1
|
Sali S, Azzam L, Jaro T, Ali AAG, Mardini A, Al-Dajani O, Khattak S, Butler AE, Azeez JM, Nandakumar M. A perfect islet: reviewing recent protocol developments and proposing strategies for stem cell derived functional pancreatic islets. Stem Cell Res Ther 2025; 16:160. [PMID: 40165291 PMCID: PMC11959787 DOI: 10.1186/s13287-025-04293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
The search for an effective cell replacement therapy for diabetes has driven the development of "perfect" pancreatic islets from human pluripotent stem cells (hPSCs). These hPSC-derived pancreatic islet-like β cells can overcome the limitations for disease modelling, drug development and transplantation therapies in diabetes. Nevertheless, challenges remain in generating fully functional and mature β cells from hPSCs. This review underscores the significant efforts made by researchers to optimize various differentiation protocols aimed at enhancing the efficiency and quality of hPSC-derived pancreatic islets and proposes methods for their improvement. By emulating the natural developmental processes of pancreatic embryogenesis, specific growth factors, signaling molecules and culture conditions are employed to guide hPSCs towards the formation of mature β cells capable of secreting insulin in response to glucose. However, the efficiency of these protocols varies greatly among different human embryonic stem cell (hESC) and induced pluripotent stem cell (hiPSC) lines. This variability poses a particular challenge for generating patient-specific β cells. Despite recent advancements, the ultimate goal remains to develop a highly efficient directed differentiation protocol that is applicable across all genetic backgrounds of hPSCs. Although progress has been made, further research is required to optimize the protocols and characterization methods that could ensure the safety and efficacy of hPSC-derived pancreatic islets before they can be utilized in clinical settings.
Collapse
Affiliation(s)
- Sujitha Sali
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | - Leen Azzam
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Taraf Jaro
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Ahmed Ali Gebril Ali
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Ali Mardini
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Omar Al-Dajani
- School of Medicine, Royal College of Surgeons in Ireland Bahrain, Busaiteen, 15503, Bahrain
| | - Shahryar Khattak
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Alexandra E Butler
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain.
| | - Juberiya M Azeez
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | - Manjula Nandakumar
- Research Department, School of Postgraduate Studies & Research, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| |
Collapse
|
2
|
Ghasemi Gojani E, Rai S, Norouzkhani F, Shujat S, Wang B, Li D, Kovalchuk O, Kovalchuk I. Targeting β-Cell Plasticity: A Promising Approach for Diabetes Treatment. Curr Issues Mol Biol 2024; 46:7621-7667. [PMID: 39057094 PMCID: PMC11275945 DOI: 10.3390/cimb46070453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The β-cells within the pancreas play a pivotal role in insulin production and secretion, responding to fluctuations in blood glucose levels. However, factors like obesity, dietary habits, and prolonged insulin resistance can compromise β-cell function, contributing to the development of Type 2 Diabetes (T2D). A critical aspect of this dysfunction involves β-cell dedifferentiation and transdifferentiation, wherein these cells lose their specialized characteristics and adopt different identities, notably transitioning towards progenitor or other pancreatic cell types like α-cells. This process significantly contributes to β-cell malfunction and the progression of T2D, often surpassing the impact of outright β-cell loss. Alterations in the expressions of specific genes and transcription factors unique to β-cells, along with epigenetic modifications and environmental factors such as inflammation, oxidative stress, and mitochondrial dysfunction, underpin the occurrence of β-cell dedifferentiation and the onset of T2D. Recent research underscores the potential therapeutic value for targeting β-cell dedifferentiation to manage T2D effectively. In this review, we aim to dissect the intricate mechanisms governing β-cell dedifferentiation and explore the therapeutic avenues stemming from these insights.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.)
| |
Collapse
|
3
|
GLIS1-3: Links to Primary Cilium, Reprogramming, Stem Cell Renewal, and Disease. Cells 2022; 11:cells11111833. [PMID: 35681527 PMCID: PMC9180737 DOI: 10.3390/cells11111833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/10/2022] Open
Abstract
The GLI-Similar 1-3 (GLIS1-3) genes, in addition to encoding GLIS1-3 Krüppel-like zinc finger transcription factors, also generate circular GLIS (circGLIS) RNAs. GLIS1-3 regulate gene transcription by binding to GLIS binding sites in target genes, whereas circGLIS RNAs largely act as miRNA sponges. GLIS1-3 play a critical role in the regulation of many biological processes and have been implicated in various pathologies. GLIS protein activities appear to be regulated by primary cilium-dependent and -independent signaling pathways that via post-translational modifications may cause changes in the subcellular localization, proteolytic processing, and protein interactions. These modifications can affect the transcriptional activity of GLIS proteins and, consequently, the biological functions they regulate as well as their roles in disease. Recent studies have implicated GLIS1-3 proteins and circGLIS RNAs in the regulation of stemness, self-renewal, epithelial-mesenchymal transition (EMT), cell reprogramming, lineage determination, and differentiation. These biological processes are interconnected and play a critical role in embryonic development, tissue homeostasis, and cell plasticity. Dysregulation of these processes are part of many pathologies. This review provides an update on our current knowledge of the roles GLIS proteins and circGLIS RNAs in the control of these biological processes in relation to their regulation of normal physiological functions and disease.
Collapse
|
4
|
Mutations and variants of ONECUT1 in diabetes. Nat Med 2021; 27:1928-1940. [PMID: 34663987 DOI: 10.1038/s41591-021-01502-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/13/2021] [Indexed: 12/12/2022]
Abstract
Genes involved in distinct diabetes types suggest shared disease mechanisms. Here we show that One Cut Homeobox 1 (ONECUT1) mutations cause monogenic recessive syndromic diabetes in two unrelated patients, characterized by intrauterine growth retardation, pancreas hypoplasia and gallbladder agenesis/hypoplasia, and early-onset diabetes in heterozygous relatives. Heterozygous carriers of rare coding variants of ONECUT1 define a distinctive subgroup of diabetic patients with early-onset, nonautoimmune diabetes, who respond well to diabetes treatment. In addition, common regulatory ONECUT1 variants are associated with multifactorial type 2 diabetes. Directed differentiation of human pluripotent stem cells revealed that loss of ONECUT1 impairs pancreatic progenitor formation and a subsequent endocrine program. Loss of ONECUT1 altered transcription factor binding and enhancer activity and NKX2.2/NKX6.1 expression in pancreatic progenitor cells. Collectively, we demonstrate that ONECUT1 controls a transcriptional and epigenetic machinery regulating endocrine development, involved in a spectrum of diabetes, encompassing monogenic (recessive and dominant) as well as multifactorial inheritance. Our findings highlight the broad contribution of ONECUT1 in diabetes pathogenesis, marking an important step toward precision diabetes medicine.
Collapse
|
5
|
Scoville DW, Kang HS, Jetten AM. Transcription factor GLIS3: Critical roles in thyroid hormone biosynthesis, hypothyroidism, pancreatic beta cells and diabetes. Pharmacol Ther 2020; 215:107632. [PMID: 32693112 PMCID: PMC7606550 DOI: 10.1016/j.pharmthera.2020.107632] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/15/2020] [Indexed: 12/16/2022]
Abstract
GLI-Similar 3 (GLIS3) is a member of the GLIS subfamily of Krüppel-like zinc finger transcription factors that functions as an activator or repressor of gene expression. Study of GLIS3-deficiency in mice and humans revealed that GLIS3 plays a critical role in the regulation of several biological processes and is implicated in the development of various diseases, including hypothyroidism and diabetes. This was supported by genome-wide association studies that identified significant associations of common variants in GLIS3 with increased risk of these pathologies. To obtain insights into the causal mechanisms underlying these diseases, it is imperative to understand the mechanisms by which this protein regulates the development of these pathologies. Recent studies of genes regulated by GLIS3 led to the identification of a number of target genes and have provided important molecular insights by which GLIS3 controls cellular processes. These studies revealed that GLIS3 is essential for thyroid hormone biosynthesis and identified a critical function for GLIS3 in the generation of pancreatic β cells and insulin gene transcription. These observations raised the possibility that the GLIS3 signaling pathway might provide a potential therapeutic target in the management of diabetes, hypothyroidism, and other diseases. To develop such strategies, it will be critical to understand the upstream signaling pathways that regulate the activity, expression and function of GLIS3. Here, we review the recent progress on the molecular mechanisms by which GLIS3 controls key functions in thyroid follicular and pancreatic β cells and how this causally relates to the development of hypothyroidism and diabetes.
Collapse
Affiliation(s)
- David W Scoville
- Cell Biology Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Hong Soon Kang
- Cell Biology Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Anton M Jetten
- Cell Biology Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
6
|
Scoville DW, Gruzdev A, Jetten AM. Identification of a novel lncRNA (G3R1) regulated by GLIS3 in pancreatic β-cells. J Mol Endocrinol 2020; 65:59-67. [PMID: 32668405 PMCID: PMC7461731 DOI: 10.1530/jme-20-0082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/13/2020] [Indexed: 12/21/2022]
Abstract
Recent advances in high throughput RNA sequencing have revealed that, in addition to messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs) play an important role in the regulation of many cell functions and of organ development. While a number of lncRNAs have been identified in pancreatic islets, their function remains largely undetermined. Here, we identify a novel long ncRNA regulated by the transcription factor GLIS3, which we refer to as GLIS3 regulated 1 (G3R1). This lncRNA was identified for its significant loss of expression in GLIS3 knockout mouse pancreatic islets. G3R1 appears to be specifically expressed in mouse pancreatic β-cells and in a β-cell line (βTC-6). ChIP-seq analysis indicated that GLIS3 and other islet-enriched transcription factors bind near the G3R1 gene, suggesting they directly regulate G3R1 transcription. Similarly, an apparent human homolog of G3R1 displays a similar expression pattern, with additional expression seen in human brain. In order to determine the function of G3R1 in mouse pancreatic β-cells, we utilized CRISPR to develop a knockout mouse where ~80% of G3R1 sequence is deleted. Phenotypic analysis of these mice did not reveal any impairment in β-cell function or glucose regulation, indicating the complexity underlying the study of lncRNA function.
