1
|
B J, R R. A critical review on pharmacological properties of sulfated polysaccharides from marine macroalgae. Carbohydr Polym 2024; 344:122488. [PMID: 39218536 DOI: 10.1016/j.carbpol.2024.122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 09/04/2024]
Abstract
The marine ecosystem contains an assorted range of organisms, among which macroalgae stands out marine resources as an invaluable reservoir of structurally diverse bioactive compounds. Marine macroalgae are considered as primary consumers have gained more attention for their bioactive components. Sulfated polysaccharides (SPs) are complex polymers found in macroalgae that play a crucial role in their cell wall composition. This review consolidates high-tech methodologies employed in the extraction of macroalgal SPs, offering a valuable resource for researchers focuses in the pharmacological relevance of marine macromolecules. The pharmacological activities of SPs, focusing on their therapeutic action by encompassing diverse study models are summarized. Furthermore, in silico docking studies facilitates a comprehensive understanding of SPs interactions with their binding sites providing a valuable insight for future endeavors. The biological properties of algal SPs, along with a brief reference to mode of action based on different targets are presented. This review utilizes up-to-date research discoveries across various study models to elucidate the biological functions of SPs, focusing on their molecular-level mechanisms and offering insights for prospective investigations. Besides, the significance of SPs from seaweeds is highlighted, showcasing their potential beneficial applications in promoting human health. With promising biomedical prospects, this review explores the extensive uses and experimental evidence supporting the important roles of SPs in various fields.
Collapse
Affiliation(s)
- Jegadeshwari B
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Rajaram R
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
2
|
Liao J, Wang S, Lin K, Huang Y, Chen X, Xin R, Guo Y, Xie E. Taxonomic identification and life cycle comparison of two populations of the monostromatic green algae Monostroma nitidum. Ecol Evol 2024; 14:e11424. [PMID: 38779531 PMCID: PMC11109503 DOI: 10.1002/ece3.11424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/04/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Monostroma nitidum, a monostromatic green algae (MGA) with high economic value, is distributed worldwide. Life cycle often serves as a fundamental criterion for taxonomic classification. Most researchers consider the life cycle of M. nitidum to involve dimorphic alternation of generations, although the possibility of a monomorphic asexual life cycle remains unclear. In this study, tufA and 18S rDNA sequences were employed as molecular markers, complemented by morphological analysis, to classify and identify MGA in two distinct habitats: Hailing Island reefs (YJ) and Naozhou Island reefs (ZJ). The results of tufA and 18S rDNA sequence analysis revealed that all samples from YJ and ZJ clustered to the same branch (M. nitidum clade) with high bootstrap support and genetic distances of less than 0.000 and 0.005, respectively. However, morphological observations indicated significant differences in the external morphology of the YJ and ZJ samples, although both initially exhibited a filament-blade form during early development. The life cycle of the ZJ samples exhibited typical dimorphic alternation of generations, whereas the YJ samples only produced biflagellate asexual gametes with negative phototaxis. Gametes of the YJ samples directly developed into new gametophytes without undergoing the sporophyte stage. Consequently, the YJ and ZJ samples were classified as monomorphic asexual and dimorphic sexual M. nitidum, respectively. These findings provide evidence supporting the monomorphic asexual life cycle of M. nitidum for the classification of MGA.
Collapse
Affiliation(s)
- Jiawei Liao
- Fishery CollegeGuangdong Ocean UniversityZhanjiangChina
| | - Sipan Wang
- Fishery CollegeGuangdong Ocean UniversityZhanjiangChina
| | - Kun Lin
- Fishery CollegeGuangdong Ocean UniversityZhanjiangChina
| | | | - Xinyi Chen
- Fishery CollegeGuangdong Ocean UniversityZhanjiangChina
| | - Rong Xin
- Fishery CollegeGuangdong Ocean UniversityZhanjiangChina
| | - Youyou Guo
- Fishery CollegeGuangdong Ocean UniversityZhanjiangChina
| | - Enyi Xie
- Fishery CollegeGuangdong Ocean UniversityZhanjiangChina
| |
Collapse
|
3
|
Chi Y, Li Y, Ding C, Liu X, Luo M, Wang Z, Bi Y, Luo S. Structural and biofunctional diversity of sulfated polysaccharides from the genus Codium (Bryopsidales, Chlorophyta): A review. Int J Biol Macromol 2024; 263:130364. [PMID: 38401579 DOI: 10.1016/j.ijbiomac.2024.130364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/14/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
It is believed that polysaccharides will become a focal point for future production of food, pharmaceuticals, and materials due to their ubiquitous and renewable nature, as well as their exceptional properties that have been extensively validated in the fields of nutrition, healthcare, and materials. Sulfated polysaccharides derived from seaweed sources have attracted considerable attention owing to their distinctive structures and properties. The genus Codium, represented by the species C. fragile, holds significance as a vital economic green seaweed and serves as a traditional Chinese medicinal herb. To date, the cell walls of the genus Codium have been found to contain at least four types of sulfated polysaccharides, specifically pyruvylated β-d-galactan sulfates, sulfated arabinogalactans, sulfated β-l-arabinans, and sulfated β-d-mannans. These sulfated polysaccharides exhibit diverse biofunctions, including anticoagulant, immune-enhancing, anticancer, antioxidant activities, and drug-carrying capacity. This review explores the structural and biofunctional diversity of sulfated polysaccharides derived from the genus Codium. Additionally, in addressing the impending challenges within the industrialization of these polysaccharides, encompassing concerns regarding scale-up production and quality control, we outline potential strategies to address these challenges from the perspectives of raw materials, extraction processes, purification technologies, and methods for quality control.
Collapse
Affiliation(s)
- Yongzhou Chi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China.
| | - Yang Li
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| | - Chengcheng Ding
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| | - Xiao Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| | - Meilin Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| | - Zhaoyu Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| | - Yanhong Bi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| | - Si Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| |
Collapse
|
4
|
Zhang Y, Jiang Y, Jia Y, Pan X, Zhao T, Wang K, Yan H, Ma Z. Separation of anti-TMV active components and modes of action of Omphalia lapidescens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105728. [PMID: 38225082 DOI: 10.1016/j.pestbp.2023.105728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Omphalia lapidescens is a saprophytic and parasitic fungus belonging to the Polypora genus of Tricholomataceae. It has repellent, insecticidal, anti-inflammatory and immunomodulatory effects. RESULT This study found that the extract of O. lapidescens had significant anti-TMV activity, and the main active component was homopolysaccharide LW-1 by Bioassay-guided fractionation. LW-1 is a glucan with β-(1,3) glucoside bond as the main chain and β-(1,6) glucoside bond as the branch chain, with molecular weight in the range of 172,916-338,827 Da. The protective and inactive efficacies of LW-1(100 mg/L) against TMV were 78.10% and 48.20%, but had no direct effect on the morphology of TMV particles. The results of mechanism of action showed that LW-1 induced the increase of the activity of defense enzymes such as POD, SOD and PAL in Nicotiana glutinosa. The overexpression of resistance genes such as NPR1, PR1 and PR5, and the increase of SA content. Further transcriptome sequencing showed that LW-1 activated MAPK signaling pathway, plant-pathogen interaction pathway and glucosinolide metabolic pathway in Arabidopsis thaliana. Besides, LW-1 induced crops resistance against plant pathogenic fungi. CONCLUSION Taken together, the anti-TMV mechanism of LW-1 was to activate MAPK signaling pathway, inducing overexpression of resistance genes, activating plant immune system, and improving the synthesis and accumulation of plant defencins such as glucosinolide. LW-1-induced plant disease resistance has the advantages of broad spectrum and long duration, which has the potential to be developed as a new antiviral agent or plant immune resistance inducer.
