1
|
Kelestemur MM, Bulut F, Bılgın B, Hekım MG, Adam M, Ozcan S, Beker MC, Kaya Tektemur N, Tekin S, Canpolat S, Ozcan M. Humanin's impact on pain markers and neuronal viability in diabetic neuropathy model. Arch Physiol Biochem 2024; 130:898-908. [PMID: 38599217 DOI: 10.1080/13813455.2024.2336922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/31/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
OBJECTIVE This study investigates the impact of chronic humanin (HN) treatment on pain-related markers (NMDA, substance P, TRPV1, and IL-1β) in diabetic mice's dorsal root ganglia (DRG). Additionally, we assess the effects of HN on cellular viability in DRG neurons. METHODS In vivo experiments involved 15 days of HN administration (4 mg/kg) to diabetic mice (n = 10). Protein levels of NMDA, IL-1β, TRPV1, and substance P were measured in diabetic DRG. In vitro experiments explored HN's impact on apoptosis and cellular viability, focusing on the JAK2/STAT3 pathway. RESULTS Humanin significantly reduced the elevated expression of NMDA, IL-1β, TRPV1, and substance P induced by diabetes (p < .05). Furthermore, HN treatment increased cellular viability in DRG neurons through JAK2/STAT3 pathway activation (p < .05). CONCLUSION These findings highlight the significance of understanding mitochondrial function and pain markers, as well as apoptosis in diabetes. The study provides insights for managing the condition and its complications.
Collapse
Affiliation(s)
| | - Ferah Bulut
- Department of Biophysics, School of Medicine, University of Firat, Elazig, Turkey
| | - Batuhan Bılgın
- Department of Biophysics, School of Medicine, Gaziantep Islam Science and Technology University, Gaziantep, Turkey
| | - Munevver Gizem Hekım
- Department of Physiology, School of Medicine, University of Firat, Elazig, Turkey
| | - Muhammed Adam
- Department of Biophysics, School of Medicine, University of Firat, Elazig, Turkey
| | - Sibel Ozcan
- Department of Anaesthesiology and Reanimation, School of Medicine, University of Firat, Elazig, Turkey
| | - Mustafa Caglar Beker
- Department of Physiology, School of Medicine, University of Medipol, Istanbul, Turkey
| | - Nalan Kaya Tektemur
- Department of Histology and Embryology, School of Medicine, University of Firat, Elazig, Turkey
| | - Suat Tekin
- Department of Physiology, School of Medicine, University of Inonu, Malatya, Turkey
| | - Sinan Canpolat
- Department of Physiology, School of Medicine, University of Firat, Elazig, Turkey
| | - Mete Ozcan
- Department of Biophysics, School of Medicine, University of Firat, Elazig, Turkey
| |
Collapse
|
2
|
Kose C, Korpe B, Yakut Yucel K, Arat O, Bucak M, Engin Ustun Y. A New Antioxidant Marker in Cord Blood of Fetuses with Late Fetal Growth Restriction: Humanin. Fetal Pediatr Pathol 2023; 42:775-784. [PMID: 37366369 DOI: 10.1080/15513815.2023.2229432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Purpose: This study investigated the Humanin levels in the umbilical cord blood of fetuses with late fetal growth restriction (FGR) and -evaluated their association with perinatal outcomes. Materials and Methods: A total of 95 single pregnancies between 32-41 wk (45 with late FGR and 50 controls) were included. Doppler parameters, birth weight and the need for neonatal intensive care unit admission (NICU) were assessed. Correlations between Humanin levels and these parameters were analyzed. Results: Higher Humanin levels were found in fetuses with late FGR compared to the control group (p < 0.05). No significant correlation was observed between Humanin levels and Doppler parameters. Elevated Humanin levels were associated with an increased need for NICU (p < 0.05). Conclusions: The statistically higher levels of Humanin in fetuses with late FGR may suggest the potential of Humanin as an indicator of late FGR. Further research is needed to explore the clinical utility of Humanin.
Collapse
Affiliation(s)
- Caner Kose
- Ankara Etlik City Hospital, Ankara, Turkey
| | | | | | - Ozgur Arat
- Ankara Etlik City Hospital, Ankara, Turkey
| | | | - Yaprak Engin Ustun
- University of Health Sciences Etlik Zubeyde Hanim Women's Health Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
3
|
Gordon-Lipkin EM, Banerjee P, Franco JLM, Tarasenko T, Kruk S, Thompson E, Gildea DE, Zhang S, Wolfsberg TG, NISC Comparative Sequencing Program, Flegel WA, McGuire PJ. Primary oxidative phosphorylation defects lead to perturbations in the human B cell repertoire. Front Immunol 2023; 14:1142634. [PMID: 37483601 PMCID: PMC10361569 DOI: 10.3389/fimmu.2023.1142634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/09/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction The majority of studies on oxidative phosphorylation in immune cells have been performed in mouse models, necessitating human translation. To understand the impact of oxidative phosphorylation (OXPHOS) deficiency on human immunity, we studied children with primary mitochondrial disease (MtD). Methods scRNAseq analysis of peripheral blood mononuclear cells was performed on matched children with MtD (N = 4) and controls (N = 4). To define B cell function we performed phage display immunoprecipitation sequencing on a cohort of children with MtD (N = 19) and controls (N = 16). Results Via scRNAseq, we found marked reductions in select populations involved in the humoral immune response, especially antigen presenting cells, B cell and plasma populations, with sparing of T cell populations. MTRNR2L8, a marker of bioenergetic stress, was significantly elevated in populations that were most depleted. mir4485, a miRNA contained in the intron of MTRNR2L8, was co-expressed. Knockdown studies of mir4485 demonstrated its role in promoting survival by modulating apoptosis. To determine the functional consequences of our findings on humoral immunity, we studied the antiviral antibody repertoire in children with MtD and controls using phage display and immunoprecipitation sequencing. Despite similar viral exposomes, MtD displayed antiviral antibodies with less robust fold changes and limited polyclonality. Discussion Overall, we show that children with MtD display perturbations in the B cell repertoire which may impact humoral immunity and the ability to clear viral infections.
Collapse
Affiliation(s)
- Eliza M. Gordon-Lipkin
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Payal Banerjee
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jose Luis Marin Franco
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Tatiana Tarasenko
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Shannon Kruk
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Elizabeth Thompson
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Derek E. Gildea
- Bioinformatics and Scientific Programming Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Suiyuan Zhang
- Bioinformatics and Scientific Programming Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Tyra G. Wolfsberg
- Bioinformatics and Scientific Programming Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | | | - Willy A. Flegel
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Peter J. McGuire
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
4
|
Katiyar R, Ghosh SK, Karikalan M, Kumar A, Pande M, Gemeda AI, Rautela R, Dhara SK, Bhure SK, Srivastava N, Patra MK, Chandra V, Devi HL, Singh M. An evidence of Humanin-like peptide and Humanin mediated cryosurvival of spermatozoa in buffalo bulls. Theriogenology 2022; 194:13-26. [PMID: 36183493 DOI: 10.1016/j.theriogenology.2022.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/12/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022]
Abstract
Buffalo spermatozoa are vulnerable to cryo-injuries due to inherent deficiency of endogenous antioxidants, high polyunsaturated fatty acids (PUFA) content in plasma membrane and low cholesterol/phospholipid (C/P) ratio. Humanin is a potent cytoprotective agent that protects the cells against oxidative stress and apoptosis. The present study was designed to establish the presence of Humanin in buffalo and effect of Humanin supplementation on freezability of buffalo spermatozoa. Indirect immunofluorescence test revealed presence of Humanin in ejaculated and epididymal spermatozoa, and, elongated spermatids and interstitial space in the testicular tissue section. Humanin levels in seminal plasma were significantly and positively correlated with sperm concentration and individual progressive motility (IPM) in good (n = 22; IPM >70%) and poor (n = 10; IPM <50%) quality ejaculates. For supplementation studies, a total of 24 ejaculates (IPM ≥70%) were collected and each ejaculate was then divided into four aliquots. First aliquot was diluted with egg yolk-tris-glycerol (EYTG) extender without Humanin and served as control group (Group I). Rest three aliquots were diluted with extender containing 2 (Group II), 5 (Group III) and 10 μM Humanin (Group IV), respectively. Semen was cryopreserved using standard protocol and evaluated at pre-freeze for lipid peroxidation (LPO) and post-thaw stages for spermatozoa kinematics, LPO, mitochondrial membrane potential (MMP), capacitation, apoptotic status and DNA integrity. The treatment group that showed best results (5 μM) was compared with control group for in vitro fertility assessment by homologous zona binding assay. The LPO levels were lower (p < 0.05) in 5 and 10 μM Humanin supplemented group. The MMP and DNA integrity were higher (p < 0.05) in 5 μM group than other groups. F-pattern was higher (p < 0.05) and B-pattern was lower (p < 0.05) in 5 and 10 μM Humanin supplemented groups. Lower apoptotic and higher viable spermatozoa (p < 0.05) were observed in 5 μM Humanin group. The mean number of spermatozoa bound to zona pellucida was higher (p < 0.05) in 5 μM Humanin treated group than the control group. The study established the presence of Humanin in buffalo spermatozoa and seminal plasma for very first time and concluded that Humanin supplementation at 5 μM concentration improves the freezability and in vitro fertility of buffalo spermatozoa.
