children's Research Institute, Parkville, VIC, Australia.,Department of Neurology, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Alexandra M Ure
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.,Murdoch Children's Research Institute, Parkville, VIC, Australia.,Mental Health, The Royal Children's Hospital, Parkville, VIC, Australia.,Paediatrics and Education Research, Monash University, Clayton, VIC, Australia
| | - Katrina Williams
- Department of Neurodevelopment and Disability, The Royal Children's Hospital, Parkville, VIC, Australia.,Paediatrics and Education Research, Monash University, Clayton, VIC, Australia.,Monash Health, Monash Children's Hospital, Clayton, VIC, Australia
| |
Collapse
|
25
|
Mizuguchi M, Ohsawa M, Kashii H, Sato A. Brain Symptoms of Tuberous Sclerosis Complex: Pathogenesis and Treatment. Int J Mol Sci 2021; 22:ijms22136677. [PMID: 34206526 PMCID: PMC8268912 DOI: 10.3390/ijms22136677] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022] Open
Abstract
The mammalian target of the rapamycin (mTOR) system plays multiple, important roles in the brain, regulating both morphology, such as cellular size, shape, and position, and function, such as learning, memory, and social interaction. Tuberous sclerosis complex (TSC) is a congenital disorder caused by a defective suppressor of the mTOR system, the TSC1/TSC2 complex. Almost all brain symptoms of TSC are manifestations of an excessive activity of the mTOR system. Many children with TSC are afflicted by intractable epilepsy, intellectual disability, and/or autism. In the brains of infants with TSC, a vicious cycle of epileptic encephalopathy is formed by mTOR hyperactivity, abnormal synaptic structure/function, and excessive epileptic discharges, further worsening epilepsy and intellectual/behavioral disorders. Molecular target therapy with mTOR inhibitors has recently been proved to be efficacious for epilepsy in human TSC patients, and for autism in TSC model mice, indicating the possibility for pharmacological treatment of developmental synaptic disorders.
Collapse
Affiliation(s)
- Masashi Mizuguchi
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
- Department of Pediatrics, National Rehabilitation Center for Children with Disabilities, Itabashi-ku, Tokyo 173-0037, Japan
- Correspondence: ; Tel.: +81-3-5841-3515
| | - Maki Ohsawa
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
- Department of Pediatrics, National Rehabilitation Center for Children with Disabilities, Itabashi-ku, Tokyo 173-0037, Japan
| | - Hirofumi Kashii
- Department of Neuropediatrics, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo 183-0042, Japan;
| | - Atsushi Sato
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan;
| |
Collapse
|
26
|
Ding Y, Wang J, Zhou H, Li T, Zhou S, Wang Y. Assessment of tuberous sclerosis-associated neuropsychiatric disorders using the MINI-KID tool: a pediatric case-control study. Orphanet J Rare Dis 2021; 16:181. [PMID: 33865427 PMCID: PMC8052770 DOI: 10.1186/s13023-021-01814-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 04/06/2021] [Indexed: 11/12/2022] Open
Abstract
Background The tuberous sclerosis-associated neuropsychiatric disorders (TAND) have not previously been studied in China. We aimed to assess the psychiatric level of individuals with TAND using the Mini International Neuropsychiatric Interview for Children (MINI-KID) in China. Results A total of 83.16% of individuals (79/95) had at least one TAND, and 70.53% (67/95) had an intellectual disability. The MINI-KID tool diagnosed 16 neuropsychiatric diseases, the most common of which were attention-deficit/hyperactivity disorder (ADHD) (51.58%, 49/95) and social anxiety disorder (30.53%, 29/95). The number of children with psychiatric diseases in the tuberous sclerosis complex (TSC) group was significantly greater than the number in the typically developing group (P < 0.0001). Notably, 69.47% (66/95) had two or more psychiatric disorders. Pervasive developmental disorder (PDD) was often co-morbid with other psychiatric disorders. Conclusions This study used the structured and systematic MINI-KID scale to determine the diagnosis of psychiatric co-morbidities in a relatively large sample, suggesting a higher rate. By comparing the status of individuals with TSC with typically developing children, the results suggests that neuropsychiatric co-morbidities are significantly higher in individuals with TSC. Research has revealed the frequent presence of two, three or more neuropsychiatric diseases in individuals with TSC. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01814-4.
Collapse
Affiliation(s)
- Yifeng Ding
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, No. 399 Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Ji Wang
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, No. 399 Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Hao Zhou
- Department of Pediatrics, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, China
| | - Taoli Li
- Department of Neurology, Xi'an Children's Hospital, Xi'an, 710003, China
| | - Shuizhen Zhou
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, No. 399 Wanyuan Road, Minhang District, Shanghai, 201102, China
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, No. 399 Wanyuan Road, Minhang District, Shanghai, 201102, China.
| |
Collapse
|
27
|
Mongrain V, van Doesburg NH, Rypens F, Fallet-Bianco C, Maassen J, Dufort-Gervais J, Côté L, Major P. A case report of severe tuberous sclerosis complex detected in utero and linked to a novel duplication in the TSC2 gene. BMC Neurol 2020; 20:324. [PMID: 32873234 PMCID: PMC7460776 DOI: 10.1186/s12883-020-01905-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/23/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Disease severity is tremendously variable in tuberous sclerosis complex (TSC). In contrast with the detailed guidelines available for TSC diagnosis and management, clinical practice lacks adequate tools to evaluate the prognosis, especially in the case of in utero diagnosis. In addition, the correlation between genotypes and phenotypes remains a challenge, in part due to the large number of mutations linked to TSC. In this report, we describe a case of severe TSC diagnosed in utero and associated with a specific mutation in the gene tuberous sclerosis complex 2 (TSC2). CASE PRESENTATION A mother was referred for a thorough investigation following the observation by ultrasound of cardiac abnormalities in her fetus. The mother was healthy and reported frequent, intense and long-lasting hiccups/spasms in the fetus. The fetus of gestational age 33 weeks and 4 days was found to have multiple cardiac tumors with cardiac ultrasound. Brain magnetic resonance imaging (MRI) performed in utero revealed the presence of sub-ependymal nodules and of abnormal signals disseminated in the white matter, in the cerebral cortex and in the cerebellum. Following diagnosis of definite TSC, pregnancy interruption was chosen by the parents. Genetic testing of the fetus exposed a duplication in exon 41 of TSC2 (c.5169dupA), which was absent in the parents. The autopsy ascertained the high severity of brain damage characterized by an extensive disorganisation of white and grey matter in most cerebral lobes. CONCLUSIONS This case presentation is the first to depict the association between a de novo TSC2 c.5169dupA and multi-organ manifestation together with indications of a particularly high disease severity. This report can help physicians to perform early clinical diagnosis of TSC and to evaluate the prognosis.
Collapse
Affiliation(s)
- Valérie Mongrain
- Department of Neuroscience, Université de Montréal, Montreal, QC, Canada. .,Center for Advanced Research in Sleep Medicine, Recherche CIUSSS-NIM (site Hôpital du Sacré-Coeur de Montréal), 5400 Gouin West blvd., Montreal, QC, H4J1C5, Canada.
| | - Nicolaas H van Doesburg
- Centre intégré de diagnostic prénatal (CIDP) and Pediatric Neurology Service, Centre Hospitalier Universitaire (CHU) Ste-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T1C5, Canada
| | - Françoise Rypens
- Centre intégré de diagnostic prénatal (CIDP) and Pediatric Neurology Service, Centre Hospitalier Universitaire (CHU) Ste-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T1C5, Canada
| | - Catherine Fallet-Bianco
- Centre intégré de diagnostic prénatal (CIDP) and Pediatric Neurology Service, Centre Hospitalier Universitaire (CHU) Ste-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T1C5, Canada
| | - Justine Maassen
- Centre intégré de diagnostic prénatal (CIDP) and Pediatric Neurology Service, Centre Hospitalier Universitaire (CHU) Ste-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T1C5, Canada
| | - Julien Dufort-Gervais
- Center for Advanced Research in Sleep Medicine, Recherche CIUSSS-NIM (site Hôpital du Sacré-Coeur de Montréal), 5400 Gouin West blvd., Montreal, QC, H4J1C5, Canada
| | - Lucie Côté
- Centre intégré de diagnostic prénatal (CIDP) and Pediatric Neurology Service, Centre Hospitalier Universitaire (CHU) Ste-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T1C5, Canada
| | - Philippe Major
- Department of Neuroscience, Université de Montréal, Montreal, QC, Canada. .,Centre intégré de diagnostic prénatal (CIDP) and Pediatric Neurology Service, Centre Hospitalier Universitaire (CHU) Ste-Justine, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T1C5, Canada.