Collapse
Affiliation(s)
- Yueyang Zhang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Engineering and Technology Centers of Biopesticide in Shaanxi, Yangling, Shaanxi 712100, China
| | - Yue Jiang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Engineering and Technology Centers of Biopesticide in Shaanxi, Yangling, Shaanxi 712100, China
| | - Yina Jia
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Engineering and Technology Centers of Biopesticide in Shaanxi, Yangling, Shaanxi 712100, China
| | - Xiaoyu Pan
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Engineering and Technology Centers of Biopesticide in Shaanxi, Yangling, Shaanxi 712100, China
| | - Tianrun Zhao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Engineering and Technology Centers of Biopesticide in Shaanxi, Yangling, Shaanxi 712100, China
| | - Kaiyue Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Engineering and Technology Centers of Biopesticide in Shaanxi, Yangling, Shaanxi 712100, China
| | - He Yan
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Engineering and Technology Centers of Biopesticide in Shaanxi, Yangling, Shaanxi 712100, China.
| | - Zhiqing Ma
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; Engineering and Technology Centers of Biopesticide in Shaanxi, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Lu SY, Tan K, Zhong S, Cheong KL. Marine algal polysaccharides as future potential constituents against non-alcoholic steatohepatitis. Int J Biol Macromol 2023; 250:126247. [PMID: 37562483 DOI: 10.1016/j.ijbiomac.2023.126247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/14/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is one of the most chronic and incurable liver diseases triggered mainly by an inappropriate diet and hereditary factors which burden liver metabolic stress, and may result in liver fibrosis or even cancer. While the available drugs show adverse side effects. The non-toxic bioactive molecules derived from natural resources, particularly marine algal polysaccharides (MAPs), present significant potential for treating NASH. In this review, we summarized the protective effects of MAPs on NASH from multiple perspectives, including reducing oxidative stress, regulating lipid metabolism, enhancing immune function, preventing fibrosis, and providing cell protection. Furthermore, the mechanisms of MAPs in treating NASH were comprehensively described. Additionally, we highlight the influences of the special structures of MAPs on their bioactive differences. Through this comprehensive review, we aim to further elucidate the molecular mechanisms of MAPs in NASH and inspire insights for deeper research on the functional food and clinical applications of MAPs.
Collapse
Affiliation(s)
- Si-Yuan Lu
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Guangdong, China
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, China.
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China.
| | - Kit-Leong Cheong
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Guangdong, China.
| |
Collapse
|
6
|
Chi Y, Jiang Y, Wang Z, Nie X, Luo S. Preparation, structures, and biological functions of rhamnan sulfate from green seaweed of the genus Monostroma: A review. Int J Biol Macromol 2023; 249:125964. [PMID: 37487994 DOI: 10.1016/j.ijbiomac.2023.125964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/29/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Rhamnan sulfate, a rhamnose-rich sulfated polysaccharide, is present in the cell walls of green seaweed belonging to the genus Monostroma. This macromolecule demonstrates promising therapeutic properties, including anti-coagulant, thrombolytic, anti-viral, anti-obesity, and anti-inflammatory activities, which hold potential applications in food and medical industries. However, rhamnan sulfate has not garnered as much attention from researchers as other seaweed polysaccharides, including alginate, carrageenan, and fucoidan. This review discusses the extraction and purification techniques of rhamnan sulfate, delves into its chemical structures and related elucidation approaches, and provides an overview of its biological functions. Future research should focus on the structure-activity relationship of rhamnan sulfate and the industrial preparation of rhamnan sulfate with a specific homogeneous structure to facilitate its practical applications.
Collapse
Affiliation(s)
- Yongzhou Chi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China.
| | - Yanhui Jiang
- Faculty of Electronic Information Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| | - Zhaoyu Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| | - Xiaobao Nie
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| | - Si Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu 223003, China
| |
Collapse
|
7
|
Song Y, Li S, Gong H, Yip RCS, Chen H. Biopharmaceutical applications of microbial polysaccharides as materials: A review. Int J Biol Macromol 2023; 239:124259. [PMID: 37003381 DOI: 10.1016/j.ijbiomac.2023.124259] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Biological characteristics of natural polymers make microbial polysaccharides an excellent choice for biopharmaceuticals. Due to its easy purifying procedure and high production efficiency, it is capable of resolving the existing application issues associated with some plant and animal polysaccharides. Furthermore, microbial polysaccharides are recognized as prospective substitutes for these polysaccharides based on the search for eco-friendly chemicals. In this review, the microstructure and properties of microbial polysaccharides are utilized to highlight their characteristics and potential medical applications. From the standpoint of pathogenic processes, in-depth explanations are provided on the effects of microbial polysaccharides as active ingredients in the treatment of human diseases, anti-aging, and drug delivery. In addition, the scholarly developments and commercial applications of microbial polysaccharides as medical raw materials are also discussed. The conclusion is that understanding the use of microbial polysaccharides in biopharmaceuticals is essential for the future development of pharmacology and therapeutic medicine.
Collapse
Affiliation(s)
- Yige Song
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Shuxin Li
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Hao Gong
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China.
| |
Collapse
|
8
|
Valado A, Pereira L. Algae and cardiovascular-health. FUNCTIONAL INGREDIENTS FROM ALGAE FOR FOODS AND NUTRACEUTICALS 2023:493-517. [DOI: 10.1016/b978-0-323-98819-3.00009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Wang W, Tan J, Nima L, Sang Y, Cai X, Xue H. Polysaccharides from fungi: A review on their extraction, purification, structural features, and biological activities. Food Chem X 2022; 15:100414. [PMID: 36211789 PMCID: PMC9532758 DOI: 10.1016/j.fochx.2022.100414] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/11/2022] [Accepted: 08/04/2022] [Indexed: 11/11/2022] Open
Abstract
Fungi, as the unique natural resource, are rich in polysaccharides, proteins, fats, vitamins, and other components. Therefore, they have good medical and nutritional values. Polysaccharides are considered one of the most important bioactive components in fungi. Increasing researches have confirmed that fungal polysaccharides have various biological activities, such as antioxidant, immunomodulatory, anti-tumor, hepatoprotective, anti-aging, anti-inflammatory, and radioprotective activities. Consequently, the research progresses and future prospects of fungal polysaccharides must be systematically reviewed to promote their better understanding. This paper reviewed the extraction, purification, structure, biological activity, and underlying molecular mechanisms of fungal polysaccharides. Moreover, the structure-activity relationships of fungal polysaccharides were emphasized and discussed. This review can provide scientific basis for the research and industrial utilization of fungal polysaccharides.
Collapse
Affiliation(s)
- Wenli Wang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Jiaqi Tan
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Lamu Nima
- College of Physical Education, Jimei University, No.185 Yinjiang Road, Jimei District, Xiamen 361021, China
| | - Yumei Sang
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| | - Xu Cai
- Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, No. 30 Shuangqing Road, Haidian District, Beijing 100084, China
| | - Hongkun Xue
- College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China
| |
Collapse
|
10
|
A Review on Nutrients, Phytochemicals, and Health Benefits of Green Seaweed, Caulerpa lentillifera. Foods 2022; 11:foods11182832. [PMID: 36140958 PMCID: PMC9498133 DOI: 10.3390/foods11182832] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Caulerpa lentillifera is a type of green seaweed widely consumed as a fresh vegetable, specifically in Southeast Asia. Interestingly, this green seaweed has recently gained popularity in the food sector. Over the last two decades, many studies have reported that C. lentillifera is rich in polyunsaturated fatty acids, minerals, vitamins, and bioactive compounds that contribute many health benefits. On the other hand, there is currently hardly any article dedicated specifically to C. lentillifera regarding nutritional composition and recent advancements in its potential health benefits. Hence, this study will summarise the findings on the nutritional content of C. lentillifera and compile recently discovered beneficial properties throughout the past decade. From the data compiled in this review paper, it can be concluded that the nutrient and phytochemical profile of C. lentillifera differs from one region to another depending on various external factors. As a result, this paper will offer researchers the groundwork to develop food products based on C. lentillifera. The authors of this paper are hopeful that a more systematic review could be done in the future as currently, existing data is still scarce.
Collapse
|
11
|
Fermentation optimization, purification and biochemical characterization of a porphyran degrading enzyme with funoran side-activity from Zobellia uliginosa. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Wang X, Dong J, Liang W, Fang Y, Liang M, Xu L, Sun W, Li X. Porphyran From Porphyra haitanensis Alleviates Obesity by Reducing Lipid Accumulation and Modulating gut Microbiota Homeostasis. Front Pharmacol 2022; 13:942143. [PMID: 35959436 PMCID: PMC9358004 DOI: 10.3389/fphar.2022.942143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Porphyran possesses various activities, while the effects of the porphyran from Porphyra haitanensis (PPH) on obesity are rarely reported. In this study, C57BL/6J male mice were fed with HFD combined with PPH gavage (50 mg/kg/d) for 16 weeks, and body weight was measured once a week. After that, serum, adipose, and liver tissues were collected for physiological and biochemical analyses. Our research indicated that PPH treatment alleviated obesity in HFD-fed mice. PPH alleviated fat accumulation in serum, liver, and adipose tissues. In addition, PPH activated the AMPK-HSL/ACC pathway in epididymal adipose tissue to reduce lipid accumulation. Moreover, PPH turned white adipose into brown and activated the PGC 1α-UCP 1-mitochondrial pathway in scapular adipose tissue to generate more heat. Interestingly, PPH regulated colonic microbiota homeostasis in obese mice, including significant elevation of Roseburia and Eubacterium and marked reduction of Helicobacter. Moreover, Spearman’s correlation analysis demonstrated that regulation of gut microbiota can decrease lipid accumulation. In summary, our study illustrated that PPH possesses the potential to be developed as an anti-obesity agent.
