1
|
Du L, Luo Y, Zhang J, Shen Y, Zhang J, Tian R, Shao W, Xu Z. Reduction in precipitation amount, precipitation events, and nitrogen addition change ecosystem carbon fluxes differently in a semi-arid grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172276. [PMID: 38583634 DOI: 10.1016/j.scitotenv.2024.172276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
The increases in extent and frequency of extreme drought events and increased nitrogen (N) deposition due to global change are expected to have profound impacts on carbon cycling in semi-arid grasslands. However, how ecosystem CO2 exchange processes respond to different drought scenarios individually and interactively with N addition remains uncertain. In this study, we experimentally explored the effects of different drought scenarios (early season extreme drought, 50 % reduction in precipitation amount, and 50 % reduction in precipitation events) and N addition on net ecosystem CO2 exchange (NEE), ecosystem respiration (ER), and gross ecosystem productivity (GEP) over three growing seasons (2019-2021) in a semi-arid grassland in northern China. The growing-season ecosystem carbon fluxes in response to drought and N addition were influenced by inter-annual precipitation changes, with 2019 as a normal precipitation year, and 2020 and 2021 as wet years. Early season extreme drought stimulated NEE by reducing ER. 50 % reduction in precipitation amount decreased ER and GEP consistently in three years, but only significantly suppressed NEE in 2019. 50 % reduction in precipitation events stimulated NEE. Nitrogen addition stimulated NEE, ER, and GEP, but only significantly in wet years. The structural equation models showed that changes in carbon fluxes were regulated by soil moisture, soil temperature, microbial biomass nitrogen (MBN), and the key plant functional traits. Decreased community-weighted means of specific leaf area (CWMSLA) was closely related to the reduced ER and GEP under early season extreme drought and 50 % reduction in precipitation amount. While increased community-weighted means of plant height (CWMPH) largely accounted for the stimulated ER and GEP under 50 % reduction in precipitation events. Our study stresses the distinct effects of different drought scenarios and N enrichment on carbon fluxes, and highlights the importance of soil traits and the key plant traits in determining carbon exchange in this water-limited ecosystem.
Collapse
Affiliation(s)
- Lan Du
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yonghong Luo
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jiatao Zhang
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yan Shen
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jinbao Zhang
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Ru Tian
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wenqian Shao
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhuwen Xu
- Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
2
|
Sang J, Zhao Y, Shen Y, Shurpali NJ, Li Y. Optimizing irrigation and nitrogen addition to balance grassland biomass production with greenhouse gas emissions: A mesocosm study. ENVIRONMENTAL RESEARCH 2024; 249:118387. [PMID: 38336162 DOI: 10.1016/j.envres.2024.118387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/10/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Achieving a balance between greenhouse gas mitigation and biomass production in grasslands necessitates optimizing irrigation frequency and nitrogen addition, which significantly influence grassland productivity and soil nitrous oxide emissions, and consequently impact the ecosystem carbon dioxide exchange. This study aimed to elucidate these influences using a controlled mesocosm experiment where bermudagrass (Cynodon dactylon L.) was cultivated under varied irrigation frequencies (daily and every 6 days) with (100 kg ha-1) or without nitrogen addition; measurements of net ecosystem carbon dioxide exchange, ecosystem respiration, soil respiration, and nitrous oxide emissions across two cutting events were performed as well. The findings revealed a critical interaction between water-filled pore space, regulated by irrigation, and nitrogen availability, with the latter exerting a more substantial influence on aboveground biomass growth and ecosystem carbon dioxide exchange than water availability. Moreover, the total dry matter was significantly higher with nitrogen addition compared to without nitrogen addition, irrespective of the irrigation frequency. In contrast, soil nitrous oxide emissions were observed to be significantly higher with increased irrigation frequency and nitrogen addition. The effects of nitrogen addition on soil respiration components appeared to depend on water availability, with autotrophic respiration seeing a significant rise with nitrogen addition under limited irrigation (5.4 ± 0.6 μmol m-2 s-1). Interestingly, the lower irrigation frequency did not result in water stress, suggesting resilience in bermudagrass. These findings highlight the importance of considering interactions between irrigation and nitrogen addition to optimize water and nitrogen input in grasslands for a synergistic balance between grassland biomass production and greenhouse gas emission mitigation.
Collapse
Affiliation(s)
- Jianhui Sang
- The State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Qingyang National Field Scientific Observation and Research Station of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yixuan Zhao
- The State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Qingyang National Field Scientific Observation and Research Station of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yuying Shen
- The State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Qingyang National Field Scientific Observation and Research Station of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Narasinha J Shurpali
- Grasslands and Sustainable Farming, Production Systems Unit, Natural Resources Institute Finland, Halolantie 31A, Kuopio, FI-71750, Finland
| | - Yuan Li
- The State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Qingyang National Field Scientific Observation and Research Station of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
3
|
Xiao S, Wang C, Yu K, Liu G, Wu S, Wang J, Niu S, Zou J, Liu S. Enhanced CO 2 uptake is marginally offset by altered fluxes of non-CO 2 greenhouse gases in global forests and grasslands under N deposition. GLOBAL CHANGE BIOLOGY 2023; 29:5829-5849. [PMID: 37485988 DOI: 10.1111/gcb.16869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023]
Abstract
Despite the increasing impact of atmospheric nitrogen (N) deposition on terrestrial greenhouse gas (GHG) budget, through driving both the net atmospheric CO2 exchange and the emission or uptake of non-CO2 GHGs (CH4 and N2 O), few studies have assessed the climatic impact of forests and grasslands under N deposition globally based on different bottom-up approaches. Here, we quantify the effects of N deposition on biomass C increment, soil organic C (SOC), CH4 and N2 O fluxes and, ultimately, the net ecosystem GHG balance of forests and grasslands using a global comprehensive dataset. We showed that N addition significantly increased plant C uptake (net primary production) in forests and grasslands, to a larger extent for the aboveground C (aboveground net primary production), whereas it only caused a small or insignificant enhancement of SOC pool in both upland systems. Nitrogen addition had no significant effect on soil heterotrophic respiration (RH ) in both forests and grasslands, while a significant N-induced increase in soil CO2 fluxes (RS , soil respiration) was observed in grasslands. Nitrogen addition significantly stimulated soil N2 O fluxes in forests (76%), to a larger extent in grasslands (87%), but showed a consistent trend to decrease soil uptake of CH4 , suggesting a declined sink capacity of forests and grasslands for atmospheric CH4 under N enrichment. Overall, the net GHG balance estimated by the net ecosystem production-based method (forest, 1.28 Pg CO2 -eq year-1 vs. grassland, 0.58 Pg CO2 -eq year-1 ) was greater than those estimated using the SOC-based method (forest, 0.32 Pg CO2 -eq year-1 vs. grassland, 0.18 Pg CO2 -eq year-1 ) caused by N addition. Our findings revealed that the enhanced soil C sequestration by N addition in global forests and grasslands could be only marginally offset (1.5%-4.8%) by the combined effects of its stimulation of N2 O emissions together with the reduced soil uptake of CH4 .
Collapse
Affiliation(s)
- Shuqi Xiao
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
| | - Chao Wang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
| | - Kai Yu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
| | - Genyuan Liu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
| | - Shuang Wu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jinyang Wang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuli Niu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Jianwen Zou
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Shuwei Liu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, Nanjing, China
- Key Laboratory of Low-carbon and Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Diao H, Yang J, Hao J, Yan X, Dong K, Wang C. Seasonal precipitation regulates magnitude and direction of the effect of nitrogen addition on net ecosystem CO 2 exchange in saline-alkaline grassland of northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162907. [PMID: 36934924 DOI: 10.1016/j.scitotenv.2023.162907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/18/2023] [Accepted: 03/12/2023] [Indexed: 05/06/2023]
Abstract
Increased nitrogen (N) deposition and altered precipitation regimes have profound effects on carbon (C) flux in semi-arid grasslands. However, the interactive effects between N enrichment and precipitation alterations (both increasing and decreasing) on ecosystem CO2 fluxes and ecosystem resource use efficiency (water use efficiency (WUE) and carbon use efficiency (CUE)) remain unclear, particularly in saline-alkaline grasslands. A four-year (2018-2021) field manipulation experiment was conducted to investigate N enrichment and precipitation alterations (decreased and increased by 50 % of ambient precipitation) and their interactions on ecosystem CO2 fluxes (gross- ecosystem productivity (GEP), ecosystem respiration (ER), and net ecosystem CO2 exchange (NEE)), as well as their underlying regulatory mechanisms under severe salinity stress in northern China. Our results showed that N addition and precipitation alteration alone did not significantly affect the GEP, ER and NEE. While the interaction of N addition and increased precipitation over the four years significantly improved the mean GEP and NEE by 24.9 % and 15.9 %, respectively. The interactive effects of N addition and increased precipitation treatment significantly stimulated the mean value of WUE by 39.1 % compared with control, but had no significant effects on CUE over the four years. Based on the four-year experiment, the magnitude and direction of the effects of N addition on the NEE were related to seasonal precipitation. Nitrogen addition increased the NEE under increased precipitation and decreased it during extreme drought. Soil salinization (pH and base cations) could directly or indirectly affect GEP and NEE via plants productivity, plant communities, as well as ecosystem resource use efficiency (WUE and CUE) based on structural equation model. Our results address lacking investigations of ecosystem C flux in saline-alkaline grasslands, and highlight that precipitation regulates the magnitude and direction of N addition on NEE in saline-alkaline grasslands.
Collapse
Affiliation(s)
- Huajie Diao
- Shanxi Key Laboratory of Grassland Ecological Protection and Native Grass Germplasm Innovation, College of Grassland Science, Shanxi Agricultural University, Taigu 030801, China; Youyu Loess Plateau Grassland Ecosystem National Research Station, Shanxi Agricultural University, Taigu 030801, China
| | - Jianqiang Yang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - Jie Hao
- Shanxi Key Laboratory of Grassland Ecological Protection and Native Grass Germplasm Innovation, College of Grassland Science, Shanxi Agricultural University, Taigu 030801, China; Youyu Loess Plateau Grassland Ecosystem National Research Station, Shanxi Agricultural University, Taigu 030801, China
| | - Xuedong Yan
- Shanxi Key Laboratory of Grassland Ecological Protection and Native Grass Germplasm Innovation, College of Grassland Science, Shanxi Agricultural University, Taigu 030801, China; Youyu Loess Plateau Grassland Ecosystem National Research Station, Shanxi Agricultural University, Taigu 030801, China
| | - Kuanhu Dong
- Shanxi Key Laboratory of Grassland Ecological Protection and Native Grass Germplasm Innovation, College of Grassland Science, Shanxi Agricultural University, Taigu 030801, China; Youyu Loess Plateau Grassland Ecosystem National Research Station, Shanxi Agricultural University, Taigu 030801, China.
| | - Changhui Wang
- Shanxi Key Laboratory of Grassland Ecological Protection and Native Grass Germplasm Innovation, College of Grassland Science, Shanxi Agricultural University, Taigu 030801, China; Youyu Loess Plateau Grassland Ecosystem National Research Station, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
5
|
Xu X, Wu B, Bao F, Gao Y, Li X, Cao Y, Lu Q, Gao J, Xin Z, Liu M. Different Responses of Growing Season Ecosystem CO 2 Fluxes to Rain Addition in a Desert Ecosystem. PLANTS (BASEL, SWITZERLAND) 2023; 12:1158. [PMID: 36904018 PMCID: PMC10005604 DOI: 10.3390/plants12051158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Desert ecosystem CO2 exchange may play an important role in global carbon cycling. However, it is still not clear how the CO2 fluxes of shrub-dominated desert ecosystems respond to precipitation changes. We performed a 10-year long-term rain addition experiment in a Nitraria tangutorum desert ecosystem in northwestern China. In the growing seasons of 2016 and 2017, with three rain addition treatments (natural precipitation +0%, +50%, and +100% of annual average precipitation), gross ecosystem photosynthesis (GEP), ecosystem respiration (ER), and net ecosystem CO2 exchange (NEE) were measured. The GEP responded nonlinearly and the ER linearly to rain addition. The NEE presented a nonlinear response along the rain addition gradient, with a saturation threshold by rain addition between +50% and +100%. The growing season mean NEE ranged from -2.25 to -5.38 μmol CO2 m-2 s-1, showing net CO2 uptake effect, with significant enhancement (more negative) under the rain addition treatments. Although natural rainfall fluctuated greatly in the growing seasons of 2016 and 2017, reaching 134.8% and 44.0% of the historical average, the NEE values remained stable. Our findings highlight that growing season CO2 sequestration in desert ecosystems will increase against the background of increasing precipitation levels. The different responses of GEP and ER of desert ecosystems under changing precipitation regimes should be considered in global change models.