Collapse
Affiliation(s)
- David W. Scoville
- Cell Biology Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Artiom Gruzdev
- Knockout Mouse Core, Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Anton M. Jetten
- Cell Biology Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
7
|
Navarro-Tableros V, Gai C, Gomez Y, Giunti S, Pasquino C, Deregibus MC, Tapparo M, Pitino A, Tetta C, Brizzi MF, Ricordi C, Camussi G. Islet-Like Structures Generated In Vitro from Adult Human Liver Stem Cells Revert Hyperglycemia in Diabetic SCID Mice. Stem Cell Rev Rep 2020; 15:93-111. [PMID: 30191384 PMCID: PMC6510809 DOI: 10.1007/s12015-018-9845-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A potential therapeutic strategy for diabetes is the transplantation of induced-insulin secreting cells. Based on the common embryonic origin of liver and pancreas, we studied the potential of adult human liver stem-like cells (HLSC) to generate in vitro insulin-producing 3D spheroid structures (HLSC-ILS). HLSC-ILS were generated by a one-step protocol based on charge dependent aggregation of HLSC induced by protamine. 3D aggregation promoted the spontaneous differentiation into cells expressing insulin and several key markers of pancreatic β cells. HLSC-ILS showed endocrine granules similar to those seen in human β cells. In static and dynamic in vitro conditions, such structures produced C-peptide after stimulation with high glucose. HLSC-ILS significantly reduced hyperglycemia and restored a normo-glycemic profile when implanted in streptozotocin-diabetic SCID mice. Diabetic mice expressed human C-peptide and very low or undetectable levels of murine C-peptide. Hyperglycemia and a diabetic profile were restored after HLSC-ISL explant. The gene expression profile of in vitro generated HLSC-ILS showed a differentiation from HLSC profile and an endocrine commitment with the enhanced expression of several markers of β cell differentiation. The comparative analysis of gene expression profiles after 2 and 4 weeks of in vivo implantation showed a further β-cell differentiation, with a genetic profile still immature but closer to that of human islets. In conclusion, protamine-induced spheroid aggregation of HLSC triggers a spontaneous differentiation to an endocrine phenotype. Although the in vitro differentiated HLSC-ILS were immature, they responded to high glucose with insulin secretion and in vivo reversed hyperglycemia in diabetic SCID mice.
Collapse
Affiliation(s)
- Victor Navarro-Tableros
- 2i3T - Scarl.-Molecular Biotechnology Center (MBC), University of Turin, Via Nizza, 52, 10126, Turin, Italy
| | - Chiara Gai
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy.,Fondazione per la Ricerca Biomedica-ONLUS, Via Nizza, 52, 10126, Turin, Italy
| | - Yonathan Gomez
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy.,Fondazione per la Ricerca Biomedica-ONLUS, Via Nizza, 52, 10126, Turin, Italy
| | - Sara Giunti
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy.,Fondazione per la Ricerca Biomedica-ONLUS, Via Nizza, 52, 10126, Turin, Italy
| | - Chiara Pasquino
- Fondazione per la Ricerca Biomedica-ONLUS, Via Nizza, 52, 10126, Turin, Italy.,Molecular Biotechnology and Health Sciences, MBC, Via Nizza, 52, 10126, Turin, Italy
| | - Maria Chiara Deregibus
- 2i3T - Scarl.-Molecular Biotechnology Center (MBC), University of Turin, Via Nizza, 52, 10126, Turin, Italy
| | - Marta Tapparo
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy.,Fondazione per la Ricerca Biomedica-ONLUS, Via Nizza, 52, 10126, Turin, Italy
| | - Adriana Pitino
- Molecular Biotechnology and Health Sciences, MBC, Via Nizza, 52, 10126, Turin, Italy
| | | | - Maria Felice Brizzi
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy.,Fondazione per la Ricerca Biomedica-ONLUS, Via Nizza, 52, 10126, Turin, Italy
| | - Camillo Ricordi
- Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - Giovanni Camussi
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy. .,Fondazione per la Ricerca Biomedica-ONLUS, Via Nizza, 52, 10126, Turin, Italy.
| |
Collapse
|
8
|
Tremblay JR, Lopez K, Ku HT. A GLIS3-CD133-WNT-signaling axis regulates the self-renewal of adult murine pancreatic progenitor-like cells in colonies and organoids. J Biol Chem 2019; 294:16634-16649. [PMID: 31533988 PMCID: PMC6851293 DOI: 10.1074/jbc.ra118.002818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 09/15/2019] [Indexed: 12/19/2022] Open
Abstract
The existence and regenerative potential of resident stem and progenitor cells in the adult pancreas are controversial topics. A question that has been only minimally addressed is the capacity of a progenitor cell to self-renew, a key attribute that defines stem cells. Previously, our laboratory has identified putative stem and progenitor cells from the adult murine pancreas. Using an ex vivo colony/organoid culture system, we demonstrated that these stem/progenitor-like cells have self-renewal and multilineage differentiation potential. We have named these cells pancreatic colony-forming units (PCFUs) because they can give rise to three-dimensional colonies. However, the molecular mechanisms by which PCFUs self-renew have remained largely unknown. Here, we tested the hypothesis that PCFU self-renewal requires GLIS family zinc finger 3 (GLIS3), a zinc-finger transcription factor important in pancreas development. Pancreata from 2- to 4-month-old mice were dissociated, sorted for CD133highCD71low ductal cells, known to be enriched for PCFUs, and virally transduced with shRNAs to knock down GLIS3 and other proteins. We then plated these cells into our colony assays and analyzed the resulting colonies for protein and gene expression. Our results revealed a previously unknown GLIS3-to-CD133-to-WNT signaling axis in which GLIS3 and CD133 act as factors necessary for maintaining WNT receptors and signaling molecules in colonies, allowing responses to WNT ligands. Additionally, we found that CD133, but not GLIS3 or WNT, is required for phosphoinositide 3-kinase (PI3K)/AKT Ser/Thr kinase (AKT)-mediated PCFU survival. Collectively, our results uncover a molecular pathway that maintains self-renewal of adult murine PCFUs.
Collapse
Affiliation(s)
- Jacob R Tremblay
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California 91010
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California 91006
| | - Kassandra Lopez
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California 91010
| | - Hsun Teresa Ku
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California 91010
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California 91006
| |
Collapse
|
9
|
Scoville D, Lichti-Kaiser K, Grimm S, Jetten A. GLIS3 binds pancreatic beta cell regulatory regions alongside other islet transcription factors. J Endocrinol 2019; 243:JOE-19-0182.R2. [PMID: 31340201 PMCID: PMC6938561 DOI: 10.1530/joe-19-0182] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022]
Abstract
The Krüppel-like zinc finger transcription factor Gli-similar 3 (GLIS3) plays a critical role in the regulation of pancreatic beta cells, with global Glis3 knockout mice suffering from severe hyperglycemia and dying by post-natal day 11. In addition, GLIS3 has been shown to directly regulate the early endocrine marker Ngn3, as well as Ins2 gene expression in mature beta cells. We hypothesize that GLIS3 regulates several other genes critical to beta cell function, in addition to Ins2, by directly binding to regulatory regions. We therefore generated a pancreas-specific Glis3 deletion mouse model (Glis3Δpanc) using a Pdx1-driven Cre mouse line. Roughly 20% of these mice develop hyperglycemia by 8-weeks and lose most of their insulin expression. However, this did not appear to be due to loss of the beta cells themselves, as no change in cell death was observed. Indeed, presumptive beta cells appeared to persist as PDX1+/INS-/MAFA-/GLUT2- cells. Islet RNA-seq analysis combined with GLIS3 ChIP-seq analysis revealed apparent direct regulation of a variety of diabetes related genes, including Slc2a2 and Mafa. GLIS3 binding near these genes coincided with binding for other islet-enriched transcription factors, indicating these are distinct regulatory hubs. Our data indicates that GLIS3 not only regulates insulin expression, but several additional genes critical for beta cell function.
Collapse
Affiliation(s)
- David Scoville
- D Scoville, Immunity, Inflammation, and Disease Laboratory, NIEHS, Durham, United States
| | - Kristin Lichti-Kaiser
- K Lichti-Kaiser, Immunity, Inflammation, and Disease Laboratory, NIEHS, Durham, United States
| | - Sara Grimm
- S Grimm, Integrative Bioinformatics Support Group, NIEHS, Durham, United States
| | - Anton Jetten
- A Jetten, Immunity, Inflammation, and Disease Laboratory, NIEHS, Durham, United States
| |
Collapse
|
10
|
Zhang X, McGrath PS, Salomone J, Rahal M, McCauley HA, Schweitzer J, Kovall R, Gebelein B, Wells JM. A Comprehensive Structure-Function Study of Neurogenin3 Disease-Causing Alleles during Human Pancreas and Intestinal Organoid Development. Dev Cell 2019; 50:367-380.e7. [PMID: 31178402 DOI: 10.1016/j.devcel.2019.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 02/25/2019] [Accepted: 05/06/2019] [Indexed: 01/09/2023]
Abstract
Neurogenin3 (NEUROG3) is required for endocrine lineage formation of the pancreas and intestine. Patients with NEUROG3 mutations are born with congenital malabsorptive diarrhea due to complete loss of enteroendocrine cells, whereas endocrine pancreas development varies in an allele-specific manner. These findings suggest a context-dependent requirement for NEUROG3 in pancreas versus intestine. We utilized human tissue differentiated from NEUROG3-/- pluripotent stem cells for functional analyses. Most disease-associated alleles had hypomorphic or null phenotype in both tissues, whereas the S171fsX68 mutation had reduced activity in the pancreas but largely null in the intestine. Biochemical studies revealed NEUROG3 variants have distinct molecular defects with altered protein stability, DNA binding, and gene transcription. Moreover, NEUROG3 was highly unstable in the intestinal epithelium, explaining the enhanced sensitivity of intestinal defects relative to the pancreas. These studies emphasize that studies of human mutations in the endogenous tissue context may be required to assess structure-function relationships.