Collapse
Affiliation(s)
- Xueliang Wang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Juqin Dong
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wei Liang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yi Fang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Meinong Liang
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lixia Xu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wuyang Sun
- School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, China
- *Correspondence: Wuyang Sun, ; Xiaoxing Li,
| | - Xiaoxing Li
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Wuyang Sun, ; Xiaoxing Li,
| |
Collapse
|
13
|
Zhang J, Chen Y, Zhang J, Wang Y, Liu Y. The Regulation of Micro-Organisms' Extra-Cellular Polysaccharides on Immunity: A Meta-Analysis. Foods 2022; 11:foods11131949. [PMID: 35804765 PMCID: PMC9265815 DOI: 10.3390/foods11131949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/17/2022] [Accepted: 06/23/2022] [Indexed: 12/10/2022] Open
Abstract
Extra-cellular polysaccharides (EPSs) have excellent immunomodulatory functions. In order to further promote their application, we studied the ability of extra-cellular polysaccharides from different sources to regulate immunity. We studied the association of extra-cellular polysaccharides with immune factors (Interleukin (IL-2, IL-4, IL-10), Interferon γ (IFN-γ), tumor necrosis factor-α (TNF-α), Immunoglobulin A (IgA), and Immunoglobulin G (IgG)) and different concentrations of EPSs and interfering media on experimental results by using a forest plot under fixed-effect or random-effects models. Through Google, PubMed, Embase, ScienceDirect, and Medline, from 2000 to 2021, 12 articles were included. We found that exopolysaccharides (from bacteria or fungi) could significantly increase the immune index of spleen and thymus, spleen index (SMD: 2.11, ‘95%CI: [1.15, 3.08]’; p < 0.01), and thymus index (SMD: 1.62, ‘95%CI: [0.93, 2.32]’; p = 0.01 < 0.05). In addition, exopolysaccharides had a significant effect on TNF-α (SMD: 0.94, ‘95%CI: [0.29, 1.59]’; p = 0.01 < 0.05). For IL-4 (SMD: 0.49, ‘95%CI: [0.01, 0.98]’; p = 0.046 < 0.05), extra-cellular polysaccharides had a statistically significant effect on immunity. Although the data of other immune factors were not ideal, the comprehensive analysis showed that exopolysaccharides also had an effect on the release of these five immune factors. In the sub-group analysis, different concentrations of EPSs affected the results of experiments on the spleen and thymus, and the CY intervention had a relatively significant effect on immune regulation. Taken together, our study highlighted that EPSs have a significant impact on immune regulation.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (J.Z.); (J.Z.); (Y.W.)
| | - Yirui Chen
- Department of Genetics, Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA;
| | - Jiaqi Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (J.Z.); (J.Z.); (Y.W.)
| | - Yitong Wang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (J.Z.); (J.Z.); (Y.W.)
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (J.Z.); (J.Z.); (Y.W.)
- Correspondence:
| |
Collapse
|
14
|
Kalita P, Ahmed AB, Sen S, Chakraborty R. A comprehensive review on polysaccharides with hypolipidemic activity: Occurrence, chemistry and molecular mechanism. Int J Biol Macromol 2022; 206:681-698. [PMID: 35247430 DOI: 10.1016/j.ijbiomac.2022.02.189] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 02/06/2023]
Abstract
Currently, research on natural products is facing challenging future in various aspects. A large group of natural polysaccharides such as β-glucan, cellulose, hemicellulose, chitin, pectin, agaropectin, heteroglycans, lignins, hydrocolloids, homopolysaccharides, heteropolysaccharides were studied extensively for their various therapeutical potential. Several research works have already demonstrated those polysaccharides has tremendous health benefits, and found to exhibit anticancer, antiviral, immunomodulatory, antimicrobial, anticoagulant, anti-inflammatory, antidiabetic, antioxidant and antitumor activities. Different mushroom, plant, fungus, algae, vegetables, microalgae etc. are some important source of several polysaccharide macromolecules such as glucans, ulvan A, ulvan B, fucoidan, rhamnan sulfate, laminarin sulfate, agar, alginate, heteroglycans. Earlier research work demonstrated that natural polysaccharides have the highest ability to carry biological properties along with some biopolymers like as proteins and nucleic acids due to their structural variability. The preventive effect of these biomacromolecules was extensively studied, especially their beneficial effect on chronic metabolic conditions like dyslipidemia and related disorders. Dyslipidemia is a serious metabolic disorder associated with coronary heart disease, coronary artery diseases, hypercholesterolemia, atherosclerosis, etc. Dietary natural polysaccharides could play an important role in the management and prevention of dyslipidemia. Polysaccharides from natural sources mainly sulfated polysaccharides exhibited predominant lipid-lowering and cholesterol-lowering activities through different mechanisms. Polysaccharides isolated from different edible plants, vegetables, plant, algae, mushroom with higher biological activities, particularly hypolipidemic activity were highlighted in this paper, in a way for their futuristic therapeutic application. This review aims to comprehensively discuss overall advances in hypolipidemic activity of polysaccharides, including their sources, structural characteristic and chemistry, biological activity and their probable mode of action.
Collapse
Affiliation(s)
- Pratap Kalita
- Faculty of Pharmaceutical Science, Assam down town University, Panikhaiti, Guwahati, Assam 781026, India; Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam, 781026, India; Research Scholar, Assam Science Technology University, Guwahati, Assam, 781013, India.
| | - Abdul Baquee Ahmed
- Girijananda Institute of Pharmaceutical Sciences, Tezpur, Assam 784501, India
| | - Saikat Sen
- Faculty of Pharmaceutical Science, Assam down town University, Panikhaiti, Guwahati, Assam 781026, India
| | - Raja Chakraborty
- Department of Pharmaceutical Technology, School of Medical Sciences, Adamas University, West Bengal, 700126, India
| |
Collapse
|
15
|
An Insight into Antihyperlipidemic Effects of Polysaccharides from Natural Resources. Molecules 2022; 27:molecules27061903. [PMID: 35335266 PMCID: PMC8952498 DOI: 10.3390/molecules27061903] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 11/17/2022] Open
Abstract
Hyperlipidemia is a chronic metabolic disease caused by the abnormal metabolism of lipoproteins in the human body. Its main hazard is to accelerate systemic atherosclerosis, which causes cerebrovascular diseases such as coronary heart disease and thrombosis. At the same time, although the current hypolipidemic drugs have a certain therapeutic effect, they have side effects such as liver damage and digestive tract discomfort. Many kinds of polysaccharides from natural resources possess therapeutic effects on hyperlipidemia but still lack a comprehensive understanding. In this paper, the research progress of natural polysaccharides on reducing blood lipids in recent years is reviewed. The pharmacological mechanisms and targets of natural polysaccharides are mainly introduced. The relationship between structure and hypolipidemic activity is also discussed in detail. This review will help to understand the value of polysaccharides in lowering blood lipids and provide guidance for the development and clinical application of new hypolipidemic drugs.