Collapse
Affiliation(s)
- Xiaotian Xu
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China
| | - Bo Wu
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Desert Ecosystem and Global Change, State Administration of Forestry and Grassland, Beijing 100091, China
| | - Fang Bao
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Desert Ecosystem and Global Change, State Administration of Forestry and Grassland, Beijing 100091, China
| | - Ying Gao
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Desert Ecosystem and Global Change, State Administration of Forestry and Grassland, Beijing 100091, China
| | - Xinle Li
- The Experimental Center of Desert Forestry of the Chinese Academy of Forestry, Bayannur 015200, China
- Dengkou Desert Ecosystem Research Station of Inner Mongolia, Bayannur 015200, China
| | - Yanli Cao
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Desert Ecosystem and Global Change, State Administration of Forestry and Grassland, Beijing 100091, China
| | - Qi Lu
- Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
- Key Laboratory of Desert Ecosystem and Global Change, State Administration of Forestry and Grassland, Beijing 100091, China
| | - Junliang Gao
- The Experimental Center of Desert Forestry of the Chinese Academy of Forestry, Bayannur 015200, China
- Dengkou Desert Ecosystem Research Station of Inner Mongolia, Bayannur 015200, China
| | - Zhiming Xin
- The Experimental Center of Desert Forestry of the Chinese Academy of Forestry, Bayannur 015200, China
- Dengkou Desert Ecosystem Research Station of Inner Mongolia, Bayannur 015200, China
| | - Minghu Liu
- The Experimental Center of Desert Forestry of the Chinese Academy of Forestry, Bayannur 015200, China
- Dengkou Desert Ecosystem Research Station of Inner Mongolia, Bayannur 015200, China
| |
Collapse
|
6
|
Guo X, Liu H, Ngosong C, Li B, Wang Q, Zhou W, Nie M. Response of plant functional traits to nitrogen enrichment under climate change: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155379. [PMID: 35460775 DOI: 10.1016/j.scitotenv.2022.155379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Soil nitrogen (N) supply is essential in influencing plant functional traits and regulating plant morphological and physiological performances. The effects of N on plants can be altered by complex environmental changes. However, conflicting results have been reported on the co-effects of N and climatic variables on plant performance, which may be attributed to differences in experiment setting and approach, e.g., ecosystem, duration, plant type, and fertilizer form. To elucidate the general response of plant performance to increasing soil N availability under climate change, a global meta-analysis was conducted to synthesize 380 publications studying interactions of N enrichment and four climatic variables (e.g., elevated atmospheric CO2 (eCO2), drought, precipitation, and warming) on performance-related traits (e.g., size, nutrient, and fitness). Results showed that N enrichment increased shoot and root size, nutrient, and fitness of terrestrial plants. The synergistic interactions of N × eCO2 and antagonistic interactions of N × drought were found on plant overall performance (mainly on plant size), indicating that the N effects can be aggregated by eCO2 and mitigated by drought. The co-effects of N and climatic variables on plant overall performance rely on experiment approach, duration, ecosystem type, or plant functional type. Synergistic interactions of N × eCO2 and antagonistic interactions of N × drought, N × precipitation, and N × warming on plant overall performance were found mainly in greenhouse experiments and short-term experiments (duration ≤ one year), but not in the field or longer-term experiments. The results highlighted that N effects on plant performance were not isolated, but can be modified by climate changes. These findings can improve the future modeling predictions of plant performance under complex climate change and provide a fundamental basis for N management strategies to optimize plant performance in production, N nutrient, and reproduction while enabling sustainability of plant production systems.
Collapse
Affiliation(s)
- Xiaohui Guo
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Hao Liu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Christopher Ngosong
- Ecology Group, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany; Department of Agronomic and Applied Molecular Sciences, Faculty of Agriculture and Veterinary Medicine, University of Buea, P.O. Box 63, Buea, South West Region, Cameroon
| | - Bo Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qing Wang
- Shanghai Academy of Environment Sciences, Shanghai 200233, China.
| | - Wenneng Zhou
- School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Ming Nie
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, School of Life Sciences, Fudan University, Shanghai 200433, China.
| |
Collapse
|
7
|
Han L, Ganjurjav H, Hu G, Wu J, Yan Y, Danjiu L, He S, Xie W, Yan J, Gao Q. Nitrogen Addition Affects Ecosystem Carbon Exchange by Regulating Plant Community Assembly and Altering Soil Properties in an Alpine Meadow on the Qinghai-Tibetan Plateau. FRONTIERS IN PLANT SCIENCE 2022; 13:900722. [PMID: 35769289 PMCID: PMC9234307 DOI: 10.3389/fpls.2022.900722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/13/2022] [Indexed: 05/11/2023]
Abstract
Nitrogen (N) deposition can affect the global ecosystem carbon balance. However, how plant community assembly regulates the ecosystem carbon exchange in response to the N deposition remains largely unclear, especially in alpine meadows. In this study, we conducted a manipulative experiment to examine the impacts of N (ammonium nitrate) addition on ecosystem carbon dioxide (CO2) exchange by changing the plant community assembly and soil properties at an alpine meadow site on the Qinghai-Tibetan Plateau from 2014 to 2018. The N-addition treatments were N0, N7, N20, and N40 (0, 7, 20, and 40 kg N ha-1year-1) during the plant growing season. The net ecosystem CO2 exchange (NEE), gross ecosystem productivity (GEP), and ecosystem respiration (ER) were measured by a static chamber method. Our results showed that the growing-season NEE, ER and GEP increased gradually over time with increasing N-addition rates. On average, the NEE increased significantly by 55.6 and 65.2% in N20 and N40, respectively (p < 0.05). Nitrogen addition also increased forage grass biomass (GB, including sedge and Gramineae) by 74.3 and 122.9% and forb biomass (FB) by 73.4 and 51.4% in N20 and N40, respectively (p < 0.05). There were positive correlations between CO2 fluxes (NEE and GEP) and GB (p < 0.01), and the ER was positively correlated with functional group biomass (GB and FB) and soil available N content (NO3 --N and NH4 +-N) (p < 0.01). The N-induced shift in the plant community assembly was primarily responsible for the increase in NEE. The increase in GB mainly contributed to the N stimulation of NEE, and FB and the soil available N content had positive effects on ER in response to N addition. Our results highlight that the plant community assembly is critical in regulating the ecosystem carbon exchange response to the N deposition in alpine ecosystems.
Collapse
Affiliation(s)
- Ling Han
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hasbagan Ganjurjav
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- National Agricultural Experimental Station for Agricultural Environment, Nagqu, China
| | - Guozheng Hu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- National Agricultural Experimental Station for Agricultural Environment, Nagqu, China
| | - Jianshuang Wu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yulong Yan
- China New Era Group Corporation, Beijing, China
| | | | | | | | - Jun Yan
- Nagqu Grassland Station, Nagqu, China
| | - Qingzhu Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- National Agricultural Experimental Station for Agricultural Environment, Nagqu, China
| |
Collapse
|
8
|
Yu B, Rossi S, Liang H, Guo X, Ma Q, Zhang S, Kang J, Zhao P, Zhang W, Ju Y, Huang JG. Effects of nitrogen addition and increased precipitation on xylem growth of Quercus acutissima Caruth. in central China. TREE PHYSIOLOGY 2022; 42:754-770. [PMID: 35029689 DOI: 10.1093/treephys/tpab152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/11/2021] [Indexed: 06/14/2023]
Abstract
Atmospheric nitrogen (N) deposition and increasing precipitation affect carbon sequestration in terrestrial ecosystems, but how these two concurrent global change variables affect xylem growth in trees (i.e., independently or interactively) remains unclear. We conducted novel experiments in central China to monitor the xylem growth in a dominant species (Quercus acutissima Caruth.) in response to N addition (CN), supplemental precipitation (CW) or both treatments (CNW), compared with untreated controls (C). Measurements were made at weekly intervals during 2014-15. We found that supplemental precipitation significantly enhanced xylem growth in the dry spring of 2015, indicating a time-varying effect of increased precipitation on intra-annual xylem growth. Elevated N had no significant effect on xylem increment, xylem growth rate, and lumen diameters and potential hydraulic conductivity (Ks) of earlywood vessels, but Ks with elevated N was significantly negatively related to xylem increment. The combination of additional N and supplemental precipitation suppressed the positive effect of supplemental precipitation on xylem increment in the dry spring of 2015. These findings indicated that xylem width was more responsive to supplemental precipitation than to increasing N in a dry early growing season; the positive effect of supplemental precipitation on xylem growth could be offset by elevated N resources. The negative interactive effect of N addition and supplemental precipitation also suggested that increasing N deposition and precipitation in the future might potentially affect carbon sequestration of Q. acutissima during the early growing season in central China. The effects of N addition and supplemental precipitation on tree growth are complex and might vary depending on the growth period and local climatic conditions. Therefore, future models of tree growth need to consider multiple-time scales and local climatic conditions when simulating and projecting global change.
Collapse
Affiliation(s)
- Biyun Yu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sergio Rossi
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada
| | - Hanxue Liang
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Xiali Guo
- College of Forestry, Guangxi University, Nanning 530004, China
| | - Qianqian Ma
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shaokang Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jian Kang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Zhao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yuxi Ju
- Jigongshan National Natural Reserve, Xinyang 464000, China
| | - Jian-Guo Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Meng B, Li J, Maurer GE, Zhong S, Yao Y, Yang X, Collins SL, Sun W. Nitrogen addition amplifies the nonlinear drought response of grassland productivity to extended growing-season droughts. Ecology 2021; 102:e03483. [PMID: 34287849 DOI: 10.1002/ecy.3483] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/08/2021] [Accepted: 04/06/2021] [Indexed: 11/09/2022]
Abstract
Understanding the response of grassland production and carbon exchange to intra-annual variation in precipitation and nitrogen addition is critical for sustainable grassland management and ecosystem restoration. We introduced growing-season drought treatments of different lengths (15, 30, 45 and 60 d drought) by delaying growing-season precipitation in a long-term nitrogen addition experiment in a low diversity meadow steppe in northeast China. Response variables included aboveground biomass (AGB), ecosystem net carbon exchange (NEE), and leaf net carbon assimilation rate (A). In unfertilized plots drought decreased AGB by 13.7% after a 45-d drought and 31.7% after a 60-d drought (47.6% in fertilized plots). Progressive increases in the drought response of NEE were also observed. The effects of N addition on the drought response of productivity increased as drought duration increased, and these responses were a function of changes in AGB and biomass allocation, particularly root to shoot ratio. However, no significant effects of drought occurred in fertilized or unfertilized plots in the growing season a year after the experiment, N addition did limit the recovery of AGB from severe drought during the remainder of the current growing season. Our results imply that chronic N enrichment could exacerbate the effects of growing-season drought on grassland productivity caused by altered precipitation seasonality under climate change, but that these effects do not carry over to the next growing season.
Collapse
Affiliation(s)
- Bo Meng
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China.,Department of Biology, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Junqin Li
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - Gregory E Maurer
- Jornada Basin LTER Program, New Mexico State University, Las Cruces, New Mexico, 88003, USA
| | - Shangzhi Zhong
- College of Grassland Science, Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao, 255109, China
| | - Yuan Yao
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - Xuechen Yang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China.,Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081, China
| | - Scott L Collins
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, 87131, USA
| | - Wei Sun
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
10
|
Wu Q, Ren H, Bisseling T, Chang SX, Wang Z, Li Y, Pan Z, Liu Y, Cahill JF, Cheng X, Zhao M, Wang Z, Li Z, Han G. Long-Term Warming and Nitrogen Addition Have Contrasting Effects on Ecosystem Carbon Exchange in a Desert Steppe. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7256-7265. [PMID: 34013726 DOI: 10.1021/acs.est.0c06526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Desert steppe, a unique ecotone between steppe and desert in Eurasia, is considered highly vulnerable to global change. However, the long-term impact of warming and nitrogen deposition on plant biomass production and ecosystem carbon exchange in a desert steppe remains unknown. A 12-year field experiment was conducted in a Stipa breviflora desert steppe in northern China. A split-design was used, with warming simulated by infrared radiators as the primary factor and N addition as the secondary factor. Our long-term experiment shows that warming did not change net ecosystem exchange (NEE) or total aboveground biomass (TAB) due to contrasting effects on C4 (23.4% increase) and C3 (11.4% decrease) plant biomass. However, nitrogen addition increased TAB by 9.3% and NEE by 26.0% by increasing soil available N content. Thus, the studied desert steppe did not switch from a carbon sink to a carbon source in response to global change and positively responded to nitrogen deposition. Our study indicates that the desert steppe may be resilient to long-term warming by regulating plant species with contrasting photosynthetic types and that nitrogen deposition could increase plant growth and carbon sequestration, providing negative feedback on climate change.