| |
Collapse
|
28
|
de Vries PJ, Belousova E, Benedik MP, Carter T, Cottin V, Curatolo P, D’Amato L, Beure d’Augères G, Ferreira JC, Feucht M, Fladrowski C, Hertzberg C, Jozwiak S, Lawson JA, Macaya A, Marques R, Nabbout R, O’Callaghan F, Qin J, Sander V, Sauter M, Shah S, Takahashi Y, Touraine R, Youroukos S, Zonnenberg B, Kingswood JC, Jansen AC. Natural clusters of tuberous sclerosis complex (TSC)-associated neuropsychiatric disorders (TAND): new findings from the TOSCA TAND research project. J Neurodev Disord 2020; 12:24. [PMID: 32873244 PMCID: PMC7465404 DOI: 10.1186/s11689-020-09327-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/30/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tuberous sclerosis complex (TSC)-associated neuropsychiatric disorders (TAND) have unique, individual patterns that pose significant challenges for diagnosis, psycho-education, and intervention planning. A recent study suggested that it may be feasible to use TAND Checklist data and data-driven methods to generate natural TAND clusters. However, the study had a small sample size and data from only two countries. Here, we investigated the replicability of identifying natural TAND clusters from a larger and more diverse sample from the TOSCA study. METHODS As part of the TOSCA international TSC registry study, this embedded research project collected TAND Checklist data from individuals with TSC. Correlation coefficients were calculated for TAND variables to generate a correlation matrix. Hierarchical cluster and factor analysis methods were used for data reduction and identification of natural TAND clusters. RESULTS A total of 85 individuals with TSC (female:male, 40:45) from 7 countries were enrolled. Cluster analysis grouped the TAND variables into 6 clusters: a scholastic cluster (reading, writing, spelling, mathematics, visuo-spatial difficulties, disorientation), a hyperactive/impulsive cluster (hyperactivity, impulsivity, self-injurious behavior), a mood/anxiety cluster (anxiety, depressed mood, sleep difficulties, shyness), a neuropsychological cluster (attention/concentration difficulties, memory, attention, dual/multi-tasking, executive skills deficits), a dysregulated behavior cluster (mood swings, aggressive outbursts, temper tantrums), and an autism spectrum disorder (ASD)-like cluster (delayed language, poor eye contact, repetitive behaviors, unusual use of language, inflexibility, difficulties associated with eating). The natural clusters mapped reasonably well onto the six-factor solution generated. Comparison between cluster and factor solutions from this study and the earlier feasibility study showed significant similarity, particularly in cluster solutions. CONCLUSIONS Results from this TOSCA research project in an independent international data set showed that the combination of cluster analysis and factor analysis may be able to identify clinically meaningful natural TAND clusters. Findings were remarkably similar to those identified in the earlier feasibility study, supporting the potential robustness of these natural TAND clusters. Further steps should include examination of larger samples, investigation of internal consistency, and evaluation of the robustness of the proposed natural clusters.
Collapse
Affiliation(s)
- Petrus J. de Vries
- Division of Child and Adolescent Psychiatry, University of Cape Town, 46 Sawkins Road, Rondebosch, Cape Town, 7700 South Africa
| | - Elena Belousova
- Research and Clinical Institute of Pediatrics, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | | | - Tom Carter
- TSA Tuberous Sclerosis Association, Nottingham, UK
| | - Vincent Cottin
- Hôpital Louis Pradel, Claude Bernard University Lyon 1, Lyon, France
| | | | | | | | | | - Martha Feucht
- Universitätsklinik für Kinder-und Jugendheilkunde, Affiliated Partner of the ERN EpiCARE, Vienna, Austria
| | - Carla Fladrowski
- Associazione Sclerosi Tuberosa ONLUS, Milan, Italy
- European Tuberous Sclerosis Complex Association, In den Birken, Datteln, Germany
| | | | - Sergiusz Jozwiak
- Department of Child Neurology, Warsaw Medical University, Warsaw, Poland
- Department of Neurology and Epileptology, The Children’s Memorial Health Institute, Warsaw, Poland
| | - John A. Lawson
- The Tuberous Sclerosis Multidisciplinary Management Clinic, Sydney Children’s Hospital, Randwick, NSW Australia
| | - Alfons Macaya
- Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Ruben Marques
- Novartis Farma S.p.A., Origgio, Italy
- Institute of Biomedicine (IBIOMED), University of Leon, León, Spain
| | - Rima Nabbout
- Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
| | | | - Jiong Qin
- Department of Pediatrics, Peking University People’s Hospital (PKUPH), Beijing, China
| | | | | | - Seema Shah
- Novartis Healthcare Pvt. Ltd., Hyderabad, India
| | - Yukitoshi Takahashi
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, NHO, 886 Urushiyama Aoi-ku, Shizuoka, Japan
| | - Renaud Touraine
- Department of Genetics, CHU-Hôpital Nord, Saint Etienne, France
| | | | | | - J. Chris Kingswood
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Research Centre, St Georges University of London, London, SW17 0RE UK
| | - Anna C. Jansen
- Pediatric Neurology Unit, Department of Pediatrics, UZ Brussel VUB, Brussels, Belgium
| |
Collapse
|
29
|
Hooshmandi M, Wong C, Khoutorsky A. Dysregulation of translational control signaling in autism spectrum disorders. Cell Signal 2020; 75:109746. [PMID: 32858122 DOI: 10.1016/j.cellsig.2020.109746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 11/27/2022]
Abstract
Deviations from the optimal level of mRNA translation are linked to disorders with high rates of autism. Loss of function mutations in genes encoding translational repressors such as PTEN, TSC1, TSC2, and FMRP are associated with autism spectrum disorders (ASDs) in humans and their deletion in animals recapitulates many ASD-like phenotypes. Importantly, the activity of key translational control signaling pathways such as PI3K-mTORC1 and ERK is frequently dysregulated in autistic patients and animal models and their normalization rescues many abnormal phenotypes, suggesting a causal relationship. Mutations in several genes encoding proteins not directly involved in translational control have also been shown to mediate ASD phenotypes via altered signaling upstream of translation. This raises the possibility that the dysregulation of translational control signaling is a converging mechanism not only in familiar but also in sporadic forms of autism. Here, we overview the current knowledge on translational signaling in ASD and highlight how correcting the activity of key pathways upstream of translation reverses distinct ASD-like phenotypes.
Collapse
Affiliation(s)
- Mehdi Hooshmandi
- Department of Anesthesia, Faculty of Dentistry, McGill University, Montreal, QC H3A 0G1, Canada
| | - Calvin Wong
- Department of Anesthesia, Faculty of Dentistry, McGill University, Montreal, QC H3A 0G1, Canada
| | - Arkady Khoutorsky
- Department of Anesthesia, Faculty of Dentistry, McGill University, Montreal, QC H3A 0G1, Canada.
| |
Collapse
|
30
|
Specchio N, Pietrafusa N, Trivisano M, Moavero R, De Palma L, Ferretti A, Vigevano F, Curatolo P. Autism and Epilepsy in Patients With Tuberous Sclerosis Complex. Front Neurol 2020; 11:639. [PMID: 32849171 PMCID: PMC7431762 DOI: 10.3389/fneur.2020.00639] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/29/2020] [Indexed: 12/27/2022] Open
Abstract
Introduction: Individuals with Tuberous Sclerosis Complex (TSC) are at increased risk of developing both epilepsy and autism spectrum disorder (ASD), but the relationship between these conditions is little understood. We reviewed published reports to elucidate the relationship between ASD, epilepsy, and TSC, and to define the genetic and neurological risk factors. Methods: Articles (January 2004-May 2019) were identified via PubMed, EMBASE, and CENTRAL databases. Article inclusion required report on individuals with TSC-associated ASD and epilepsy with prevalence, odds ratio, or rate report on the comorbidity of ASD in epileptic patients due to TSC. Results: A total of 841 abstracts were identified in the original search. Thirty-six articles were included, which identified study populations, ASD measures used, and study confounders as bias factors. This review included 2,666 TSC patients, with a mean age of 15.9 years (range 1.94-30.3 years). The percentage of TSC patients with epilepsy and autism was 33.7%. Patients with TSC and autism showed more frequent seizures and earlier epilepsy onset than TSC patients without autism. ASD and intractable epilepsy were both predicted by a higher number of areas with dysplastic features revealed in brain MR scans. ASD, the onset of seizures in children <2 years of age, and >3 tubers have all been associated with an increased risk of refractory epilepsy in TSC patients. However, the direction of the relationship is not clear because a history of epilepsy, or infantile spasms in patients with TSC is also associated with an increased likelihood of ASD. Overall, 73.2% of patients carried TSC2 genetic variant and, among patients with TSC and autism, the percentage of TSC2 individuals was 85.6%. Conclusions: The complex interrelationship between TSC, autism, and epilepsy, coupled with limited knowledge on the neurobiological basis for the interrelationship, limits overall understanding and opportunities for management. The results of this review highlight the need for early identification and management to optimize favorable outcomes in the most vulnerable individuals with TSC. Regardless of whether studies are considered individually or collectively, interpretation is made difficult due to the differences between the studies, most notably between methods and diagnostic criteria used to assess intellectual ability.