Collapse
|
16
|
Arokiarajan MS, Thirunavukkarasu R, Joseph J, Ekaterina O, Aruni W. Advance research in biomedical applications on marine sulfated polysaccharide. Int J Biol Macromol 2022; 194:870-881. [PMID: 34843816 DOI: 10.1016/j.ijbiomac.2021.11.142] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/12/2021] [Accepted: 11/21/2021] [Indexed: 11/19/2022]
Abstract
Marine ecosystem associated organisms are an affluent source of bioactive compounds. Polysaccharides with unique structural and practical entities have gained special studies interest inside the current biomedical zone. Polysaccharides are the main components of marine algae, plants, animals, insects, and microorganisms. In recent times research on seaweed is more persistent for extraction of natural bioactive "Sulfated polysaccharides" (SPs). The considerable amount of SP exists in the algae in the form of fucans, fucoidans, carrageenans, ulvan, etc. Major function of SPs is to act as a defensive lattice towards the infective organism. All SPs possess the high potential and possess a broad range of therapeutic applications as antitumor, immunomodulatory, vaccine adjuvant, anti-inflammatory, anticoagulant, antiviral, antiprotozoal, antimicrobial, antilipemic, therapy of regenerative medicine, also in drug delivery and tissue engineering application. This review aims to discuss the biomedicine applications of sulfated polysaccharides from marine seaweeds.
Collapse
Affiliation(s)
- Mary Shamya Arokiarajan
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600 119, India
| | - Rajasekar Thirunavukkarasu
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600 119, India.
| | - Jerrine Joseph
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600 119, India
| | - Obluchinskaya Ekaterina
- Biochemistry and Technology of Hydrobionts, Murmansk marine biological institute of KSC, RAS, Russia
| | - Wilson Aruni
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu 600 119, India
| |
Collapse
|
17
|
Polat S, Trif M, Rusu A, Šimat V, Čagalj M, Alak G, Meral R, Özogul Y, Polat A, Özogul F. Recent advances in industrial applications of seaweeds. Crit Rev Food Sci Nutr 2021:1-30. [PMID: 34875930 DOI: 10.1080/10408398.2021.2010646] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Seaweeds have been generally utilized as food and alternative medicine in different countries. They are specifically used as a raw material for wine, cheese, soup, tea, noodles, etc. In addition, seaweeds are potentially good resources of protein, vitamins, minerals, carbohydrates, essential fatty acids and dietary fiber. The quality and quantity of biologically active compounds in seaweeds depend on season and harvesting period, seaweed geolocation as well as ecological factors. Seaweeds or their extracts have been studied as innovative sources for a variety of bioactive compounds such as polyunsaturated fatty acids, polyphenols, carrageenan, fucoidan, etc. These secondary metabolites have been shown to have antioxidant, antimicrobial, antiviral, anticancer, antidiabetic, anti-inflammatory, anti-aging, anti-obesity and anti-tumour properties. They have been used in pharmaceutical/medicine, and food industries since bioactive compounds from seaweeds are regarded as safe and natural. Therefore, this article provides up-to-date information on the applications of seaweed in different industries such as pharmaceutical, biomedical, cosmetics, dermatology and agriculture. Further studies on innovative extraction methods, safety issue and health-promoting properties should be reconsidered. Moreover, the details of the molecular mechanisms of seaweeds and their bioactive compounds for physiological activities are to be clearly elucidated.
Collapse
Affiliation(s)
- Sevim Polat
- Department of Marine Biology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Monica Trif
- Centre for Innovative Process Engineering (CENTIV) GmbH, Syke, Germany
| | - Alexandru Rusu
- CENCIRA Agrofood Research and Innovation Centre, Cluj-Napoca, Romania
| | - Vida Šimat
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Gonca Alak
- Department of Seafood Processing Technology, Faculty of Fisheries, Ataturk University, Erzurum, Turkey
| | - Raciye Meral
- Department of Food Engineering, Faculty of Engineering, Van Yüzüncü Yıl University, Van, Turkey
| | - Yesim Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Abdurahman Polat
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| |
Collapse
|
18
|
Anti-SARS-CoV-2 Activity of Rhamnan Sulfate from Monostroma nitidum. Mar Drugs 2021; 19:md19120685. [PMID: 34940684 PMCID: PMC8707894 DOI: 10.3390/md19120685] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/20/2022] Open
Abstract
The COVID-19 pandemic is a major human health concern. The pathogen responsible for COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), invades its host through the interaction of its spike (S) protein with a host cell receptor, angiotensin-converting enzyme 2 (ACE2). In addition to ACE2, heparan sulfate (HS) on the surface of host cells also plays a significant role as a co-receptor. Our previous studies demonstrated that sulfated glycans, such as heparin and fucoidans, show anti-COVID-19 activities. In the current study, rhamnan sulfate (RS), a polysaccharide with a rhamnose backbone from a green seaweed, Monostroma nitidum, was evaluated for binding to the S-protein from SARS-CoV-2 and inhibition of viral infectivity in vitro. The structural characteristics of RS were investigated by determining its monosaccharide composition and performing two-dimensional nuclear magnetic resonance. RS inhibition of the interaction of heparin, a highly sulfated HS, with the SARS-CoV-2 spike protein (from wild type and different mutant variants) was studied using surface plasmon resonance (SPR). In competitive binding studies, the IC50 of RS against the S-protein receptor binding domain (RBD) binding to immobilized heparin was 1.6 ng/mL, which is much lower than the IC50 for heparin (~750 ng/mL). RS showed stronger inhibition than heparin on the S-protein RBD or pseudoviral particles binding to immobilized heparin. Finally, in an in vitro cell-based assay, RS showed strong antiviral activities against wild type SARS-CoV-2 and the delta variant.
Collapse
|
19
|
Cai M, Chen Y, Wang Y, Fang Q, He X, Wu W, Bao Y, Mao G, Jin W, Zhong W. Sulfated glucuronomannan hexasaccharide G6S1 enhanced lipolysis and lipophagy via PPARα pathway. Int J Biochem Cell Biol 2021; 139:106067. [PMID: 34425199 DOI: 10.1016/j.biocel.2021.106067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is considered as the hepatic manifestation of metabolic syndrome, ranging from benign steatosis to severe non-alcoholic steatohepatitis. Recently, it has been found that lipophagy plays a pivotal role in lipid turnover, which can alleviate NAFLD in hepatocytes. In this study, we found that a highly sulfated glucuronomannan hexamer G6S1 has the ability to enhance lipophagy. When treated with G6S1, the number and the size of lipid droplet (LD) decreased significantly on hepatocytes AML12 cells. Western blot results showed that the expressions of the lipolysis-related proteins increased, while the expressions of proteins that is responsible for lipid transportation and synthesis exhibited no significant change. Immunofluorescence assay and electron microscopy results showed an increase of autophagy related protein expression level and lysosome number in hepatocytes treated with G6S1, suggesting that G6S1 could also promote lipophagy. A significant increase of peroxisome proliferator-activated receptor alpha (PPARα) expression level was detected in G6S1 treated cells, suggesting that G6S1 may promote autophagy via enhancing the expression of PPARα. In addition, these effects could be inhibited after treatment with autophagy inhibitor 3-methyladenine (3-MA) and PPARα inhibitor MK-886. These findings indicate that G6S1 can promote lipophagy via enhanced PPARα expression and can result in a slowdown of lipids accumulation.
Collapse
Affiliation(s)
- Min Cai
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Ying Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Yuzhi Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Qiufu Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Xinyue He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Wanli Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Yizhong Bao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, PR China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310013, PR China.
| | - Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China.
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, PR China.
| |
Collapse
|
20
|
Ryu B, Kim YS, Jeon YJ. Seaweeds and Their Natural Products for Preventing Cardiovascular Associated Dysfunction. Mar Drugs 2021; 19:md19090507. [PMID: 34564168 PMCID: PMC8470597 DOI: 10.3390/md19090507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular disease (CVD), which involves the onset and exacerbation of various conditions including dyslipidemia, activation of the renin-angiotensin system, vascular endothelial cell damage, and oxidative stress, is a leading cause of high mortality rates and accounts for one-third of deaths worldwide. Accordingly, as dietary changes in daily life are thought to greatly reduce the prevalence of CVD, numerous studies have been conducted to examine the potential use of foods and their bioactive components for preventing and treating CVD. In particular, seaweeds contain unique bioactive metabolites that are not found in terrestrial plants because of the harsh environment in which they survive, leading to in vitro and in vivo studies of their prevention and treatment effects. This review summarizes studies that focused on the beneficial effects of seaweeds and their natural products targeting markers involved in a cascade of mechanisms related to CVD pathogenesis. The purpose of this review is to describe the potential of seaweeds and their natural products for preventing and treating CVD based on in vivo and in vitro studies. This review provides a basis for future research in the field of marine drugs.