Collapse
Affiliation(s)
- Rahul Katiyar
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India.
| | - Subrata Kumar Ghosh
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India.
| | - M Karikalan
- Centre for Wildlife, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Abhishek Kumar
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Megha Pande
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Amare Ishetu Gemeda
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Rupali Rautela
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - S K Dhara
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - S K Bhure
- Division of Veterinary Biochemistry, ICAR-Indian Veterinary Research Institute, Bengaluru Campus, India
| | - Neeraj Srivastava
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - M K Patra
- Division of Animal Reproduction, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Vikash Chandra
- Division of Physiology & Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Huidrom Lakshmi Devi
- Division of Physiology & Climatology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Mahak Singh
- ICAR Research Complex for N.E.H.Region, Nagaland Centre, Medziphema, Nagaland, 797106, India
| |
Collapse
|
5
|
Zhu S, Hu X, Bennett S, Xu J, Mai Y. The Molecular Structure and Role of Humanin in Neural and Skeletal Diseases, and in Tissue Regeneration. Front Cell Dev Biol 2022; 10:823354. [PMID: 35372353 PMCID: PMC8965846 DOI: 10.3389/fcell.2022.823354] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 03/03/2022] [Indexed: 12/29/2022] Open
Abstract
Humanin (HN) belongs to a member of mitochondrial-derived peptides (MDPs) which are encoded by mitochondrial genes. HN shares sequence homology with thirteen HN-like proteins, named MTRNR2L1 to MTRNR2L13, which encompass 24–28 amino acid residues in length. HN mediates mitochondrial status and cell survival by acting via an intracellular mechanism, or as a secreted factor via extracellular signals. Intracellularly, it binds Bcl2-associated X protein (BAX), Bim and tBid, and IGFBP3 to inhibit caspase activity and cell apoptosis. When released from cells as a secreted peptide, HN interacts with G protein-coupled formyl peptide receptor-like 1 (FPRL1/2) to mediate apoptosis signal-regulating kinase (ASK) and c-Jun N-terminal kinase (JNK) signalling pathways. Additionally, it interacts with CNTFR-α/gp130/WSX-1 trimeric receptors to induce JAK2/STA3 signalling cascades. HN also binds soluble extracellular proteins such as VSTM2L and IGFBP3 to modulate cytoprotection. It is reported that HN plays a role in neuronal disorders such as Alzheimer’s disease, as well as in diabetes mellitus, infertility, and cardiac diseases. Its roles in the skeletal system are emerging, where it appears to be involved with the regulation of osteoclasts, osteoblasts, and chondrocytes. Understanding the molecular structure and role of HN in neural and skeletal diseases is vital to the application of HN in tissue regeneration.
Collapse
Affiliation(s)
- Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Sipin Zhu, ; Yuliang Mai,
| | - Xiaoyong Hu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Samuel Bennett
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- Division of Regenerative Biology, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Yuliang Mai
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, China
- *Correspondence: Sipin Zhu, ; Yuliang Mai,
| |
Collapse
|
6
|
Boutari C, Pappas PD, Theodoridis TD, Vavilis D. Humanin and diabetes mellitus: A review of in vitro and in vivo studies. World J Diabetes 2022; 13:213-223. [PMID: 35432758 PMCID: PMC8984571 DOI: 10.4239/wjd.v13.i3.213] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/24/2021] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Humanin (HN) is a 24-amino acid mitochondrial-derived polypeptide with cyto-protective and anti-apoptotic effects that regulates the mitochondrial functions under stress conditions. Accumulating evidence suggests the role of HN against age-related diseases, such as Alzheimer’s disease. The decline in insulin action is a metabolic feature of aging and thus, type 2 diabetes mellitus is considered an age-related disease, as well. It has been suggested that HN increases insulin sensitivity, improves the survival of pancreatic beta cells, and delays the onset of diabetes, actions that could be deployed in the treatment of diabetes. The aim of this review is to present the in vitro and in vivo studies that examined the role of HN in insulin resistance and diabetes and to discuss its newly emerging role as a therapeutic option against those conditions.
Collapse
Affiliation(s)
- Chrysoula Boutari
- Second Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, Thessaloniki 54642, Greece
| | - Panagiotis D Pappas
- First Department of Obstetrics and Gynaecology, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki 56429, Greece
| | - Theodoros D Theodoridis
- First Department of Obstetrics and Gynaecology, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki 56429, Greece
| | - Dimitrios Vavilis
- First Department of Obstetrics and Gynaecology, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki 56429, Greece
- Medical School, University of Cyprus, Nicosia, Cyprus 20537 1678, Cyprus
| |
Collapse
|
7
|
Yuanyuan J, Xinqiang Y. Micropeptides Identified from Human Genomes. J Proteome Res 2022; 21:865-873. [DOI: 10.1021/acs.jproteome.1c00889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jing Yuanyuan
- School of Public Health, North Sichuan Medical College, Nanchong 637000, China
| | - Yin Xinqiang
- School of Basic Medicine and Forensics, North Sichuan Medical College, Nanchong 637000, China
| |
Collapse
|
8
|
Wijenayake S, Storey KB. Oxidative Damage? Not a Problem! The Characterization of Humanin-like Mitochondrial Peptide in Anoxia Tolerant Freshwater Turtles. Protein J 2021; 40:87-107. [PMID: 33387248 DOI: 10.1007/s10930-020-09944-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 11/30/2022]
Abstract
Mitochondria was long thought to be an "end function" organelle that regulated the metabolic flux and apoptosis in the cell. However, with the discovery of the mitochondrial peptide (MDP) humanin (HN/MTRNR2), the cytoprotective and pro-survival applications of MDPs have taken the forefront of therapeutic and diagnostic research. However, the regulation of humanin-like MDPs in natural model systems that can tolerate lethal environmental and cytotoxic insults remains to be investigated. Red-eared sliders are champion anaerobes that can withstand three continuous months of anoxia followed by rapid bouts of oxygen reperfusion without incurring cellular damage. Freshwater turtles employ extensive physiological and biochemical strategies to combat anoxia, with metabolic rate depression and a global enhancement of antioxidant and cytoprotective pathways being the two most important contributors. The main aim of this study was to uncover and characterize the humanin-homologue in freshwater turtles as well as investigate the differential regulation of humanin in response to short and long-term oxygen deprivation. In this study we have used de novo and homology-based protein modelling to elucidate the putative structure of humanin in red-eared sliders as well as an ELISA and western immunoblotting to confirm the protein abundance in the turtle brain and six peripheral tissues during control, 5 h, and 20 h anoxia (n = 4/group). We found that a humanin-homologue (TSE-humanin) is present in red-eared sliders and it may play a cytoprotective role against oxidative damage.