Collapse
Affiliation(s)
- Nicola Specchio
- Rare and Complex Epilepsy Unit, Division of Neurology, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Member of European Reference Network EpiCARE
| | - Nicola Pietrafusa
- Rare and Complex Epilepsy Unit, Division of Neurology, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marina Trivisano
- Rare and Complex Epilepsy Unit, Division of Neurology, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Romina Moavero
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Luca De Palma
- Rare and Complex Epilepsy Unit, Division of Neurology, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alessandro Ferretti
- Rare and Complex Epilepsy Unit, Division of Neurology, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Federico Vigevano
- Member of European Reference Network EpiCARE
- Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, Tor Vergata University, Rome, Italy
| |
Collapse
|
31
|
Earnest T, Shephard E, Tye C, McEwen F, Woodhouse E, Liang H, Sheerin F, Bolton PF. Actigraph-Measured Movement Correlates of Attention-Deficit/Hyperactivity Disorder (ADHD) Symptoms in Young People with Tuberous Sclerosis Complex (TSC) with and without Intellectual Disability and Autism Spectrum Disorder (ASD). Brain Sci 2020; 10:brainsci10080491. [PMID: 32731531 PMCID: PMC7465488 DOI: 10.3390/brainsci10080491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 02/02/2023] Open
Abstract
Actigraphy, an objective measure of motor activity, reliably indexes increased movement levels in attention-deficit/hyperactivity disorder (ADHD) and may be useful for diagnosis and treatment-monitoring. However, actigraphy has not been examined in complex neurodevelopmental conditions. This study used actigraphy to objectively measure movement levels in individuals with a complex neurodevelopmental genetic disorder, tuberous sclerosis (TSC). Thirty participants with TSC (11–21 years, 20 females, IQ = 35–108) underwent brief (approximately 1 h) daytime actigraph assessment during two settings: movie viewing and cognitive testing. Multiple linear regressions were used to test associations between movement measurements and parent-rated ADHD symptoms. Correlations were used to examine associations between actigraph measures and parent-rated ADHD symptoms and other characteristics of TSC (symptoms of autism spectrum disorder (ASD), intellectual ability (IQ), epilepsy severity, cortical tuber count). Higher movement levels during movies were associated with higher parent-rated ADHD symptoms. Higher ADHD symptoms and actigraph-measured movement levels during movies were positively associated with ASD symptoms and negatively associated with IQ. Inter-individual variability of movement during movies was not associated with parent-rated hyperactivity or IQ but was negatively associated with ASD symptoms. There were no associations with tuber count or epilepsy. Our findings suggest that actigraph-measured movement provides a useful correlate of ADHD in TSC.
Collapse
Affiliation(s)
- Tom Earnest
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK; (E.S.); (C.T.); (F.M.); (H.L.); (F.S.); (P.F.B.)
- Correspondence:
| | - Elizabeth Shephard
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK; (E.S.); (C.T.); (F.M.); (H.L.); (F.S.); (P.F.B.)
| | - Charlotte Tye
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK; (E.S.); (C.T.); (F.M.); (H.L.); (F.S.); (P.F.B.)
- Social, Genetic & Developmental Psychiatry (SGDP) Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
| | - Fiona McEwen
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK; (E.S.); (C.T.); (F.M.); (H.L.); (F.S.); (P.F.B.)
- Social, Genetic & Developmental Psychiatry (SGDP) Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK
| | - Emma Woodhouse
- Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK;
| | - Holan Liang
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK; (E.S.); (C.T.); (F.M.); (H.L.); (F.S.); (P.F.B.)
- Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Fintan Sheerin
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK; (E.S.); (C.T.); (F.M.); (H.L.); (F.S.); (P.F.B.)
| | - Patrick F. Bolton
- Department of Child & Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK; (E.S.); (C.T.); (F.M.); (H.L.); (F.S.); (P.F.B.)
| |
Collapse
|
32
|
de Vries PJ, Belousova E, Benedik MP, Carter T, Cottin V, Curatolo P, Dahlin M, D'Amato L, Beaure d'Augères G, Ferreira JC, Feucht M, Fladrowski C, Hertzberg C, Jozwiak S, Lawson JA, Macaya A, Marques R, Nabbout R, O'Callaghan F, Qin J, Sander V, Sauter M, Shah S, Takahashi Y, Touraine R, Youroukos S, Zonnenberg B, Kingswood JC, Jansen AC. Tuberous Sclerosis Complex-Associated Neuropsychiatric Disorders (TAND): New Findings on Age, Sex, and Genotype in Relation to Intellectual Phenotype. Front Neurol 2020; 11:603. [PMID: 32733359 PMCID: PMC7358578 DOI: 10.3389/fneur.2020.00603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 05/25/2020] [Indexed: 11/30/2022] Open
Abstract
Background: Knowledge is increasing about TSC-Associated Neuropsychiatric Disorders (TAND), but little is known about the potentially confounding effects of intellectual ability (IA) on the rates of TAND across age, sex, and genotype. We evaluated TAND in (a) children vs. adults, (b) males vs. females, and (c) TSC1 vs. TSC2 mutations, after stratification for levels of IA, in a large, international cohort. Methods: Individuals of any age with a documented visit for TSC in the 12 months prior to enrolment were included. Frequency and percentages of baseline TAND manifestations were presented by categories of IA (no intellectual disability [ID, intelligence quotient (IQ)>70]; mild ID [IQ 50–70]; moderate-to-profound ID [IQ<50]). Chi-square tests were used to test associations between ID and TAND manifestations. The association between TAND and age (children vs. adults), sex (male vs. female), and genotype (TSC1 vs. TSC2) stratified by IA levels were examined using the Cochran–Mantel–Haenszel tests. Results: Eight hundred and ninety four of the 2,211 participants had formal IQ assessments. There was a significant association (P < 0.05) between levels of IA and the majority of TAND manifestations, except impulsivity (P = 0.12), overactivity (P = 0.26), mood swings (P = 0.08), hallucinations (P = 0.20), psychosis (P = 0.06), depressive disorder (P = 0.23), and anxiety disorder (P = 0.65). Once controlled for IA, children had higher rates of overactivity, but most behavioral difficulties were higher in adults. At the psychiatric level, attention deficit hyperactivity disorder (ADHD) was seen at higher rates in children while anxiety and depressive disorders were observed at higher rates in adults. Compared to females, males showed significantly higher rates of impulsivity and overactivity, as well as autism spectrum disorder (ASD) and ADHD. No significant age or sex differences were observed for academic difficulties or neuropsychological deficits. After controlling for IA no genotype-TAND associations were observed, except for higher rates of self-injury in individuals with TSC2 mutations. Conclusions: Findings suggest IA as risk marker for most TAND manifestations. We provide the first evidence of male preponderance of ASD and ADHD in individuals with TSC. The study also confirms the association between TSC2 and IA but, once controlling for IA, disproves the previously reported TSC2 association with ASD and with most other TAND manifestations.