Collapse
Affiliation(s)
- Xinghao Zhang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Patrick S McGrath
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Joseph Salomone
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mohamed Rahal
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Heather A McCauley
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jamie Schweitzer
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Rhett Kovall
- Department of Molecular Genetics, Biochemistry, & Microbiology, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
11
|
Yang Q, Wu J, Zhao J, Xu T, Zhao Z, Song X, Han P. Circular RNA expression profiles during the differentiation of mouse neural stem cells. BMC SYSTEMS BIOLOGY 2018; 12:128. [PMID: 30577840 PMCID: PMC6302452 DOI: 10.1186/s12918-018-0651-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Circular RNAs (circRNAs) have recently been found to be expressed in human brain tissue, and many lines ofevidence indicate that circRNAs play regulatory roles in neurodevelopment. Proliferation and differentiation of neural stem cells (NSCs) are critical parts during development of central nervous system (CNS).To date, there have been no reports ofcircRNA expression profiles during the differentiation of mouse NSCs. We hypothesizethat circRNAs mayregulate gene expression in the proliferation anddifferentiation of NSCs. Results In this study, we obtained NSCs from the wild-type C57BL/6 J mouse fetal cerebral cortex. We extracted total RNA from NSCs in different differentiation stagesand then performed RNA-seq. By analyzing the RNA-Seq data, we found 37circRNAs and 4182 mRNAs differentially expressedduringthe NSC differentiation. Gene Ontology (GO) enrichment analysis of thecognate linear genes of these circRNAsrevealed that some enriched GO terms were related to neural activity. Furthermore, we performed a co-expression network analysis of these differentially expressed circRNAs and mRNAs. The result suggested a stronger GO enrichmentin neural features for both the cognate linear genes of circRNAs and differentially expressed mRNAs. Conclusion We performed the first circRNA investigation during the differentiation of mouse NSCs. Wefound that12 circRNAs might have regulatory roles duringthe NSC differentiation, indicating that circRNAs might be modulated during NSC differentiation.Our network analysis suggested the possible complex circRNA-mRNA mechanisms during differentiation, and future experimental workis need to validate these possible mechanisms. Electronic supplementary material The online version of this article (10.1186/s12918-018-0651-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qichang Yang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, Jiangsu, China
| | - Jing Wu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, Jiangsu, China
| | - Jian Zhao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, Jiangsu, China
| | - Tianyi Xu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, Jiangsu, China
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA. .,Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, 37203, USA.
| | - Xiaofeng Song
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, Jiangsu, China.
| | - Ping Han
- The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210019, Jiangsu, China.
| |
Collapse
|
12
|
Jetten AM. GLIS1-3 transcription factors: critical roles in the regulation of multiple physiological processes and diseases. Cell Mol Life Sci 2018; 75:3473-3494. [PMID: 29779043 PMCID: PMC6123274 DOI: 10.1007/s00018-018-2841-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022]
Abstract
Krüppel-like zinc finger proteins form one of the largest families of transcription factors. They function as key regulators of embryonic development and a wide range of other physiological processes, and are implicated in a variety of pathologies. GLI-similar 1-3 (GLIS1-3) constitute a subfamily of Krüppel-like zinc finger proteins that act either as activators or repressors of gene transcription. GLIS3 plays a critical role in the regulation of multiple biological processes and is a key regulator of pancreatic β cell generation and maturation, insulin gene expression, thyroid hormone biosynthesis, spermatogenesis, and the maintenance of normal kidney functions. Loss of GLIS3 function in humans and mice leads to the development of several pathologies, including neonatal diabetes and congenital hypothyroidism, polycystic kidney disease, and infertility. Single nucleotide polymorphisms in GLIS3 genes have been associated with increased risk of several diseases, including type 1 and type 2 diabetes, glaucoma, and neurological disorders. GLIS2 plays a critical role in the kidney and GLIS2 dysfunction leads to nephronophthisis, an end-stage, cystic renal disease. In addition, GLIS1-3 have regulatory functions in several stem/progenitor cell populations. GLIS1 and GLIS3 greatly enhance reprogramming efficiency of somatic cells into induced embryonic stem cells, while GLIS2 inhibits reprogramming. Recent studies have obtained substantial mechanistic insights into several physiological processes regulated by GLIS2 and GLIS3, while a little is still known about the physiological functions of GLIS1. The localization of some GLIS proteins to the primary cilium suggests that their activity may be regulated by a downstream primary cilium-associated signaling pathway. Insights into the upstream GLIS signaling pathway may provide opportunities for the development of new therapeutic strategies for diabetes, hypothyroidism, and other diseases.
Collapse
Affiliation(s)
- Anton M Jetten
- Cell Biology Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
13
|
Scoville DW, Kang HS, Jetten AM. GLIS1-3: emerging roles in reprogramming, stem and progenitor cell differentiation and maintenance. Stem Cell Investig 2017; 4:80. [PMID: 29057252 DOI: 10.21037/sci.2017.09.01] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/27/2017] [Indexed: 12/12/2022]
Abstract
Recent studies have provided evidence for a regulatory role of GLI-similar (GLIS) transcription factors in reprogramming, maintenance and differentiation of several stem and progenitor cell populations. GLIS1, in conjunction with several other reprogramming factors, was shown to markedly increase the efficiency of generating induced pluripotent stem cells (iPSC) from somatic cells. GLIS2 has been reported to contribute to the maintenance of the pluripotent state in hPSCs. In addition, GLIS2 has a function in regulating self-renewal of hematopoietic progenitors and megakaryocytic differentiation. GLIS3 plays a critical role during the development of several tissues. GLIS3 is able to promote reprogramming of human fibroblasts into retinal pigmented epithelial (RPE) cells. Moreover, GLIS3 is essential for spermatogonial stem cell renewal and spermatogonial progenitor cell differentiation. During pancreas development, GLIS3 protein is first detectable in bipotent pancreatic progenitors and pro-endocrine progenitors and plays a critical role in the generation of pancreatic beta cells. Here, we review the current status of the roles of GLIS proteins in the maintenance and differentiation of these different stem and progenitor cells.
Collapse
Affiliation(s)
- David W Scoville
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Hong Soon Kang
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Anton M Jetten
- Cell Biology Section, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
14
|
Calderari S, Ria M, Gérard C, Nogueira TC, Villate O, Collins SC, Neil H, Gervasi N, Hue C, Suarez-Zamorano N, Prado C, Cnop M, Bihoreau MT, Kaisaki PJ, Cazier JB, Julier C, Lathrop M, Werner M, Eizirik DL, Gauguier D. Molecular genetics of the transcription factor GLIS3 identifies its dual function in beta cells and neurons. Genomics 2017; 110:98-111. [PMID: 28911974 DOI: 10.1016/j.ygeno.2017.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 08/08/2017] [Accepted: 09/01/2017] [Indexed: 01/06/2023]
Abstract
The GLIS family zinc finger 3 isoform (GLIS3) is a risk gene for Type 1 and Type 2 diabetes, glaucoma and Alzheimer's disease endophenotype. We identified GLIS3 binding sites in insulin secreting cells (INS1) (FDR q<0.05; enrichment range 1.40-9.11 fold) sharing the motif wrGTTCCCArTAGs, which were enriched in genes involved in neuronal function and autophagy and in risk genes for metabolic and neuro-behavioural diseases. We confirmed experimentally Glis3-mediated regulation of the expression of genes involved in autophagy and neuron function in INS1 and neuronal PC12 cells. Naturally-occurring coding polymorphisms in Glis3 in the Goto-Kakizaki rat model of type 2 diabetes were associated with increased insulin production in vitro and in vivo, suggestive alteration of autophagy in PC12 and INS1 and abnormal neurogenesis in hippocampus neurons. Our results support biological pleiotropy of GLIS3 in pathologies affecting β-cells and neurons and underline the existence of trans‑nosology pathways in diabetes and its co-morbidities.
Collapse
Affiliation(s)
- Sophie Calderari
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S1138, Cordeliers Research Centre, Paris, France
| | - Massimiliano Ria
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Christelle Gérard
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S1138, Cordeliers Research Centre, Paris, France
| | - Tatiane C Nogueira
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Olatz Villate
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Stephan C Collins
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Helen Neil
- FRE3377, Institut de Biologie et de Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique et aux Énergies Alternatives (CEA), Gif-sur-Yvette cedex, France
| | | | - Christophe Hue
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S1138, Cordeliers Research Centre, Paris, France
| | - Nicolas Suarez-Zamorano
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S1138, Cordeliers Research Centre, Paris, France
| | - Cécilia Prado
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S1138, Cordeliers Research Centre, Paris, France
| | - Miriam Cnop
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marie-Thérèse Bihoreau
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Pamela J Kaisaki
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jean-Baptiste Cazier
- Centre for Computational Biology, Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Cécile Julier
- INSERM UMR-S 958, Faculté de Médecine Paris Diderot, University Paris 7 Denis-Diderot, Paris, Sorbonne Paris Cité, France
| | - Mark Lathrop
- McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC H3A 0G1, Canada
| | - Michel Werner
- FRE3377, Institut de Biologie et de Technologies de Saclay (iBiTec-S), Commissariat à l'Energie Atomique et aux Énergies Alternatives (CEA), Gif-sur-Yvette cedex, France
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Dominique Gauguier
- Sorbonne Universities, University Pierre & Marie Curie, University Paris Descartes, Sorbonne Paris Cité, INSERM UMR_S1138, Cordeliers Research Centre, Paris, France; The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom; McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC H3A 0G1, Canada.
| |
Collapse
|
15
|
Muller YL, Piaggi P, Chen P, Wiessner G, Okani C, Kobes S, Knowler WC, Bogardus C, Hanson RL, Baier LJ. Assessing variation across 8 established East Asian loci for type 2 diabetes mellitus in American Indians: Suggestive evidence for new sex-specific diabetes signals in GLIS3 and ZFAND3. Diabetes Metab Res Rev 2017; 33. [PMID: 27862917 DOI: 10.1002/dmrr.2869] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/24/2016] [Accepted: 10/29/2016] [Indexed: 01/20/2023]
Abstract
BACKGROUND Eight new loci for type 2 diabetes mellitus (T2DM) were identified in an East Asian genome-wide association study meta-analysis. We assess tag SNPs across these loci for associations with T2DM in American Indians. METHODS A total of 435 SNPs that tag (R2 ≥ .85) common variation across the 8 loci were analyzed for association with T2DM (n = 7710), early onset T2DM (n = 1060), body mass index (n = 6839), insulin sensitivity (n = 555), and insulin secretion (n = 298). RESULTS Tag SNPs within FITM2-R3HDML-HNF4A, GLIS3, KCNK16, and ZFAND3 associated with T2DM after accounting for locus-wide multiple testing. The T2DM association in FITM2-R3HDML-HNF4A (rs3212183; P = .0002; OR = 1.19 [1.09-1.30]) was independent from the East Asian lead SNP (rs6017317), which did not associate with T2DM in American Indians. The top signals in GLIS3 (rs7875253; P = .0004; OR = 1.23 [1.10-1.38]) and KCNK16 (rs1544050; P = .002; OR = 1.16 [1.06-1.27]) were attenuated after adjustment for the East Asian lead SNPs (rs7041847 in GLIS3; rs1535500 in KCNK16), both of which also associated with T2DM in American Indians (P = .02; OR = 1.11 [1.01-1.21]; P = .007; OR = 1.19 [1.05-1.36] respectively). The top SNP in ZFAND3 (rs9470794; P = .002; OR = 1.43 [1.14-1.80]) was the identical East Asian lead SNP. Additional SNPs in GLIS3 (rs180867004) and ZFAND3 (rs4714120 and rs9470701) had significant genotype × sex interactions (P ≤ .008). The GLIS3 SNP (rs180867004) associated with T2DM only in men (P = .00006, OR = 1.94 [1.40-2.68]). The ZFAND3 SNPs (rs4714120 and rs9470701) associated with T2DM only in women (P = .0002, OR = 1.35 [1.16-1.59]; P = .0003, OR = 1.37 [1.16-1.63] respectively). CONCLUSIONS Replication of lead T2DM SNPs in GLIS3, KCNK16, and ZFAND3 was observed in American Indians. Sex-specific T2DM signals in GLIS3 and ZFAND3, which are distinct from the East Asian GWAS signals, were also identified.