Collapse
Affiliation(s)
- Sanoji Wijenayake
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, ON, Canada.,Department of Biological Sciences and Center for Environmental Epigenetics and Development, University of Toronto, Toronto, ON, Canada
| | - Kenneth B Storey
- Department of Biology, Institute of Biochemistry, Carleton University, Ottawa, ON, Canada. .,Department of Chemistry, Institute of Biochemistry, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
9
|
Merry TL, Chan A, Woodhead JST, Reynolds JC, Kumagai H, Kim SJ, Lee C. Mitochondrial-derived peptides in energy metabolism. Am J Physiol Endocrinol Metab 2020; 319:E659-E666. [PMID: 32776825 PMCID: PMC7750512 DOI: 10.1152/ajpendo.00249.2020] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022]
Abstract
Mitochondrial-derived peptides (MDPs) are small bioactive peptides encoded by short open-reading frames (sORF) in mitochondrial DNA that do not necessarily have traditional hallmarks of protein-coding genes. To date, eight MDPs have been identified, all of which have been shown to have various cyto- or metaboloprotective properties. The 12S ribosomal RNA (MT-RNR1) gene harbors the sequence for MOTS-c, whereas the other seven MDPs [humanin and small humanin-like peptides (SHLP) 1-6] are encoded by the 16S ribosomal RNA gene. Here, we review the evidence that endogenous MDPs are sensitive to changes in metabolism, showing that metabolic conditions like obesity, diabetes, and aging are associated with lower circulating MDPs, whereas in humans muscle MDP expression is upregulated in response to stress that perturbs the mitochondria like exercise, some mtDNA mutation-associated diseases, and healthy aging, which potentially suggests a tissue-specific response aimed at restoring cellular or mitochondrial homeostasis. Consistent with this, treatment of rodents with humanin, MOTS-c, and SHLP2 can enhance insulin sensitivity and offer protection against a range of age-associated metabolic disorders. Furthermore, assessing how mtDNA variants alter the functions of MDPs is beginning to provide evidence that MDPs are metabolic signal transducers in humans. Taken together, MDPs appear to form an important aspect of a retrograde signaling network that communicates mitochondrial status with the wider cell and to distal tissues to modulate adaptative responses to metabolic stress. It remains to be fully determined whether the metaboloprotective properties of MDPs can be harnessed into therapies for metabolic disease.
Collapse
Affiliation(s)
- Troy L Merry
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Alex Chan
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Jonathan S T Woodhead
- Discipline of Nutrition, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Joseph C Reynolds
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
| | - Hiroshi Kumagai
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
- Japan Society for the Promotion of Science, Tokyo, Japan
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California
- University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
- Biomedical Science, Graduate School, Ajou University, Suwon, South Korea
| |
Collapse
|
10
|
Yang H, Cui Y, Tang Y, Tang X, Yu X, Zhou J, Yin Q, Shentu X. Cytoprotective role of humanin in lens epithelial cell oxidative stress‑induced injury. Mol Med Rep 2020; 22:1467-1479. [PMID: 32627019 PMCID: PMC7339735 DOI: 10.3892/mmr.2020.11202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress-induced injury and apoptosis of human lens epithelial cells (HLECs) are early events in the development of age-related cataracts (ARCs). Humanin (HN) is a mitochondrial-related peptide that serves a cytoprotective role in various cell types and animal models. Following HN knockdown or overexpression, the level of reactive oxygen species (ROS), mitochondrial membrane potential and mitochondrial DNA copy number, cell viability, LDH activity and apoptosis of HLECs under oxidative stress were detected, and apoptosis and autophagy were detected via transmission electron microscopy. The results suggested that HN may be involved in the response of HLECs to oxidative stress, and that HN expression was significantly upregulated under oxidative stress conditions. Furthermore, exogenous HN reduced intracellular ROS content and mitochondrial damage, and enhanced mitochondrial biosynthesis; however, this protection was lost in an endogenous HN knockdown cell model. In addition, to the best of our knowledge, the present study was the first to identify that HN increased mitochondrial autophagy, which was involved in reducing ROS production under oxidative stress. The present study indicated a potential mechanism underlying the anti-oxidative damage and apoptotic effects of HN under oxidative stress. In conclusion, HN may be a potential therapeutic target for ARCs as it has a significant cellular protective effect on HLECs under oxidative stress; therefore, further study is required to investigate its role in the occurrence and development of ARCs.
Collapse
Affiliation(s)
- Hao Yang
- Zhejiang Provincial Key Lab of Ophthalmology Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Yilei Cui
- Zhejiang Provincial Key Lab of Ophthalmology Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Yelei Tang
- Department of Neurology, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiajing Tang
- Zhejiang Provincial Key Lab of Ophthalmology Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiaoning Yu
- Zhejiang Provincial Key Lab of Ophthalmology Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jiayue Zhou
- Zhejiang Provincial Key Lab of Ophthalmology Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Qichuan Yin
- Zhejiang Provincial Key Lab of Ophthalmology Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Xingchao Shentu
- Zhejiang Provincial Key Lab of Ophthalmology Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
11
|
Humanin Promotes Tumor Progression in Experimental Triple Negative Breast Cancer. Sci Rep 2020; 10:8542. [PMID: 32444831 PMCID: PMC7244539 DOI: 10.1038/s41598-020-65381-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 04/29/2020] [Indexed: 02/06/2023] Open
Abstract
Humanin (HN) is a mitochondrial-derived peptide with cytoprotective effect in many tissues. Administration of HN analogs has been proposed as therapeutic approach for degenerative diseases. Although HN has been shown to protect normal tissues from chemotherapy, its role in tumor pathogenesis is poorly understood. Here, we evaluated the effect of HN on the progression of experimental triple negative breast cancer (TNBC). The meta-analysis of transcriptomic data from The Cancer Genome Atlas indicated that HN and its receptors are expressed in breast cancer specimens. By immunohistochemistry we observed up-regulation of HN in TNBC biopsies when compared to mammary gland sections from healthy donors. Addition of exogenous HN protected TNBC cells from apoptotic stimuli whereas shRNA-mediated HN silencing reduced their viability and enhanced their chemo-sensitivity. Systemic administration of HN in TNBC-bearing mice reduced tumor apoptotic rate, impaired the antitumor and anti-metastatic effect of chemotherapy and stimulated tumor progression, accelerating tumor growth and development of spontaneous lung metastases. These findings suggest that HN may exert pro-tumoral effects and thus, caution should be taken when using exogenous HN to treat degenerative diseases. In addition, our study suggests that HN blockade could constitute a therapeutic strategy to improve the efficacy of chemotherapy in breast cancer.
Collapse
|
12
|
Ma Y, Li S, Wei X, Huang J, Lai M, Wang N, Huang Q, Zhao L, Peng Y, Wang Y. Comparison of serum concentrations of humanin in women with and without gestational diabetes mellitus. Gynecol Endocrinol 2018; 34:1064-1067. [PMID: 29909696 DOI: 10.1080/09513590.2018.1482869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Humanin (MT-RNR2) is an endogenous polypeptide that is involved in many diseases, including T2DM. Gestational diabetes mellitus (GDM) is defined as hyperglycemia during pregnancy. The aim of this study was to evaluate serum humanin levels in women with or without GDM and to elucidate possible correlations with anthropometric parameters, metabolic parameters and the incidence of GDM. Eighty-four women with GDM and 73 control women were enrolled in this study. The clinical and biochemical parameters of all subjects were determined. Serum humanin levels were measured by an ELISA. Serum humanin levels were significantly lower in women with GDM than in control women. Moreover, humanin levels were significantly negatively correlated with the presence of GDM, body weight, BMI at 24 weeks of gestation, TG, FPG, 1 hPG, 2 hPG, FINS, and HOMA-IR. In contrast, humanin levels were significantly positively correlated with FT3 and FT4. A binary logistic analysis showed that humanin levels were associated with the incidence of GDM. Additional follow-up studies are needed to highlight whether and how decreased humanin levels play an important role in GDM.