Collapse
Affiliation(s)
- Petrus J de Vries
- Division of Child and Adolescent Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Elena Belousova
- Research and Clinical Institute of Pediatrics, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Tom Carter
- TSA Tuberous Sclerosis Association, Nottingham, United Kingdom
| | - Vincent Cottin
- Hôpital Louis Pradel, Claude Bernard University Lyon 1, Lyon, France
| | | | - Maria Dahlin
- Astrid Lindgren Childrens Hospital, Stockholm, Sweden
| | | | | | | | - Martha Feucht
- Universitätsklinik für Kinder-und Jugendheilkunde, Affiliated Partner of the ERN EpiCARE, Vienna, Austria
| | - Carla Fladrowski
- Associazione Sclerosi Tuberosa ONLUS, Milan, Italy.,European Tuberous Sclerosis Complex Association, Dattein, Germany
| | | | - Sergiusz Jozwiak
- Department of Child Neurology, Medical University of Warsaw, Warsaw, Poland.,Department of Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland
| | - John A Lawson
- The Tuberous Sclerosis Multidisciplinary Management Clinic, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Alfons Macaya
- Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Ruben Marques
- Novartis Farma S.p.A., Origgio, Italy.,Institute of Biomedicine (IBIOMED), University of Leon, León, Spain
| | - Rima Nabbout
- Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
| | - Finbar O'Callaghan
- Clinical Neurosciences Section, Institute of Child Health, University College London, London, United Kingdom
| | - Jiong Qin
- Department of Pediatrics, Peking University People's Hospital (PKUPH), Beijing, China
| | | | | | - Seema Shah
- Novartis Healthcare Pvt. Ltd., Hyderabad, India
| | - Yukitoshi Takahashi
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, NHO, Shizuoka, Japan
| | - Renaud Touraine
- Department of Genetics, CHU-Hôpital Nord, Saint-Étienne, France
| | | | | | - John C Kingswood
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Research Centre, St Georges University of London, London, United Kingdom
| | - Anna C Jansen
- Pediatric Neurology Unit, Department of Pediatrics, UZ Brussel VUB, Brussels, Belgium
| | | |
Collapse
|
33
|
Gupta A, de Bruyn G, Tousseyn S, Krishnan B, Lagae L, Agarwal N, Frost M, Sparagana S, LaJoie J, Riviello J, Devinsky O, LaJoie J, Thiele E, McClintock W, Kohrman M, Brown C, Kuperman R, Wu J, Northrup H, Bebin EM, Korf B, Gupta A, Levisohn P, Koh S, O'Neil Miller I, Duchowny M, Ashwal S, Jansen A, Crino P, Pollard J, Nathanson K, Sahin M, Krueger DA, Wong M, Jeong A. Epilepsy and Neurodevelopmental Comorbidities in Tuberous Sclerosis Complex: A Natural History Study. Pediatr Neurol 2020; 106:10-16. [PMID: 32139167 DOI: 10.1016/j.pediatrneurol.2019.12.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND We studied the natural history, genotype influence, and inter-relationship of epilepsy and neuropsychiatric disorders in tuberous sclerosis complex. METHODS Patients were identified using the TSC Natural History Database, the largest repository of longitudinally studied patients enrolled by the TSC Clinics Consortium. RESULTS A cohort of 1657 TSC Natural History Database patients was analyzed. Eighty-eight percent patients (91% TSC2 vs 82% TSC1; P = 0.002) had epilepsy; TSC2 was more frequent with epilepsy onset at age less than two years (TSC2 82% vs TSC1 54%; P < 0.001) and infantile spasms (TSC2 56% vs TSC1 27%; P < 0.001). Frequency of intellectual disability (intelligence quotient less than 70) was higher when epilepsy coexisted (P < 0.001), but was not impacted by genotype (P = 0.08). Severe intellectual disability (intelligence quotient less than 50) was associated with epilepsy onset at age less than two years (P = 0.007), but not with the epilepsy duration (P = 0.45). Autism was diagnosed in 23% and was associated with epilepsy (P < 0.001), particularly with epilepsy onset at age less than two years (P = 0.02) but not with genotype (P = 0.06). Attention-deficit/hyperactivity disorder (age greater than four years) was diagnosed in 18% and was associated with epilepsy (P < 0.001), but genotype made no difference. Nine percent had anxiety (age greater than seven years) and 6% had depression (age greater than nine years), but neither showed association with epilepsy or genotype. CONCLUSIONS Epilepsy is associated with intellectual disability, and when epilepsy begins before age two years the frequency and severity of intellectual disability is much higher. Epilepsy is also associated with autism and attention-deficit/hyperactivity disorder but not with anxiety and depression. Additional trials, blinded, prospective, and adequately powered, will help clarify if early and effective treatment of epilepsy may also mitigate intellectual disability, autism, and attention-deficit/hyperactivity disorder.
Collapse
Affiliation(s)
- Ajay Gupta
- Department of Neurology, Pediatric Epilepsy, Epilepsy Center/Neurological Institute, Cleveland Clinic, Cleveland, Ohio.
| | - Gwendolyn de Bruyn
- Department of Neurology, Pediatric Epilepsy, Epilepsy Center/Neurological Institute, Cleveland Clinic, Cleveland, Ohio; Department of Development and Regeneration, Section Paediatric Neurology, University Hospitals Leuven, Leuven, Belgium; Department of Pediatrics, ZOL Genk, Genk, Belgium; Department of Neurology, Academic Center for Epileptology, Kempenhaeghe and Maastricht UMC+, The Netherlands
| | - Simon Tousseyn
- Department of Neurology, Pediatric Epilepsy, Epilepsy Center/Neurological Institute, Cleveland Clinic, Cleveland, Ohio; Department of Neurology, Academic Center for Epileptology, Kempenhaeghe and Maastricht UMC+, The Netherlands
| | - Balu Krishnan
- Department of Neurology, Pediatric Epilepsy, Epilepsy Center/Neurological Institute, Cleveland Clinic, Cleveland, Ohio
| | - Lieven Lagae
- Department of Development and Regeneration, Section Paediatric Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Nitin Agarwal
- Division of Pediatric Epilepsy, Department of Neurology, Minnesota Epilepsy Group, P.A. and Children's Hospitals and Clinics of Minnesota, St. Paul, Minnesota
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sex-Selective Effects on Behavior in a Mouse Model of Tuberous Sclerosis Complex. eNeuro 2020; 7:ENEURO.0379-19.2020. [PMID: 32303566 PMCID: PMC7196723 DOI: 10.1523/eneuro.0379-19.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/19/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder that is caused by a mutation in either TSC1 or TSC2 TSC affects multiple systems of the body, and patients with TSC display a range of neurologic and behavioral manifestations including seizures, intellectual disability, autism spectrum disorders, attention deficit hyperactivity disorder, anxiety, and mood disorders. Whereas behavioral phenotypes of many mouse models have been studied, the effects of sex have, for the most part, not been explored. We studied adult male and female Tsc2 heterozygous and control mice to investigate the influence of sex and genotype on behavior. On a test of social preference, Tsc2 heterozygous mice, regardless of sex, demonstrated lower preference for the stranger mouse than control mice. In the open field, Tsc2 heterozygous males and control females habituated to the open field with decreasing anxiety-like behavior over time, whereas Tsc2 heterozygous females did not show habituation to the open field environment. We did not find any statistically significant effects of genotype on open field activity, learning and memory or motor function. Our results highlight phenotype differences in Tsc2 heterozygous mice, some of which are influenced by sex. A consideration of how sex influences the behavioral phenotypes of TSC is critical to develop a more complete understanding of the disorder and better target future pharmacological treatments.
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Attention deficit hyperactivity disorder (ADHD) shows high heritability in formal genetic studies. In our review article, we provide an overview on common and rare genetic risk variants for ADHD and their link to clinical practice. RECENT FINDINGS The formal heritability of ADHD is about 80% and therefore higher than most other psychiatric diseases. However, recent studies estimate the proportion of heritability based on singlenucleotide variants (SNPs) at 22%. It is a matter of debate which genetic mechanisms explain this huge difference. While frequent variants in first mega-analyses of genome-wideassociation study data containing several thousand patients give the first genome-wide results, explaining only little variance, the methodologically more difficult analyses of rare variants are still in their infancy. Some rare genetic syndromes show higher prevalence for ADHD indicating a potential role for a small number of patients. In contrast, polygenic risk scores (PRS) could potentially be applied to every patient. We give an overview how PRS explain different behavioral phenotypes in ADHD and how they could be used for diagnosis and therapy prediction. Knowledge about a patient's genetic makeup is not yet mandatory for ADHD therapy or diagnosis. PRS however have been introduced successfully in other areas of clinical medicine, and their application in psychiatry will begin within the next years. In order to ensure competent advice for patients, knowledge of the current state of research is useful forpsychiatrists.
Collapse
Affiliation(s)
- Oliver Grimm
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Thorsten M Kranz
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany.
| |
Collapse
|
36
|
Zöllner JP, Franz DN, Hertzberg C, Nabbout R, Rosenow F, Sauter M, Schubert-Bast S, Wiemer-Kruel A, Strzelczyk A. A systematic review on the burden of illness in individuals with tuberous sclerosis complex (TSC). Orphanet J Rare Dis 2020; 15:23. [PMID: 31964424 PMCID: PMC6975094 DOI: 10.1186/s13023-019-1258-3] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/19/2019] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE This review will summarize current knowledge on the burden of illness (BOI) in tuberous sclerosis complex (TSC), a multisystem genetic disorder manifesting with hamartomas throughout the body, including mainly the kidneys, brain, skin, eyes, heart, and lungs. METHODS We performed a systematic analysis of the available literature on BOI in TSC according to the PRISMA guidelines. All studies irrespective of participant age that reported on individual and societal measures of disease burden (e.g. health care resource use, costs, quality of life) were included. RESULTS We identified 33 studies reporting BOI in TSC patients. Most studies (21) reported health care resource use, while 14 studies reported quality of life and 10 studies mentioned costs associated with TSC. Only eight research papers reported caregiver BOI. Substantial BOI occurs from most manifestations of the disorder, particularly from pharmacoresistant epilepsy, neuropsychiatric, renal and skin manifestations. While less frequent, pulmonary complications also lead to a high individual BOI. The range for the mean annual direct costs varied widely between 424 and 98,008 International Dollar purchasing power parities (PPP-$). Brain surgery, end-stage renal disease with dialysis, and pulmonary complications all incur particularly high costs. There is a dearth of information regarding indirect costs in TSC. Mortality overall is increased compared to general population; and most TSC related deaths occur as a result of complications from seizures as well as renal complications. Long term studies report mortality between 4.8 and 8.3% for a follow-up of 8 to 17.4 years. CONCLUSIONS TSC patients and their caregivers have a high burden of illness, and TSC patients incur high costs in health care systems. At the same time, the provision of inadequate treatment that does not adhere to published guidelines is common and centralized TSC care is received by no more than half of individuals who need it, especially adults. Further studies focusing on the cost effectiveness and BOI outcomes of coordinated TSC care as well as of new treatment options such as mTOR inhibitors are necessary.