Collapse
Affiliation(s)
- Bomi Ryu
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea
- Correspondence: (B.R.); (Y.-J.J.); Tel.: +82-64-754-3475 (B.R. & Y.-J.J.)
| | - Young-Sang Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju 63243, Korea
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
- Healthy Seafood Research Center, Jeju National University, Jeju 63243, Korea
- Correspondence: (B.R.); (Y.-J.J.); Tel.: +82-64-754-3475 (B.R. & Y.-J.J.)
| |
Collapse
|
21
|
Hu SM, Zhou JM, Zhou QQ, Li P, Xie YY, Zhou T, Gu Q. Purification, characterization and biological activities of exopolysaccharides from Lactobacillus rhamnosus ZFM231 isolated from milk. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111561] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Effect of sulfated modification on rheological and physiological properties of oat β-glucan oligosaccharides prepared by acid or oxidative degradation. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
23
|
Porphyran and oligo-porphyran originating from red algae Porphyra: Preparation, biological activities, and potential applications. Food Chem 2021; 349:129209. [PMID: 33588184 DOI: 10.1016/j.foodchem.2021.129209] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/17/2021] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
Porphyra is one of the most economically important red algae in the world. The functional components extracted from Porphyra such as porphyrans, proteins, lipids, and minerals have strong physiological activities. Porphyran, a sulfated galactan, is composed of alternating 1,4-linked α-l-galactopyranose-6-sulfate (L6S) and 1,3-linked β-d-galactopyranose (G). Porphyran and oligo-porphyran have a series of pharmacological and biological functions, such as antioxidation, anticancer, antiaging, antiallergic, immunomodulatory, hypoglycaemic, and hypolipidemic effects. Thus, red algae Porphyra-derived porphyran and oligo-porphyran have various potential applications in food, medicine, and cosmetic fields. For better application, this review introduces and summarizes the structure and source of porphyran as well as the preparation methods, biological activities, and potential applications of porphyran and oligo-porphyran. Moreover, the future research directions and emphasis of porphyran and oligo-porphyran preparation as well as their functional activities and applications are highlighted and prospected.
Collapse
|
24
|
Liu Z, Sun X. A Critical Review of the Abilities, Determinants, and Possible Molecular Mechanisms of Seaweed Polysaccharides Antioxidants. Int J Mol Sci 2020; 21:E7774. [PMID: 33096625 PMCID: PMC7589308 DOI: 10.3390/ijms21207774] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress induces various cardiovascular, neurodegenerative, and cancer diseases, caused by excess reactive oxygen species (ROS). It is attributed to the lack of sufficient antioxidant defense capacity to eliminate unnecessary ROS. Seaweeds are largely cultivated for their edible and commercial purposes. Excessive proliferation of some seaweeds has occurred in coastal areas, causing environmental and economic disasters, and even threating human health. Removing and disposing of the excess seaweeds are costly and labor-intensive with few rewards. Therefore, improving the value of seaweeds utilizes this resource, but also deals with the accumulated biomass in the environment. Seaweed has been demonstrated to be a great source of polysaccharides antioxidants, which are effective in enhancing the antioxidant system in humans and animals. They have been reported to be a healthful method to prevent and/or reduce oxidative damage. Current studies indicate that they have a good potential for treating various diseases. Polysaccharides, the main components in seaweeds, are commonly used as industrial feedstock. They are readily extracted by aqueous and acetone solutions. This study attempts to review the current researches related to seaweed polysaccharides as an antioxidant. We discuss the main categories, their antioxidant abilities, their determinants, and their possible molecular mechanisms of action. This review proposes possible high-value ways to utilize seaweed resources.
Collapse
Affiliation(s)
- Zhiwei Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China;
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 511458, China
| | - Xian Sun
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 511458, China
- Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| |
Collapse
|
25
|
Chaisuwan W, Jantanasakulwong K, Wangtueai S, Phimolsiripol Y, Chaiyaso T, Techapun C, Phongthai S, You S, Regenstein JM, Seesuriyachan P. Microbial exopolysaccharides for immune enhancement: Fermentation, modifications and bioactivities. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100564] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Huang LH, Liu H, Chen JY, Sun XY, Yao ZH, Han J, Ouyang JM. Seaweed Porphyra yezoensis polysaccharides with different molecular weights inhibit hydroxyapatite damage and osteoblast differentiation of A7R5 cells. Food Funct 2020; 11:3393-3409. [PMID: 32232300 DOI: 10.1039/c9fo01732a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vascular calcification (VC) is a common pathological manifestation in patients with cardiovascular diseases, leading to high mortality in patients with chronic kidney diseases. The deposition of hydroxyapatite (HAP) crystals on vascular smooth muscle cells leads to cell damage, which promotes osteogenic transformation. In this study, four different molecular weights (MWs ) of Porphyra yezoensis polysaccharides (PYP1, PYP2, PYP3, and PYP4 with MWs of 576, 49.5, 12.6, and 4.02 kDa, respectively) were used to coat HAP, and the differences in toxicity and calcification of HAP on A7R5 cells before and after coating were studied. The results showed that PYPs could effectively reduce HAP damage to the A7R5 cells. Under the protection of PYPs, cell viability increased and lactate dehydrogenase release, active oxygen level, and cell necrosis rate decreased; also, the amount of the HAP crystals adhering to cell surfaces and entering cells decreased. PYPs with low molecular weights presented better protective effects than high-molecular-weight PYPs. PYPs also inhibited the osteogenic transformation of the A7R5 cells induced by HAP and decreased alkaline phosphatase (ALP) activity and expressions of bone/chondrocyte phenotype genes (runt-related factor 2, ALP, osteopontin, and osteocalcin). In the adenine-induced chronic renal failure (CRF) mouse VC model, PYP4 was found to obviously inhibit the aortic calcium level, and it also inhibited the serum creatinine, serum phosphorus and serum BUN levels. PYP4 (least molecular weight) showed the best inhibitory effect on calcification and may be considered as a candidate drug with therapeutic potential for inhibiting cellular damage and osteoblast differentiation induced by the HAP crystals.
Collapse
Affiliation(s)
- Ling-Hong Huang
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Du Z, Jia X, Chen J, Zhou S, Chen J, Liu X, Cao X, Zhong S, Hong P. Isolation and Characterization of a Heparin-Like Compound with Potent Anticoagulant and Fibrinolytic Activity from the Clam Coelomactra antiquata. Mar Drugs 2019; 18:E6. [PMID: 31861572 PMCID: PMC7024239 DOI: 10.3390/md18010006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/23/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022] Open
Abstract
Heparin from mollusks with unique sulfated glycosaminoglycan exhibits strong anti-thrombotic activities. This study reports on a purified heparinoid from Coelomactra antiquata, which shows potent anticoagulant and fibrinolytic abilities. Its structure was characterized by infrared spectroscopy, high-performance liquid chromatography, and one-dimensional and two-dimensional nuclear magnetic resonance spectroscopy. Its fibrinolytic activity was determined in vitro and in vivo. Its anticoagulant activity was determined by activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT). The results indicated that clam heparinoid was a homogeneous glycosaminoglycan with a molecular weight of 30.99 kDa, mainly composed of →4)-α-IdoA2S-(1→4)-α-GlcNS3S6S (or GlcNS6S)-(1→4)-β-GlcA-(1→4)-α-GlcNS6S (or GlcNAC)-(1→. Furthermore, this heparinoid showed a highly anticoagulant titer and fibrinolytic value of 149.63 IU/mg and 1.96 IU/mg, respectively. In summary, clam heparinoid shows great potential for application in the clinic and antithrombotic drugs industry.
Collapse
Affiliation(s)
- ZhenXing Du
- School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.D.); (X.J.); (J.C.); (S.Z.); (J.C.); (X.L.); (X.C.); (P.H.)
- Shenzhen institute, Guangdong Ocean University, Shenzhen 518108, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
| | - XueJing Jia
- School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.D.); (X.J.); (J.C.); (S.Z.); (J.C.); (X.L.); (X.C.); (P.H.)
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
| | - Jing Chen
- School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.D.); (X.J.); (J.C.); (S.Z.); (J.C.); (X.L.); (X.C.); (P.H.)
- Shenzhen institute, Guangdong Ocean University, Shenzhen 518108, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
| | - SiYi Zhou
- School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.D.); (X.J.); (J.C.); (S.Z.); (J.C.); (X.L.); (X.C.); (P.H.)