Collapse
Affiliation(s)
- Qian Wu
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Haiyan Ren
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Ton Bisseling
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Scott X Chang
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhen Wang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Yuanheng Li
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - Zhanlei Pan
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Yinghao Liu
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot 010010, China
| | - James F Cahill
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Xu Cheng
- Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Mengli Zhao
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Zhongwu Wang
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Zhiguo Li
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Guodong Han
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China
| |
Collapse
|
11
|
Li X, Zhang C, Zhang B, Wu D, Zhu D, Zhang W, Ye Q, Yan J, Fu J, Fang C, Ha D, Fu S. Nitrogen deposition and increased precipitation interact to affect fine root production and biomass in a temperate forest: Implications for carbon cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:144497. [PMID: 33418324 DOI: 10.1016/j.scitotenv.2020.144497] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Fine roots connect belowground and aboveground systems and help regulate the carbon balance of terrestrial ecosystems by providing nutrients and water for plants. To evaluate the effects of atmospheric nitrogen (N) deposition and increased precipitation on fine root production and standing biomass in a temperate deciduous forest in central China, we conducted a 6-year experiment. From 2013 to 2018, we applied N (25 kg N ha-1 yr-1) and water (336 mm, 30% of the ambient annual precipitation) above the forest canopy, and we quantified fine root production and biomass in 2017 and 2018. At 0-10 cm soil depth, the statistical interaction between addition of N and water was not significant in terms of fine root production or biomass. At 0-10 cm soil depth, N addition significantly increased fine root production by 18.1%, but did not affect fine root biomass. Water addition significantly increased fine root production and biomass by 13.6 and 17.0%, respectively. Both N and water addition had significant direct positive effects on fine root production, and water addition had indirect positive effects on fine root biomass through decreasing soil NO3- concentration. At 10-30 cm soil depth, the statistical interaction between N addition and water addition was significant in terms of both fine root production and biomass, i.e., the positive effect of N addition was reduced by water addition, and vice versa. These findings indicate that fine roots and therefore belowground carbon storage may have complex responses to increases in atmospheric N deposition and changes in precipitation predicted for the future. The findings also suggest that results obtained from experiments that consider only one independent variable (e.g., N input or water input) and only one soil depth should be interpreted with caution.
Collapse
Affiliation(s)
- Xiaowei Li
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, College of Environment and Planning, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Integrated Air Pollution Control and Ecological Security, Henan University, Kaifeng 475004, China
| | - Chenlu Zhang
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, College of Environment and Planning, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Integrated Air Pollution Control and Ecological Security, Henan University, Kaifeng 475004, China.
| | - Beibei Zhang
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, College of Environment and Planning, Henan University, Kaifeng 475004, China
| | - Di Wu
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, College of Environment and Planning, Henan University, Kaifeng 475004, China
| | - Dandan Zhu
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, College of Environment and Planning, Henan University, Kaifeng 475004, China
| | - Wei Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Qing Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Junhua Yan
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Juemin Fu
- Jigongshan National Nature Reserve, Xinyang 464039, China
| | | | - Denglong Ha
- Jigongshan National Nature Reserve, Xinyang 464039, China
| | - Shenglei Fu
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, College of Environment and Planning, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Integrated Air Pollution Control and Ecological Security, Henan University, Kaifeng 475004, China
| |
Collapse
|
12
|
Jia M, Gao Z, Gu H, Zhao C, Liu M, Liu F, Xie L, Wang L, Zhang G, Liu Y, Han G. Effects of precipitation change and nitrogen addition on the composition, diversity, and molecular ecological network of soil bacterial communities in a desert steppe. PLoS One 2021; 16:e0248194. [PMID: 33730102 PMCID: PMC7968660 DOI: 10.1371/journal.pone.0248194] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/19/2021] [Indexed: 11/19/2022] Open
Abstract
Currently, the impact of changes in precipitation and increased nitrogen(N) deposition on ecosystems has become a global problem. In this study, we conducted a 8-year field experiment to evaluate the effects of interaction between N deposition and precipitation change on soil bacterial communities in a desert steppe using high-throughput sequencing technology. The results revealed that soil bacterial communities were sensitive to precipitation addition but were highly tolerant to precipitation reduction. Reduced precipitation enhanced the competitive interactions of soil bacteria and made the ecological network more stable. Nitrogen addition weakened the effect of water addition in terms of soil bacterial diversity and community stability, and did not have an interactive influence. Moreover, decreased precipitation and increased N deposition did not have a superimposed effect on soil bacterial communities in the desert steppe. Soil pH, moisture content, and NH4+-N and total carbon were significantly related to the structure of bacterial communities in the desert steppe. Based on network analysis and relative abundance, we identified Actinobacteria, Proteobacteria, Acidobacteria and Cyanobacteria members as the most important keystone bacteria that responded to precipitation changes and N deposition in the soil of the desert steppe. In summary, we comprehensively analyzed the responses of the soil bacterial community to precipitation changes and N deposition in a desert steppe, which provides a model for studying the effects of ecological factors on bacterial communities worldwide.
Collapse
Affiliation(s)
- Meiqing Jia
- Key Laboratory of Water Resource and Environment, Tianjin Normal University, Tianjin, China
| | - Zhiwei Gao
- College of Life Sciences, Tianjin Normal University, Tianjin, China
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Huijun Gu
- College of Life Sciences, Tianjin Normal University, Tianjin, China
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Chenyu Zhao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Meiqi Liu
- College of Life Sciences, Tianjin Normal University, Tianjin, China
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Fanhui Liu
- College of Life Sciences, Tianjin Normal University, Tianjin, China
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Lina Xie
- College of Life Sciences, Tianjin Normal University, Tianjin, China
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
- * E-mail: (LX); (LW); (GZ)
| | - Lichun Wang
- Institute of Agricultural Environment and Resource, Jilin Academy of Agricultural Sciences, Changchun, China
- * E-mail: (LX); (LW); (GZ)
| | - Guogang Zhang
- College of Life Sciences, Tianjin Normal University, Tianjin, China
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
- * E-mail: (LX); (LW); (GZ)
| | - Yuhua Liu
- Tianjin Agricultural Ecological Environment Monitoring and Agricultural Product Quality Testing Center, Tianjin, China
| | - Guodong Han
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
13
|
Yan C, Yuan Z, Liu Z, Zhang J, Liu K, Shi X, Lock TR, Kallenbach RL. Aridity stimulates responses of root production and turnover to warming but suppresses the responses to nitrogen addition in temperate grasslands of northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142018. [PMID: 33207484 DOI: 10.1016/j.scitotenv.2020.142018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Global warming and nitrogen (N) deposition are known to affect root dynamics in grasslands. However, previous studies were based only on a single ecosystem type, so it is unclear how warming and N addition affect root traits (root biomass, root-shoot ratio, root production and turnover) along the aridity gradient. In this study, we conducted an experiment to determine the effects of warming and N addition on root traits in desert, typical, and meadow grasslands in northern China, where the aridity gradually decreases from west to east across the region. Warming increased root-shoot ratio in dry year due to decline in soil water, but had a downward trend in root production and turnover in all three grasslands. N addition decreased root-shoot ratio in humid year due to increase in soil N, whereas did not significantly affect root production in any grasslands and increased root turnover in desert and meadow grasslands rather than typical grassland. Warming combined with N addition had negatively additive effects on root turnover in typical and meadow grasslands rather than desert grassland. N addition-induced changes in root biomass and root-shoot ratio were negatively affected by aridity in dry year. Aridity positively affected responses of root production and turnover to warming but negatively affected those responses to N addition. However, root-shoot ratio, root production and turnover under warming combined with N addition were not affected by aridity. Our results suggest that warming suppresses root carbon (C) input but N addition may exacerbate it in temperate grasslands, and warming combined with N addition suppresses it only in wet grasslands. Aridity promotes root C input under warming but suppresses it under N addition. However, aridity may little affect soil C and nutrient dynamics under global warming combined with N deposition in temperate grasslands in the future.
Collapse
Affiliation(s)
- Chuang Yan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiyou Yuan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zunchi Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingjing Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kai Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinrong Shi
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - T Ryan Lock
- Division of Plant Sciences, College of Agriculture, Food, and Natural Resources, University of Missouri, 108 Waters Hall, Columbia, MO 65211, USA
| | - Robert L Kallenbach
- Division of Plant Sciences, College of Agriculture, Food, and Natural Resources, University of Missouri, 108 Waters Hall, Columbia, MO 65211, USA
| |
Collapse
|
14
|
Wang B, Wu Y, Chen D, Hu S, Bai Y. Legacy effect of grazing intensity mediates the bottom‐up controls of resource addition on soil food webs. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13825] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Bing Wang
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
- Engineering Research Center of Eco‐Environment in Three Gorges Reservoir Region of Ministry of Education China Three Gorges University Yichang China
| | - Ying Wu
- Engineering Research Center of Eco‐Environment in Three Gorges Reservoir Region of Ministry of Education China Three Gorges University Yichang China
- Hubei International Scientific and Technological Center of Ecological Conservation and Management in the Three Gorges Area China Three Gorges University Yichang China
- Yunnan Key Laboratory of Plant Reproductive Adaption and Evolutionary Ecology Yunnan University Kunming China
| | - Dima Chen
- Engineering Research Center of Eco‐Environment in Three Gorges Reservoir Region of Ministry of Education China Three Gorges University Yichang China
- Hubei International Scientific and Technological Center of Ecological Conservation and Management in the Three Gorges Area China Three Gorges University Yichang China
| | - Shuijin Hu
- Department of Entomology & Plant Pathology North Carolina State University Raleigh NC USA
| | - Yongfei Bai
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
15
|
Su F, Wang F, Li Z, Wei Y, Li S, Bai T, Wang Y, Guo H, Hu S. Predominant role of soil moisture in regulating the response of ecosystem carbon fluxes to global change factors in a semi-arid grassland on the Loess Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139746. [PMID: 32531591 DOI: 10.1016/j.scitotenv.2020.139746] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Climate warming, altered precipitation and nitrogen deposition may critically affect plant growth and ecosystem carbon fluxes. However, the underlying mechanisms are not fully understood. We conducted a 2-yr, multi-factor experiment (warming (W), altered precipitation (+30% and - 30%) and nitrogen addition (N)) in a semi-arid grassland on the Loess Plateau to study how these factors affect ecosystem carbon fluxes. Surprisingly, no interactive effects of warming, altered precipitation and nitrogen addition were detected on parameters of ecosystem carbon fluxes, including net ecosystem CO2 exchange (NEE), ecosystem respiration (ER), gross ecosystem productivity (GEP) and soil respiration (SR). Warming marginally reduced NEE and GEP mainly due to its negative effects on them in July and August. Altered precipitation significantly affected all parameters of carbon fluxes with precipitation reduction decreasing NEE, ER and GEP, whereas precipitation addition increasing SR. In contrast, nitrogen addition had little effect on any parameters of carbon fluxes. Soil moisture was the most important driver and positively correlated with ecosystem carbon fluxes and warming impacted ecosystem carbon fluxes indirectly by decreasing soil moisture. While plant community cover did not show significant association with carbon fluxes, semi-shrubs cover was positively related to NEE, ER and GEP. Together, these results suggest that soil water availability, rather than soil temperature and nitrogen availability, may dominate the effect of the future multi-faceted global changes on semi-arid grassland carbon fluxes on the Loess Plateau.