Collapse
Affiliation(s)
- Johann Philipp Zöllner
- Epilepsy Center Frankfurt Rhine-Main and Department of Neurology, Goethe-University Frankfurt, Frankfurt am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - David Neal Franz
- Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Christoph Hertzberg
- Zentrum für Sozialpädiatrie & Neuropädiatrie (DBZ), Vivantes Klinikum Neukölln, Berlin, Germany
| | - Rima Nabbout
- Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Imagine Institute UMR1136, Paris, France
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine-Main and Department of Neurology, Goethe-University Frankfurt, Frankfurt am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany
| | | | - Susanne Schubert-Bast
- Epilepsy Center Frankfurt Rhine-Main and Department of Neurology, Goethe-University Frankfurt, Frankfurt am Main, Germany
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany
- Department of Neuropediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | | | - Adam Strzelczyk
- Epilepsy Center Frankfurt Rhine-Main and Department of Neurology, Goethe-University Frankfurt, Frankfurt am Main, Germany.
- LOEWE Center for Personalized Translational Epilepsy Research (CePTER), Goethe-University Frankfurt, Frankfurt am Main, Germany.
- Epilepsy Center Hessen and Department of Neurology, Philipps-University Marburg, Marburg (Lahn), Germany.
- Epilepsy Center Frankfurt Rhine-Main, Center of Neurology and Neurosurgery, Goethe-University Frankfurt, Schleusenweg 2-16 (Haus 95), 60528, Frankfurt am Main, Germany.
| |
Collapse
|
37
|
Lv M, Ma Q. Autophagy in Neurodevelopmental Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1207:171-182. [PMID: 32671746 DOI: 10.1007/978-981-15-4272-5_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Neurodevelopmental diseases are a class of neurodevelopmental disorders characterized by cognitive impairment and behavioral abnormalities and are mainly manifested as developmental disorders of the brain and nervous system. The pathological mechanism is not fully understood and may be related to hereditary or environmental factors. The elevation of autophagy during neural development suggests that autophagy may be involved in the process of neurodevelopment. This chapter focuses on the important functions of autophagy in all aspects of neurodevelopment and the role and mechanism of autophagy in neurodevelopmental disorders, especially in autism spectrum disorder.
Collapse
Affiliation(s)
- Meihong Lv
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu Province, China
| | - Quanhong Ma
- Institute of Neuroscience, Soochow University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
38
|
Dickinson A, Varcin KJ, Sahin M, Nelson CA, Jeste SS. Early patterns of functional brain development associated with autism spectrum disorder in tuberous sclerosis complex. Autism Res 2019; 12:1758-1773. [PMID: 31419043 PMCID: PMC6898751 DOI: 10.1002/aur.2193] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 01/12/2023]
Abstract
Tuberous sclerosis complex (TSC) is a rare genetic disorder that confers a high risk for autism spectrum disorders (ASD), with behavioral predictors of ASD emerging early in life. Deviations in structural and functional neural connectivity are highly implicated in both TSC and ASD. For the first time, we explore whether electroencephalographic (EEG) measures of neural network function precede or predict the emergence of ASD in TSC. We determine whether altered brain function (a) is present in infancy in TSC, (b) differentiates infants with TSC based on ASD diagnostic status, and (c) is associated with later cognitive function. We studied 35 infants with TSC (N = 35), and a group of typically developing infants (N = 20) at 12 and 24 months of age. Infants with TSC were later subdivided into ASD and non-ASD groups based on clinical evaluation. We measured features of spontaneous alpha oscillations (6-12 Hz) that are closely associated with neural network development: alpha power, alpha phase coherence (APC), and peak alpha frequency (PAF). Infants with TSC demonstrated reduced interhemispheric APC compared to controls at 12 months of age, and these differences were found to be most pronounced at 24 months in the infants who later developed ASD. Across all infants, PAF at 24 months was associated with verbal and nonverbal cognition at 36 months. Associations between early network function and later neurodevelopmental and cognitive outcomes highlight the potential utility of early scalable EEG markers to identify infants with TSC requiring additional targeted intervention initiated very early in life. Autism Res 2019, 12: 1758-1773. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Approximately half of infants with tuberous sclerosis complex (TSC) develop autism. Here, using EEG, we find that there is a reduction in communication between brain regions during infancy in TSC, and that the infants who show the largest reductions are those who later develop autism. Being able to identify infants who show early signs of disrupted brain development may improve the timing of early prediction and interventions in TSC, and also help us to understand how early brain changes lead to autism.
Collapse
Affiliation(s)
- Abigail Dickinson
- UCLA Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, Los Angeles, California
| | - Kandice J Varcin
- Telethon Kids Institute, University of Western Australia, Subiaco, Western Australia, Australia
| | - Mustafa Sahin
- Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Charles A Nelson
- Division of Developmental Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
- Harvard Graduate School of Education, Cambridge, Massachusetts
| | - Shafali S Jeste
- UCLA Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, Los Angeles, California
| |
Collapse
|
39
|
Abstract
Autism spectrum disorder (ASD) is a common disorder that causes substantial distress. Heritability studies consistently show a strong genetic contribution, raising the hope that identifying ASD-associated genetic variants will offer insights into neurobiology and ultimately therapeutics. Next-generation sequencing (NGS) enabled the identification of disruptive variants throughout protein-coding regions of the genome. Alongside large cohorts and novel statistical methods, these NGS methods revolutionized ASD gene discovery. NGS methods have also contributed substantially to functional genetic data, such as gene expression, used to understand the neurobiological consequences of disrupting these ASD-associated genes. These functional data are also critical for annotating the noncoding genome as whole-genome sequencing (WGS) begins to provide initial insights outside of protein-coding regions. NGS methods still have a major role to play, as do similarly transformative advances in stem cell and gene-editing methods, in translating genetic discoveries into a first generation of ASD therapeutics.
Collapse
Affiliation(s)
- Stephan J Sanders
- Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
40
|
Bar C, Ghobeira R, Azzi R, Ville D, Riquet A, Touraine R, Chemaly N, Nabbout R. Experience of follow-up, quality of life, and transition from pediatric to adult healthcare of patients with tuberous sclerosis complex. Epilepsy Behav 2019; 96:23-27. [PMID: 31077938 DOI: 10.1016/j.yebeh.2019.04.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Tuberous sclerosis complex (TSC) is a multisystemic genetic disease with high clinical variability and age-related manifestations. These characteristics add to the complexity of transition to adulthood. This study aimed to explore the perception of medical follow-up and transition experience in a large group of patients with TSC who presented epilepsy in childhood. METHOD This multicenter French study included patients with TSC aged 18 years or older who developed epilepsy before the age of 16 years. A questionnaire specifically designed for the study explored patients' opinion through 270 questions covering different aspects of their social, familial, professional, and medical courses. RESULTS The questionnaire was sent to 72 patients, and 60 patients were included in the study (83% response rate) with a mean age of 32 years (18-55 years). Cognitive impairment was present in 80% of patients, and half of questionnaires were completed by the family. Pediatric care was coordinated by the child neurologist and was more regular and multidisciplinary than adult care. Epilepsy had the best follow-up followed by renal issues. Unmet needs were identified for psychiatric and behavioral disorders, both in children and adults. Respondents considered the help in achieving autonomy better in adult care. Only 50% of patients with a normal intellectual development had clear knowledge about their disease and the need for a regular monitoring. Two-thirds of respondents estimated that they had a transition experience between 16.5 and 21-year-old, considered as good in 60% of them. Seventy percent felt continuity between pediatric and adult care, and only 3% of respondents felt that their care would have been better if they were still followed in pediatric healthcare system. The change of care structure and/or caregivers was the most stressful factor during transition and transfer. CONCLUSION This study highlights persistent issues in the regularity and coordination of the follow-up of patients with TSC despite established international guidelines. Although most patients had a positive transition experience, there is still an urgent need to optimize transition programs. This would be essential to maintain care continuity between pediatric and adult health systems, especially for patients with TSC with epilepsy and high rate of cognitive and psychiatric impairments.