- Shenzhen institute, Guangdong Ocean University, Shenzhen 518108, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
| | - JianPing Chen
- School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.D.); (X.J.); (J.C.); (S.Z.); (J.C.); (X.L.); (X.C.); (P.H.)
| | - XiaoFei Liu
- School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.D.); (X.J.); (J.C.); (S.Z.); (J.C.); (X.L.); (X.C.); (P.H.)
| | - XiaoHuang Cao
- School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.D.); (X.J.); (J.C.); (S.Z.); (J.C.); (X.L.); (X.C.); (P.H.)
| | - SaiYi Zhong
- School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.D.); (X.J.); (J.C.); (S.Z.); (J.C.); (X.L.); (X.C.); (P.H.)
- Shenzhen institute, Guangdong Ocean University, Shenzhen 518108, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - PengZhi Hong
- School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Z.D.); (X.J.); (J.C.); (S.Z.); (J.C.); (X.L.); (X.C.); (P.H.)
- Shenzhen institute, Guangdong Ocean University, Shenzhen 518108, China
- Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
| |
Collapse
|
28
|
Ma WQ, Cheng HZ, Zhao DH, Yang J, Wang SB, Wu HZ, Lu MY, Xu L, Liu GJ. Effects of dietary Enteromorpha powder supplementation on productive performance, egg quality, and antioxidant performance during the late laying period in Zi geese. Poult Sci 2019; 99:1062-1068. [PMID: 32029142 PMCID: PMC7587732 DOI: 10.1016/j.psj.2019.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/12/2019] [Accepted: 10/05/2019] [Indexed: 12/30/2022] Open
Abstract
This study investigated the effects of dietary Enteromorpha powder supplementation on the productive performance, egg quality, and antioxidant performance of Zi geese during the late laying period. Three hundred twelve Zi geese (1 yr old) were randomly allocated into 2 cohorts to form a control group and an experimental group (with each cohort including 6 replicates and 21 female geese and 5 male geese in each replicate). The control group was fed a basal diet, and the experimental group was fed a diet containing 3% Enteromorpha powder. The data showed that Enteromorpha powder supplementation significantly improved egg production, laying rate, average daily egg weight (P < 0.01), and egg yolk color (P < 0.05). Supplementation decreased the ADFI and feed conversion rate (P < 0.01). Compared with the control group, glutathione peroxidase (GSH-Px) activity was significantly higher in serum and ovary tissue (P < 0.05), but GSH-Px activity was lower in liver tissue (P < 0.01). Malondialdehyde was reduced in liver and ovary tissue (P < 0.05) in the Enteromorpha powder supplementation group. Meanwhile, the expression of the CAT gene was significantly upregulated in the liver (P < 0.01) in the Enteromorpha group. These results indicate that dietary Enteromorpha powder supplementation improved productive performance and reduced the level of lipid peroxidation in Zi geese during the late laying period.
Collapse
Affiliation(s)
- W Q Ma
- College of Animal Science and Technology, Northeast Agricultural University, Haibin, Heilongjiang 150030, China
| | - H Z Cheng
- College of Animal Science and Technology, Northeast Agricultural University, Haibin, Heilongjiang 150030, China
| | - D H Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Haibin, Heilongjiang 150030, China
| | - J Yang
- College of Animal Science and Technology, Northeast Agricultural University, Haibin, Heilongjiang 150030, China
| | - S B Wang
- College of Animal Science and Technology, Northeast Agricultural University, Haibin, Heilongjiang 150030, China
| | - H Z Wu
- College of Animal Science and Technology, Northeast Agricultural University, Haibin, Heilongjiang 150030, China
| | - M Y Lu
- College of Animal Science and Technology, Northeast Agricultural University, Haibin, Heilongjiang 150030, China
| | - L Xu
- College of Animal Science and Technology, Northeast Agricultural University, Haibin, Heilongjiang 150030, China.
| | - G J Liu
- Institute of Animal Husbandry of Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang 150086, China.
| |
Collapse
|
29
|
Li F, Chen L, Yu X. Compared extraction methods on the physicochemical properties, antioxidant activity, and optimization of enzyme‐assisted extraction of polysaccharides from
Gynura medica. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fengwei Li
- School of Marine and Bioengineering Yan Cheng Institute of Technology Yancheng China
| | - Ligen Chen
- School of Marine and Bioengineering Yan Cheng Institute of Technology Yancheng China
| | - Xiaohong Yu
- School of Marine and Bioengineering Yan Cheng Institute of Technology Yancheng China
| |
Collapse
|
30
|
|
31
|
Tair ZI, Bensalah F, Boukortt F. [Effect of green alga Ulva lactuca polysaccharides supplementation on blood pressure and on atherogenic risk factors, in rats fed a high fat diet]. Ann Cardiol Angeiol (Paris) 2019; 67:133-140. [PMID: 29776647 DOI: 10.1016/j.ancard.2018.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 10/14/2022]
Abstract
AIM OF THE STUDY To highlight the benefits of green alga Ulva lactuca polysaccharides supplementation on blood pressure and atherogenic risk factors in rats fed a high fat diet. METHODS Wistar male rats were fed a high fat diet (30% sheep fat) for 3 months. At an average body weight (BW) of 360g, the rats (n=18) were divided into 3 groups and consumed, for 28 days, either a high fat diet (HFD) or a high fat diet enriched with 1% of whole green algae (WGA) powder or with 1% of its polysaccharides (PLS). RESULTS In HFD, WGA and PLS supplementation reduced BW and food intake. WGA and PLS compared to HFD reduced systolic (PAS) (-17% and -19%) and diastolic (PAD) blood pressure (-38% and -39%), serum glucose (-37% and -30%, respectively), insulinemia (-55% and -74%, respectively), serum and hepatic total lipids, triglycerides, total cholesterol levels, as well as the total cholesterol concentration of low and very low density lipoproteins. The same, atherogenicity ratios and membrane fluidity decreased in the WGA and PLS vs HFD while lecithin: cholesterol acyltransferase (LCAT) activity increased (51 and 41% respectively). CONCLUSION Ulva lactuca and its polysaccharides, one of the bioactive compounds of this macroalga, seem to have hypotensive, hypoglycemic, hypolipaemic and antiatherogenic properties that can correct or prevent certain cardiovascular complications linked to a high fat diet.
Collapse
Affiliation(s)
- Z I Tair
- Laboratoire de nutrition clinique et métabolique (LNCM), faculté des sciences de la nature et de la vie, université d'Oran 1, Ahmed-Ben-Bella, BP1524 El M'nouer, 31100 Oran, Algérie.
| | - F Bensalah
- Laboratoire de nutrition clinique et métabolique (LNCM), faculté des sciences de la nature et de la vie, université d'Oran 1, Ahmed-Ben-Bella, BP1524 El M'nouer, 31100 Oran, Algérie
| | - F Boukortt
- Laboratoire de nutrition clinique et métabolique (LNCM), faculté des sciences de la nature et de la vie, université d'Oran 1, Ahmed-Ben-Bella, BP1524 El M'nouer, 31100 Oran, Algérie
| |
Collapse
|
32
|
El-Ratel IT, Gabr AAW. Effect of Spirulina and Vitamin E on Reproduction and in vitro Embryo Production in Heat-stressed Rabbits. Pak J Biol Sci 2019; 22:545-553. [PMID: 31930833 DOI: 10.3923/pjbs.2019.545.553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE High ambient temperature can cause heat stress and evokes a combination of change in blood biochemicals and reproduction of rabbit. This study targeted to investigate the effect of Spirulina platensis, vitamin E and their combination on in vivo and in vitro reproductive performance and some physiological and health indicators of heat stressed rabbit does. MATERIALS AND METHODS Nili-parous rabbit does (n = 80) were allocated to 4 groups. Does in the 1st group were fed commercial complete feed diet, while those in the 2nd, 3rd and 4th were fed complete feed diet with Spirulina platensis (300 mg kg-1), vitamin E (100 mg kg-1 diet) and Spirulina platensis+vitamin E kg-1 diet, respectively. All does were naturally mated with fertile bucks (5 bucks/group). RESULTS The does in the 2nd group showed significantly (p<0.05) better reproductive performance (conception rate, kindling rate and litter size), lipid profile (total lipids, cholesterol, triglycerides, high and low density lipoproteins, antioxidant capacity (total antioxidant capacity, glutathione, malondialdehyde, glutathione peroxidase, glutathione S-transferase, superoxide dismutase and catalase), immunity (lysozyme, IgG and IgM), ovulatory response (corpora lutea number and ovulation rate), embryo quality and hatched blastocysts production with higher cell number and inner cell mass as compared to other groups. CONCLUSION Dietary supplementation with Spirulina platensis (300 mg kg-1 diet), in comparing with vitamin E (100 mg kg-1 diet) or their combination at the same levels, had positive impact on reproductive performance of rabbit does used in breeding program under heat stress condition in Egypt.