Collapse
Affiliation(s)
- Fanglong Su
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Fuwei Wang
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhen Li
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yanan Wei
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Shijie Li
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Tongshuo Bai
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yi Wang
- State Key Laboratory of Loess and Quaternary, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, People's Republic of China
| | - Hui Guo
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| | - Shuijin Hu
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
16
|
Luo Y, El-Madany T, Ma X, Nair R, Jung M, Weber U, Filippa G, Bucher SF, Moreno G, Cremonese E, Carrara A, Gonzalez-Cascon R, Cáceres Escudero Y, Galvagno M, Pacheco-Labrador J, Martín MP, Perez-Priego O, Reichstein M, Richardson AD, Menzel A, Römermann C, Migliavacca M. Nutrients and water availability constrain the seasonality of vegetation activity in a Mediterranean ecosystem. GLOBAL CHANGE BIOLOGY 2020; 26:4379-4400. [PMID: 32348631 DOI: 10.1111/gcb.15138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Anthropogenic nitrogen (N) deposition and resulting differences in ecosystem N and phosphorus (P) ratios are expected to impact photosynthetic capacity, that is, maximum gross primary productivity (GPPmax ). However, the interplay between N and P availability with other critical resources on seasonal dynamics of ecosystem productivity remains largely unknown. In a Mediterranean tree-grass ecosystem, we established three landscape-level (24 ha) nutrient addition treatments: N addition (NT), N and P addition (NPT), and a control site (CT). We analyzed the response of ecosystem to altered nutrient stoichiometry using eddy covariance fluxes measurements, satellite observations, and digital repeat photography. A set of metrics, including phenological transition dates (PTDs; timing of green-up and dry-down), slopes during green-up and dry-down period, and seasonal amplitude, were extracted from time series of GPPmax and used to represent the seasonality of vegetation activity. The seasonal amplitude of GPPmax was higher for NT and NPT than CT, which was attributed to changes in structure and physiology induced by fertilization. PTDs were mainly driven by rainfall and exhibited no significant differences among treatments during the green-up period. Yet, both fertilized sites senesced earlier during the dry-down period (17-19 days), which was more pronounced in the NT due to larger evapotranspiration and water usage. Fertilization also resulted in a faster increase in GPPmax during the green-up period and a sharper decline in GPPmax during the dry-down period, with less prominent decline response in NPT. Overall, we demonstrated seasonality of vegetation activity was altered after fertilization and the importance of nutrient-water interaction in such water-limited ecosystems. With the projected warming-drying trend, the positive effects of N fertilization induced by N deposition on GPPmax may be counteracted by an earlier and faster dry-down in particular in areas where the N:P ratio increases, with potential impact on the carbon cycle of water-limited ecosystems.
Collapse
Affiliation(s)
- Yunpeng Luo
- Department for Biogeochemical Integration, Max-Planck-Institute for Biogeochemistry, Jena, Germany
| | - Tarek El-Madany
- Department for Biogeochemical Integration, Max-Planck-Institute for Biogeochemistry, Jena, Germany
| | - Xuanlong Ma
- Department for Biogeochemical Integration, Max-Planck-Institute for Biogeochemistry, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Richard Nair
- Department for Biogeochemical Integration, Max-Planck-Institute for Biogeochemistry, Jena, Germany
| | - Martin Jung
- Department for Biogeochemical Integration, Max-Planck-Institute for Biogeochemistry, Jena, Germany
| | - Ulrich Weber
- Department for Biogeochemical Integration, Max-Planck-Institute for Biogeochemistry, Jena, Germany
| | - Gianluca Filippa
- Environmental Protection Agency of Aosta Valley, ARPA Valle d'Aosta, Aosta, Italy
| | - Solveig F Bucher
- Plant Biodiversity Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, Germany
- Michael-Stifel-Center Jena for Data-Driven and Simulation Science, Jena, Germany
| | - Gerardo Moreno
- Institute for Dehesa Research, University of Extremadura, Plasencia, Spain
| | - Edoardo Cremonese
- Environmental Protection Agency of Aosta Valley, ARPA Valle d'Aosta, Aosta, Italy
| | - Arnaud Carrara
- Fundación Centro de Estudios Ambientales del Mediterráneo (CEAM), Paterna, Spain
| | - Rosario Gonzalez-Cascon
- Department of Environment, National Institute for Agriculture and Food Research and Technology (INIA), Madrid, Spain
| | | | - Marta Galvagno
- Environmental Protection Agency of Aosta Valley, ARPA Valle d'Aosta, Aosta, Italy
| | - Javier Pacheco-Labrador
- Department for Biogeochemical Integration, Max-Planck-Institute for Biogeochemistry, Jena, Germany
| | - M Pilar Martín
- Environmental Remote Sensing and Spectroscopy Laboratory (SpecLab), Institute of Economic, Geography and Demography (IEGD-CCHS), Spanish National Research Council (CSIC), Madrid, Spain
| | - Oscar Perez-Priego
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Markus Reichstein
- Department for Biogeochemical Integration, Max-Planck-Institute for Biogeochemistry, Jena, Germany
- Michael-Stifel-Center Jena for Data-Driven and Simulation Science, Jena, Germany
| | - Andrew D Richardson
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Annette Menzel
- Department of Ecology and Ecosystem Management, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Christine Römermann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Plant Biodiversity Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, Germany
- Michael-Stifel-Center Jena for Data-Driven and Simulation Science, Jena, Germany
| | - Mirco Migliavacca
- Department for Biogeochemical Integration, Max-Planck-Institute for Biogeochemistry, Jena, Germany
| |
Collapse
|
17
|
Bai Y, She W, Zhang Y, Qiao Y, Fu J, Qin S. N enrichment, increased precipitation, and the effect of shrubs collectively shape the plant community in a desert ecosystem in northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:135379. [PMID: 31839302 DOI: 10.1016/j.scitotenv.2019.135379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/02/2019] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Abstract
Understanding the responses of biological communities to global climate change is pivotal to accurately forecasting future dynamics and developing effective strategies for the adaptive ecological management of desert ecosystems. Although direct demographic responses of plant species to climatic factors have been widely acknowledged, they are also regulated by interspecific interactions (i.e., the effects of shrubs on herbaceous plants). The magnitude and direction of regulation of such interspecific interactions remain unclear. To address this knowledge gap, a full factorial field experiment simulating three levels of N enrichment (ambient, 10 kg N ha-1 yr-1, and 60 kg N ha-1 yr-1) and three levels of precipitation (ambient, 20% increase, and 40% increase) were conducted in the Mu Us Desert, northern China. N enrichment and increased precipitation significantly increased herbaceous productivity by improving the soil water content and nutrient availability (e.g., soil DIN:SAP) when shrubs were not present. Taller species responded to N enrichment, whereas those with a greater specific leaf area responded to increased precipitation. When shrubs were present, they acted as a 'buffer islands' that moderated the responses of herbaceous species to N enrichment and increased precipitation by weakening the effect of the improved soil water status. The magnitude of the effect of shrubs on herbaceous biomass and richness was comparable to that of N enrichment and increased precipitation. Our results highlight the importance and complexity of both large-scale environmental changes and small-scale interspecific interactions in structuring plant communities in desert ecosystems. Moreover, abiotic environmental factors and biotic interactions should be integrated in efforts to predict the responses of plant communities to future global change in desert ecosystems.
Collapse
Affiliation(s)
- Yuxuan Bai
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Weiwei She
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yuqing Zhang
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing, China.
| | - Yangui Qiao
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Jie Fu
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Shugao Qin
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Engineering Research Centre of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing, China
| |
Collapse
|
18
|
Luo Y, Zuo X, Li Y, Zhang T, Zhang R, Chen J, Lv P, Zhao X. Community carbon and water exchange responses to warming and precipitation enhancement in sandy grassland along a restoration gradient. Ecol Evol 2019; 9:10938-10949. [PMID: 31641447 PMCID: PMC6802028 DOI: 10.1002/ece3.5490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/23/2019] [Accepted: 07/04/2019] [Indexed: 11/05/2022] Open
Abstract
Temperature increasing and precipitation alteration are predicted to occur in arid and semiarid lands; however, the response mechanism of carbon and water exchange at community level is still unclear in semiarid sandy land. We investigated the responses of carbon and water exchanges to warming and precipitation enhancement along a sand dune restoration gradient: mobile sand dunes (MD), semifixed sand dunes (SFD), and fixed sand dunes (FD). The average net ecosystem productivity (NEP) and evapotranspiration (ET) between May and August increased by 98% and 59%, respectively, from MD to SFD, while they had no significant differences between FD and the other two habitats. Warming inhibited ecosystem NEP, ET, and water use efficiency (WUE) by 69%, 49% (p < .001), and 80%, respectively, in SFD, while it nearly had no significant effects in MD and FD. However, precipitation addition by 30% nearly had no significant effects on community NEP, ET, and WUE, except for warming treatment in FD. In general, precipitation addition of 30% may still not be enough to prevent drought stress for growth of plants, due to with low water holding capacity and high evaporation rates in sandy land. Temperature increase magnified drought stress as it increased evapotranspiration rates especially in summer. In addition, community NEP, ET, and WUE were usually influenced by interactions between habitats and temperature, as well as the interactions among habitats, temperature, and precipitation. Species differences in each habitat along the restoration gradient may alter climate sensitivity of sandy land. These results will support in understanding and the prediction of the impacts of warming and precipitation change in semiarid sandy grassland.
Collapse
Affiliation(s)
- Yayong Luo
- Naiman Desertification Research StationNorthwest Institute of Eco‐Environment and ResourcesChinese Academy of SciencesLanzhouChina
- Laboratory of Stress Ecophysiology and BiotechnologyNorthwest Institute of Eco‐Environment and ResourcesChinese Academy of SciencesLanzhouChina
| | - Xiaoan Zuo
- Naiman Desertification Research StationNorthwest Institute of Eco‐Environment and ResourcesChinese Academy of SciencesLanzhouChina
- Urad Desert Steppe Research StationNorthwest Institute of Eco‐Environment and ResourcesChinese Academy of SciencesLanzhouChina
| | - Yulin Li
- Naiman Desertification Research StationNorthwest Institute of Eco‐Environment and ResourcesChinese Academy of SciencesLanzhouChina
| | - Tonghui Zhang
- Naiman Desertification Research StationNorthwest Institute of Eco‐Environment and ResourcesChinese Academy of SciencesLanzhouChina
| | - Rui Zhang
- Naiman Desertification Research StationNorthwest Institute of Eco‐Environment and ResourcesChinese Academy of SciencesLanzhouChina
| | - Juanli Chen
- Naiman Desertification Research StationNorthwest Institute of Eco‐Environment and ResourcesChinese Academy of SciencesLanzhouChina
| | - Peng Lv
- Naiman Desertification Research StationNorthwest Institute of Eco‐Environment and ResourcesChinese Academy of SciencesLanzhouChina
| | - Xueyong Zhao
- Naiman Desertification Research StationNorthwest Institute of Eco‐Environment and ResourcesChinese Academy of SciencesLanzhouChina
- Urad Desert Steppe Research StationNorthwest Institute of Eco‐Environment and ResourcesChinese Academy of SciencesLanzhouChina
| |
Collapse
|
19
|
Stability of Ecosystem CO2 Flux in Response to Changes in Precipitation in a Semiarid Grassland. SUSTAINABILITY 2019. [DOI: 10.3390/su11092597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Carbon dioxide (CO2) flux provides feedback between C cycling and the climatic system. There is considerable uncertainty regarding the direction and magnitude of the responses of this process to precipitation changes, hindering accurate prediction of C cycling in a changing world. We examined the responses of ecosystem CO2 flux to ambient precipitation and experimentally decreased (−35%) and increased precipitation (+20%) in a semiarid grassland in China between July 2013 and September 2015. The measured CO2 flux components included the gross ecosystem productivity (GEP), net ecosystem CO2 exchange (NEE), ecosystem respiration (Re), and soil respiration (Rs). The results showed that the seasonal and diurnal patterns of most components of ecosystem CO2 flux were minimally affected by precipitation treatments, with less than 4% changes averaged across the three growing seasons. GEP and NEE had a quadratic relationship, while Re and Rs increased exponentially with soil temperature. GEP, RE, and Rs, however, decreased with soil moisture. Decreased precipitation reduced the dependence of CO2 flux on soil temperature but partly increased the dependence on soil moisture; in contrast, increased precipitation had the opposite influence. Our results suggested a relatively stable CO2 flux in this semiarid grassland across the tested precipitation regimes.
Collapse
|
20
|
Nogueira C, Werner C, Rodrigues A, Caldeira MC. A prolonged dry season and nitrogen deposition interactively affect CO 2 fluxes in an annual Mediterranean grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:978-986. [PMID: 30453267 DOI: 10.1016/j.scitotenv.2018.11.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 05/13/2023]
Abstract
Mediterranean annual grasslands are species-diverse ecosystems of high economic and ecological value. CO2 and water fluxes in these grasslands are triggered by the first rains in autumn, after a long hot and dry summer. Climate change scenarios project altered rainfall patterns, such as prolonged dry season into the autumn, while simultaneously nitrogen (N) deposition is increasing globally. However, how these global change drivers will interact to affect Mediterranean grassland CO2, water fluxes and productivity is still unclear. In a greenhouse experiment, we subjected the seedbank of an annual Mediterranean grassland to a factorial treatment, by prolonging the dry season by 0 days (i.e. no autumn drought), 50 days and 100 days and crossing these drought treatments with two levels of N deposition: no N and N addition. A delayed onset of the rain season, i.e., a prolonged dry season, induced lower CO2 and water fluxes throughout the growing season and a lower aboveground biomass by the end of the study period. However, N addition attenuated the effects on NEE, Reco and GPP, but did not affect aboveground biomass or functional group composition. A prolonged dry season also lowered the productivity of forbs, the dominant functional group in our grassland. Our results anticipate important effects of interacting global change drivers on Mediterranean grassland functioning.