Collapse
Affiliation(s)
- Claire Bar
- Department of Pediatric Neurology, Reference Centre for Rare Epilepsies, Necker-Enfants Malades, AP-HP, Paris, France; Laboratory of Translational Research for Neurological Disorders, INSERM UMR 1163, Imagine Institute, Paris, France; Université Paris Descartes -Sorbonne Paris Cité, Imagine Institute, Paris, France
| | - Rouba Ghobeira
- Department of Pediatric Neurology, Reference Centre for Rare Epilepsies, Necker-Enfants Malades, AP-HP, Paris, France; Department of Sciences, Faculty of Sciences II, Campus Fanar, Lebanon
| | - Rita Azzi
- Department of Sciences, Faculty of Sciences II, Campus Fanar, Lebanon
| | - Dorothée Ville
- Department of Pediatric Neurology, Femme Mère Enfant University Hospital, HCL, Bron, France
| | - Audrey Riquet
- Department of Pediatric Neurology, Roger Salengro University Hospital, Lille, France
| | | | - Nicole Chemaly
- Department of Pediatric Neurology, Reference Centre for Rare Epilepsies, Necker-Enfants Malades, AP-HP, Paris, France; Laboratory of Translational Research for Neurological Disorders, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Rima Nabbout
- Department of Pediatric Neurology, Reference Centre for Rare Epilepsies, Necker-Enfants Malades, AP-HP, Paris, France; Laboratory of Translational Research for Neurological Disorders, INSERM UMR 1163, Imagine Institute, Paris, France; Université Paris Descartes -Sorbonne Paris Cité, Imagine Institute, Paris, France.
| |
Collapse
|
41
|
Okamoto SI, Prikhodko O, Pina-Crespo J, Adame A, McKercher SR, Brill LM, Nakanishi N, Oh CK, Nakamura T, Masliah E, Lipton SA. NitroSynapsin for the treatment of neurological manifestations of tuberous sclerosis complex in a rodent model. Neurobiol Dis 2019; 127:390-397. [PMID: 30928642 DOI: 10.1016/j.nbd.2019.03.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/07/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022] Open
Abstract
Tuberous sclerosis (TSC) is an autosomal dominant disorder caused by heterozygous mutations in the TSC1 or TSC2 gene. TSC is often associated with neurological, cognitive, and behavioral deficits. TSC patients also express co-morbidity with anxiety and mood disorders. The mechanism of pathogenesis in TSC is not entirely clear, but TSC-related neurological symptoms are accompanied by excessive glutamatergic activity and altered synaptic spine structures. To address whether extrasynaptic (e)NMDA-type glutamate receptor (NMDAR) antagonists, as opposed to antagonists that block physiological phasic synaptic activity, can ameliorate the synaptic and behavioral features of this disease, we utilized the Tsc2+/- mouse model of TSC to measure biochemical, electrophysiological, histological, and behavioral parameters in the mice. We found that antagonists that preferentially block tonic activity as found at eNMDARs, particularly the newer drug NitroSynapsin, provide biological and statistically significant improvement in Tsc2+/- phenotypes. Accompanying this improvement was correction of activity in the p38 MAPK-TSC-Rheb-mTORC1-S6K1 pathway. Deficits in hippocampal long-term potentiation (LTP), histological loss of synapses, and behavioral fear conditioning in Tsc2+/- mice were all improved after treatment with NitroSynapsin. Taken together, these results suggest that amelioration of excessive excitation, by limiting aberrant eNMDAR activity, may represent a novel treatment approach for TSC.
Collapse
Affiliation(s)
| | - Olga Prikhodko
- Biomedical Sciences Graduate Program, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Juan Pina-Crespo
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Anthony Adame
- Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Scott R McKercher
- Scintillon Institute, San Diego, CA 92121, USA; Neuroscience Translational Center, Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Laurence M Brill
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - Chang-Ki Oh
- Scintillon Institute, San Diego, CA 92121, USA; Neuroscience Translational Center, Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tomohiro Nakamura
- Scintillon Institute, San Diego, CA 92121, USA; Neuroscience Translational Center, Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Stuart A Lipton
- Scintillon Institute, San Diego, CA 92121, USA; Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA; Neuroscience Translational Center, Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
42
|
Toldo I, Brasson V, Miscioscia M, Pelizza MF, Manara R, Sartori S, Mantegazza G, Vecchi M, Nosadini M, Gatta M. Tuberous sclerosis-associated neuropsychiatric disorders: a paediatric cohort study. Dev Med Child Neurol 2019; 61:168-173. [PMID: 30298907 DOI: 10.1111/dmcn.14055] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2018] [Indexed: 11/28/2022]
Abstract
AIM We aimed to study tuberous sclerosis-associated neuropsychiatric disorders (TAND) in children and adolescents with tuberous sclerosis complex (TSC). METHOD Retrospective and prospective cohort study conducted at a Paediatric Neurology Unit of an Italian Tertiary Care Hospital. Clinical and neuroimaging data were reviewed. Scores for neurological and epilepsy outcomes (Extended Glasgow Outcome Scale, Paediatric Version and Early Childhood Epilepsy Severity Scale modified), semi-structured interviews (authorized Italian version of the TAND checklist and Vineland Adaptive Behavior Scales) and questionnaires (Child Behavior Checklist [CBCL]) were applied at last follow-up. RESULTS Thirty-two patients with TSC (age range 1-19y) were enrolled. Eighty-eight per cent had at least one TAND and 47% had intellectual disability. The TAND checklist showed internalizing problems in 25.8% of cases (vs 41.9% by CBCL), and externalizing problems in 41.9% (vs 9.7% by CBCL). TAND prevailed in patients with de novo mutation of TSC2, high tuber load, and severe neurological and epilepsy outcomes. INTERPRETATION In our cohort, 78% of patients had more than four TAND behavioural problems; nevertheless, they did not show a constant and specific neuropsychiatric profile. Clinical, neurophysiological, and neuroradiological features were associated with several TAND. The TAND checklist appeared more effective than the CBCL, particularly in detecting externalizing problems. WHAT THIS PAPER ADDS The Tuberous sclerosis-associated neuropsychiatric disorders (TAND) checklist is an effective tool for TAND screening. The TAND checklist helps define psychopathological and neuropsychiatric aspects in paediatric patients with Tuberous sclerosis complex (TSC). TAND were found in 88% of patients with TSC, whilst 78% had more than four TAND. TAND distribution depends on different clinical and neuroradiological features.
Collapse
Affiliation(s)
- Irene Toldo
- Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Valeria Brasson
- Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Marina Miscioscia
- Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy.,Department of Developmental Psychology and Socialization, University of Padua, Padua, Italy
| | | | - Renzo Manara
- Neuroradiology Unit, University of Salerno, Salerno, Italy
| | - Stefano Sartori
- Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | | | - Marilena Vecchi
- Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Margherita Nosadini
- Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| | - Michela Gatta
- Department of Women's and Children's Health, University Hospital of Padua, Padua, Italy
| |
Collapse
|
43
|
Kotajima-Murakami H, Kobayashi T, Kashii H, Sato A, Hagino Y, Tanaka M, Nishito Y, Takamatsu Y, Uchino S, Ikeda K. Effects of rapamycin on social interaction deficits and gene expression in mice exposed to valproic acid in utero. Mol Brain 2019; 12:3. [PMID: 30621732 PMCID: PMC6325753 DOI: 10.1186/s13041-018-0423-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/25/2018] [Indexed: 12/27/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) signaling pathway plays a crucial role in cell metabolism, growth, and proliferation. The overactivation of mTOR has been implicated in the pathogenesis of syndromic autism spectrum disorder (ASD), such as tuberous sclerosis complex (TSC). Treatment with the mTOR inhibitor rapamycin improved social interaction deficits in mouse models of TSC. Prenatal exposure to valproic acid (VPA) increases the incidence of ASD. Rodent pups that are exposed to VPA in utero have been used as an animal model of ASD. Activation of the mTOR signaling pathway was recently observed in rodents that were exposed to VPA in utero, and rapamycin ameliorated social interaction deficits. The present study investigated the effect of rapamycin on social interaction deficits in both adolescence and adulthood, and gene expressions in mice that were exposed to VPA in utero. We subcutaneously injected 600 mg/kg VPA in pregnant mice on gestational day 12.5 and used the pups as a model of ASD. The pups were intraperitoneally injected with rapamycin or an equal volume of vehicle once daily for 2 consecutive days. The social interaction test was conducted in the offspring after the last rapamycin administration at 5-6 weeks of ages (adolescence) or 10-11 weeks of age (adulthood). Whole brains were collected after the social interaction test in the adulthood, and microarray and Western blot analyses were performed. Mice that were exposed to VPA and treated with vehicle exhibited a decrease in social interaction compared with control mice that were treated with vehicle. Rapamycin treatment in VPA-exposed mice improved social deficits. Mice that were exposed to VPA and treated with vehicle exhibited the aberrant expression of genes in the mTOR signaling pathway, and rapamycin treatment recovered changes in the expression of some genes, including Fyb and A330094K24Rik. Rapamycin treatment suppressed S6 phosphorylation in VPA-exposed mice. Aberrant gene expression was associated with social interaction deficits in VPA-exposed mice. Rapamycin may be an effective treatment for non-syndromic ASD in adolescent and adult patients who present impairments in the mTOR signaling pathway.