Collapse
|
33
|
Marine glycan-derived therapeutics in China. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 163:113-134. [DOI: 10.1016/bs.pmbts.2019.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
Anticoagulant Properties of a Green Algal Rhamnan-type Sulfated Polysaccharide and Its Low-molecular-weight Fragments Prepared by Mild Acid Degradation. Mar Drugs 2018; 16:md16110445. [PMID: 30424528 PMCID: PMC6266706 DOI: 10.3390/md16110445] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/25/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022] Open
Abstract
The active sulfated polysaccharide from seaweed possesses important pharmaceutical and biomedical potential. In the study, Monostroma sulfated polysaccharide (MSP) was obtained from Monostroma angicava, and the low-molecular-weight fragments of MSP (MSP-Fs: MSP-F1–MSP-F6) were prepared by controlled acid degradation. The molecular weights of MSP and MSP-F1–MSP-F6 were 335 kDa, 240 kDa, 90 kDa, 40 kDa, 24 kDa, 12 kDa, and 6.8 kDa, respectively. The polysaccharides were sulfated rhamnans that consisted of →3)-α-l-Rhap-(1→ and →2)-α-l-Rhap-(1→ units with partial sulfation at C-2 of →3)-α-l-Rhap-(1→ and C-3 of →2)-α-l-Rhap-(1→. Anticoagulant properties in vitro of MSP and MSP-F1–MSP-F6 were evaluated by studying the activated partial thromboplastin time, thrombin time, and prothrombin time. Anticoagulant activities in vivo of MSP and MSP-F4 were further evaluated; their fibrin(ogen)olytic activities in vivo and thrombolytic properties in vitro were also assessed by D-dimer, fibrin degradation products, plasminogen activator inhibitior-1, and clot lytic rate assays. The results showed that MSP and MSP-F1–MSP-F4 with molecular weights of 24–240 kDa had strong anticoagulant activities. A decrease in the molecular weight of MSP-Fs was accompanied by a decrease in the anticoagulant activity, and higher anticoagulant activity requires a molecular weight of over 12 kDa. MSP and MSP-F4 possessed strong anticoagulant activities in vivo, as well as high fibrin(ogen)olytic and thrombolytic activities. MSP and MSP-F4 have potential as drug or helpful food supplements for human health.
Collapse
|
35
|
Wang T, Xue C, Zhang T, Wang Y. The improvements of functional ingredients from marine foods in lipid metabolism. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Bamboo-shaving polysaccharide protects against high-diet induced obesity and modulates the gut microbiota of mice. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
37
|
Yang Z, Wang J, Li J, Xiong L, Chen H, Liu X, Wang N, Ouyang K, Wang W. Antihyperlipidemic and hepatoprotective activities of polysaccharide fraction from Cyclocarya paliurus in high-fat emulsion-induced hyperlipidaemic mice. Carbohydr Polym 2018. [DOI: https://doi.org/10.1016/j.carbpol.2017.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Yang Z, Wang J, Li J, Xiong L, Chen H, Liu X, Wang N, Ouyang K, Wang W. Antihyperlipidemic and hepatoprotective activities of polysaccharide fraction from Cyclocarya paliurus in high-fat emulsion-induced hyperlipidaemic mice. Carbohydr Polym 2018; 183:11-20. [PMID: 29352865 DOI: 10.1016/j.carbpol.2017.11.033] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 09/24/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023]
Abstract
The objective of this study was to analyse the structure of CPP-2, and to observe the pharmacological effects of CPP-2 on lipid metabolism and oxidative stress. CPP-2, eluted as two main fractions comprised of two polysaccharides with Mw of 307 and 3.7kDa, was mainly consisted of rhamnose, mannose, glucose and galactose in a molar ratio of 1.00:0.78:3.22:0.45. The results showed that treatment with CPP-2 could improve blood lipid levels (TC, TG, HDL-C and LDL-C), liver lipid levels (TC and TG) and antioxidant status (SOD, T-AOC, GSH-PX, MDA and LPO). In addition, the histopathological observations of mice livers and the GPT activities indicated that CPP-2 could attenuate liver cell injury. The present findings demonstrated that CPP-2 might be effective in lowering lipid and protecting against HFE-induced hyperlipidemia and non-alcoholic fatty liver.
Collapse
Affiliation(s)
- Zhanwei Yang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jin Wang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jingen Li
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lei Xiong
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hui Chen
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xin Liu
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ning Wang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Kehui Ouyang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Wenjun Wang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
39
|
Xu SY, Huang X, Cheong KL. Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities. Mar Drugs 2017; 15:md15120388. [PMID: 29236064 PMCID: PMC5742848 DOI: 10.3390/md15120388] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 01/04/2023] Open
Abstract
Marine algae have attracted a great deal of interest as excellent sources of nutrients. Polysaccharides are the main components in marine algae, hence a great deal of attention has been directed at isolation and characterization of marine algae polysaccharides because of their numerous health benefits. In this review, extraction and purification approaches and chemico-physical properties of marine algae polysaccharides (MAPs) are summarized. The biological activities, which include immunomodulatory, antitumor, antiviral, antioxidant, and hypolipidemic, are also discussed. Additionally, structure-function relationships are analyzed and summarized. MAPs' biological activities are closely correlated with their monosaccharide composition, molecular weights, linkage types, and chain conformation. In order to promote further exploitation and utilization of polysaccharides from marine algae for functional food and pharmaceutical areas, high efficiency, and low-cost polysaccharide extraction and purification methods, quality control, structure-function activity relationships, and specific mechanisms of MAPs activation need to be extensively investigated.
Collapse
Affiliation(s)
- Shu-Ying Xu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, China.
| | - Xuesong Huang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China.
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, China.
| |
Collapse
|
40
|
Zhang ZP, Shen CC, Gao FL, Wei H, Ren DF, Lu J. Isolation, Purification and Structural Characterization of Two Novel Water-Soluble Polysaccharides from Anredera cordifolia. Molecules 2017; 22:E1276. [PMID: 28769023 PMCID: PMC6152394 DOI: 10.3390/molecules22081276] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/23/2017] [Accepted: 07/29/2017] [Indexed: 01/01/2023] Open
Abstract
Anredera cordifolia, a climber and member of the Basellaceae family, has long been a traditional medicine used for the treatment of hyperglycemia in China. Two water-soluble polysaccharides, ACP1-1 and ACP2-1, were isolated from A. cordifolia seeds by hot water extraction. The two fractions, ACP1-1 and ACP2-1 with molecular weights of 46.78 kDa ± 0.03 and 586.8 kDa ± 0.05, respectively, were purified by chromatography. ACP1-1 contained mannose, glucose, galactose in a molar ratio of 1.08:4.65:1.75, whereas ACP2-1 contained arabinose, ribose, galactose, glucose, mannose in a molar ratio of 0.9:0.4:0.5:1.2:0.9. Based on methylation analysis, ultraviolet and Fourier transform-infrared spectroscopy, and periodate oxidation the main backbone chain of ACP1-1 contained (1→3,6)-galacturonopyranosyl residues interspersed with (1→4)-residues and (1→3)-mannopyranosyl residues. The main backbone chain of ACP2-1 contained (1→3)-galacturonopyranosyl residues interspersed with (1→4)-glucopyranosyl residues.
Collapse
Affiliation(s)
- Zhi-Peng Zhang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083 Beijing, China.