Collapse
Affiliation(s)
- Yunhua L Muller
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, Arizona, USA
| | - Paolo Piaggi
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, Arizona, USA
| | - Peng Chen
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, Arizona, USA
| | - Gregory Wiessner
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, Arizona, USA
| | - Chidinma Okani
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, Arizona, USA
| | - Sayuko Kobes
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, Arizona, USA
| | - William C Knowler
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, Arizona, USA
| | - Clifton Bogardus
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, Arizona, USA
| | - Robert L Hanson
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, Arizona, USA
| | - Leslie J Baier
- Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Phoenix, Arizona, USA
| |
Collapse
|
16
|
An Activating STAT3 Mutation Causes Neonatal Diabetes through Premature Induction of Pancreatic Differentiation. Cell Rep 2017; 19:281-294. [DOI: 10.1016/j.celrep.2017.03.055] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 02/10/2017] [Accepted: 03/17/2017] [Indexed: 02/06/2023] Open
|
17
|
Alghamdi KA, Alsaedi AB, Aljasser A, Altawil A, Kamal NM. Extended clinical features associated with novel Glis3 mutation: a case report. BMC Endocr Disord 2017; 17:14. [PMID: 28253873 PMCID: PMC5335837 DOI: 10.1186/s12902-017-0160-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/15/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Mutations in the GLI-similar 3 (GLIS3) gene encoding the transcription factor GLIS3 are a rare cause of neonatal diabetes and congenital hypothyroidism with 12 reported patients to date. Additional features, previously described, include congenital glaucoma, hepatic fibrosis, polycystic kidneys, developmental delay, facial dysmorphism, osteopenia, sensorineural deafness, choanal atresia, craniosynostosis and pancreatic exocrine insufficiency. CASE PRESENTATION We report a new case for consanguineous parents with homozygous novel mutation in GLIS3 gene who presented with neonatal diabetes mellitus, severe resistant congenital hypothyroidism, cholestatic liver disease, bilateral congenital glaucoma and facial dysmorphism. There were associated abnormalities in the external genitalia in form of bifid scrotum, bilateral undescended testicles, microphallus and scrotal hypospadias which might be a coincidental finding. CONCLUSIONS We suggest that infants with neonatal diabetes associated with dysmorphism should be screened for GLIS3 gene mutations.
Collapse
Affiliation(s)
- K. A. Alghamdi
- King Abdullah Bin Abdulaziz University Hospital, Riyadh, Kingdom of Saudi Arabia
| | - A. B. Alsaedi
- Alhada Armed Forces Hospital, Taif, Kingdom of Saudi Arabia
| | - A. Aljasser
- Prince Sultan Military Medical City, Riyadh, Kingdom of Saudi Arabia
| | - A. Altawil
- Prince Sultan Military Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Naglaa M. Kamal
- Pediatrics and Pediatric Hepatologist, Faculty of Medicine, Cairo University, Cairo, Egypt
- Pediatrics and Pediatric Hepatologist, Alhada Armed Forces Hospital, Taif, Kingdom of Saudi Arabia
| |
Collapse
|
18
|
Abstract
Congenital hypothyroidism is the most common hereditary endocrine disorder. In a small number of cases, mutations have been identified that are associated with maldevelopment and maldescent of the thyroid. Some of these mutations present as syndromes with a multisystem phenotype such as NKX2-1, PAX8, and FOXE. The association of permanent neonatal diabetes and congenital hypothyroidism was first reported in 2003 and subsequently led to the identification GLIS3 as the mutation responsible for this presentation. GLIS3 is a member of the GLI-similar zinc finger protein family encoding for a nuclear protein with five zinc finger domains and maps to chromosome 9p24. Given the role of GLIS3 in transcriptional activation and repression during embryogenesis, in humans, GLIS3 mutations present with multisystem involvement that also includes renal cystic dysplasia, progressive liver fibrosis and osteopenia. Thyroid findings in GLIS3 patients include thyroid aplasia, diminished colloid with interstitial fibrosis at post-mortem, and apparently normal gross thyroid anatomy on ultrasonography but with temporary TSH resistance on treatment. To date no biological mechanism has explained this variable presentation.
Collapse
Affiliation(s)
- P Dimitri
- University of Sheffield & Sheffield Children's NHS Foundation Trust, United Kingdom.
| |
Collapse
|
19
|
Larsen HL, Grapin-Botton A. The molecular and morphogenetic basis of pancreas organogenesis. Semin Cell Dev Biol 2017; 66:51-68. [PMID: 28089869 DOI: 10.1016/j.semcdb.2017.01.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 01/08/2023]
Abstract
The pancreas is an essential endoderm-derived organ that ensures nutrient metabolism via its endocrine and exocrine functions. Here we review the essential processes governing the embryonic and early postnatal development of the pancreas discussing both the mechanisms and molecules controlling progenitor specification, expansion and differentiation. We elaborate on how these processes are orchestrated in space and coordinated with morphogenesis. We draw mainly from experiments conducted in the mouse model but also from investigations in other model organisms, complementing a recent comprehensive review of human pancreas development (Jennings et al., 2015) [1]. The understanding of pancreas development in model organisms provides a framework to interpret how human mutations lead to neonatal diabetes and may contribute to other forms of diabetes and to guide the production of desired pancreatic cell types from pluripotent stem cells for therapeutic purposes.
Collapse
Affiliation(s)
- Hjalte List Larsen
- DanStem, University of Copenhagen, 3 B Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | - Anne Grapin-Botton
- DanStem, University of Copenhagen, 3 B Blegdamsvej, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
20
|
Kang HS, Takeda Y, Jeon K, Jetten AM. The Spatiotemporal Pattern of Glis3 Expression Indicates a Regulatory Function in Bipotent and Endocrine Progenitors during Early Pancreatic Development and in Beta, PP and Ductal Cells. PLoS One 2016; 11:e0157138. [PMID: 27270601 PMCID: PMC4896454 DOI: 10.1371/journal.pone.0157138] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/25/2016] [Indexed: 11/21/2022] Open
Abstract
The transcription factor Glis-similar 3 (Glis3) has been implicated in the development of neonatal, type 1 and type 2 diabetes. In this study, we examined the spatiotemporal expression of Glis3 protein during embryonic and neonatal pancreas development as well as its function in PP cells. To obtain greater insights into the functions of Glis3 in pancreas development, we examined the spatiotemporal expression of Glis3 protein in a knockin mouse strain expressing a Glis3-EGFP fusion protein. Immunohistochemistry showed that Glis3-EGFP was not detectable during early pancreatic development (E11.5 and E12.5) and at E13.5 and 15.5 was not expressed in Ptf1a+ cells in the tip domains indicating that Glis3 is not expressed in multipotent pancreatic progenitors. Glis3 was first detectable at E13.5 in the nucleus of bipotent progenitors in the trunk domains, where it co-localized with Sox9, Hnf6, and Pdx1. It remained expressed in preductal and Ngn3+ endocrine progenitors and at later stages becomes restricted to the nucleus of pancreatic beta and PP cells as well as ductal cells. Glis3-deficiency greatly reduced, whereas exogenous Glis3, induced Ppy expression, as reported for insulin. Collectively, our study demonstrates that Glis3 protein exhibits a temporal and cell type-specific pattern of expression during embryonic and neonatal pancreas development that is consistent with a regulatory role for Glis3 in promoting endocrine progenitor generation, regulating insulin and Ppy expression in beta and PP cells, respectively, and duct morphogenesis.
Collapse
Affiliation(s)
- Hong Soon Kang
- Cell Biology Group, Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, 27709, NC, United States of America
| | - Yukimasa Takeda
- Cell Biology Group, Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, 27709, NC, United States of America
| | - Kilsoo Jeon
- Cell Biology Group, Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, 27709, NC, United States of America
| | - Anton M. Jetten
- Cell Biology Group, Immunity, Inflammation, and Disease Laboratory, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, 27709, NC, United States of America
- * E-mail:
| |
Collapse
|
21
|
Dimitri P, De Franco E, Habeb AM, Gurbuz F, Moussa K, Taha D, Wales JKH, Hogue J, Slavotinek A, Shetty A, Balasubramanian M. An emerging, recognizable facial phenotype in association with mutations in GLI-similar 3 (GLIS3). Am J Med Genet A 2016; 170:1918-23. [DOI: 10.1002/ajmg.a.37680] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/01/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Paul Dimitri
- Department of Paediatric Endocrinology; Sheffield Children's NHS Foundation Trust; United Kingdom
| | - Elisa De Franco
- Institute of Biomedical and Clinical Science; University of Exeter Medical School; United Kingdom
| | - Abdelhadi M. Habeb
- Paediatric Department; Prince Mohamed Bin Abdulaziz Hospital, NGHA, Al-Madina, NGHA; Kingdom of Saudi Arabia
| | - Fatih Gurbuz
- Ankara Pediatric Hematology Oncology Education and Training Hospital; Ankara Turkey
| | - Khairya Moussa
- Paediatric Department; Maternity and Children Hospital; Jeddah, Kingdom of Saudi Arabia
| | - Doris Taha
- Division of Pediatric Endocrinology; Children's Hospital of Michigan; Wayne State University; Detroit Michigan
| | - Jerry K. H. Wales
- Department of Paediatric Endocrinology and Diabetes; Lady Cilento Children's Hospital; South Brisbane Queensland Australia
| | - Jacob Hogue
- Department of Paediatrics; Madigan Army Medical Center; Tacoma Washington
| | - Anne Slavotinek
- Institute for Human Genetics; University of California; San Francisco California
| | - Ambika Shetty
- Department of Paediatrics; Nevill Hall Hospital; Abergavenny, Wales United Kingdom
| | - Meena Balasubramanian
- Sheffield Clinical Genetics Service; Sheffield Children's NHS Foundation Trust; United Kingdom
| |
Collapse
|
22
|
Abstract
Lineage tracing studies have revealed that transcription factors play a cardinal role in pancreatic development, differentiation and function. Three transitions define pancreatic organogenesis, differentiation and maturation. In the primary transition, when pancreatic organogenesis is initiated, there is active proliferation of pancreatic progenitor cells. During the secondary transition, defined by differentiation, there is growth, branching, differentiation and pancreatic cell lineage allocation. The tertiary transition is characterized by differentiated pancreatic cells that undergo further remodeling, including apoptosis, replication and neogenesis thereby establishing a mature organ. Transcription factors function at multiple levels and may regulate one another and auto-regulate. The interaction between extrinsic signals from non-pancreatic tissues and intrinsic transcription factors form a complex gene regulatory network ultimately culminating in the different cell lineages and tissue types in the developing pancreas. Mutations in these transcription factors clinically manifest as subtypes of diabetes mellitus. Current treatment for diabetes is not curative and thus, developmental biologists and stem cell researchers are utilizing knowledge of normal pancreatic development to explore novel therapeutic alternatives. This review summarizes current knowledge of transcription factors involved in pancreatic development and β-cell differentiation in rodents.