Collapse
Affiliation(s)
- Yuhang Ma
- a Department of Endocrinology and Metabolism , Shanghai General Hospital, Shanghai Jiao Tong University , Shanghai , China
| | - Shumei Li
- b Shanghai First School of Clinical Medicine , Nanjing Medical University , Shanghai , China
- c Department of Endocrinology and Metabolism , Shanghai Fourth People's Hospital , Shanghai , China
| | - Xiaohui Wei
- a Department of Endocrinology and Metabolism , Shanghai General Hospital, Shanghai Jiao Tong University , Shanghai , China
| | - Jingjing Huang
- a Department of Endocrinology and Metabolism , Shanghai General Hospital, Shanghai Jiao Tong University , Shanghai , China
| | - Mengyu Lai
- a Department of Endocrinology and Metabolism , Shanghai General Hospital, Shanghai Jiao Tong University , Shanghai , China
| | - Nian Wang
- a Department of Endocrinology and Metabolism , Shanghai General Hospital, Shanghai Jiao Tong University , Shanghai , China
| | - Qianfang Huang
- a Department of Endocrinology and Metabolism , Shanghai General Hospital, Shanghai Jiao Tong University , Shanghai , China
| | - Li Zhao
- a Department of Endocrinology and Metabolism , Shanghai General Hospital, Shanghai Jiao Tong University , Shanghai , China
| | - Yongde Peng
- a Department of Endocrinology and Metabolism , Shanghai General Hospital, Shanghai Jiao Tong University , Shanghai , China
| | - Yufan Wang
- a Department of Endocrinology and Metabolism , Shanghai General Hospital, Shanghai Jiao Tong University , Shanghai , China
| |
Collapse
|
13
|
Peng T, Wan W, Wang J, Liu Y, Fu Z, Ma X, Li J, Sun G, Ji Y, Lu J, Lu H, Liu Y. The Neurovascular Protective Effect of S14G-Humanin in a Murine MCAO Model and Brain Endothelial Cells. IUBMB Life 2018; 70:691-699. [PMID: 29999240 DOI: 10.1002/iub.1869] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/19/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Tao Peng
- Key-Disciplines Laboratory Clinical Medicine Henan, Department of Neurology; The 1st Affiliated Hospital of Zhengzhou University; Zhengzhou Henan 450052 China
| | - Wencui Wan
- Department of Ophthalmology; The 1st Affiliated Hospital of Zhengzhou University; Zhengzhou Henan 450052 China
| | - Jingtao Wang
- Key-Disciplines Laboratory Clinical Medicine Henan, Department of Neurology; The 1st Affiliated Hospital of Zhengzhou University; Zhengzhou Henan 450052 China
| | - Yu Liu
- Key-Disciplines Laboratory Clinical Medicine Henan, Department of Neurology; The 1st Affiliated Hospital of Zhengzhou University; Zhengzhou Henan 450052 China
| | - Zhenqiang Fu
- Key-Disciplines Laboratory Clinical Medicine Henan, Department of Neurology; The 1st Affiliated Hospital of Zhengzhou University; Zhengzhou Henan 450052 China
| | - Xingrong Ma
- Key-Disciplines Laboratory Clinical Medicine Henan, Department of Neurology; The 1st Affiliated Hospital of Zhengzhou University; Zhengzhou Henan 450052 China
| | - Junmin Li
- Key-Disciplines Laboratory Clinical Medicine Henan, Department of Neurology; The 1st Affiliated Hospital of Zhengzhou University; Zhengzhou Henan 450052 China
| | - Guifang Sun
- Key-Disciplines Laboratory Clinical Medicine Henan, Department of Neurology; The 1st Affiliated Hospital of Zhengzhou University; Zhengzhou Henan 450052 China
| | - Yangfei Ji
- Key-Disciplines Laboratory Clinical Medicine Henan, Department of Neurology; The 1st Affiliated Hospital of Zhengzhou University; Zhengzhou Henan 450052 China
| | - Jingjing Lu
- Key-Disciplines Laboratory Clinical Medicine Henan, Department of Neurology; The 1st Affiliated Hospital of Zhengzhou University; Zhengzhou Henan 450052 China
| | - Hong Lu
- Key-Disciplines Laboratory Clinical Medicine Henan, Department of Neurology; The 1st Affiliated Hospital of Zhengzhou University; Zhengzhou Henan 450052 China
| | - Yufeng Liu
- Department of Pediatrics; The 1st Affiliated Hospital of Zhengzhou University; Zhengzhou Henan 450052 China
| |
Collapse
|
14
|
Janzen C, Lei MYY, Jeong ISD, Ganguly A, Sullivan P, Paharkova V, Capodanno G, Nakamura H, Perry A, Shin BC, Lee KW, Devaskar SU. Humanin (HN) and glucose transporter 8 (GLUT8) in pregnancies complicated by intrauterine growth restriction. PLoS One 2018; 13:e0193583. [PMID: 29590129 PMCID: PMC5873989 DOI: 10.1371/journal.pone.0193583] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 02/14/2018] [Indexed: 12/20/2022] Open
Abstract
Background Intrauterine growth restriction (IUGR) results from a lack of nutrients transferred to the developing fetus, particularly oxygen and glucose. Increased expression of the cytoprotective mitochondrial peptide, humanin (HN), and the glucose transporter 8, GLUT8, has been reported under conditions of hypoxic stress. However, the presence and cellular localization of HN and GLUT8 in IUGR-related placental pathology remain unexplored. Thus, we undertook this study to investigate placental expression of HN and GLUT8 in IUGR-affected versus normal pregnancies. Results We found 1) increased HN expression in human IUGR-affected pregnancies on the maternal aspect of the placenta (extravillous trophoblastic (EVT) cytoplasm) compared to control (i.e. appropriate for gestational age) pregnancies, and a concomitant increase in GLUT8 expression in the same compartment, 2) HN and GLUT8 showed a protein-protein interaction by co-immunoprecipitation, 3) elevated HN and GLUT8 levels in vitro under simulated hypoxia in human EVT cells, HTR8/SVneo, and 4) increased HN expression but attenuated GLUT8 expression in vitro under serum deprivation in HTR8/SVneo cells. Conclusions There was elevated HN expression with cytoplasmic localization to EVTs on the maternal aspect of the human placenta affected by IUGR, also associated with increased GLUT8 expression. We found that while hypoxia increased both HN and GLUT8, serum deprivation increased HN expression alone. Also, a protein-protein interaction between HN and GLUT8 suggests that their interaction may fulfill a biologic role that requires interdependency. Future investigations delineating molecular interactions between these proteins are required to fully uncover their role in IUGR-affected pregnancies.