Collapse
Affiliation(s)
- Hiroko Kotajima-Murakami
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan.,Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya-shi, Tochigi, Japan
| | - Toshiyuki Kobayashi
- Department of Molecular Pathogenesis, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Hirofumi Kashii
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan.,Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Atsushi Sato
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan.,Department of Pediatrics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yoko Hagino
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Miho Tanaka
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan.,Department of Developmental Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Higashimachi, Kodaira-shi, Tokyo, Japan
| | - Yasumasa Nishito
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Yukio Takamatsu
- Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan
| | - Shigeo Uchino
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan.,Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya-shi, Tochigi, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, Japan.
| |
Collapse
|
44
|
Ho NT, Kroner B, Grinspan Z, Fureman B, Farrell K, Zhang J, Buelow J, Hesdorffer DC. Comorbidities of Rare Epilepsies: Results from the Rare Epilepsy Network. J Pediatr 2018; 203:249-258.e5. [PMID: 30195559 DOI: 10.1016/j.jpeds.2018.07.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/18/2018] [Accepted: 07/12/2018] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To describe the prevalence and characteristics of comorbidities in persons with rare epilepsies. STUDY DESIGN Persons with rare epilepsies and caregivers of those affected were recruited through the Epilepsy Foundation and more than 30 rare epilepsy advocacy organizations affiliated with the Rare Epilepsy Network (REN). A web-based survey was conducted using a questionnaire consisting of core sections to collect data from affected persons on various aspects, including comorbidities. Comorbidity information was grouped into 15 classes, 12 of which had a stem question followed by detailed branch questions and 3 that were created from a combination of related questions. RESULTS Of 795 persons with more than 30 different rare epilepsy diagnosis groups, one-half had ≥5 comorbidity classes and 97% were classified as complex chronic disease (C-CD). The highest number of comorbidity classes reported per person were persons with Aicardi syndrome, Phelan-McDermid syndrome (median, 7.0; IQR, 5.0-9.0), and tuberous sclerosis complex (median, 6.0; IQR, 4.0-8.0). The most common comorbidity classes were learning/developmental disability (71%), mental health issues (71%), sleep disorders (60%), brain abnormalities (52%), oral issues (49%), bone-joint issues (42%), hyper/hypotonia (42%), and eye-vision disorders (38%). The prevalence of brain abnormalities, hyper/hypotonia, eye, and cardiac disorders was significantly higher in persons first diagnosed with epilepsy at a younger age (<9 months) than in those first diagnosed at an older age (P < .05 for trend). CONCLUSIONS Nearly all persons with rare epilepsies are medically complex, with a high prevalence of multiple comorbidities, especially those who were diagnosed with epilepsy in the first year of life. Comorbidities should be carefully considered in the diagnosis and management of persons with rare epilepsies.
Collapse
Affiliation(s)
- Nhan Thi Ho
- Gertrude H. Sergievsky Center, Department of Epidemiology, Columbia University, New York, NY
| | - Barbara Kroner
- Department of Epidemiology, Research Triangle Institute, Research Triangle Park, NC
| | | | - Brandy Fureman
- Research and New Therapies, Epilepsy Foundation, Landover, MD
| | | | - Jingzhou Zhang
- Gertrude H. Sergievsky Center, Department of Epidemiology, Columbia University, New York, NY
| | - Janice Buelow
- Indiana University School of Nursing, Indianapolis, IN
| | - Dale C Hesdorffer
- Gertrude H. Sergievsky Center, Department of Epidemiology, Columbia University, New York, NY.
| |
Collapse
|
45
|
Wilde L, Wade K, Eden K, Moss J, de Vries PJ, Oliver C. Persistence of self-injury, aggression and property destruction in children and adults with tuberous sclerosis complex. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2018; 62:1058-1071. [PMID: 29417652 DOI: 10.1111/jir.12472] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 09/27/2017] [Accepted: 12/15/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND Individuals with tuberous sclerosis complex (TSC) are at increased risk of developing self-injurious behaviour. The persistence of this deleterious behaviour over years is reported in aetiologically heterogeneous samples to be between 60% and 80% but is unknown for TSC. METHOD In this study, we determined the 3-year persistence of self-injury in a sample (n = 52) of children (with and without ID) and adults (with ID) with TSC and examined characteristics associated with persistence. RESULTS Findings for self-injury were contrasted to those for aggression and property destruction to examine the specificity of results to this behaviour. Self-injury was persistent in 84.6% of those with TSC who showed this behaviour, in contrast to 66.7% both for aggression and destruction. Persistent self-injury was associated with poor self-help skills, greater overactivity/impulsivity and more behavioural indicators of pain. These latter two characteristics were also associated with persistent aggression. No characteristics were associated with persistence of property destruction. CONCLUSION These findings suggest that self-injurious behaviours in individuals with TSC, together with aggressive and destructive behaviours, are highly persistent and would benefit from targeted intervention. Poor adaptive skills, overactivity/impulsivity and painful health conditions may differentiate those at most risk for persistent self-injury or aggression.
Collapse
Affiliation(s)
- L Wilde
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, UK
| | - K Wade
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, UK
| | - K Eden
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, UK
| | - J Moss
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, UK
- Institute of Cognitive Neuroscience, University College London, UK
| | - P J de Vries
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Mental Health, University of Cape Town, South Africa
| | - C Oliver
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, UK
| |
Collapse
|
46
|
Amin S, Lux A, O'Callaghan F. The journey of metformin from glycaemic control to mTOR inhibition and the suppression of tumour growth. Br J Clin Pharmacol 2018; 85:37-46. [PMID: 30290005 DOI: 10.1111/bcp.13780] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 12/19/2022] Open
Abstract
Our knowledge of the effect of metformin on human health is increasing. In addition to its ability to improve the control of hyperglycaemia, metformin has been shown to reduce the burden o,f ageing via effects on damaged DNA and the process of apoptosis. Studies have shown that metformin may reduce the risk of cardiovascular disease through influences on body weight, blood pressure, cholesterol levels and the progression of atherosclerosis. Studies also suggest that metformin may be beneficial for neuro-psychiatric disorders, cognitive impairment and in reducing the risk of dementia, erectile dysfunction and Duchenne muscular dystrophy. In vivo and in vitro studies have shown that metformin has anti-cancer properties, and population studies have suggested that metformin may reduce the risk of cancer or improve cancer prognosis. It is thought that it exerts its anti-cancer effect through the inhibition of the mammalian target of rapamycin (mTOR) signalling pathway. Because of its effect on the mTOR pathway, there may be a role for metformin in slowing or reversing growth of life-threatening hamartomas in tuberous sclerosis complex.