Collapse
Affiliation(s)
- Reshmi Dassaye
- a Discipline of Pharmaceutical Sciences; Nelson R. Mandela School of Medicine, University of KwaZulu-Natal , Durban , South Africa
| | - Strini Naidoo
- a Discipline of Pharmaceutical Sciences; Nelson R. Mandela School of Medicine, University of KwaZulu-Natal , Durban , South Africa
| | - Marlon E Cerf
- b Diabetes Discovery Platform, South African Medical Research Council , Cape Town , South Africa
| |
Collapse
|
23
|
Dimitri P, Habeb AM, Gurbuz F, Millward A, Wallis S, Moussa K, Akcay T, Taha D, Hogue J, Slavotinek A, Wales JKH, Shetty A, Hawkes D, Hattersley AT, Ellard S, De Franco E. Expanding the Clinical Spectrum Associated With GLIS3 Mutations. J Clin Endocrinol Metab 2015; 100:E1362-9. [PMID: 26259131 PMCID: PMC4596041 DOI: 10.1210/jc.2015-1827] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
CONTEXT GLIS3 (GLI-similar 3) is a member of the GLI-similar zinc finger protein family encoding for a nuclear protein with 5 C2H2-type zinc finger domains. The protein is expressed early in embryogenesis and plays a critical role as both a repressor and activator of transcription. Human GLIS3 mutations are extremely rare. OBJECTIVE The purpose of this article was determine the phenotypic presentation of 12 patients with a variety of GLIS3 mutations. METHODS GLIS3 gene mutations were sought by PCR amplification and sequence analysis of exons 1 to 11. Clinical information was provided by the referring clinicians and subsequently using a questionnaire circulated to gain further information. RESULTS We report the first case of a patient with a compound heterozygous mutation in GLIS3 who did not present with congenital hypothyroidism. All patients presented with neonatal diabetes with a range of insulin sensitivities. Thyroid disease varied among patients. Hepatic and renal disease was common with liver dysfunction ranging from hepatitis to cirrhosis; cystic dysplasia was the most common renal manifestation. We describe new presenting features in patients with GLIS3 mutations, including craniosynostosis, hiatus hernia, atrial septal defect, splenic cyst, and choanal atresia and confirm further cases with sensorineural deafness and exocrine pancreatic insufficiency. CONCLUSION We report new findings within the GLIS3 phenotype, further extending the spectrum of abnormalities associated with GLIS3 mutations and providing novel insights into the role of GLIS3 in human physiological development. All but 2 of the patients within our cohort are still alive, and we describe the first patient to live to adulthood with a GLIS3 mutation, suggesting that even patients with a severe GLIS3 phenotype may have a longer life expectancy than originally described.
Collapse
Affiliation(s)
- P Dimitri
- Department of Paediatric Endocrinology (P.D.), Sheffield Children's NHS Foundation Trust, Sheffield S10 2TH, United Kingdom; Paediatric Department (A.M.H.), Prince Mohamed Bin Abdulaziz Hospital, National Guard Health Authority, Al-Madinah, Riyadh 14214, Kingdom of Saudi Arabia; Ankara Pediatric Hematology Oncology Education and Training Hospital (F.G.), Ankara, Turkey; Diabetes Clinical Research Centre (A.M.), Plymouth Hospitals NHS Trust, Derriford PL6 8DH, United Kingdom; Department of Paediatrics (S.W.), Bradford Teaching Hospitals NHS Foundation Trust, Bradford, West Yorkshire BD9 6RJ, United Kingdom; Paediatric Department (K.M.), Maternity and Children Hospital, Jeddah 23342, Kingdom of Saudi Arabia; Kanuni Sultan Süleyman Education and Research Hospital (T.A.), 34303 Küçükçekmece, Istanbul, Turkey; Division of Pediatric Endocrinology (D.T.), Children's Hospital of Michigan, Wayne State University, Detroit, Michigan 48201; Department of Paediatrics (J.J.), Madigan Army Medical Center, Tacoma, Washington 98431; Institute for Human Genetics (A.S.), University of California, San Francisco, California 94143; Department of Paediatric Endocrinology and Diabetes (J.K.H.W.), Lady Cilento Children's Hospital, South Brisbane, Queensland 4101, Australia; Department of Paediatrics (A.S.), Nevill Hall Hospital, Abergavenny NP7 7EG, Wales, United Kingdom; Department of Paediatrics (D.H.), Royal Gwent Hospital, Newport NP20 2UB Wales, United Kingdom; and Institute of Biomedical and Clinical Science (A.T.H., S.E., E.D.F.), University of Exeter Medical School, EX2 5DW, United Kingdom
| | - A M Habeb
- Department of Paediatric Endocrinology (P.D.), Sheffield Children's NHS Foundation Trust, Sheffield S10 2TH, United Kingdom; Paediatric Department (A.M.H.), Prince Mohamed Bin Abdulaziz Hospital, National Guard Health Authority, Al-Madinah, Riyadh 14214, Kingdom of Saudi Arabia; Ankara Pediatric Hematology Oncology Education and Training Hospital (F.G.), Ankara, Turkey; Diabetes Clinical Research Centre (A.M.), Plymouth Hospitals NHS Trust, Derriford PL6 8DH, United Kingdom; Department of Paediatrics (S.W.), Bradford Teaching Hospitals NHS Foundation Trust, Bradford, West Yorkshire BD9 6RJ, United Kingdom; Paediatric Department (K.M.), Maternity and Children Hospital, Jeddah 23342, Kingdom of Saudi Arabia; Kanuni Sultan Süleyman Education and Research Hospital (T.A.), 34303 Küçükçekmece, Istanbul, Turkey; Division of Pediatric Endocrinology (D.T.), Children's Hospital of Michigan, Wayne State University, Detroit, Michigan 48201; Department of Paediatrics (J.J.), Madigan Army Medical Center, Tacoma, Washington 98431; Institute for Human Genetics (A.S.), University of California, San Francisco, California 94143; Department of Paediatric Endocrinology and Diabetes (J.K.H.W.), Lady Cilento Children's Hospital, South Brisbane, Queensland 4101, Australia; Department of Paediatrics (A.S.), Nevill Hall Hospital, Abergavenny NP7 7EG, Wales, United Kingdom; Department of Paediatrics (D.H.), Royal Gwent Hospital, Newport NP20 2UB Wales, United Kingdom; and Institute of Biomedical and Clinical Science (A.T.H., S.E., E.D.F.), University of Exeter Medical School, EX2 5DW, United Kingdom
| | | | - A Millward
- Department of Paediatric Endocrinology (P.D.), Sheffield Children's NHS Foundation Trust, Sheffield S10 2TH, United Kingdom; Paediatric Department (A.M.H.), Prince Mohamed Bin Abdulaziz Hospital, National Guard Health Authority, Al-Madinah, Riyadh 14214, Kingdom of Saudi Arabia; Ankara Pediatric Hematology Oncology Education and Training Hospital (F.G.), Ankara, Turkey; Diabetes Clinical Research Centre (A.M.), Plymouth Hospitals NHS Trust, Derriford PL6 8DH, United Kingdom; Department of Paediatrics (S.W.), Bradford Teaching Hospitals NHS Foundation Trust, Bradford, West Yorkshire BD9 6RJ, United Kingdom; Paediatric Department (K.M.), Maternity and Children Hospital, Jeddah 23342, Kingdom of Saudi Arabia; Kanuni Sultan Süleyman Education and Research Hospital (T.A.), 34303 Küçükçekmece, Istanbul, Turkey; Division of Pediatric Endocrinology (D.T.), Children's Hospital of Michigan, Wayne State University, Detroit, Michigan 48201; Department of Paediatrics (J.J.), Madigan Army Medical Center, Tacoma, Washington 98431; Institute for Human Genetics (A.S.), University of California, San Francisco, California 94143; Department of Paediatric Endocrinology and Diabetes (J.K.H.W.), Lady Cilento Children's Hospital, South Brisbane, Queensland 4101, Australia; Department of Paediatrics (A.S.), Nevill Hall Hospital, Abergavenny NP7 7EG, Wales, United Kingdom; Department of Paediatrics (D.H.), Royal Gwent Hospital, Newport NP20 2UB Wales, United Kingdom; and Institute of Biomedical and Clinical Science (A.T.H., S.E., E.D.F.), University of Exeter Medical School, EX2 5DW, United Kingdom
| | - S Wallis
- Department of Paediatric Endocrinology (P.D.), Sheffield Children's NHS Foundation Trust, Sheffield S10 2TH, United Kingdom; Paediatric Department (A.M.H.), Prince Mohamed Bin Abdulaziz Hospital, National Guard Health Authority, Al-Madinah, Riyadh 14214, Kingdom of Saudi Arabia; Ankara Pediatric Hematology Oncology Education and Training Hospital (F.G.), Ankara, Turkey; Diabetes Clinical Research Centre (A.M.), Plymouth Hospitals NHS Trust, Derriford PL6 8DH, United Kingdom; Department of Paediatrics (S.W.), Bradford Teaching Hospitals NHS Foundation Trust, Bradford, West Yorkshire BD9 6RJ, United Kingdom; Paediatric Department (K.M.), Maternity and Children Hospital, Jeddah 23342, Kingdom of Saudi Arabia; Kanuni Sultan Süleyman Education and Research Hospital (T.A.), 34303 Küçükçekmece, Istanbul, Turkey; Division of Pediatric Endocrinology (D.T.), Children's Hospital of Michigan, Wayne State University, Detroit, Michigan 48201; Department of Paediatrics (J.J.), Madigan Army Medical Center, Tacoma, Washington 98431; Institute for Human Genetics (A.S.), University of California, San Francisco, California 94143; Department of Paediatric Endocrinology and Diabetes (J.K.H.W.), Lady Cilento Children's Hospital, South Brisbane, Queensland 4101, Australia; Department of Paediatrics (A.S.), Nevill Hall Hospital, Abergavenny NP7 7EG, Wales, United Kingdom; Department of Paediatrics (D.H.), Royal Gwent Hospital, Newport NP20 2UB Wales, United Kingdom; and Institute of Biomedical and Clinical Science (A.T.H., S.E., E.D.F.), University of Exeter Medical School, EX2 5DW, United Kingdom
| | - K Moussa