Collapse
Affiliation(s)
- Carla Janzen
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- * E-mail:
| | - Margarida Y. Y. Lei
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Il Seok D. Jeong
- Department of Pediatrics, Division of Endocrinology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Neonatal Research Center of the UCLA Children’s Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Amit Ganguly
- Neonatal Research Center of the UCLA Children’s Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Pediatrics, Division of Neonatology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Peggy Sullivan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Vladislava Paharkova
- Department of Pediatrics, Division of Endocrinology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Neonatal Research Center of the UCLA Children’s Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Gina Capodanno
- Department of Pediatrics, Division of Endocrinology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Neonatal Research Center of the UCLA Children’s Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Hiromi Nakamura
- Department of Pediatrics, Division of Endocrinology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Neonatal Research Center of the UCLA Children’s Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Alix Perry
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Bo-Chul Shin
- Neonatal Research Center of the UCLA Children’s Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Pediatrics, Division of Neonatology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Kuk-Wha Lee
- Department of Pediatrics, Division of Endocrinology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Neonatal Research Center of the UCLA Children’s Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Sherin U. Devaskar
- Neonatal Research Center of the UCLA Children’s Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Pediatrics, Division of Neonatology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| |
Collapse
|
15
|
Gonzalez TL, Sun T, Koeppel AF, Lee B, Wang ET, Farber CR, Rich SS, Sundheimer LW, Buttle RA, Chen YDI, Rotter JI, Turner SD, Williams J, Goodarzi MO, Pisarska MD. Sex differences in the late first trimester human placenta transcriptome. Biol Sex Differ 2018; 9:4. [PMID: 29335024 PMCID: PMC5769539 DOI: 10.1186/s13293-018-0165-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/03/2018] [Indexed: 12/31/2022] Open
Abstract
Background Development of the placenta during the late first trimester is critical to ensure normal growth and development of the fetus. Developmental differences in this window such as sex-specific variation are implicated in later placental disease states, yet gene expression at this time is poorly understood. Methods RNA-sequencing was performed to characterize the transcriptome of 39 first trimester human placentas using chorionic villi following genetic testing (17 females, 22 males). Gene enrichment analysis was performed to find enriched canonical pathways and gene ontologies in the first trimester. DESeq2 was used to find sexually dimorphic gene expression. Patient demographics were analyzed for sex differences in fetal weight at time of chorionic villus sampling and birth. Results RNA-sequencing analyses detected 14,250 expressed genes, with chromosome 19 contributing the greatest proportion (973/2852, 34.1% of chromosome 19 genes) and Y chromosome contributing the least (16/568, 2.8%). Several placenta-enriched genes as well as histone-coding genes were identified to be unique to the first trimester and common to both sexes. Further, we identified 58 genes with significantly different expression between males and females: 25 X-linked, 15 Y-linked, and 18 autosomal genes. Genes that escape X inactivation were highly represented (59.1%) among X-linked genes upregulated in females. Many genes differentially expressed by sex consisted of X/Y gene pairs, suggesting that dosage compensation plays a role in sex differences. These X/Y pairs had roles in parallel, ancient canonical pathways important for eukaryotic cell growth and survival: chromatin modification, transcription, splicing, and translation. Conclusions This study is the first characterization of the late first trimester placenta transcriptome, highlighting similarities and differences among the sexes in ongoing human pregnancies resulting in live births. Sexual dimorphism may contribute to pregnancy outcomes, including fetal growth and birth weight, which was seen in our cohort, with males significantly heavier than females at birth. This transcriptome provides a basis for development of early diagnostic tests of placental function that can indicate overall pregnancy heath, fetal-maternal health, and long-term adult health. Electronic supplementary material The online version of this article (10.1186/s13293-018-0165-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tania L Gonzalez
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tianyanxin Sun
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Alexander F Koeppel
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Bora Lee
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Erica T Wang
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Division of Reproductive Endocrinology and Infertility, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Charles R Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Lauren W Sundheimer
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Division of Reproductive Endocrinology and Infertility, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Rae A Buttle
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | - Stephen D Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - John Williams
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mark O Goodarzi
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Margareta D Pisarska
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cedars-Sinai Medical Center, Los Angeles, CA, USA. .,Division of Reproductive Endocrinology and Infertility, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Singh B, Modica-Napolitano JS, Singh KK. Defining the momiome: Promiscuous information transfer by mobile mitochondria and the mitochondrial genome. Semin Cancer Biol 2017; 47:1-17. [PMID: 28502611 PMCID: PMC5681893 DOI: 10.1016/j.semcancer.2017.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/20/2017] [Accepted: 05/07/2017] [Indexed: 12/30/2022]
Abstract
Mitochondria are complex intracellular organelles that have long been identified as the powerhouses of eukaryotic cells because of the central role they play in oxidative metabolism. A resurgence of interest in the study of mitochondria during the past decade has revealed that mitochondria also play key roles in cell signaling, proliferation, cell metabolism and cell death, and that genetic and/or metabolic alterations in mitochondria contribute to a number of diseases, including cancer. Mitochondria have been identified as signaling organelles, capable of mediating bidirectional intracellular information transfer: anterograde (from nucleus to mitochondria) and retrograde (from mitochondria to nucleus). More recently, evidence is now building that the role of mitochondria extends to intercellular communication as well, and that the mitochondrial genome (mtDNA) and even whole mitochondria are indeed mobile and can mediate information transfer between cells. We define this promiscuous information transfer function of mitochondria and mtDNA as "momiome" to include all mobile functions of mitochondria and the mitochondrial genome. Herein, we review the "momiome" and explore its role in cancer development, progression, and treatment.
Collapse
Affiliation(s)
- Bhupendra Singh
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Keshav K Singh
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Environmental Health, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Aging, University of Alabama at Birmingham, Birmingham, AL, USA; UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA; Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA.
| |
Collapse
|
17
|
Thummasorn S, Shinlapawittayatorn K, Khamseekaew J, Jaiwongkam T, Chattipakorn SC, Chattipakorn N. Humanin directly protects cardiac mitochondria against dysfunction initiated by oxidative stress by decreasing complex I activity. Mitochondrion 2017; 38:31-40. [PMID: 28802666 DOI: 10.1016/j.mito.2017.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/12/2017] [Accepted: 08/07/2017] [Indexed: 10/19/2022]
Abstract
Humanin (HN) is an endogenous peptide that exerts cytoprotection against oxidative stress and apoptosis. We recently reported that Humanin analogue (HNG) pretreatment can reduce reactive oxygen species production in the heart subjected to ischemia/reperfusion (I/R) injury via attenuating mitochondrial dysfunction. However, it is unclear if HNG has direct effects on mitochondrial function against oxidative stress. Thus, we sought to determine the effects of HNG on mitochondrial function under hydrogen peroxide (H2O2) induced oxidative stress in isolated cardiac mitochondria. We found that HNG has direct protective effects on cardiac mitochondrial function against H2O2 induced oxidative stress through decreasing complex I activity.
Collapse
Affiliation(s)
- Savitree Thummasorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Krekwit Shinlapawittayatorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Juthamas Khamseekaew
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thidarat Jaiwongkam
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
18
|
Protective Mechanisms of the Mitochondrial-Derived Peptide Humanin in Oxidative and Endoplasmic Reticulum Stress in RPE Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1675230. [PMID: 28814984 PMCID: PMC5549471 DOI: 10.1155/2017/1675230] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/13/2017] [Accepted: 06/28/2017] [Indexed: 01/02/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause of severe and irreversible vision loss and is characterized by progressive degeneration of the retina resulting in loss of central vision. The retinal pigment epithelium (RPE) is a critical site of pathology of AMD. Mitochondria and the endoplasmic reticulum which lie in close anatomic proximity to each other are targets of oxidative stress and endoplasmic reticulum (ER) stress, respectively, and contribute to the progression of AMD. The two organelles exhibit close interactive function via various signaling mechanisms. Evidence for ER-mitochondrial crosstalk in RPE under ER stress and signaling pathways of apoptotic cell death is presented. The role of humanin (HN), a prominent member of a newly discovered family of mitochondrial-derived peptides (MDPs) expressed from an open reading frame of mitochondrial 16S rRNA, in modulation of ER and oxidative stress in RPE is discussed. HN protected RPE cells from oxidative and ER stress-induced cell death by upregulation of mitochondrial GSH, inhibition of ROS generation, and caspase 3 and 4 activation. The underlying mechanisms of ER-mitochondrial crosstalk and modulation by exogenous HN are discussed. The therapeutic use of HN and related MDPs could potentially prove to be a valuable approach for treatment of AMD.
Collapse
|
19
|
Nikolakopoulos P, Tzimagiorgis G, Goulis DG, Chatzopoulou F, Zepiridis L, Vavilis D. Serum humanin concentrations in women with pre-eclampsia compared to women with uncomplicated pregnancies. J Matern Fetal Neonatal Med 2017; 31:305-311. [PMID: 28110609 DOI: 10.1080/14767058.2017.1285885] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE To compare serum humanin concentrations in pregnant women with and without pre-eclampsia (PE). MATERIALS AND METHODS A case-control study where pregnant women (PE group, n = 37; control group, n = 34) studied through history parameters (gynecological, obstetrical, personal, and family), physical and sonographic examination parameters [body mass index (BMI), blood pressure obstetrical ultrasound], and biochemical/hormonal assays [creatinine, urea, serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), uric acid, platelets, urinary protein, and humanin]. RESULTS There was no difference in basic characteristics between women with PE and control, except in parity and gravidity. Humanin concentrations were higher in women with PE compared to controls (422.2 ± 33.5 vs. 319.1 ± 28.1 pg/ml, p = 0.023). In a binary logistic analysis, humanin was associated with the presence of PE [odds ratio 1.003, 95% confidence interval (CI); 1.000-1.006]. The ability of humanin to discriminate between women with PE and controls was evaluated by receiver operation characteristics (ROC) analysis [area under the curve (AUC) 0.639, 95% CI; 0.510-0.768, p = 0.045]. CONCLUSIONS Serum humanin concentrations are increased in women with PE, compared to women with uncomplicated pregnancies, suggesting a potential protective role of humanin against the oxidative stress and endothelial dysfunction occurring in PE.