Collapse
Affiliation(s)
- Carla Nogueira
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal.
| | | | - Ana Rodrigues
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Maria C Caldeira
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
21
|
Chen H, Ma L, Xin X, Liu J, Wang R. Plant community responses to increased precipitation and belowground litter addition: Evidence from a 5-year semiarid grassland experiment. Ecol Evol 2018; 8:4587-4597. [PMID: 29760899 PMCID: PMC5938451 DOI: 10.1002/ece3.4012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/29/2018] [Accepted: 02/25/2018] [Indexed: 11/12/2022] Open
Abstract
Global climate change is predicted to stimulate primary production and consequently increases litter inputs. Changing precipitation regimes together with enhanced litter inputs may affect plant community composition and structure, with consequent influence on diversity and ecosystem functioning. Responses of plant community to increased precipitation and belowground litter addition were examined lasting 5 years in a semiarid temperate grassland of northeastern China. Increased precipitation enhanced community species richness and abundance of annuals by 16.8% and 44%, but litter addition suppressed them by 25% and 54.5% after 5 years, respectively. During the study period, perennial rhizome grasses and forbs had consistent negative relationship under ambient plots, whereas positive relationship between the two functional groups was found under litter addition plots after 5 years. In addition, increased precipitation and litter addition showed significant interaction on community composition, because litter addition significantly increased biomass and abundance of rhizome grasses under increased precipitation plots but had no effect under ambient precipitation levels. Our findings emphasize the importance of water availability in modulating the responses of plants community to potentially enhanced litter inputs in the semiarid temperate grassland.
Collapse
Affiliation(s)
- Hongxia Chen
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany The Chinese Academy of Sciences Beijing China.,University of Chinese Academy of Sciences Beijing China
| | - Linna Ma
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany The Chinese Academy of Sciences Beijing China.,University of Chinese Academy of Sciences Beijing China
| | - Xiaoping Xin
- Institute of Agricultural Resources and Regional Planning Chinese Academy of Agriculture Sciences Beijing China
| | - Junyao Liu
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany The Chinese Academy of Sciences Beijing China.,University of Chinese Academy of Sciences Beijing China
| | - Renzhong Wang
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany The Chinese Academy of Sciences Beijing China.,University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
22
|
Liu W, Lü X, Xu W, Shi H, Hou L, Li L, Yuan W. Effects of water and nitrogen addition on ecosystem respiration across three types of steppe: The role of plant and microbial biomass. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:103-111. [PMID: 29145047 DOI: 10.1016/j.scitotenv.2017.11.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
Evaluating the regional variation of ecosystem respiration (Reco) in its response to the changes of soil water and nitrogen (N) availability is crucial for fully understanding ecosystem carbon (C) exchange and its feedbacks to global changes. Here, we examined the responses of Reco, plant community aboveground biomass (AB), microbial biomass carbon (MBC) and soil moisture (SM) to water and N addition, using intact soil monoliths from three different temperate steppes along a precipitation gradient, including meadow steppe, typical steppe, and desert steppe in northern China. We found that the meadow steppe held the highest value of Reco. Water addition significantly enhanced Reco while N addition had no effect on Reco in all three ecosystems. The response of Reco in the typical steppe was more sensitive than the other two ecosystems. The changes of plant community AB exhibited a much stronger explanatory power than that of MBC for Reco in the typical steppe. In contrast, MBC was the dominant factor explaining the variation of Reco in the desert steppe and the meadow steppe. These findings contribute to our understanding of regional patterns of ecosystem C exchange under scenarios of global changes and highlight the importance of water availability in regulating ecosystem processes in temperate steppe grasslands.
Collapse
Affiliation(s)
- Wei Liu
- School of Atmospheric Sciences, Center for Monsoon and Environment Research, Sun Yat-Sen University, Guangzhou 510275, China; State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaotao Lü
- Erguna Forest-Steppe Ecotone Research Station, CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Wenfang Xu
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiqiu Shi
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Longyu Hou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Linghao Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Wenping Yuan
- School of Atmospheric Sciences, Center for Monsoon and Environment Research, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
23
|
Hao T, Song L, Goulding K, Zhang F, Liu X. Cumulative and partially recoverable impacts of nitrogen addition on a temperate steppe. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2018; 28:237-248. [PMID: 29113017 DOI: 10.1002/eap.1647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/20/2017] [Accepted: 10/19/2017] [Indexed: 06/07/2023]
Abstract
Atmospheric nitrogen (N) deposition has been shown to decrease biodiversity and change nutrient cycles in terrestrial ecosystems. However, our understanding of ecological responses to chronic N addition and ecological recovery of grassland from N enrichment is limited. Here we present evidence from an 11-year grassland experiment with a range of N addition rates (0, 30, 60, 120, 240, and 480 kg N·ha-1 ·yr-1 ) in Inner Mongolia, China. Chronic N addition led to a reduction in species richness, Shannon diversity index, and soil pH and an increase in aboveground biomass, foliar N, and soil mineral N. High N addition rates (240 and 480 kg N·ha-1 ·yr-1 ) showed significant effects in the first and second years, which stabilized over time. Nitrogen addition at low rates (30 and 60 kg N·ha-1 ·yr-1 ) took longer (e.g., three years or more) to achieve significant effects. The negative impacts of high N addition (480 kg N·ha-1 ·yr-1 ) were reduced and species richness, Shannon diversity index, and soil pH showed a limited but rapid recovery with the cessation of N addition. Our findings suggest serious and cumulative impacts of N addition on plant and soil communities but the potential for partial system recovery over time if N inputs decline or cease.
Collapse
Affiliation(s)
- Tianxiang Hao
- College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions of MOE and Beijing Key Laboratory of Farmland Pollution Prevention and Remediation, China Agricultural University, Beijing, 100193, China
| | - Ling Song
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan, 610041, China
| | - Keith Goulding
- Sustainable Agricultural Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
| | - Fusuo Zhang
- College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions of MOE and Beijing Key Laboratory of Farmland Pollution Prevention and Remediation, China Agricultural University, Beijing, 100193, China
| | - Xuejun Liu
- College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions of MOE and Beijing Key Laboratory of Farmland Pollution Prevention and Remediation, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
24
|
Han H, Du Y, Hui D, Jiang L, Zhong M, Wan S. Long-term antagonistic effect of increased precipitation and nitrogen addition on soil respiration in a semiarid steppe. Ecol Evol 2017; 7:10804-10814. [PMID: 29299259 PMCID: PMC5743642 DOI: 10.1002/ece3.3536] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/02/2017] [Accepted: 09/16/2017] [Indexed: 11/10/2022] Open
Abstract
Changes in water and nitrogen (N) availability due to climate change and atmospheric N deposition could have significant effects on soil respiration, a major pathway of carbon (C) loss from terrestrial ecosystems. A manipulative experiment simulating increased precipitation and atmospheric N deposition has been conducted for 9 years (2005-2013) in a semiarid grassland in Mongolian Plateau, China. Increased precipitation and N addition interactively affect soil respiration through the 9 years. The interactions demonstrated that N addition weakened the precipitation-induced stimulation of soil respiration, whereas increased precipitation exacerbated the negative impacts of N addition. The main effects of increased precipitation and N addition treatment on soil respiration were 15.8% stimulated and 14.2% suppressed, respectively. Moreover, a declining pattern and 2-year oscillation were observed for soil respiration response to N addition under increased precipitation. The dependence of soil respiration upon gross primary productivity and soil moisture, but not soil temperature, suggests that resources C substrate supply and water availability are more important than temperature in regulating interannual variations of soil C release in semiarid grassland ecosystems. The findings indicate that atmospheric N deposition may have the potential to mitigate soil C loss induced by increased precipitation, and highlight that long-term and multi-factor global change studies are critical for predicting the general patterns of terrestrial C cycling in response to global change in the future.
Collapse
Affiliation(s)
- Hongyan Han
- International Joint Research Laboratory for Global Change Ecology School of Life Sciences Henan University Kaifeng Henan China
| | - Yue Du
- College of Life Sciences University of Chinese Academy of Sciences Beijing China
| | - Dafeng Hui
- International Joint Research Laboratory for Global Change Ecology School of Life Sciences Henan University Kaifeng Henan China.,Department of Biological Sciences Tennessee State University Nashville TN USA
| | - Lin Jiang
- School of Biology Georgia Institute of Technology Atlanta GA USA
| | - Mingxing Zhong
- International Joint Research Laboratory for Global Change Ecology School of Life Sciences Henan University Kaifeng Henan China
| | - Shiqiang Wan
- International Joint Research Laboratory for Global Change Ecology School of Life Sciences Henan University Kaifeng Henan China
| |
Collapse
|
25
|
Fu J, Gasche R, Wang N, Lu H, Butterbach-Bahl K, Kiese R. Impacts of climate and management on water balance and nitrogen leaching from montane grassland soils of S-Germany. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:119-131. [PMID: 28582675 DOI: 10.1016/j.envpol.2017.05.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/16/2017] [Accepted: 05/25/2017] [Indexed: 05/28/2023]
Abstract
In this study water balance components as well as nitrogen and dissolved organic carbon leaching were quantified by means of large weighable grassland lysimeters at three sites (860, 770 and 600 m a.s.l.) for both intensive and extensive management. Our results show that at E600, the site with highest air temperature (8.6 °C) and lowest precipitation (981.9 mm), evapotranspiration losses were 100.7 mm higher as at the site (E860) with lowest mean annual air temperature (6.5 °C) and highest precipitation (1359.3 mm). Seepage water formation was substantially lower at E600 (-440.9 mm) as compared to E860. Compared to climate, impacts of management on water balance components were negligible. However, intensive management significantly increased total nitrogen leaching rates across sites as compared to extensive management from 2.6 kg N ha-1 year-1 (range: 0.5-6.0 kg N ha-1 year-1) to 4.8 kg N ha-1 year-1 (range: 0.9-12.9 kg N ha-1 year-1). N leaching losses were dominated by nitrate (64.7%) and less by ammonium (14.6%) and DON (20.7%). The low rates of N leaching (0.8-6.9% of total applied N) suggest a highly efficient nitrogen uptake by plants as measured by plant total N content at harvest. Moreover, plant uptake was often exceeding slurry application rates, suggesting further supply of N due to soil organic matter decomposition. The low risk of nitrate losses via leaching and surface runoff of cut grassland on non-sandy soils with vigorous grass growth may call for a careful site and region specific re-evaluation of fixed limits of N fertilization rates as defined by e.g. the German Fertilizer Ordinance following requirements set by the European Water Framework and Nitrates Directive.
Collapse
Affiliation(s)
- Jin Fu
- Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
| | - Rainer Gasche
- Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
| | - Na Wang
- Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
| | - Haiyan Lu
- Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany
| | - Klaus Butterbach-Bahl
- Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany; International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Ralf Kiese
- Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany.
| |
Collapse
|
26
|
Wang C, Geng Z, Chen Z, Li J, Guo W, Zhao TH, Cao Y, Shen S, Jin D, Li MH. Six-Year Nitrogen-Water Interaction Shifts the Frequency Distribution and Size Inequality of the First-Order Roots of Fraxinus mandschurica in a Mixed Mature Pinus koraiensis Forest. FRONTIERS IN PLANT SCIENCE 2017; 8:1691. [PMID: 29018474 PMCID: PMC5622955 DOI: 10.3389/fpls.2017.01691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
The variation in fine root traits in terms of size inequality at the individual root level can be identified as a strategy for adapting to the drastic changes in soil water and nutrient availabilities. The Gini and Lorenz asymmetry coefficients have been applied to describe the overall degree of size inequality, which, however, are neglected when conventional statistical means are calculated. Here, we used the Gini coefficient, Lorenz asymmetry coefficient and statistical mean in an investigation of Fraxinus mandschurica roots in a mixed mature Pinus koraiensis forest on Changbai Mountain, China. We analyzed 967 individual roots to determine the responses of length, diameter and area of the first-order roots and of branching intensity to 6 years of nitrogen addition (N), rainfall reduction (W) and their combination (NW). We found that first-order roots had a significantly greater average length and area but had smaller Gini coefficients in NW plots compared to in control plots (CK). Furthermore, the relationship between first-order root length and branching intensity was negative in CK, N, and W plots but positive in NW plots. The Lorenz asymmetry coefficient was >1 for the first-order root diameter in NW and W plots as well as for branching intensity in N plots. The bimodal frequency distribution of the first-order root length in NW plots differed clearly from the unimodal one in CK, N, and W plots. These results demonstrate that not only the mean but also the variation and the distribution mode of the first-order roots of F. mandschurica respond to soil nitrogen and water availability. The changes in size inequality of the first-order root traits suggest that Gini and Lorenz asymmetry coefficients can serve as informative parameters in ecological investigations of roots to improve our ability to predict how trees will respond to a changing climate at the individual root level.