- Department of Paediatric Endocrinology (P.D.), Sheffield Children's NHS Foundation Trust, Sheffield S10 2TH, United Kingdom; Paediatric Department (A.M.H.), Prince Mohamed Bin Abdulaziz Hospital, National Guard Health Authority, Al-Madinah, Riyadh 14214, Kingdom of Saudi Arabia; Ankara Pediatric Hematology Oncology Education and Training Hospital (F.G.), Ankara, Turkey; Diabetes Clinical Research Centre (A.M.), Plymouth Hospitals NHS Trust, Derriford PL6 8DH, United Kingdom; Department of Paediatrics (S.W.), Bradford Teaching Hospitals NHS Foundation Trust, Bradford, West Yorkshire BD9 6RJ, United Kingdom; Paediatric Department (K.M.), Maternity and Children Hospital, Jeddah 23342, Kingdom of Saudi Arabia; Kanuni Sultan Süleyman Education and Research Hospital (T.A.), 34303 Küçükçekmece, Istanbul, Turkey; Division of Pediatric Endocrinology (D.T.), Children's Hospital of Michigan, Wayne State University, Detroit, Michigan 48201; Department of Paediatrics (J.J.), Madigan Army Medical Center, Tacoma, Washington 98431; Institute for Human Genetics (A.S.), University of California, San Francisco, California 94143; Department of Paediatric Endocrinology and Diabetes (J.K.H.W.), Lady Cilento Children's Hospital, South Brisbane, Queensland 4101, Australia; Department of Paediatrics (A.S.), Nevill Hall Hospital, Abergavenny NP7 7EG, Wales, United Kingdom; Department of Paediatrics (D.H.), Royal Gwent Hospital, Newport NP20 2UB Wales, United Kingdom; and Institute of Biomedical and Clinical Science (A.T.H., S.E., E.D.F.), University of Exeter Medical School, EX2 5DW, United Kingdom
| | - T Akcay
- Department of Paediatric Endocrinology (P.D.), Sheffield Children's NHS Foundation Trust, Sheffield S10 2TH, United Kingdom; Paediatric Department (A.M.H.), Prince Mohamed Bin Abdulaziz Hospital, National Guard Health Authority, Al-Madinah, Riyadh 14214, Kingdom of Saudi Arabia; Ankara Pediatric Hematology Oncology Education and Training Hospital (F.G.), Ankara, Turkey; Diabetes Clinical Research Centre (A.M.), Plymouth Hospitals NHS Trust, Derriford PL6 8DH, United Kingdom; Department of Paediatrics (S.W.), Bradford Teaching Hospitals NHS Foundation Trust, Bradford, West Yorkshire BD9 6RJ, United Kingdom; Paediatric Department (K.M.), Maternity and Children Hospital, Jeddah 23342, Kingdom of Saudi Arabia; Kanuni Sultan Süleyman Education and Research Hospital (T.A.), 34303 Küçükçekmece, Istanbul, Turkey; Division of Pediatric Endocrinology (D.T.), Children's Hospital of Michigan, Wayne State University, Detroit, Michigan 48201; Department of Paediatrics (J.J.), Madigan Army Medical Center, Tacoma, Washington 98431; Institute for Human Genetics (A.S.), University of California, San Francisco, California 94143; Department of Paediatric Endocrinology and Diabetes (J.K.H.W.), Lady Cilento Children's Hospital, South Brisbane, Queensland 4101, Australia; Department of Paediatrics (A.S.), Nevill Hall Hospital, Abergavenny NP7 7EG, Wales, United Kingdom; Department of Paediatrics (D.H.), Royal Gwent Hospital, Newport NP20 2UB Wales, United Kingdom; and Institute of Biomedical and Clinical Science (A.T.H., S.E., E.D.F.), University of Exeter Medical School, EX2 5DW, United Kingdom
| | - D Taha
- Department of Paediatric Endocrinology (P.D.), Sheffield Children's NHS Foundation Trust, Sheffield S10 2TH, United Kingdom; Paediatric Department (A.M.H.), Prince Mohamed Bin Abdulaziz Hospital, National Guard Health Authority, Al-Madinah, Riyadh 14214, Kingdom of Saudi Arabia; Ankara Pediatric Hematology Oncology Education and Training Hospital (F.G.), Ankara, Turkey; Diabetes Clinical Research Centre (A.M.), Plymouth Hospitals NHS Trust, Derriford PL6 8DH, United Kingdom; Department of Paediatrics (S.W.), Bradford Teaching Hospitals NHS Foundation Trust, Bradford, West Yorkshire BD9 6RJ, United Kingdom; Paediatric Department (K.M.), Maternity and Children Hospital, Jeddah 23342, Kingdom of Saudi Arabia; Kanuni Sultan Süleyman Education and Research Hospital (T.A.), 34303 Küçükçekmece, Istanbul, Turkey; Division of Pediatric Endocrinology (D.T.), Children's Hospital of Michigan, Wayne State University, Detroit, Michigan 48201; Department of Paediatrics (J.J.), Madigan Army Medical Center, Tacoma, Washington 98431; Institute for Human Genetics (A.S.), University of California, San Francisco, California 94143; Department of Paediatric Endocrinology and Diabetes (J.K.H.W.), Lady Cilento Children's Hospital, South Brisbane, Queensland 4101, Australia; Department of Paediatrics (A.S.), Nevill Hall Hospital, Abergavenny NP7 7EG, Wales, United Kingdom; Department of Paediatrics (D.H.), Royal Gwent Hospital, Newport NP20 2UB Wales, United Kingdom; and Institute of Biomedical and Clinical Science (A.T.H., S.E., E.D.F.), University of Exeter Medical School, EX2 5DW, United Kingdom
| | - J Hogue
- Department of Paediatric Endocrinology (P.D.), Sheffield Children's NHS Foundation Trust, Sheffield S10 2TH, United Kingdom; Paediatric Department (A.M.H.), Prince Mohamed Bin Abdulaziz Hospital, National Guard Health Authority, Al-Madinah, Riyadh 14214, Kingdom of Saudi Arabia; Ankara Pediatric Hematology Oncology Education and Training Hospital (F.G.), Ankara, Turkey; Diabetes Clinical Research Centre (A.M.), Plymouth Hospitals NHS Trust, Derriford PL6 8DH, United Kingdom; Department of Paediatrics (S.W.), Bradford Teaching Hospitals NHS Foundation Trust, Bradford, West Yorkshire BD9 6RJ, United Kingdom; Paediatric Department (K.M.), Maternity and Children Hospital, Jeddah 23342, Kingdom of Saudi Arabia; Kanuni Sultan Süleyman Education and Research Hospital (T.A.), 34303 Küçükçekmece, Istanbul, Turkey; Division of Pediatric Endocrinology (D.T.), Children's Hospital of Michigan, Wayne State University, Detroit, Michigan 48201; Department of Paediatrics (J.J.), Madigan Army Medical Center, Tacoma, Washington 98431; Institute for Human Genetics (A.S.), University of California, San Francisco, California 94143; Department of Paediatric Endocrinology and Diabetes (J.K.H.W.), Lady Cilento Children's Hospital, South Brisbane, Queensland 4101, Australia; Department of Paediatrics (A.S.), Nevill Hall Hospital, Abergavenny NP7 7EG, Wales, United Kingdom; Department of Paediatrics (D.H.), Royal Gwent Hospital, Newport NP20 2UB Wales, United Kingdom; and Institute of Biomedical and Clinical Science (A.T.H., S.E., E.D.F.), University of Exeter Medical School, EX2 5DW, United Kingdom
| | - A Slavotinek
- Department of Paediatric Endocrinology (P.D.), Sheffield Children's NHS Foundation Trust, Sheffield S10 2TH, United Kingdom; Paediatric Department (A.M.H.), Prince Mohamed Bin Abdulaziz Hospital, National Guard Health Authority, Al-Madinah, Riyadh 14214, Kingdom of Saudi Arabia; Ankara Pediatric Hematology Oncology Education and Training Hospital (F.G.), Ankara, Turkey; Diabetes Clinical Research Centre (A.M.), Plymouth Hospitals NHS Trust, Derriford PL6 8DH, United Kingdom; Department of Paediatrics (S.W.), Bradford Teaching Hospitals NHS Foundation Trust, Bradford, West Yorkshire BD9 6RJ, United Kingdom; Paediatric Department (K.M.), Maternity and Children Hospital, Jeddah 23342, Kingdom of Saudi Arabia; Kanuni Sultan Süleyman Education and Research Hospital (T.A.), 34303 Küçükçekmece, Istanbul, Turkey; Division of Pediatric Endocrinology (D.T.), Children's Hospital of Michigan, Wayne State University, Detroit, Michigan 48201; Department of Paediatrics (J.J.), Madigan Army Medical Center, Tacoma, Washington 98431; Institute for Human Genetics (A.S.), University of California, San Francisco, California 94143; Department of Paediatric Endocrinology and Diabetes (J.K.H.W.), Lady Cilento Children's Hospital, South Brisbane, Queensland 4101, Australia; Department of Paediatrics (A.S.), Nevill Hall Hospital, Abergavenny NP7 7EG, Wales, United Kingdom; Department of Paediatrics (D.H.), Royal Gwent Hospital, Newport NP20 2UB Wales, United Kingdom; and Institute of Biomedical and Clinical Science (A.T.H., S.E., E.D.F.), University of Exeter Medical School, EX2 5DW, United Kingdom
| | - J K H Wales
- Department of Paediatric Endocrinology (P.D.), Sheffield Children's NHS Foundation Trust, Sheffield S10 2TH, United Kingdom; Paediatric Department (A.M.H.), Prince Mohamed Bin Abdulaziz Hospital, National Guard Health Authority, Al-Madinah, Riyadh 14214, Kingdom of Saudi Arabia; Ankara Pediatric Hematology Oncology Education and Training Hospital (F.G.), Ankara, Turkey; Diabetes Clinical Research Centre (A.M.), Plymouth Hospitals NHS Trust, Derriford PL6 8DH, United Kingdom; Department of Paediatrics (S.W.), Bradford Teaching Hospitals NHS Foundation Trust, Bradford, West Yorkshire BD9 6RJ, United Kingdom; Paediatric Department (K.M.), Maternity and Children Hospital, Jeddah 23342, Kingdom of Saudi Arabia; Kanuni Sultan Süleyman Education and Research Hospital (T.A.), 34303 Küçükçekmece, Istanbul, Turkey; Division of Pediatric Endocrinology (D.T.), Children's Hospital of Michigan, Wayne State University, Detroit, Michigan 48201; Department of Paediatrics (J.J.), Madigan Army Medical Center, Tacoma, Washington 98431; Institute for Human Genetics (A.S.), University of California, San Francisco, California 94143; Department of Paediatric Endocrinology and Diabetes (J.K.H.W.), Lady Cilento Children's Hospital, South Brisbane, Queensland 4101, Australia; Department of Paediatrics (A.S.), Nevill Hall Hospital, Abergavenny NP7 7EG, Wales, United Kingdom; Department of Paediatrics (D.H.), Royal Gwent Hospital, Newport NP20 2UB Wales, United Kingdom; and Institute of Biomedical and Clinical Science (A.T.H., S.E., E.D.F.), University of Exeter Medical School, EX2 5DW, United Kingdom
| | - A Shetty