Collapse
Affiliation(s)
- Panagiotis Nikolakopoulos
- a First Department of Obstetrics and Gynecology , Medical School, Aristotle University of Thessaloniki , Thessaloniki, Greece.,b Department of Gynecology , 424 Military General Hospital , Thessaloniki , Greece
| | - Georgios Tzimagiorgis
- c Laboratory of Biological Chemistry , Medical School, Aristotle University of Thessaloniki , Thessaloniki, Thessaloniki, Greece
| | - Dimitrios G Goulis
- a First Department of Obstetrics and Gynecology , Medical School, Aristotle University of Thessaloniki , Thessaloniki, Greece
| | - Fani Chatzopoulou
- c Laboratory of Biological Chemistry , Medical School, Aristotle University of Thessaloniki , Thessaloniki, Thessaloniki, Greece
| | - Leonidas Zepiridis
- a First Department of Obstetrics and Gynecology , Medical School, Aristotle University of Thessaloniki , Thessaloniki, Greece
| | - Dimitrios Vavilis
- a First Department of Obstetrics and Gynecology , Medical School, Aristotle University of Thessaloniki , Thessaloniki, Greece
| |
Collapse
|
20
|
Herst PM, Rowe MR, Carson GM, Berridge MV. Functional Mitochondria in Health and Disease. Front Endocrinol (Lausanne) 2017; 8:296. [PMID: 29163365 PMCID: PMC5675848 DOI: 10.3389/fendo.2017.00296] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/16/2017] [Indexed: 01/10/2023] Open
Abstract
The ability to rapidly adapt cellular bioenergetic capabilities to meet rapidly changing environmental conditions is mandatory for normal cellular function and for cancer progression. Any loss of this adaptive response has the potential to compromise cellular function and render the cell more susceptible to external stressors such as oxidative stress, radiation, chemotherapeutic drugs, and hypoxia. Mitochondria play a vital role in bioenergetic and biosynthetic pathways and can rapidly adjust to meet the metabolic needs of the cell. Increased demand is met by mitochondrial biogenesis and fusion of individual mitochondria into dynamic networks, whereas a decrease in demand results in the removal of superfluous mitochondria through fission and mitophagy. Effective communication between nucleus and mitochondria (mito-nuclear cross talk), involving the generation of different mitochondrial stress signals as well as the nuclear stress response pathways to deal with these stressors, maintains bioenergetic homeostasis under most conditions. However, when mitochondrial DNA (mtDNA) mutations accumulate and mito-nuclear cross talk falters, mitochondria fail to deliver critical functional outputs. Mutations in mtDNA have been implicated in neuromuscular and neurodegenerative mitochondriopathies and complex diseases such as diabetes, cardiovascular diseases, gastrointestinal disorders, skin disorders, aging, and cancer. In some cases, drastic measures such as acquisition of new mitochondria from donor cells occurs to ensure cell survival. This review starts with a brief discussion of the evolutionary origin of mitochondria and summarizes how mutations in mtDNA lead to mitochondriopathies and other degenerative diseases. Mito-nuclear cross talk, including various stress signals generated by mitochondria and corresponding stress response pathways activated by the nucleus are summarized. We also introduce and discuss a small family of recently discovered hormone-like mitopeptides that modulate body metabolism. Under conditions of severe mitochondrial stress, mitochondria have been shown to traffic between cells, replacing mitochondria in cells with damaged and malfunctional mtDNA. Understanding the processes involved in cellular bioenergetics and metabolic adaptation has the potential to generate new knowledge that will lead to improved treatment of many of the metabolic, degenerative, and age-related inflammatory diseases that characterize modern societies.
Collapse
Affiliation(s)
- Patries M. Herst
- Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
- Department of Radiation Therapy, University of Otago, Wellington, New Zealand
- *Correspondence: Patries M. Herst, ; Michael V. Berridge,
| | - Matthew R. Rowe
- School of Biological Sciences, Victoria University, Wellington, New Zealand
| | - Georgia M. Carson
- Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
- School of Biological Sciences, Victoria University, Wellington, New Zealand
| | - Michael V. Berridge
- Cancer Cell Biology, Malaghan Institute of Medical Research, Wellington, New Zealand
- *Correspondence: Patries M. Herst, ; Michael V. Berridge,
| |
Collapse
|
21
|
Riazi-Esfahani M, Kuppermann BD, Kenney MC. The Role of Mitochondria in AMD: Current Knowledge and Future Applications. J Ophthalmic Vis Res 2017; 12:424-428. [PMID: 29090054 PMCID: PMC5644411 DOI: 10.4103/jovr.jovr_182_17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitochondria are organelles which comprise the main respiratory machinery in the eukaryotic cells. In addition to their crucial role in energy production, they have profound effects on apoptosis and retrograde signaling to nucleus. Mitochondria have their own DNA, which codes for different proteins mostly involved in oxidative phosphorylation. Significant changes in the mitochondria of retinal pigment epithelium have been reported in age-related macular degeneration (AMD), which is correlated with the severity of the disease. Cybrid cell lines that have identical nuclei but mitochondria from different individuals can provide a unique means for studying the relationship between mitochondria and AMD. Different approaches for protection of mitochondria have been introduced which can be considered as potential future treatments for AMD and other age- related disorders.
Collapse
Affiliation(s)
- Mohammad Riazi-Esfahani
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, USA.,Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Baruch D Kuppermann
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, USA.,Department of Biomedical Engineering, University of California Irvine, Irvine, California, USA
| | - M Cristina Kenney
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, California, USA.,Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
22
|
Thummasorn S, Apaijai N, Kerdphoo S, Shinlapawittayatorn K, Chattipakorn SC, Chattipakorn N. Humanin exerts cardioprotection against cardiac ischemia/reperfusion injury through attenuation of mitochondrial dysfunction. Cardiovasc Ther 2016; 34:404-414. [DOI: 10.1111/1755-5922.12210] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Savitree Thummasorn
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit; Department of Physiology; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology; Chiang Mai University; Chiang Mai Thailand
| | - Nattayaporn Apaijai
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit; Department of Physiology; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology; Chiang Mai University; Chiang Mai Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
| | - Krekwit Shinlapawittayatorn
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit; Department of Physiology; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology; Chiang Mai University; Chiang Mai Thailand
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit; Department of Physiology; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology; Chiang Mai University; Chiang Mai Thailand
- Department of Oral Biology and Diagnostic Sciences; Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit; Department of Physiology; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology; Chiang Mai University; Chiang Mai Thailand
| |
Collapse
|
23
|
Voigt A, Jelinek HF. Humanin: a mitochondrial signaling peptide as a biomarker for impaired fasting glucose-related oxidative stress. Physiol Rep 2016; 4:e12796. [PMID: 27173674 PMCID: PMC4873641 DOI: 10.14814/phy2.12796] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 04/19/2016] [Accepted: 04/25/2016] [Indexed: 01/13/2023] Open
Abstract
Mitochondrial RNR-2 (mt-RNR2, humanin) has been shown to play a role in protecting several types of cells and tissues from the effects of oxidative stress. Humanin (HN) functions through extracellular and intracellular pathways adjusting mitochondrial oxidative phosphorylation and ATP production. Addition of HN improved insulin sensitivity in animal models of diabetes mellitus but no clinical studies have been carried out to measure HN levels in humans associated with hyperglycemia. The plasma levels of HN in participants attending a diabetes complications screening clinic were measured. Clinical history and anthropometric data were obtained from all participants. Plasma levels of HN were measured by a commercial ELISA kit. All data were analyzed applying nonparametric statistics and general linear modeling to correct for age and gender. A significant decrease (P = 0.0001) in HN was observed in the impaired fasting glucose (IFG) group (n = 23; 204.84 ± 92.87 pg mL(-1)) compared to control (n = 58; 124.3 ± 83.91 pg mL(-1)) consistent with an adaptive cellular response by HN to a slight increase in BGL.