Collapse
Affiliation(s)
- Cunguo Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Zhenzhen Geng
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Zhao Chen
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Jiandong Li
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Wei Guo
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Tian-Hong Zhao
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Ying Cao
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Si Shen
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Daming Jin
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Mai-He Li
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| |
Collapse
|
27
|
Ni X, Yang W, Qi Z, Liao S, Xu Z, Tan B, Wang B, Wu Q, Fu C, You C, Wu F. Simple additive simulation overestimates real influence: altered nitrogen and rainfall modulate the effect of warming on soil carbon fluxes. GLOBAL CHANGE BIOLOGY 2017; 23:3371-3381. [PMID: 27935178 DOI: 10.1111/gcb.13588] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Experiments and models have led to a consensus that there is positive feedback between carbon (C) fluxes and climate warming. However, the effect of warming may be altered by regional and global changes in nitrogen (N) and rainfall levels, but the current understanding is limited. Through synthesizing global data on soil C pool, input and loss from experiments simulating N deposition, drought and increased precipitation, we quantified the responses of soil C fluxes and equilibrium to the three single factors and their interactions with warming. We found that warming slightly increased the soil C input and loss by 5% and 9%, respectively, but had no significant effect on the soil C pool. Nitrogen deposition alone increased the soil C input (+20%), but the interaction of warming and N deposition greatly increased the soil C input by 49%. Drought alone decreased the soil C input by 17%, while the interaction of warming and drought decreased the soil C input to a greater extent (-22%). Increased precipitation stimulated the soil C input by 15%, but the interaction of warming and increased precipitation had no significant effect on the soil C input. However, the soil C loss was not significantly affected by any of the interactions, although it was constrained by drought (-18%). These results implied that the positive C fluxes-climate warming feedback was modulated by the changing N and rainfall regimes. Further, we found that the additive effects of [warming × N deposition] and [warming × drought] on the soil C input and of [warming × increased precipitation] on the soil C loss were greater than their interactions, suggesting that simple additive simulation using single-factor manipulations may overestimate the effects on soil C fluxes in the real world. Therefore, we propose that more multifactorial experiments should be considered in studying Earth systems.
Collapse
Affiliation(s)
- Xiangyin Ni
- Long-Term Research Station of Alpine Forest Ecosystems, Key Laboratory of Ecological Forestry Engineering, Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu, 611130, China
- Advanced Science Research Center, The City University of New York, New York, NY, 10031, USA
- Department of Earth and Environmental Sciences, Brooklyn College of The City University of New York, New York, NY, 11210, USA
| | - Wanqin Yang
- Long-Term Research Station of Alpine Forest Ecosystems, Key Laboratory of Ecological Forestry Engineering, Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu, 611130, China
- Collaborative Innovation Center of Ecological Security in the Upper Reaches of the Yangtze River, Chengdu, 611130, China
| | - Zemin Qi
- College of Life Science, Neijiang Normal University, Neijiang, 641199, China
| | - Shu Liao
- Long-Term Research Station of Alpine Forest Ecosystems, Key Laboratory of Ecological Forestry Engineering, Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhenfeng Xu
- Long-Term Research Station of Alpine Forest Ecosystems, Key Laboratory of Ecological Forestry Engineering, Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu, 611130, China
- Collaborative Innovation Center of Ecological Security in the Upper Reaches of the Yangtze River, Chengdu, 611130, China
| | - Bo Tan
- Long-Term Research Station of Alpine Forest Ecosystems, Key Laboratory of Ecological Forestry Engineering, Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu, 611130, China
- Collaborative Innovation Center of Ecological Security in the Upper Reaches of the Yangtze River, Chengdu, 611130, China
| | - Bin Wang
- Laboratory of Forestry, Department of Forest and Water Management, Ghent University, Geraardsbergsesteenweg 267, BE-9090, Gontrode (Melle), Belgium
| | - Qinggui Wu
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, 621000, China
| | - Changkun Fu
- Long-Term Research Station of Alpine Forest Ecosystems, Key Laboratory of Ecological Forestry Engineering, Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chengming You
- Long-Term Research Station of Alpine Forest Ecosystems, Key Laboratory of Ecological Forestry Engineering, Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fuzhong Wu
- Long-Term Research Station of Alpine Forest Ecosystems, Key Laboratory of Ecological Forestry Engineering, Institute of Ecology and Forestry, Sichuan Agricultural University, Chengdu, 611130, China
- Collaborative Innovation Center of Ecological Security in the Upper Reaches of the Yangtze River, Chengdu, 611130, China
| |
Collapse
|
28
|
Zhang L, Hou L, Guo D, Li L, Xu X. Interactive impacts of nitrogen input and water amendment on growing season fluxes of CO 2, CH 4, and N 2O in a semiarid grassland, Northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 578:523-534. [PMID: 27836352 DOI: 10.1016/j.scitotenv.2016.10.219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 10/03/2016] [Accepted: 10/29/2016] [Indexed: 06/06/2023]
Abstract
Nitrogen and water are two important factors influencing GHG (primarily CO2 - carbon dioxide; CH4 - methane, and N2O - nitrous oxide) fluxes in semiarid grasslands. However, the interactive effects of nitrogen and water on GHG fluxes remain elusive. A 3-year (2010-2012) manipulative experiment was conducted to investigate the individual and interactive effects of nitrogen and water additions on GHG fluxes during growing seasons (May to September) in a semiarid grassland in Northern China. Accumulated throughout growing seasons, nitrogen input stimulated CO2 uptake by 3.3±1.0gCm-2 (gN)-1, enhanced N2O emission by 1.2±0.3mgNm-2 (gN)-1, and decreased CH4 uptake by 5.2±0.9mgNm-2 (gN)-1; water amendment stimulated CO2 uptake by 0.2±0.1gCm-2 (mmH2O)-1 and N2O emission by 0.2±0.02mgNm-2 (mmH2O)-1, decreased CH4 uptake by 0.3±0.1mgCm-2 (mmH2O)-1. A synergistic effect between nitrogen and water was found on N2O flux in normal year while the additive effects of nitrogen and water additions were found on CH4 and CO2 uptakes during all experiment years, and on N2O emission in dry years. The nitrogen addition had stronger impacts than water amendment on stimulating CH4 uptake in the normal year, while water was the dominant factor affecting CH4 uptake in dry years. For N2O emission, the N-stimulating impact was stronger in un-watered than in watered plots, and the water-stimulating impact was stronger in non-fertilized than in fertilized treatments in dry years. The interactive impacts of nitrogen and water additions on GHG fluxes advance our understanding of GHG fluxes in responses to multiple environmental factors. This data source could be valuable for validating ecosystem models in simulating GHG fluxes in a multiple factors environment.
Collapse
Affiliation(s)
- Lihua Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Longyu Hou
- Department of Grassland Science, China Agricultural University, Beijing 100193, China
| | - Dufa Guo
- Shandong Normal University, Jinan 250014, China
| | - Linghao Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaofeng Xu
- Biology Department, San Diego State University, San Diego, CA 92182, USA; Northeast Institute of Geology and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China.
| |
Collapse
|
29
|
Wang R, Dungait JAJ, Buss HL, Yang S, Zhang Y, Xu Z, Jiang Y. Base cations and micronutrients in soil aggregates as affected by enhanced nitrogen and water inputs in a semi-arid steppe grassland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:564-572. [PMID: 27613671 DOI: 10.1016/j.scitotenv.2016.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/29/2016] [Accepted: 09/02/2016] [Indexed: 06/06/2023]
Abstract
The intensification of grassland management by nitrogen (N) fertilization and irrigation may threaten the future integrity of fragile semi-arid steppe ecosystems by affecting the concentrations of base cation and micronutrient in soils. We extracted base cations of exchangeable calcium (Ca), magnesium (Mg), potassium (K), and sodium (Na) and extractable micronutrients of iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) from three soil aggregate sizes classes (microaggregates, <0.25mm; small macroaggregates, 0.25-2mm; large macroaggregates, >2mm) from a 9-yearN and water field manipulation study. There were significantly more base cations (but not micronutrients) in microaggregates compared to macroaggregates which was related to greater soil organic matter and clay contents. Nitrogen addition significantly decreased exchangeable Ca by up to 33% in large and small macroaggregates and exchangeable Mg by up to 27% in three aggregates but significantly increased extractable Fe, Mn and Cu concentrations (by up to 262%, 150%, and 55%, respectively) in all aggregate size classes. However, water addition only increased exchangeable Na, while available Fe and Mn were decreased by water addition when averaging across all N treatments and aggregate classes. The loss of exchangeable Ca and Mg under N addition and extractable Fe and Mn in soil aggregates under water addition might potentially constrain the productivity of this semi-arid grassland ecosystem.
Collapse
Affiliation(s)
- Ruzhen Wang
- State Engineering Laboratory of Soil Nutrient Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jennifer A J Dungait
- Sustainable Soils and Grassland Systems Department, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB, UK
| | - Heather L Buss
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Clifton BS8 1RJ, UK
| | - Shan Yang
- State Engineering Laboratory of Soil Nutrient Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; Key Laboratory of Regional Environment and Eco-Remediation, College of Environment, Shenyang University, Shenyang 110044, China
| | - Yuge Zhang
- Key Laboratory of Regional Environment and Eco-Remediation, College of Environment, Shenyang University, Shenyang 110044, China
| | - Zhuwen Xu
- State Engineering Laboratory of Soil Nutrient Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yong Jiang
- State Engineering Laboratory of Soil Nutrient Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| |
Collapse
|
30
|
Guo Q, Hu ZM, Li SG, Yu GR, Sun XM, Li LH, Liang NS, Bai WM. Exogenous N addition enhances the responses of gross primary productivity to individual precipitation events in a temperate grassland. Sci Rep 2016; 6:26901. [PMID: 27264386 PMCID: PMC4893632 DOI: 10.1038/srep26901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 05/10/2016] [Indexed: 11/16/2022] Open
Abstract
Predicted future shifts in the magnitude and frequency (larger but fewer) of precipitation events and enhanced nitrogen (N) deposition may interact to affect grassland productivity, but the effects of N enrichment on the productivity response to individual precipitation events remain unclear. In this study, we quantified the effects of N addition on the response patterns of gross primary productivity (GPP) to individual precipitation events of different sizes (Psize) in a temperate grassland in China. The results showed that N enrichment significantly increased the time-integrated amount of GPP in response to an individual precipitation event (GPPtotal), and the N-induced stimulation of GPP increased with increasing Psize. N enrichment rarely affected the duration of the GPP response, but it significantly stimulated the maximum absolute GPP response. Higher foliar N content might play an important role in the N-induced stimulation of GPP. GPPtotal in both the N-addition and control treatments increased linearly with Psize with similar Psize intercepts (approximately 5 mm, indicating a similar lower Psize threshold to stimulate the GPP response) but had a steeper slope under N addition. Our work indicates that the projected larger precipitation events will stimulate grassland productivity, and this stimulation might be amplified by increasing N deposition.
Collapse
Affiliation(s)
- Qun Guo
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhong-Min Hu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Sheng-Gong Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Gui-Rui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao-Min Sun
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Ling-Hao Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Nai-Shen Liang
- Global Carbon Cycle Research Section Center for Global Environmental Research (CGER), National Institute for Environmental Studies (NIES), Tsukuba 305-8506, Japan
| | - Wen-Ming Bai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
31
|
Li Y, Fan J, Hu Z, Shao Q, Harris W. Comparison of evapotranspiration components and water-use efficiency among different land use patterns of temperate steppe in the Northern China pastoral-farming ecotone. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2016; 60:827-841. [PMID: 26449350 DOI: 10.1007/s00484-015-1076-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 09/18/2015] [Accepted: 09/27/2015] [Indexed: 06/05/2023]
Abstract
Water-use efficiency (WUE), which links carbon and water cycles, is an important indicator of assessing the interactions between ecosystems and regional climate. Using chamber methods with and without plant removal treatments, we investigated WUE and evapotranspiration (ET) components in three ecosystems with different land-use types in Northern China pastoral-farming ecotone. In comparison, ET of the ecosystems with grazing exclusion and cultivating was 6.7 and 13.4 % higher than that of the ecosystem with free grazing. The difference in ET was primarily due to the different magnitudes of soil water evaporation (E) rather than canopy transpiration (T). Canopy WUE (WUEc, i.e., the ratio of gross primary productivity to T) at the grazing excluded and cultivated sites was 17 and 36 % higher than that at the grazing site. Ecosystem WUE (WUEnep, i.e., the ratio of net ecosystem productivity to ET) at the cultivated site was 34 and 28 % lower in comparison with grazed and grazing excluded stepped, respectively. The varied leaf area index (LAI) of different land uses was correlated with microclimate and ecosystem vapor/carbon exchange. The LAI changing with land uses should be the primary regulation of grassland WUE. These findings facilitate the mechanistic understanding of carbon-water relationships at canopy and ecosystem levels and projection of the effects of land-use change on regional climate and productivity.