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food & Fermentation Industries, 100015 Beijing, China.
| | - Can-Can Shen
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083 Beijing, China.
| | - Fu-Li Gao
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083 Beijing, China.
| | - Hui Wei
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083 Beijing, China.
| | - Di-Feng Ren
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, 100083 Beijing, China.
| | - Jun Lu
- Beijing Engineering Research Center of Protein & Functional Peptides, China National Research Institute of Food & Fermentation Industries, 100015 Beijing, China.
| |
Collapse
|
41
|
Liu X, Hao J, He X, Wang S, Cao S, Qin L, Mao W. A rhamnan-type sulfated polysaccharide with novel structure from Monostroma angicava Kjellm (Chlorophyta) and its bioactivity. Carbohydr Polym 2017; 173:732-748. [PMID: 28732920 DOI: 10.1016/j.carbpol.2017.06.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/17/2017] [Accepted: 06/07/2017] [Indexed: 02/04/2023]
Abstract
A homogeneous polysaccharide was obtained from Monostroma angicava Kjellm by water extraction, preparative anion-exchange and size-exclusion chromatography. Results of chemical and spectroscopic analyses showed that the polysaccharide was a glucuronic acid-containing rhamnan-type sulfated polysaccharide. The backbone mainly consisted of →3)-α-l-Rhap-(1→ and →2)-α-l-Rhap-(1→ residues, partially sulfated at C-2 of →3)-α-l-Rhap-(1→ and C-3/C-4 of →2)-α-l-Rhap-(1→. The branching contained unsulfated or monosulfated 3-linked, 2-linked, 4-linked α-l-rhamnose and terminal β-d-glucuronic acid residues. The polysaccharide had strong antidiabetic activity assessed by glucose consumption, total cholesterol and triglyceride levels using human hepatocellular carcinoma (HepG2) and insulin-resistant HepG2 cells. The polysaccharide exhibited high anticoagulant property by activated partial thromboplastin time and thrombin time assays, and possessed high fibrin(ogen)olytic activity evaluated by plasminogen activator inhibitior-1, fibrin(ogen) degradation products and D-dimer levels using rats plasma. The investigation demonstrated that the polysaccharide from Monostroma angicava Kjellm was a novel sulfated rhamnan and could be a potential antidiabetic and anticoagulant polysaccharide.
Collapse
Affiliation(s)
- Xue Liu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jiejie Hao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Xiaoxi He
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Shuyao Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Sujian Cao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ling Qin
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenjun Mao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
42
|
Purification and Structural Characterization of a Novel Water-Soluble Neutral Polysaccharide from Cantharellus cibarius and Its Immunostimulating Activity in RAW264.7 Cells. INT J POLYM SCI 2017. [DOI: 10.1155/2017/3074915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polysaccharide is one of the important active ingredients of Cantharellus cibarius. The aims of this work were to analyze preliminary characterization and to investigate immunostimulating activity of a novel water-soluble neutral polysaccharide named JP1, which was purified from the fruiting body of Cantharellus cibarius using DEAE-FF chromatography and Sephadex G-100 chromatography. The characteristics of JP1 were determined by HPGPC, FT-IR spectra, gas chromatography, and Congo Red Method. Immunostimulating activity of JP1 was investigated in RAW264.7 cells. Results indicated that JP1 consisted of L-Arabinose, D-Mannose, D-Glucose, and D-Galactose in a molar ratio of 1 : 1.06 : 1.95 : 1.17 with a molecular weight of 336 kDa. JP1 is nontoxic to RAW264.7 cells at this concentration range (62.5–1000 μg/mL). Furthermore, JP1 can promote mouse peritoneal macrophages to secrete NO and enhance the secretion of macrophages’ cytokines IL-6 in RAW264.7 cells. These results suggested that JP1 could have potential immunostimulating activity applications as medicine or functional food.
Collapse
|
43
|
Yang ZW, Ouyang KH, Zhao J, Chen H, Xiong L, Wang WJ. Structural characterization and hypolipidemic effect of Cyclocarya paliurus polysaccharide in rat. Int J Biol Macromol 2016. [DOI: https://doi.org/:10.1016/j.ijbiomac.2016.06.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Yang ZW, Ouyang KH, Zhao J, Chen H, Xiong L, Wang WJ. Structural characterization and hypolipidemic effect of Cyclocarya paliurus polysaccharide in rat. Int J Biol Macromol 2016; 91:1073-1080. [PMID: 27343704 DOI: 10.1016/j.ijbiomac.2016.06.063] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/19/2016] [Accepted: 06/20/2016] [Indexed: 02/07/2023]
Abstract
Polysaccharide is one of the important active ingredients of Cyclocarya paliurus (Batal.) Iljinskaja leaves. The aims of this work were to analyze the structure of the polysaccharide of Cyclocarya paliurus (Batal.) Iljinskaja leaves (CPP), and to investigate the antihyperlipidemic effect of CPP on high-fat emulsion (HFE)-induced hyperlipidaemic rats. CPP, comprised of two polysaccharides with average molecular weight (Mw) of 1.35×10(5)Da and 9.34×10(3)Da, was consisted of rhamnose, arabinose, xylose, mannose, glucose and galactose in the molar ratio of 1.00:2.23:0.64:0.49:0.63:4.16. Oral administration of CPP could significantly decrease levels of serum total cholesterol (TC), triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C), increase high density lipoprotein (HDL-C) in hyperlipidemic rats. CPP exerts therapeutic effects on hyperlipidaemic rats, by up-regulating expressions of adipose triglyceride lipase (ATGL) and peroxisome proliferator-activated receptor alpha (PPARα), via down-regulating fatty acid synthase (FAS) and hydroxy methylglutaryl coenzyme A reductase (HMG-CoA). This study demonstrates that CPP may be beneficial for the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Zhan-Wei Yang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ke-Hui Ouyang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jing Zhao
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hui Chen
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lei Xiong
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wen-Jun Wang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
45
|
The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Arch Toxicol 2016; 90:1817-40. [PMID: 27259333 DOI: 10.1007/s00204-016-1744-5] [Citation(s) in RCA: 309] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 05/24/2016] [Indexed: 12/15/2022]
Abstract
Spirulina is a species of filamentous cyanobacteria that has long been used as a food supplement. In particular, Spirulina platensis and Spirulina maxima are the most important. Thanks to a high protein and vitamin content, Spirulina is used as a nutraceutical food supplement, although its other potential health benefits have attracted much attention. Oxidative stress and dysfunctional immunity cause many diseases in humans, including atherosclerosis, cardiac hypertrophy, heart failure, and hypertension. Thus, the antioxidant, immunomodulatory, and anti-inflammatory activities of these microalgae may play an important role in human health. Here, we discuss the antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina in both animals and humans, along with the underlying mechanisms. In addition, its commercial and regulatory status in different countries is discussed as well. Spirulina activates cellular antioxidant enzymes, inhibits lipid peroxidation and DNA damage, scavenges free radicals, and increases the activity of superoxide dismutase and catalase. Notably, there appears to be a threshold level above which Spirulina will taper off the antioxidant activity. Clinical trials show that Spirulina prevents skeletal muscle damage under conditions of exercise-induced oxidative stress and can stimulate the production of antibodies and up- or downregulate the expression of cytokine-encoding genes to induce immunomodulatory and anti-inflammatory responses. The molecular mechanism(s) by which Spirulina induces these activities is unclear, but phycocyanin and β-carotene are important molecules. Moreover, Spirulina effectively regulates the ERK1/2, JNK, p38, and IκB pathways. This review provides new insight into the potential therapeutic applications of Spirulina and may provide new ideas for future studies.
Collapse
|
46
|
Seaweeds as Preventive Agents for Cardiovascular Diseases: From Nutrients to Functional Foods. Mar Drugs 2015; 13:6838-65. [PMID: 26569268 PMCID: PMC4663556 DOI: 10.3390/md13116838] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/16/2015] [Accepted: 10/30/2015] [Indexed: 12/11/2022] Open
Abstract
Being naturally enriched in key nutrients and in various health-promoting compounds, seaweeds represent promising candidates for the design of functional foods. Soluble dietary fibers, peptides, phlorotannins, lipids and minerals are macroalgae's major compounds that can hold potential in high-value food products derived from macroalgae, including those directed to the cardiovascular-health promotion. This manuscript revises available reported data focusing the role of diet supplementation of macroalgae, or extracts enriched in bioactive compounds from macroalgae origin, in targeting modifiable markers of cardiovascular diseases (CVDs), like dyslipidemia, oxidative stress, vascular inflammation, hypertension, hypercoagulability and activation of the sympathetic and renin-angiotensin systems, among others. At last, the review also describes several products that have been formulated with the use of whole macroalgae or extracts, along with their claimed cardiovascular-associated benefits.
Collapse
|