Collapse
Affiliation(s)
- Annet Voigt
- Department of Biochemistry, Freie Universität Berlin, Berlin, Germany School of Community Health and Centre for Research in Complex Systems, Charles Sturt University, Bathurst, Australia
| | - Herbert F Jelinek
- School of Community Health and Centre for Research in Complex Systems, Charles Sturt University, Bathurst, Australia Division of Cardiology, Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
| |
Collapse
|
24
|
Charununtakorn ST, Shinlapawittayatorn K, Chattipakorn SC, Chattipakorn N. Potential Roles of Humanin on Apoptosis in the Heart. Cardiovasc Ther 2016; 34:107-14. [DOI: 10.1111/1755-5922.12168] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Savitree T. Charununtakorn
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit; Department of Physiology; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology; Chiang Mai University; Chiang Mai Thailand
| | - Krekwit Shinlapawittayatorn
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit; Department of Physiology; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology; Chiang Mai University; Chiang Mai Thailand
| | - Siriporn C. Chattipakorn
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit; Department of Physiology; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology; Chiang Mai University; Chiang Mai Thailand
- Department of Oral Biology and Diagnostic Sciences; Faculty of Dentistry; Chiang Mai University; Chiang Mai Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Cardiac Electrophysiology Unit; Department of Physiology; Faculty of Medicine; Chiang Mai University; Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology; Chiang Mai University; Chiang Mai Thailand
| |
Collapse
|
25
|
Sreekumar PG, Ishikawa K, Spee C, Mehta HH, Wan J, Yen K, Cohen P, Kannan R, Hinton DR. The Mitochondrial-Derived Peptide Humanin Protects RPE Cells From Oxidative Stress, Senescence, and Mitochondrial Dysfunction. Invest Ophthalmol Vis Sci 2016; 57:1238-53. [PMID: 26990160 PMCID: PMC4811181 DOI: 10.1167/iovs.15-17053] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 02/08/2016] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate the expression of humanin (HN) in human retinal pigment epithelial (hRPE) cells and its effect on oxidative stress-induced cell death, mitochondrial bioenergetics, and senescence. METHODS Humanin localization in RPE cells and polarized RPE monolayers was assessed by confocal microscopy. Human RPE cells were treated with 150 μM tert-Butyl hydroperoxide (tBH) in the absence/presence of HN (0.5-10 μg/mL) for 24 hours. Mitochondrial respiration was measured by XF96 analyzer. Retinal pigment epithelial cell death and caspase-3 activation, mitochondrial biogenesis and senescence were analyzed by TUNEL, immunoblot analysis, mitochondrial DNA copy number, SA-β-Gal staining, and p16INK4a expression and HN levels by ELISA. Oxidative stress-induced changes in transepithelial resistance were studied in RPE monolayers with and without HN cotreatment. RESULTS A prominent localization of HN was found in the cytoplasmic and mitochondrial compartments of hRPE. Humanin cotreatment inhibited tBH-induced reactive oxygen species formation and significantly restored mitochondrial bioenergetics in hRPE cells. Exogenous HN was taken up by RPE and colocalized with mitochondria. The oxidative stress-induced decrease in mitochondrial bioenergetics was prevented by HN cotreatment. Humanin treatment increased mitochondrial DNA copy number and upregulated mitochondrial transcription factor A, a key biogenesis regulator protein. Humanin protected RPE cells from oxidative stress-induced cell death by STAT3 phosphorylation and inhibiting caspase-3 activation. Humanin treatment inhibited oxidant-induced senescence. Polarized RPE demonstrated elevated cellular HN and increased resistance to cell death. CONCLUSIONS Humanin protected RPE cells against oxidative stress-induced cell death and restored mitochondrial function. Our data suggest a potential role for HN therapy in the prevention of retinal degeneration, including AMD.
Collapse
Affiliation(s)
- Parameswaran G. Sreekumar
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, California, United States
| | - Keijiro Ishikawa
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, California, United States
| | - Chris Spee
- Department of Ophthalmology, University of Southern California, Los Angeles, California, United States
| | - Hemal H. Mehta
- USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States
| | - Junxiang Wan
- USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States
| | - Kelvin Yen
- USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States
| | - Pinchas Cohen
- USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, United States
| | - Ram Kannan
- Arnold and Mabel Beckman Macular Research Center, Doheny Eye Institute, Los Angeles, California, United States
| | - David R. Hinton
- Department of Ophthalmology, University of Southern California, Los Angeles, California, United States
- Department of Pathology, University of Southern California, Los Angeles, California, United States
| |
Collapse
|
26
|
Protective effects of Humanin and calmodulin-like skin protein in Alzheimer's disease and broad range of abnormalities. Mol Neurobiol 2014; 51:1232-9. [PMID: 24969584 DOI: 10.1007/s12035-014-8799-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/18/2014] [Indexed: 02/07/2023]
Abstract
Humanin is a 24-amino acid, secreted bioactive peptide that prevents various types of cell death and improves some types of cell dysfunction. Humanin inhibits neuronal cell death that is caused by a familial Alzheimer's disease (AD)-linked gene via binding to the heterotrimeric Humanin receptor (htHNR). This suggests that Humanin may play a protective role in AD-related pathogenesis. Calmodulin-like skin protein (CLSP) has recently been identified as a physiological agonist of htHNR with 10(5)-fold more potent anti-cell death activity than Humanin. Humanin has also shown to have protective effects against some metabolic disorders. In this review, the broad range of functions of Humanin and the functions of CLSP that have been characterized thus far are summarized.
Collapse
|
27
|
Cui AL, Li JZ, Feng ZB, Ma GL, Gong L, Li CL, Zhang C, Li K. Humanin rescues cultured rat cortical neurons from NMDA-induced toxicity not by NMDA receptor. ScientificWorldJournal 2014; 2014:341529. [PMID: 24959608 PMCID: PMC4052483 DOI: 10.1155/2014/341529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/11/2014] [Accepted: 04/29/2014] [Indexed: 01/24/2023] Open
Abstract
Excitatory neurotoxicity has been implicated in many pathological situations and there is no effective treatment available. Humanin is a 24-aa peptide cloned from the brain of patients with Alzheimer's disease (AD). In the present study, excitatory toxicity was induced by N-methyl-D-aspartate (NMDA) in primarily cultured rat cortical neurons. MTT assessment, lactate dehydrogenase (LDH) release, and calcein staining were employed to evaluate the protective activity of humanin on NMDA induced toxicity. The results suggested that NMDA (100 μmol/L, 2.5 hr) triggered neuronal morphological changes, lactate dehydrogenase (LDH) release (166% of the control), reduction of cell viability (about 50% of the control), and the decrease of living cell density (about 50% of the control). When pretreated with humanin, the toxicity was suppressed. The living cells' density of humanin treated group was similar to that of control. The cell viability was attenuated dose-dependently (IC50 = 0.132 nmol/L). The LDH release was also neutralized in a dose-dependent manner. In addition, the intracellular Ca(2+) overloading triggered by NMDA reverted quickly and humanin could not inhibit it. These findings indicate that humanin can rescue cortical neurons from NMDA-induced toxicity in rat but not through interfering with NMDA receptor directly.
Collapse
Affiliation(s)
- Ai-Ling Cui
- Key Laboratory of Tissue Regeneration of Henan Province, Xinxiang Medical College, Eastern Part of Jinsui Road, Xinxiang, Henan 453003, China
| | - Jian-Zhong Li
- Clinical Laboratory of Heji Hospital Affiliated to Changzhi Medical College, 271 East Taihang Road, Changzhi, Shanxi 046000, China
| | - Zhi-Bo Feng
- Key Laboratory of Tissue Regeneration of Henan Province, Xinxiang Medical College, Eastern Part of Jinsui Road, Xinxiang, Henan 453003, China
| | - Guo-Lin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Liang Gong
- Key Laboratory of Tissue Regeneration of Henan Province, Xinxiang Medical College, Eastern Part of Jinsui Road, Xinxiang, Henan 453003, China
| | - Chun-Ling Li
- Key Laboratory of Tissue Regeneration of Henan Province, Xinxiang Medical College, Eastern Part of Jinsui Road, Xinxiang, Henan 453003, China
| | - Ce Zhang
- Department of Physiology, Shanxi Medical University, No. 56 Xinjian Road, Taiyuan, Shanxi 030001, China
| | - Kefeng Li
- School of Medicine, University of California, San Diego (UCSD), San Diego, CA 92093, USA
| |
Collapse
|
28
|
Lee C, Yen K, Cohen P. Humanin: a harbinger of mitochondrial-derived peptides? Trends Endocrinol Metab 2013; 24:222-8. [PMID: 23402768 PMCID: PMC3641182 DOI: 10.1016/j.tem.2013.01.005] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/04/2013] [Accepted: 01/10/2013] [Indexed: 11/18/2022]
Abstract
Mitochondria have been largely considered as 'end-function' organelles, servicing the cell by producing energy and regulating cell death in response to complex signals. Being cellular entities with vital roles, mitochondria communicate back to the cell and actively engage in determining major cellular policies. These signals, collectively referred to as retrograde signals, are encoded in the nuclear genome or are secondary products of mitochondrial metabolism. Here, we discuss humanin, the first small peptide of a putative set of mitochondrial-derived peptides (MDPs), which exhibits strong cytoprotective actions against various stress and disease models. The study of humanin and other mitochondrial-derived retrograde signal peptides will aid in the identification of genes and peptides with therapeutic and diagnostic potential in treating human diseases.