- Department of Paediatric Endocrinology (P.D.), Sheffield Children's NHS Foundation Trust, Sheffield S10 2TH, United Kingdom; Paediatric Department (A.M.H.), Prince Mohamed Bin Abdulaziz Hospital, National Guard Health Authority, Al-Madinah, Riyadh 14214, Kingdom of Saudi Arabia; Ankara Pediatric Hematology Oncology Education and Training Hospital (F.G.), Ankara, Turkey; Diabetes Clinical Research Centre (A.M.), Plymouth Hospitals NHS Trust, Derriford PL6 8DH, United Kingdom; Department of Paediatrics (S.W.), Bradford Teaching Hospitals NHS Foundation Trust, Bradford, West Yorkshire BD9 6RJ, United Kingdom; Paediatric Department (K.M.), Maternity and Children Hospital, Jeddah 23342, Kingdom of Saudi Arabia; Kanuni Sultan Süleyman Education and Research Hospital (T.A.), 34303 Küçükçekmece, Istanbul, Turkey; Division of Pediatric Endocrinology (D.T.), Children's Hospital of Michigan, Wayne State University, Detroit, Michigan 48201; Department of Paediatrics (J.J.), Madigan Army Medical Center, Tacoma, Washington 98431; Institute for Human Genetics (A.S.), University of California, San Francisco, California 94143; Department of Paediatric Endocrinology and Diabetes (J.K.H.W.), Lady Cilento Children's Hospital, South Brisbane, Queensland 4101, Australia; Department of Paediatrics (A.S.), Nevill Hall Hospital, Abergavenny NP7 7EG, Wales, United Kingdom; Department of Paediatrics (D.H.), Royal Gwent Hospital, Newport NP20 2UB Wales, United Kingdom; and Institute of Biomedical and Clinical Science (A.T.H., S.E., E.D.F.), University of Exeter Medical School, EX2 5DW, United Kingdom
| | - D Hawkes
- Department of Paediatric Endocrinology (P.D.), Sheffield Children's NHS Foundation Trust, Sheffield S10 2TH, United Kingdom; Paediatric Department (A.M.H.), Prince Mohamed Bin Abdulaziz Hospital, National Guard Health Authority, Al-Madinah, Riyadh 14214, Kingdom of Saudi Arabia; Ankara Pediatric Hematology Oncology Education and Training Hospital (F.G.), Ankara, Turkey; Diabetes Clinical Research Centre (A.M.), Plymouth Hospitals NHS Trust, Derriford PL6 8DH, United Kingdom; Department of Paediatrics (S.W.), Bradford Teaching Hospitals NHS Foundation Trust, Bradford, West Yorkshire BD9 6RJ, United Kingdom; Paediatric Department (K.M.), Maternity and Children Hospital, Jeddah 23342, Kingdom of Saudi Arabia; Kanuni Sultan Süleyman Education and Research Hospital (T.A.), 34303 Küçükçekmece, Istanbul, Turkey; Division of Pediatric Endocrinology (D.T.), Children's Hospital of Michigan, Wayne State University, Detroit, Michigan 48201; Department of Paediatrics (J.J.), Madigan Army Medical Center, Tacoma, Washington 98431; Institute for Human Genetics (A.S.), University of California, San Francisco, California 94143; Department of Paediatric Endocrinology and Diabetes (J.K.H.W.), Lady Cilento Children's Hospital, South Brisbane, Queensland 4101, Australia; Department of Paediatrics (A.S.), Nevill Hall Hospital, Abergavenny NP7 7EG, Wales, United Kingdom; Department of Paediatrics (D.H.), Royal Gwent Hospital, Newport NP20 2UB Wales, United Kingdom; and Institute of Biomedical and Clinical Science (A.T.H., S.E., E.D.F.), University of Exeter Medical School, EX2 5DW, United Kingdom
| | - A T Hattersley
- Department of Paediatric Endocrinology (P.D.), Sheffield Children's NHS Foundation Trust, Sheffield S10 2TH, United Kingdom; Paediatric Department (A.M.H.), Prince Mohamed Bin Abdulaziz Hospital, National Guard Health Authority, Al-Madinah, Riyadh 14214, Kingdom of Saudi Arabia; Ankara Pediatric Hematology Oncology Education and Training Hospital (F.G.), Ankara, Turkey; Diabetes Clinical Research Centre (A.M.), Plymouth Hospitals NHS Trust, Derriford PL6 8DH, United Kingdom; Department of Paediatrics (S.W.), Bradford Teaching Hospitals NHS Foundation Trust, Bradford, West Yorkshire BD9 6RJ, United Kingdom; Paediatric Department (K.M.), Maternity and Children Hospital, Jeddah 23342, Kingdom of Saudi Arabia; Kanuni Sultan Süleyman Education and Research Hospital (T.A.), 34303 Küçükçekmece, Istanbul, Turkey; Division of Pediatric Endocrinology (D.T.), Children's Hospital of Michigan, Wayne State University, Detroit, Michigan 48201; Department of Paediatrics (J.J.), Madigan Army Medical Center, Tacoma, Washington 98431; Institute for Human Genetics (A.S.), University of California, San Francisco, California 94143; Department of Paediatric Endocrinology and Diabetes (J.K.H.W.), Lady Cilento Children's Hospital, South Brisbane, Queensland 4101, Australia; Department of Paediatrics (A.S.), Nevill Hall Hospital, Abergavenny NP7 7EG, Wales, United Kingdom; Department of Paediatrics (D.H.), Royal Gwent Hospital, Newport NP20 2UB Wales, United Kingdom; and Institute of Biomedical and Clinical Science (A.T.H., S.E., E.D.F.), University of Exeter Medical School, EX2 5DW, United Kingdom
| | - S Ellard
- Department of Paediatric Endocrinology (P.D.), Sheffield Children's NHS Foundation Trust, Sheffield S10 2TH, United Kingdom; Paediatric Department (A.M.H.), Prince Mohamed Bin Abdulaziz Hospital, National Guard Health Authority, Al-Madinah, Riyadh 14214, Kingdom of Saudi Arabia; Ankara Pediatric Hematology Oncology Education and Training Hospital (F.G.), Ankara, Turkey; Diabetes Clinical Research Centre (A.M.), Plymouth Hospitals NHS Trust, Derriford PL6 8DH, United Kingdom; Department of Paediatrics (S.W.), Bradford Teaching Hospitals NHS Foundation Trust, Bradford, West Yorkshire BD9 6RJ, United Kingdom; Paediatric Department (K.M.), Maternity and Children Hospital, Jeddah 23342, Kingdom of Saudi Arabia; Kanuni Sultan Süleyman Education and Research Hospital (T.A.), 34303 Küçükçekmece, Istanbul, Turkey; Division of Pediatric Endocrinology (D.T.), Children's Hospital of Michigan, Wayne State University, Detroit, Michigan 48201; Department of Paediatrics (J.J.), Madigan Army Medical Center, Tacoma, Washington 98431; Institute for Human Genetics (A.S.), University of California, San Francisco, California 94143; Department of Paediatric Endocrinology and Diabetes (J.K.H.W.), Lady Cilento Children's Hospital, South Brisbane, Queensland 4101, Australia; Department of Paediatrics (A.S.), Nevill Hall Hospital, Abergavenny NP7 7EG, Wales, United Kingdom; Department of Paediatrics (D.H.), Royal Gwent Hospital, Newport NP20 2UB Wales, United Kingdom; and Institute of Biomedical and Clinical Science (A.T.H., S.E., E.D.F.), University of Exeter Medical School, EX2 5DW, United Kingdom
| | - E De Franco
- Department of Paediatric Endocrinology (P.D.), Sheffield Children's NHS Foundation Trust, Sheffield S10 2TH, United Kingdom; Paediatric Department (A.M.H.), Prince Mohamed Bin Abdulaziz Hospital, National Guard Health Authority, Al-Madinah, Riyadh 14214, Kingdom of Saudi Arabia; Ankara Pediatric Hematology Oncology Education and Training Hospital (F.G.), Ankara, Turkey; Diabetes Clinical Research Centre (A.M.), Plymouth Hospitals NHS Trust, Derriford PL6 8DH, United Kingdom; Department of Paediatrics (S.W.), Bradford Teaching Hospitals NHS Foundation Trust, Bradford, West Yorkshire BD9 6RJ, United Kingdom; Paediatric Department (K.M.), Maternity and Children Hospital, Jeddah 23342, Kingdom of Saudi Arabia; Kanuni Sultan Süleyman Education and Research Hospital (T.A.), 34303 Küçükçekmece, Istanbul, Turkey; Division of Pediatric Endocrinology (D.T.), Children's Hospital of Michigan, Wayne State University, Detroit, Michigan 48201; Department of Paediatrics (J.J.), Madigan Army Medical Center, Tacoma, Washington 98431; Institute for Human Genetics (A.S.), University of California, San Francisco, California 94143; Department of Paediatric Endocrinology and Diabetes (J.K.H.W.), Lady Cilento Children's Hospital, South Brisbane, Queensland 4101, Australia; Department of Paediatrics (A.S.), Nevill Hall Hospital, Abergavenny NP7 7EG, Wales, United Kingdom; Department of Paediatrics (D.H.), Royal Gwent Hospital, Newport NP20 2UB Wales, United Kingdom; and Institute of Biomedical and Clinical Science (A.T.H., S.E., E.D.F.), University of Exeter Medical School, EX2 5DW, United Kingdom
| |
Collapse
|
24
|
HECT E3 Ubiquitin Ligase Itch Functions as a Novel Negative Regulator of Gli-Similar 3 (Glis3) Transcriptional Activity. PLoS One 2015; 10:e0131303. [PMID: 26147758 PMCID: PMC4493090 DOI: 10.1371/journal.pone.0131303] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 06/01/2015] [Indexed: 12/30/2022] Open
Abstract
The transcription factor Gli-similar 3 (Glis3) plays a critical role in the generation of pancreatic ß cells and the regulation insulin gene transcription and has been implicated in the development of several pathologies, including type 1 and 2 diabetes and polycystic kidney disease. However, little is known about the proteins and posttranslational modifications that regulate or mediate Glis3 transcriptional activity. In this study, we identify by mass-spectrometry and yeast 2-hybrid analyses several proteins that interact with the N-terminal region of Glis3. These include the WW-domain-containing HECT E3 ubiquitin ligases, Itch, Smurf2, and Nedd4. The interaction between Glis3 and the HECT E3 ubiquitin ligases was verified by co-immunoprecipitation assays and mutation analysis. All three proteins interact through their WW-domains with a PPxY motif located in the Glis3 N-terminus. However, only Itch significantly contributed to Glis3 polyubiquitination and reduced Glis3 stability by enhancing its proteasomal degradation. Itch-mediated degradation of Glis3 required the PPxY motif-dependent interaction between Glis3 and the WW-domains of Itch as well as the presence of the Glis3 zinc finger domains. Transcription analyses demonstrated that Itch dramatically inhibited Glis3-mediated transactivation and endogenous Ins2 expression by increasing Glis3 protein turnover. Taken together, our study identifies Itch as a critical negative regulator of Glis3-mediated transcriptional activity. This regulation provides a novel mechanism to modulate Glis3-driven gene expression and suggests that it may play a role in a number of physiological processes controlled by Glis3, such as insulin transcription, as well as in Glis3-associated diseases.