Collapse
Affiliation(s)
- Yuzhe Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
- Graduate University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jiangwen Fan
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhongmin Hu
- Key laboratory of Ecosystem Network Observation and Modeling, Synthesis Research Center of Chinese Ecosystem Research Network, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Quanqin Shao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Warwick Harris
- Landcare Research, PO Box 69040, Lincoln, 7640, New Zealand
| |
Collapse
|
32
|
Shen Y, Chen W, Yang G, Yang X, Liu N, Sun X, Chen J, Zhang Y. Can litter addition mediate plant productivity responses to increased precipitation and nitrogen deposition in a typical steppe? Ecol Res 2016. [DOI: 10.1007/s11284-016-1368-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Li H, Xu Z, Yang S, Li X, Top EM, Wang R, Zhang Y, Cai J, Yao F, Han X, Jiang Y. Responses of Soil Bacterial Communities to Nitrogen Deposition and Precipitation Increment Are Closely Linked with Aboveground Community Variation. MICROBIAL ECOLOGY 2016; 71:974-89. [PMID: 26838999 DOI: 10.1007/s00248-016-0730-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 01/18/2016] [Indexed: 05/28/2023]
Abstract
It has been predicted that precipitation and atmospheric nitrogen (N) deposition will increase in northern China; yet, ecosystem responses to the interactive effects of water and N remain largely unknown. In particular, responses of belowground microbial community to projected global change and their potential linkages to aboveground macro-organisms are rarely studied. In this study, we examined the responses of soil bacterial diversity and community composition to increased precipitation and multi-level N deposition in a temperate steppe in Inner Mongolia, China, and explored the diversity linkages between aboveground and belowground communities. It was observed that N addition caused the significant decrease in bacterial alpha-diversity and dramatic changes in community composition. In addition, we documented strong correlations of alpha- and beta-diversity between plant and bacterial communities in response to N addition. It was found that N enriched the so-called copiotrophic bacteria, but reduced the oligotrophic groups, primarily by increasing the soil inorganic N content and carbon availability and decreasing soil pH. We still highlighted that increased precipitation tended to alleviate the effects of N on bacterial diversity and dampen the plant-microbe connections induced by N. The counteractive effects of N addition and increased precipitation imply that even though the ecosystem diversity and function are predicted to be negatively affected by N deposition in the coming decades; the combination with increased precipitation may partially offset this detrimental effect.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road, Shenyang, 110016, China
| | - Zhuwen Xu
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road, Shenyang, 110016, China
| | - Shan Yang
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road, Shenyang, 110016, China
- College of Environmental Science, Shenyang University, Shenyang, 110044, China
| | - Xiaobin Li
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Eva M Top
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID, 83844, USA
| | - Ruzhen Wang
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road, Shenyang, 110016, China
| | - Yuge Zhang
- College of Environmental Science, Shenyang University, Shenyang, 110044, China
| | - Jiangping Cai
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Yao
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road, Shenyang, 110016, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingguo Han
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road, Shenyang, 110016, China
| | - Yong Jiang
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, No.72 Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
34
|
Water and nitrogen availability co-control ecosystem CO2 exchange in a semiarid temperate steppe. Sci Rep 2015; 5:15549. [PMID: 26494051 PMCID: PMC4616041 DOI: 10.1038/srep15549] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 09/15/2015] [Indexed: 11/16/2022] Open
Abstract
Both water and nitrogen (N) availability have significant effects on ecosystem CO2 exchange (ECE), which includes net ecosystem productivity (NEP), ecosystem respiration (ER) and gross ecosystem photosynthesis (GEP). How water and N availability influence ECE in arid and semiarid grasslands is still uncertain. A manipulative experiment with additions of rainfall, snow and N was conducted to test their effects on ECE in a semiarid temperate steppe of northern China for three consecutive years with contrasting natural precipitation. ECE increased with annual precipitation but approached peak values at different precipitation amount. Water addition, especially summer water addition, had significantly positive effects on ECE in years when the natural precipitation was normal or below normal, but showed trivial effect on GEP when the natural precipitation was above normal as effects on ER and NEP offset one another. Nitrogen addition exerted non-significant or negative effects on ECE when precipitation was low but switched to a positive effect when precipitation was high, indicating N effect triggered by water availability. Our results indicate that both water and N availability control ECE and the effects of future precipitation changes and increasing N deposition will depend on how they can change collaboratively in this semiarid steppe ecosystem.
Collapse
|
35
|
Tian D, Niu S, Pan Q, Ren T, Chen S, Bai Y, Han X. Nonlinear responses of ecosystem carbon fluxes and water‐use efficiency to nitrogen addition in Inner Mongolia grassland. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12513] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dashuan Tian
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing 100093 China
- Key Laboratory of Ecosystem Network Observation and Modeling Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences Beijing 100101 China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences Beijing 100101 China
| | - Qingmin Pan
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| | - Tingting Ren
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| | - Shiping Chen
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| | - Yongfei Bai
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| | - Xingguo Han
- State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing 100093 China
- State Key Laboratory of Forest and Soil Ecology Institute of Applied Ecology Chinese Academy of Sciences Shenyang 110016 China
| |
Collapse
|
36
|
Effects of Simulated Nitrogen Deposition on Soil Net Nitrogen Mineralization in the Meadow Steppe of Inner Mongolia, China. PLoS One 2015. [PMID: 26218275 PMCID: PMC4517773 DOI: 10.1371/journal.pone.0134039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Effects of simulated nitrogen (N) deposition on soil net nitrogen mineralization (NNM) were examined in situ during two growing seasons, using the resin-core technique in the semiarid meadow steppe in Inner Mongolia, China. The aim of this study is to clarify the effect of N levels (0, 10, and 20 kg N ha−1yr−1) and forms (NH4+ and NO3-) on soil mineral N and NNM. Our results showed that N levels had no significant differences on soil mineral N and NNM. In the first year, three N treatments ((NH4)2SO4, NH4Cl and KNO3) increased soil NH4+ concentrations but had no significant effects on soil NO3- concentrations. In the second year, (NH4)2SO4 treatment increased soil NO3- concentrations, NH4Cl and KNO3 treatments decreased them. Three N treatments significantly decreased soil NH4+ concentrations in the later stages of the second year. As for the soil NNM, three N treatments had no significant effects on the rates of soil NNM (Rm) and net nitrification (Rn) in the first year, but significantly decreased them in the second year. The contribution of N addition to Rm was higher from (NH4)2SO4 than from NH4Cl and KNO3. However, Soil Rm was mainly affected by soil water content (SWC), accumulated temperature (Ta), and soil total N (TN). These results suggest that the short-term atmospheric N deposition may inhibit soil NNM in the meadow steppe of Inner Mongolia.
Collapse
|
37
|
Ganjurjav H, Gao Q, Zhang W, Liang Y, Li Y, Cao X, Wan Y, Li Y, Danjiu L. Effects of Warming on CO2 Fluxes in an Alpine Meadow Ecosystem on the Central Qinghai-Tibetan Plateau. PLoS One 2015; 10:e0132044. [PMID: 26147223 PMCID: PMC4492951 DOI: 10.1371/journal.pone.0132044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 06/09/2015] [Indexed: 11/20/2022] Open
Abstract
To analyze CO2 fluxes under conditions of climate change in an alpine meadow on the central Qinghai–Tibetan Plateau, we simulated the effect of warming using open top chambers (OTCs) from 2012 to 2014. The OTCs increased soil temperature by 1.62°C (P < 0.05), but decreased soil moisture (1.38%, P < 0.05) during the experiments. The response of ecosystem CO2 fluxes to warming was variable, and dependent on the year. Under conditions of warming, mean gross ecosystem productivity (GEP) during the growing season increased significantly in 2012 and 2014 (P < 0.05); however, ecosystem respiration (ER) increased substantially only in 2012 (P < 0.05). The net ecosystem CO2 exchange (NEE) increased marginally in 2012 (P = 0.056), did not change in 2013(P > 0.05), and increased significantly in 2014 (P = 0.034) under conditions of warming. The GEP was more sensitive to climate variations than was the ER, resulting in a large increase in net carbon uptake under warming in the alpine meadow. Under warming, the 3-year averages of GEP, ER, and NEE increased by 19.6%, 15.1%, and 21.1%, respectively. The seasonal dynamic patterns of GEP and NEE, but not ER, were significantly impacted by warming. Aboveground biomass, particularly the graminoid biomass increased significantly under conditions of warming. Soil moisture, soil temperature, and aboveground biomass were the main factors that affected the variation of the ecosystem CO2 fluxes. The effect of warming on inter- and intra-annual patterns of ecosystem CO2 fluxes and the mechanism of different sensitivities in GEP and ER to warming, require further researched.
Collapse
Affiliation(s)
- Hasbagan Ganjurjav
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Agro-Environment & Climate Change, Ministry of Agriculture, Beijing, China
| | - Qingzhu Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Agro-Environment & Climate Change, Ministry of Agriculture, Beijing, China
- * E-mail:
| | - Weina Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Agro-Environment & Climate Change, Ministry of Agriculture, Beijing, China
| | - Yan Liang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Agro-Environment & Climate Change, Ministry of Agriculture, Beijing, China
| | - Yawei Li
- Clinic Pharmacy of Qinghai Hospital of Traditional Chinese Medicine, Qinghai Province, Xining, China
| | - Xujuan Cao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Agro-Environment & Climate Change, Ministry of Agriculture, Beijing, China
| | - Yunfan Wan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Agro-Environment & Climate Change, Ministry of Agriculture, Beijing, China
| | - Yue Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Agro-Environment & Climate Change, Ministry of Agriculture, Beijing, China
| | - Luobu Danjiu
- Nagqu Agriculture and Animal Husbandry Bureau, Tibet Autonomous Region, Nagqu, China
| |
Collapse
|
38
|
Effects of water and nitrogen addition on ecosystem carbon exchange in a meadow steppe. PLoS One 2015; 10:e0127695. [PMID: 26010888 PMCID: PMC4444226 DOI: 10.1371/journal.pone.0127695] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/17/2015] [Indexed: 12/05/2022] Open
Abstract
A changing precipitation regime and increasing nitrogen deposition are likely to have profound impacts on arid and semiarid ecosystem C cycling, which is often constrained by the timing and availability of water and nitrogen. However, little is known about the effects of altered precipitation and nitrogen addition on grassland ecosystem C exchange. We conducted a 3-year field experiment to assess the responses of vegetation composition, ecosystem productivity, and ecosystem C exchange to manipulative water and nitrogen addition in a meadow steppe. Nitrogen addition significantly stimulated aboveground biomass and net ecosystem CO2 exchange (NEE), which suggests that nitrogen availability is a primary limiting factor for ecosystem C cycling in the meadow steppe. Water addition had no significant impacts on either ecosystem C exchange or plant biomass, but ecosystem C fluxes showed a strong correlation with early growing season precipitation, rather than whole growing season precipitation, across the 3 experimental years. After we incorporated water addition into the calculation of precipitation regimes, we found that monthly average ecosystem C fluxes correlated more strongly with precipitation frequency than with precipitation amount. These results highlight the importance of precipitation distribution in regulating ecosystem C cycling. Overall, ecosystem C fluxes in the studied ecosystem are highly sensitive to nitrogen deposition, but less sensitive to increased precipitation.
Collapse
|
39
|
Ecosystem CO2Exchange in Response to Nitrogen and Phosphorus Addition in a Restored, Temperate Grassland. AMERICAN MIDLAND NATURALIST 2015. [DOI: 10.1674/0003-0031-173.1.73] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Lü XT, Dijkstra FA, Kong DL, Wang ZW, Han XG. Plant nitrogen uptake drives responses of productivity to nitrogen and water addition in a grassland. Sci Rep 2014; 4:4817. [PMID: 24769508 PMCID: PMC4001094 DOI: 10.1038/srep04817] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/09/2014] [Indexed: 11/24/2022] Open
Abstract
Increased atmospheric nitrogen (N) deposition and altered precipitation regimes have profound impacts on ecosystem functioning in semiarid grasslands. The interactions between those two factors remain largely unknown. A field experiment with N and water additions was conducted in a semiarid grassland in northern China. We examined the responses of aboveground net primary production (ANPP) and plant N use during two contrasting hydrological growing seasons. Nitrogen addition had no impact on ANPP, which may be accounted for by the offset between enhanced plant N uptake and decreased plant nitrogen use efficiency (NUE). Water addition significantly enhanced ANPP, which was largely due to enhanced plant aboveground N uptake. Nitrogen and water additions significantly interacted to affect ANPP, plant N uptake and N concentrations at the community level. Our observations highlight the important role of plant N uptake and use in mediating the effects of N and water addition on ANPP.