Collapse
Affiliation(s)
- Changhan Lee
- University of Southern California Davis School of Gerontology, Ethel Percy Andrus Gerontology Center, University of Southern California, Los Angeles, CA 90089-0191, USA
| | | | | |
Collapse
|
29
|
Hashimoto Y, Nawa M, Kurita M, Tokizawa M, Iwamatsu A, Matsuoka M. Secreted calmodulin-like skin protein inhibits neuronal death in cell-based Alzheimer's disease models via the heterotrimeric Humanin receptor. Cell Death Dis 2013; 4:e555. [PMID: 23519124 PMCID: PMC3615737 DOI: 10.1038/cddis.2013.80] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Humanin is a secreted bioactive peptide that is protective in a variety of death models, including cell-based neuronal death models related to Alzheimer's disease (AD). To mediate the protective effect in AD-related death models, Humanin signals via a cell-surface receptor that is generally composed of three subunits: ciliary neurotrophic factor receptor α, WSX-1 and gp130 (heterotrimeric Humanin receptor; htHNR). However, the protective effect of Humanin via the htHNR is weak (EC50=1–10 μℳ); therefore, it is possible that another physiological agonist for this receptor exists in vivo. In the current study, calmodulin-like skin protein (CLSP), a calmodulin relative with an undefined function, was shown to be secreted and inhibit neuronal death via the htHNR with an EC50 of 10–100 pℳ. CLSP was highly expressed in the skin, and the concentration in circulating normal human blood was ∼5 nℳ. When administered intraperitoneally in mice, recombinant CLSP was transported across the blood-cerebrospinal fluid (CSF)-barrier and its concentration in the CSF reaches 1/100 of its serum concentration at 1 h after injection. These findings suggest that CLSP is a physiological htHNR agonist.
Collapse
Affiliation(s)
- Y Hashimoto
- Department of Pharmacology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Zacharias DG, Kim SG, Massat AE, Bachar AR, Oh YK, Herrmann J, Rodriguez-Porcel M, Cohen P, Lerman LO, Lerman A. Humanin, a cytoprotective peptide, is expressed in carotid atherosclerotic [corrected] plaques in humans. PLoS One 2012; 7:e31065. [PMID: 22328926 PMCID: PMC3273477 DOI: 10.1371/journal.pone.0031065] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 01/01/2012] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE The mechanism of atherosclerotic plaque progression leading to instability, rupture, and ischemic manifestation involves oxidative stress and apoptosis. Humanin (HN) is a newly emerging endogenously expressed cytoprotective peptide. Our goal was to determine the presence and localization of HN in carotid atherosclerotic plaques. METHODS AND RESULTS Plaque specimens from 34 patients undergoing carotid endarterectomy were classified according to symptomatic history. Immunostaining combined with digital microscopy revealed greater expression of HN in the unstable plaques of symptomatic compared to asymptomatic patients (29.42±2.05 vs. 14.14±2.13% of plaque area, p<0.0001). These data were further confirmed by immunoblot (density of HN/β-actin standard symptomatic vs. asymptomatic 1.32±0.14 vs. 0.79±0.11, p<0.01). TUNEL staining revealed a higher proportion of apoptotic nuclei in the plaques of symptomatic patients compared to asymptomatic (68.25±3.61 vs. 33.46±4.46% of nuclei, p<0.01). Double immunofluorescence labeling revealed co-localization of HN with macrophages (both M1 and M2 polarization), smooth muscle cells, fibroblasts, and dendritic cells as well as with inflammatory markers MMP2 and MMP9. CONCLUSIONS The study demonstrates a higher expression of HN in unstable carotid plaques that is localized to multiple cell types within the plaque. These data support the involvement of HN in atherosclerosis, possibly as an endogenous response to the inflammatory and apoptotic processes within the atheromatous plaque.
Collapse
Affiliation(s)
- David G. Zacharias
- Division of Cardiovascular Diseases, Department of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Sung Gyun Kim
- Division of Cardiovascular Diseases, Department of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Alfonso Eirin Massat
- Division of Cardiovascular Diseases, Department of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Adi R. Bachar
- Division of Cardiovascular Diseases, Department of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Yun K. Oh
- Division of Cardiovascular Diseases, Department of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Joerg Herrmann
- Division of Cardiovascular Diseases, Department of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Martin Rodriguez-Porcel
- Division of Cardiovascular Diseases, Department of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Pinchas Cohen
- Department of Pediatrics, Division of Endocrinology, Mattel Children's Hospital, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Lilach O. Lerman
- Department of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
| | - Amir Lerman
- Division of Cardiovascular Diseases, Department of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
31
|
Mancuso M, Orsucci D, Ali G, Lo Gerfo A, Fontanini G, Siciliano G. Advances in molecular diagnostics for mitochondrial diseases. EXPERT OPINION ON MEDICAL DIAGNOSTICS 2009; 3:557-569. [PMID: 23495985 DOI: 10.1517/17530050902967610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
BACKGROUND Mitochondrial disorders (MD) are diseases caused by impairment of the mitochondrial respiratory chain. Phenotypes are polymorphous and may range from pure myopathy to multisystemic disorders. The genetic defect can be located on mitochondrial or nuclear DNA. At present, diagnosis of MD requires a complex approach: measurement of serum lactate, electromyography, muscle histology and enzymology, and genetic analysis. Magnetic resonance spectroscopy allows the assessment of tissue metabolic alterations, thus providing useful information for the diagnosis and monitoring of MD. Molecular soluble markers of mitochondrial dysfunction, at rest and during exercise, can identify the impairment of the aerobic system in MD, but a reliable biomarker for the screening or diagnosis of MD is still needed. OBJECTIVE Molecular and genetic characterization of MD, together with other experimental approaches, contribute to add new insights to these diseases. Here, the role and advances of diagnostic techniques for MD are reviewed. CONCLUSION Possible applications of the results obtained by new molecular investigative approaches could in future guide therapeutic strategies.
Collapse
Affiliation(s)
- Michelangelo Mancuso
- University of Pisa, Neurological Clinic, Department of Neuroscience, Via Roma 67, 56126 Pisa, Italy +0039 050 992440 ; +0039 050 554808 ;
| | | | | | | | | | | |
Collapse
|
32
|
Bodzioch M, Lapicka-Bodzioch K, Zapala B, Kamysz W, Kiec-Wilk B, Dembinska-Kiec A. Evidence for potential functionality of nuclearly-encoded humanin isoforms. Genomics 2009; 94:247-56. [PMID: 19477263 DOI: 10.1016/j.ygeno.2009.05.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 05/18/2009] [Accepted: 05/19/2009] [Indexed: 11/15/2022]
Abstract
Humanin (HN) is a recently identified neuroprotective and antiapoptotic peptide derived from a portion of the mitochondrial MT-RNR2 gene. We provide bioinformatic and expression data suggesting the existence of 13 MT-RNR2-like nuclear loci predicted to maintain the open reading frames of 15 distinct full-length HN-like peptides. At least ten of these nuclear genes are expressed in human tissues, and respond to staurosporine (STS) and beta-carotene. Sequence comparisons of the nuclear HN isoforms and their homologues in other species reveal two consensus motifs, encompassing residues 5-11 (GFS/NCLLL), and 14-19 (SEIDLP/S). Proline vs serine in position 19 may determine whether the peptide is secreted or not, while threonine in position 13 may be important for cell surface receptor binding. Cytoprotection against the STS-induced apoptosis conferred by the polymorphic HN5 variant, in which threonine in position 13 is replaced with isoleucine, is reduced compared to the wild type HN5 peptide.
Collapse
Affiliation(s)
- Marek Bodzioch
- Department of Clinical Biochemistry, Collegium Medicum, Jagiellonian University, Kopernika 15a, 31-501 Krakow, Poland.
| | | | | | | | | | | |
Collapse
|