Collapse
Affiliation(s)
- Sam Amin
- Paediatric Neurologist, University Hospitals Bristol, Upper Maudlin Street Centre Level 6, Bristol, BS28AE, UK
| | - Andrew Lux
- Paediatric Neurologist, University Hospitals Bristol, Upper Maudlin Street Centre Level 6, Bristol, BS28AE, UK
| | - Finbar O'Callaghan
- Institute of Child Health, University College London, London, WC1N 1EH, UK
| |
Collapse
|
47
|
de Vries PJ, Belousova E, Benedik MP, Carter T, Cottin V, Curatolo P, Dahlin M, D'Amato L, d'Augères GB, Ferreira JC, Feucht M, Fladrowski C, Hertzberg C, Jozwiak S, Kingswood JC, Lawson JA, Macaya A, Marques R, Nabbout R, O'Callaghan F, Qin J, Sander V, Sauter M, Shah S, Takahashi Y, Touraine R, Youroukos S, Zonnenberg B, Jansen AC. TSC-associated neuropsychiatric disorders (TAND): findings from the TOSCA natural history study. Orphanet J Rare Dis 2018; 13:157. [PMID: 30201051 PMCID: PMC6131901 DOI: 10.1186/s13023-018-0901-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022] Open
Abstract
Background Most evidence for TSC-associated neuropsychiatric disorders (TAND) to date have come from small studies and case reports, and very little is known about TAND in adults. We explored baseline TAND data from the large-scale international TOSCA natural history study to compare childhood and adult patterns, describe age-based patterns, and explore genotype-TAND correlations. Results The study enrolled 2216 eligible participants with TSC from 170 sites across 31 countries at the data cut-off for the third interim analysis (data cut-off date: September 30, 2015). The most common behavioural problems (reported in > 10% of participants) were overactivity, sleep difficulties, impulsivity, anxiety, mood swings, severe aggression, depressed mood, self-injury, and obsessions. Psychiatric disorders included autism spectrum disorder (ASD, 21.1%), attention deficit hyperactivity disorder (ADHD, 19.1%), anxiety disorder (9.7%), and depressive disorder (6.1%). Intelligence quotient (IQ) scores were available for 885 participants. Of these, 44.4% had normal IQ, while mild, moderate, severe, and profound degrees of intellectual disability (ID) were observed in 28.1, 15.1, 9.3, and 3.1%, respectively. Academic difficulties were identified in 58.6% of participants, and neuropsychological deficits (performance <5th percentile) in 55.7%. Significantly higher rates of overactivity and impulsivity were observed in children and higher rates of anxiety, depressed mood, mood swings, obsessions, psychosis and hallucinations were observed in adults. Genotype-TAND correlations showed a higher frequency of self-injury, ASD, academic difficulties and neuropsychological deficits in TSC2. Those with no mutations identified (NMI) showed a mixed pattern of TAND manifestations. Children and those with TSC2 had significantly higher rates of intellectual disability, suggesting that age and genotype comparisons should be interpreted with caution. Conclusions These results emphasize the magnitude of TAND in TSC and the importance of evaluating for neuropsychiatric comorbidity in all children and adults with TSC, across TSC1 and TSC2 genotypes, as well as in those with no mutations identified. However, the high rates of unreported or missing TAND data in this study underline the fact that, even in expert centres, TAND remains underdiagnosed and potentially undertreated.
Collapse
Affiliation(s)
- Petrus J de Vries
- Division of Child and Adolescent Psychiatry, University of Cape Town, 46 Sawkins Road, Rondebosch, Cape Town, 7700, South Africa.
| | - Elena Belousova
- Research and Clinical Institute of Pediatrics, Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | | | - Tom Carter
- TSA Tuberous Sclerosis Association, Nottingham, UK
| | - Vincent Cottin
- Hôpital Louis Pradel, Claude Bernard University Lyon 1, Lyon, France
| | | | - Maria Dahlin
- Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | - Martha Feucht
- Universitätsklinik für Kinder-und Jugendheilkunde, Vienna, Austria
| | - Carla Fladrowski
- Associazione Sclerosi Tuberosa ONLUS, Milan, Italy.,European Tuberous Sclerosis Complex Association, In den Birken, Dattein, Germany
| | | | - Sergiusz Jozwiak
- Department of Child Neurology, Warsaw Medical University, Warsaw, Poland
| | | | - John A Lawson
- The Tuberous Sclerosis Multidisciplinary Management Clinic, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Alfons Macaya
- Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Ruben Marques
- Novartis Farma S.p.A, Origgio, Italy.,Institute of Biomedicine, University of Leon, Leon, Spain
| | - Rima Nabbout
- Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
| | | | - Jiong Qin
- Department of Pediatrics, Peking University People's Hospital (PKUPH), Beijing, China
| | | | | | - Seema Shah
- Novartis Healthcare Pvt. Ltd, Hyderabad, India
| | - Yukitoshi Takahashi
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, NHO, 886 Urushiyama, Aoi-ku, Shizuoka, Japan
| | | | | | | | - Anna C Jansen
- UZ Brussel Vrije Universiteit Brussel, Brussels, Belgium
| | | |
Collapse
|
48
|
de Vries PJ, Wilde L, de Vries MC, Moavero R, Pearson DA, Curatolo P. A clinical update on tuberous sclerosis complex-associated neuropsychiatric disorders (TAND). AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 178:309-320. [PMID: 30117265 DOI: 10.1002/ajmg.c.31637] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 12/18/2022]
Abstract
Tuberous sclerosis complex (TSC) is associated with a wide range of behavioral, psychiatric, intellectual, academic, neuropsychological, and psychosocial difficulties, which are often underdiagnosed and undertreated. Here, we present a clinical update on TSC-associated neuropsychiatric disorders, abbreviated as "TAND," to guide screening, diagnosis, and treatment in practice. The review is aimed at clinical geneticists, genetic counselors, pediatricians, and all generalists involved in the assessment and treatment of children, adolescents and adults with TSC, and related disorders. The review starts with a summary of the construct and levels of TAND, before presenting up-to-date information about each level of investigation. The review concludes with a synopsis of current and future TAND research.
Collapse
Affiliation(s)
- Petrus J de Vries
- Division of Child and Adolescent Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Lucy Wilde
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Magdalena C de Vries
- Division of Child and Adolescent Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Romina Moavero
- Child Neurology and Psychiatry Unit, Systems Medicine Department, University of Rome Tor Vergata, Rome, Italy.,Child Neurology Unit, Neuroscience and Neurorehabilitation Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Deborah A Pearson
- Department of Psychiatry & Behavioral Sciences, McGovern Medical School, University of Texas Health Centre, Houston, Texas
| | - Paolo Curatolo
- Child Neurology and Psychiatry Unit, Systems Medicine Department, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
49
|
Leclezio L, Gardner-Lubbe S, de Vries PJ. Is It Feasible to Identify Natural Clusters of TSC-Associated Neuropsychiatric Disorders (TAND)? Pediatr Neurol 2018. [PMID: 29530301 DOI: 10.1016/j.pediatrneurol.2017.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is a genetic disorder with multisystem involvement. The lifetime prevalence of TSC-Associated Neuropsychiatric Disorders (TAND) is in the region of 90% in an apparently unique, individual pattern. This "uniqueness" poses significant challenges for diagnosis, psycho-education, and intervention planning. To date, no studies have explored whether there may be natural clusters of TAND. The purpose of this feasibility study was (1) to investigate the practicability of identifying natural TAND clusters, and (2) to identify appropriate multivariate data analysis techniques for larger-scale studies. METHODS TAND Checklist data were collected from 56 individuals with a clinical diagnosis of TSC (n = 20 from South Africa; n = 36 from Australia). Using R, the open-source statistical platform, mean squared contingency coefficients were calculated to produce a correlation matrix, and various cluster analyses and exploratory factor analysis were examined. RESULTS Ward's method rendered six TAND clusters with good face validity and significant convergence with a six-factor exploratory factor analysis solution. The "bottom-up" data-driven strategies identified a "scholastic" cluster of TAND manifestations, an "autism spectrum disorder-like" cluster, a "dysregulated behavior" cluster, a "neuropsychological" cluster, a "hyperactive/impulsive" cluster, and a "mixed/mood" cluster. CONCLUSIONS These feasibility results suggest that a combination of cluster analysis and exploratory factor analysis methods may be able to identify clinically meaningful natural TAND clusters. Findings require replication and expansion in larger dataset, and could include quantification of cluster or factor scores at an individual level.
Collapse
Affiliation(s)
- Loren Leclezio
- Division of Child and Adolescent Psychiatry, University of Cape Town, South Africa
| | - Sugnet Gardner-Lubbe
- Department of Statistics and Actuarial Science, Stellenbosch University, South Africa
| | - Petrus J de Vries
- Division of Child and Adolescent Psychiatry, University of Cape Town, South Africa.
| |
Collapse
|
50
|
Cortical dysplasia and autistic trait severity in children with Tuberous Sclerosis Complex: a clinical epidemiological study. Eur Child Adolesc Psychiatry 2018; 27:753-765. [PMID: 29063203 PMCID: PMC5973967 DOI: 10.1007/s00787-017-1066-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 10/09/2017] [Indexed: 01/08/2023]
Abstract
Tuberous Sclerosis Complex (TSC) is characterized by a high prevalence of autism spectrum disorders (ASD). Little is known about the relation between cortical dysplasia and ASD severity in TSC. We assessed ASD severity (using the Autism Diagnostic Observation Scale), tuber and radial migration line (RML) count and location, and cognitive functioning in 52 children with TSC and performed regression and mediation analyses. Tuber and RML count were strongly positively related to ASD severity. However, when correcting for cognitive functioning, the majority of associations became insignificant and only total tuber count remained associated to the severity of restricted/repetitive behaviors. Occipital RML count remained associated with overall ASD severity, and social communication/interaction deficit severity specifically. This study shows the important explanatory role of cognitive functioning in the association between cortical dysplasia and ASD severity, and the relevance of separately studying the two ASD subdomains.
Collapse
|