Collapse
|
25
|
De Vas MG, Kopp JL, Heliot C, Sander M, Cereghini S, Haumaitre C. Hnf1b controls pancreas morphogenesis and the generation of Ngn3+ endocrine progenitors. Development 2015; 142:871-82. [PMID: 25715395 DOI: 10.1242/dev.110759] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Heterozygous mutations in the human HNF1B gene are associated with maturity-onset diabetes of the young type 5 (MODY5) and pancreas hypoplasia. In mouse, Hnf1b heterozygous mutants do not exhibit any phenotype, whereas the homozygous deletion in the entire epiblast leads to pancreas agenesis associated with abnormal gut regionalization. Here, we examine the specific role of Hnf1b during pancreas development, using constitutive and inducible conditional inactivation approaches at key developmental stages. Hnf1b early deletion leads to a reduced pool of pancreatic multipotent progenitor cells (MPCs) due to decreased proliferation and increased apoptosis. Lack of Hnf1b either during the first or the secondary transitions is associated with cystic ducts. Ductal cells exhibit aberrant polarity and decreased expression of several cystic disease genes, some of which we identified as novel Hnf1b targets. Notably, we show that Glis3, a transcription factor involved in duct morphogenesis and endocrine cell development, is downstream Hnf1b. In addition, a loss and abnormal differentiation of acinar cells are observed. Strikingly, inactivation of Hnf1b at different time points results in the absence of Ngn3(+) endocrine precursors throughout embryogenesis. We further show that Hnf1b occupies novel Ngn3 putative regulatory sequences in vivo. Thus, Hnf1b plays a crucial role in the regulatory networks that control pancreatic MPC expansion, acinar cell identity, duct morphogenesis and generation of endocrine precursors. Our results uncover an unappreciated requirement of Hnf1b in endocrine cell specification and suggest a mechanistic explanation of diabetes onset in individuals with MODY5.
Collapse
Affiliation(s)
- Matias G De Vas
- CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS), Paris F-75005, France Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, Paris F-75005, France INSERM U969, Paris F-75005, France
| | - Janel L Kopp
- Department of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California-San Diego, La Jolla, CA 92093-0695, USA
| | - Claire Heliot
- CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS), Paris F-75005, France Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, Paris F-75005, France INSERM U969, Paris F-75005, France
| | - Maike Sander
- Department of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California-San Diego, La Jolla, CA 92093-0695, USA
| | - Silvia Cereghini
- CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS), Paris F-75005, France Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, Paris F-75005, France INSERM U969, Paris F-75005, France
| | - Cécile Haumaitre
- CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS), Paris F-75005, France Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, Paris F-75005, France INSERM U969, Paris F-75005, France
| |
Collapse
|
26
|
Conrad E, Stein R, Hunter CS. Revealing transcription factors during human pancreatic β cell development. Trends Endocrinol Metab 2014; 25:407-14. [PMID: 24831984 PMCID: PMC4167784 DOI: 10.1016/j.tem.2014.03.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/19/2014] [Accepted: 03/25/2014] [Indexed: 12/14/2022]
Abstract
Developing cell-based diabetes therapies requires examining transcriptional mechanisms underlying human β cell development. However, increased knowledge is hampered by low availability of fetal pancreatic tissue and gene targeting strategies. Rodent models have elucidated transcription factor roles during islet organogenesis and maturation, but differences between mouse and human islets have been identified. The past 5 years have seen strides toward generating human β cell lines, the examination of human transcription factor expression, and studies utilizing induced pluripotent stem cells (iPS cells) and human embryonic stem (hES) cells to generate β-like cells. Nevertheless, much remains to be resolved. We present current knowledge of developing human β cell transcription factor expression, as compared to rodents. We also discuss recent studies employing transcription factor or epigenetic modulation to generate β cells.
Collapse
Affiliation(s)
- Elizabeth Conrad
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN 37232, USA
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN 37232, USA
| | - Chad S Hunter
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 2215 Garland Ave, Nashville, TN 37232, USA.
| |
Collapse
|
27
|
Lichti-Kaiser K, ZeRuth G, Jetten AM. TRANSCRIPTION FACTOR GLI-SIMILAR 3 (GLIS3): IMPLICATIONS FOR THE DEVELOPMENT OF CONGENITAL HYPOTHYROIDISM. JOURNAL OF ENDOCRINOLOGY, DIABETES & OBESITY 2014; 2:1024. [PMID: 25133201 PMCID: PMC4131692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Congenital hypothyroidism (CH) is the most frequent endocrine disorder in neonates. While several genetic mutations have been identified that result in developmental defects of the thyroid gland or thyroid hormone synthesis, genetic factors have yet to be identified in many CH patients along with the mechanisms underlying their pathophysiology. Mutations in the gene encoding the Krüppel-like transcription factor, GLI-similar 3 (GLIS3) have been associated with the development of a syndrome characterized by congenital hypothyroidism and neonatal diabetes and similar phenotypes were observed in mouse knockout models of Glis3. Patients with GLIS3-mediated CH exhibit diminished serum levels of thyroxine (T4) and triiodothyronine (T3) and elevated thyroid stimulating hormone (TSH) and thyroglobulin (TG). However, the inconsistent presentation of clinical features associated with this CH has made it difficult to ascertain a causative mechanism. Future elucidation of the biological functions of GLIS3 in the thyroid will be crucial to the discovery of new therapeutic opportunities for the treatment of CH.
Collapse
Affiliation(s)
- Kristin Lichti-Kaiser
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Gary ZeRuth
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Anton M Jetten
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
28
|
Abstract
Monogenic diabetes represents a heterogeneous group of disorders resulting from defects in single genes. Defects are categorized primarily into two groups: disruption of β-cell function or a reduction in the number of β-cells. A complex network of transcription factors control pancreas formation, and a dysfunction of regulators high in the hierarchy leads to pancreatic agenesis. Dysfunction among factors further downstream might cause organ hypoplasia, absence of islets of Langerhans or a reduction in the number of β-cells. Many transcription factors have pleiotropic effects, explaining the association of diabetes with other congenital malformations, including cerebellar agenesis and pituitary agenesis. Monogenic diabetes variants are classified conventionally according to age of onset, with neonatal diabetes occurring before the age of 6 months and maturity onset diabetes of the young (MODY) manifesting before the age of 25 years. Recently, certain familial genetic defects were shown to manifest as neonatal diabetes, MODY or even adult onset diabetes. Patients with neonatal diabetes require a thorough genetic work-up in any case, and because extensive phenotypic overlap exists between monogenic, type 2, and type 1 diabetes, genetic analysis will also help improve diagnosis in these cases. Next generation sequencing will facilitate rapid screening, leading to the discovery of digenic and oligogenic diabetes variants, and helping to improve our understanding of the genetics underlying other types of diabetes. An accurate diagnosis remains important, because it might lead to a change in the treatment of affected subjects and influence long-term complications.
Collapse
Affiliation(s)
- Valerie M Schwitzgebel
- Pediatric Endocrine and Diabetes UnitDepartment of Child and Adolescent HealthChildren's University HospitalGenevaSwitzerland
| |
Collapse
|
29
|
Shih HP, Wang A, Sander M. Pancreas organogenesis: from lineage determination to morphogenesis. Annu Rev Cell Dev Biol 2013; 29:81-105. [PMID: 23909279 DOI: 10.1146/annurev-cellbio-101512-122405] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The pancreas is an essential organ for proper nutrient metabolism and has both endocrine and exocrine function. In the past two decades, knowledge of how the pancreas develops during embryogenesis has significantly increased, largely from developmental studies in model organisms. Specifically, the molecular basis of pancreatic lineage decisions and cell differentiation is well studied. Still not well understood are the mechanisms governing three-dimensional morphogenesis of the organ. Strategies to derive transplantable β-cells in vitro for diabetes treatment have benefited from the accumulated knowledge of pancreas development. In this review, we provide an overview of the current understanding of pancreatic lineage determination and organogenesis, and we examine future implications of these findings for treatment of diabetes mellitus through cell replacement.
Collapse
Affiliation(s)
- Hung Ping Shih
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, California 92093-0695;
| | | | | |
Collapse
|