Collapse
Affiliation(s)
- Xiao-Tao Lü
- State Key Laboratory of Forest and Soil Ecology, Chinese Academy of Sciences, Shenyang 110164, China
| | - Feike A Dijkstra
- Department of Environmental Sciences, The University of Sydney, Camden, NSW, 2570, Australia
| | - De-Liang Kong
- School of Life Sciences, Henan University, Henan 475004, China
| | - Zheng-Wen Wang
- State Key Laboratory of Forest and Soil Ecology, Chinese Academy of Sciences, Shenyang 110164, China
| | - Xing-Guo Han
- State Key Laboratory of Forest and Soil Ecology, Chinese Academy of Sciences, Shenyang 110164, China
| |
Collapse
|
41
|
Qi Y, Liu X, Dong Y, Peng Q, He Y, Sun L, Jia J, Cao C. Differential responses of short-term soil respiration dynamics to the experimental addition of nitrogen and water in the temperate semi-arid steppe of Inner Mongolia, China. J Environ Sci (China) 2014; 26:834-845. [PMID: 25079414 DOI: 10.1016/s1001-0742(13)60509-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 09/16/2013] [Accepted: 10/12/2013] [Indexed: 06/03/2023]
Abstract
We examined the effects of simulated rainfall and increasing N supply of different levels on CO2 pulse emission from typical Inner Mongolian steppe soil using the static opaque chamber technique, respectively in a dry June and a rainy August. The treatments included NH4NO3 additions at rates of 0, 5, 10, and 20 g N/(m(2)·year) with or without water. Immediately after the experimental simulated rainfall events, the CO2 effluxes in the watering plots without N addition (WCK) increased greatly and reached the maximum value at 2 hr. However, the efflux level reverted to the background level within 48 hr. The cumulative CO2 effluxes in the soil rang ed from 5.60 to 6.49 g C/m(2) over 48 hr after a single water application, thus showing an increase of approximately 148.64% and 48.36% in the effluxes during both observation periods. By contrast, the addition of different N levels without water addition did not result in a significant change in soil respiration in the short term. Two-way ANOVA showed that the effects of the interaction between water and N addition were insignificant in short-term soil CO2 effluxes in the soil. The cumulative soil CO2 fluxes of different treatments over 48 hr accounted for approximately 5.34% to 6.91% and 2.36% to 2.93% of annual C emission in both experimental periods. These results stress the need for improving the sampling frequency after rainfall in future studies to ensure more accurate evaluation of the grassland C emission contribution.
Collapse
Affiliation(s)
- Yuchun Qi
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xinchao Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yunshe Dong
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Qin Peng
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yating He
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liangjie Sun
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Junqiang Jia
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Congcong Cao
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
42
|
Zhang L, Huo Y, Guo D, Wang Q, Bao Y, Li L. Effects of Multi-nutrient Additions on GHG Fluxes in a Temperate Grassland of Northern China. Ecosystems 2014. [DOI: 10.1007/s10021-014-9750-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Zhang X, Liu W, Schloter M, Zhang G, Chen Q, Huang J, Li L, Elser JJ, Han X. Response of the abundance of key soil microbial nitrogen-cycling genes to multi-factorial global changes. PLoS One 2013; 8:e76500. [PMID: 24124568 PMCID: PMC3790715 DOI: 10.1371/journal.pone.0076500] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 08/28/2013] [Indexed: 12/03/2022] Open
Abstract
Multiple co-occurring environmental changes are affecting soil nitrogen cycling processes, which are mainly mediated by microbes. While it is likely that various nitrogen-cycling functional groups will respond differently to such environmental changes, very little is known about their relative responsiveness. Here we conducted four long-term experiments in a steppe ecosystem by removing plant functional groups, mowing, adding nitrogen, adding phosphorus, watering, warming, and manipulating some of their combinations. We quantified the abundance of seven nitrogen-cycling genes, including those for fixation (nifH), mineralization (chiA), nitrification (amoA of ammonia-oxidizing bacteria (AOB) or archaea (AOA)), and denitrification (nirS, nirK and nosZ). First, for each gene, we compared its sensitivities to different environmental changes and found that the abundances of various genes were sensitive to distinct and different factors. Overall, the abundances of nearly all genes were sensitive to nitrogen enrichment. In addition, the abundances of the chiA and nosZ genes were sensitive to plant functional group removal, the AOB-amoA gene abundance to phosphorus enrichment when nitrogen was added simultaneously, and the nirS and nirK gene abundances responded to watering. Second, for each single- or multi-factorial environmental change, we compared the sensitivities of the abundances of different genes and found that different environmental changes primarily affected different gene abundances. Overall, AOB-amoA gene abundance was most responsive, followed by the two denitrifying genes nosZ and nirS, while the other genes were less sensitive. These results provide, for the first time, systematic insights into how the abundance of each type of nitrogen-cycling gene and the equilibrium state of all these nitrogen-cycling gene abundances would shift under each single- or multi-factorial global change.
Collapse
Affiliation(s)
- Ximei Zhang
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Wei Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Michael Schloter
- Environmental Genomics, Helmholtz Center for Environmental Health, Oberschleissheim, Germany
| | - Guangming Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Quansheng Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jianhui Huang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Linghao Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - James J. Elser
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- * E-mail: (JJE); (XH)
| | - Xingguo Han
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- * E-mail: (JJE); (XH)
| |
Collapse
|
44
|
|
45
|
De Marco A, Screpanti A, Attorre F, Proietti C, Vitale M. Assessing ozone and nitrogen impact on net primary productivity with a Generalised non-Linear Model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 172:250-263. [PMID: 23078996 DOI: 10.1016/j.envpol.2012.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 08/17/2012] [Accepted: 08/28/2012] [Indexed: 06/01/2023]
Abstract
Some studies suggest that in Europe the majority of forest growth increment can be accounted for N deposition and very little by elevated CO(2). High ozone (O(3)) concentrations cause reductions in carbon fixation in native plants by offsetting the effects of elevated CO(2) or N deposition. The cause-effect relationships between primary productivity (NPP) of Quercus cerris, Q. ilex and Fagus sylvatica plant species and climate and pollutants (O(3) and N deposition) in Italy have been investigated by application of Generalised Linear/non-Linear regression model (GLZ model). The GLZ model highlighted: i) cumulative O(3) concentration-based indicator (AOT40F) did not significantly affect NPP; ii) a differential action of oxidised and reduced nitrogen depositions to NPP was linked to the geographical location; iii) the species-specific variation of NPP caused by combination of pollutants and climatic variables could be a potentially important drive-factor for the plant species' shift as response to the future climate change.
Collapse
Affiliation(s)
- Alessandra De Marco
- Italian National Agency for New Technologies, Energy and the Environment (ENEA), C.R. Casaccia, Via Anguillarese 301, 00123 S. Maria di Galeria, Rome, Italy.
| | | | | | | | | |
Collapse
|
46
|
Ruan WB, Sang Y, Chen Q, Zhu X, Lin S, Gao YB. The Response of Soil Nematode Community to Nitrogen, Water, and Grazing History in the Inner Mongolian Steppe, China. Ecosystems 2012. [DOI: 10.1007/s10021-012-9570-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
47
|
Xu Z, Wan S, Ren H, Han X, Li MH, Cheng W, Jiang Y. Effects of water and nitrogen addition on species turnover in temperate grasslands in northern China. PLoS One 2012; 7:e39762. [PMID: 22768119 PMCID: PMC3387244 DOI: 10.1371/journal.pone.0039762] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/26/2012] [Indexed: 11/19/2022] Open
Abstract
Global nitrogen (N) deposition and climate change have been identified as two of the most important causes of current plant diversity loss. However, temporal patterns of species turnover underlying diversity changes in response to changing precipitation regimes and atmospheric N deposition have received inadequate attention. We carried out a manipulation experiment in a steppe and an old-field in North China from 2005 to 2009, to test the hypothesis that water addition enhances plant species richness through increase in the rate of species gain and decrease in the rate of species loss, while N addition has opposite effects on species changes. Our results showed that water addition increased the rate of species gain in both the steppe and the old field but decreased the rates of species loss and turnover in the old field. In contrast, N addition increased the rates of species loss and turnover in the steppe but decreased the rate of species gain in the old field. The rate of species change was greater in the old field than in the steppe. Water interacted with N to affect species richness and species turnover, indicating that the impacts of N on semi-arid grasslands were largely mediated by water availability. The temporal stability of communities was negatively correlated with rates of species loss and turnover, suggesting that water addition might enhance, but N addition would reduce the compositional stability of grasslands. Experimental results support our initial hypothesis and demonstrate that water and N availabilities differed in the effects on rate of species change in the temperate grasslands, and these effects also depend on grassland types and/or land-use history. Species gain and loss together contribute to the dynamic change of species richness in semi-arid grasslands under future climate change.
Collapse
Affiliation(s)
- Zhuwen Xu
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Shiqiang Wan
- Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng, China
| | - Haiyan Ren
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Xingguo Han
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Mai-He Li
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Forest dynamics, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Weixin Cheng
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Yong Jiang
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
48
|
Ochoa-Hueso R, Allen EB, Branquinho C, Cruz C, Dias T, Fenn ME, Manrique E, Pérez-Corona ME, Sheppard LJ, Stock WD. Nitrogen deposition effects on Mediterranean-type ecosystems: an ecological assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:2265-79. [PMID: 21277663 DOI: 10.1016/j.envpol.2010.12.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 12/14/2010] [Accepted: 12/21/2010] [Indexed: 05/22/2023]
Abstract
We review the ecological consequences of N deposition on the five Mediterranean regions of the world. Seasonality of precipitation and fires regulate the N cycle in these water-limited ecosystems, where dry N deposition dominates. Nitrogen accumulation in soils and on plant surfaces results in peaks of availability with the first winter rains. Decoupling between N flushes and plant demand promotes losses via leaching and gas emissions. Differences in P availability may control the response to N inputs and susceptibility to exotic plant invasion. Invasive grasses accumulate as fuel during the dry season, altering fire regimes. California and the Mediterranean Basin are the most threatened by N deposition; however, there is limited evidence for N deposition impacts outside of California. Consequently, more research is needed to determine critical loads for each region and vegetation type based on the most sensitive elements, such as changes in lichen species composition and N cycling.
Collapse
Affiliation(s)
- Raúl Ochoa-Hueso
- Department of Plant Physiology and Ecology, Centro de Ciencias Medioambientales, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Liu X, Duan L, Mo J, Du E, Shen J, Lu X, Zhang Y, Zhou X, He C, Zhang F. Nitrogen deposition and its ecological impact in China: an overview. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:2251-64. [PMID: 20828899 DOI: 10.1016/j.envpol.2010.08.002] [Citation(s) in RCA: 304] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 07/31/2010] [Accepted: 08/05/2010] [Indexed: 05/18/2023]
Abstract
Nitrogen (N) deposition is an important component in the global N cycle that has induced large impacts on the health and services of terrestrial and aquatic ecosystems worldwide. Anthropogenic reactive N (N(r)) emissions to the atmosphere have increased dramatically in China due to rapid agricultural, industrial and urban development. Therefore increasing N deposition in China and its ecological impacts are of great concern since the 1980s. This paper synthesizes the data from various published papers to assess the status of the anthropogenic N(r) emissions and N deposition as well as their impacts on different ecosystems, including empirical critical loads for different ecosystems. Research challenges and policy implications on atmospheric N pollution and deposition are also discussed. China urgently needs to establish national networks for N deposition monitoring and cross-site N addition experiments in grasslands, forests and aquatic ecosystems. Critical loads and modeling tools will be further used in N(r) regulation.
Collapse
Affiliation(s)
- Xuejun Liu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
YANG HAIJUN, LI YANG, WU MINGYU, ZHANG ZHE, LI LINGHAO, WAN SHIQIANG. Plant community responses to nitrogen addition and increased precipitation: the importance of water availability and species traits. GLOBAL CHANGE BIOLOGY 2011; 17:2936-2944. [PMID: 0 DOI: 10.1111/j.1365-2486.2011.02423.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|