1
|
Paventi G, Di Martino C, Coppola F, Iorizzo M. β-Glucosidase Activity of Lactiplantibacillus plantarum: A Key Player in Food Fermentation and Human Health. Foods 2025; 14:1451. [PMID: 40361534 PMCID: PMC12072041 DOI: 10.3390/foods14091451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/18/2025] [Accepted: 04/20/2025] [Indexed: 05/15/2025] Open
Abstract
β-glucosidases are a relevant class of enzymes in the food industry due to their role in hydrolyzing different types of glycosidic bonds. This activity allows for formation of volatile compounds and release of bioactive aglycone compounds. In addition to endogenous β-glucosidase activity present in raw material, the function of β-glucosidases in fermenting microorganisms has been progressively clarified and increasingly appreciated. In this regard, several lactic acid bacteria, including Lactiplantibacillus plantarum, showed high β-glucosidase activity, which can be considered as a valid biotechnological resource in different food sectors. Here, we reviewed the huge literature in which the β-glucosidases of L. plantarum were shown to play a role, highlighting how their action results in enhancing the nutritional, sensory, and functional properties of fermented foods. To this aim, after a brief introduction of the main functions of these enzymes in several kingdoms, we critically analyzed the involvement of L. plantarum β-glucosidases in plant-based food production, with a particular insight for soy, cassava, and olive-fermented products, as well as in the production of both alcoholic and non-alcoholic beverages. We trust that the reports summarized here can be helpful in planning future research and innovative strategies to obtain pleasing, functional, and healthy foods.
Collapse
Affiliation(s)
- Gianluca Paventi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy;
| | - Catello Di Martino
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy;
| | - Francesca Coppola
- Department of Agricultural Sciences, University of Naples “Federico II”, Portici, 80055 Naples, Italy;
| | - Massimo Iorizzo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy;
| |
Collapse
|
2
|
Mazhar MU, Naz S, Khan JZ, Khalid S, Ghazanfar S, Selim S, Tipu MK, Ashique S, Yasmin S, Almuhayawi MS, Alshahrani A, Ansari MY. Safety Evaluation and antioxidant potential of new probiotic strain Bacillus subtilis (NMCC-path-14) in Balb/c mice by sub-acute repeated dose toxicity. Heliyon 2024; 10:e38581. [PMID: 39403501 PMCID: PMC11471459 DOI: 10.1016/j.heliyon.2024.e38581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 09/26/2024] [Indexed: 03/06/2025] Open
Abstract
Probiotics have recently gained significant interest for their possible therapeutic effects in treating numerous health conditions. Probiotics containing Bacillus subtilis have been shown to have several health benefits, most notably in preventing diarrhea and gastrointestinal problems. A novel probiotic strain, Bacillus subtilis (NMCC-path-14), isolated from the rumen of a Nilli Ravi Buffalo, was evaluated for 28-day repeated dose toxicity in Balb/c mice. The NMCC-path-14 in low dose (1 × 108 CFU/ml) and high dose (1 × 1010 CFU/ml) was administered to the mice through gavage regularly. After 28 days of treatment, it was discovered that the no-observed-adverse-effect level (NOAEL) for NMCC-path-14 wasgreater than 1 × 1010 CFU/animal/day. This study also revealed no treatment-related changes in clinical parameters, body weight, gross pathology, or histology. Food consumption, hemoglobin, hematocrit, red blood cell counts, and colon length increased, while total/differential leukocyte count and platelets remained unchanged. The administration of NMCC-path-14 also resulted in decreased bilirubin and creatinine levels. Furthermore, NMCC-path-14 also displayed a promising antioxidant potential by increasing the antioxidant enzymes (GST, GSH, and CAT) and decreasing oxidant enzyme (MDA and NO) levels in vital organs like the liver, kidneys, spleen, and colon. TheNMCC-path-14also decreased the pathogenic bacterial population while increasing the beneficial population. Given the lack of adverse effects observed after NMCC-path-14 treatment, this strain is safe and must be considered as a potential probiotic in humans.
Collapse
Affiliation(s)
- Muhammad Usama Mazhar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sadaf Naz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jehan Zeb Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sharjeel Khalid
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Shakira Ghazanfar
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Muhammad Khalid Tipu
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sumel Ashique
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, 713212, West Bengal, India
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Mohammed S. Almuhayawi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Aziza Alshahrani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Mohammad Yousuf Ansari
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India
| |
Collapse
|
3
|
Arellano K, Lim J, Bucheli JEV, Park H, Todorov SD, Holzapfel WH. Identification of safe putative probiotics from various food products. Folia Microbiol (Praha) 2024; 69:1053-1068. [PMID: 38376735 DOI: 10.1007/s12223-024-01142-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 01/25/2024] [Indexed: 02/21/2024]
Abstract
The objective of this study was to isolate, identify, and assess the safety and functionality in vitro of putative probiotic bacterial strains. Isolation procedures were based on standard methods using elective and selective media. The isolates were identified by comparative 16S rRNA sequencing analysis while their safety was determined according to the safety tests recommended by the FAO/WHO such as antibiotic resistance, hemolysin, and biogenic amine production. Most of the isolates did not pass the in vitro safety tests; therefore, only Lactiplantibacillus plantarum (from ant intestine and cheese), Lacticaseibacillus paracasei (from goat milk and kimchi), Enterococcus faecium (from chili doenjang and vegetables with kimchi ingredients), Limosilactobacillus fermentum (from saliva), and Companilactobacillus alimentarius (from kimchi) were identified and selected for further studies. The isolates were further differentiated by rep-PCR and identified to the strain level by genotypic (16S rRNA) and phenotypic (Gen III) approaches. Subsequently, the strain tolerance to acid and bile was evaluated resulting in good viability after simulated gastrointestinal tract passage. Adhesion to mucin in vitro and the presence of mub, mapA, and ef-tu genes confirmed the adhesive potential of the strains and the results of features associated with adhesion such as hydrophobicity and zeta potential extended the insights. This study reflects the importance of fermented and non-fermented food products as a promising source of lactic acid bacteria with potential probiotic properties. Additionally, it aims to highlight the challenges associated with the selection of safe strains, which often fail in the in vitro tests, thus hindering the possibilities of "uncovering" novel and safe probiotic strains.
Collapse
Affiliation(s)
- Karina Arellano
- Human Effective Microbes, Department of Advanced Convergence, Handong Global University, Pohang 37554, Gyeongbuk, South Korea
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, University Hospital Schleswig Holstein, Schwanenweg 20, 24105 Kiel, Germany
| | - Juwhan Lim
- Human Effective Microbes, Department of Advanced Convergence, Handong Global University, Pohang 37554, Gyeongbuk, South Korea
| | - Jorge Enrique Vazquez Bucheli
- Human Effective Microbes, Department of Advanced Convergence, Handong Global University, Pohang 37554, Gyeongbuk, South Korea
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang 37554, Gyeongbuk, South Korea
| | - Haryung Park
- Human Effective Microbes, Department of Advanced Convergence, Handong Global University, Pohang 37554, Gyeongbuk, South Korea
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Department of Advanced Convergence, Handong Global University, Pohang 37554, Gyeongbuk, South Korea.
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.
- Food Research Center (FoRC), Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.
- CISAS - Center for Research and Development in Agrifood Systems and Sustainability, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal.
| | - Wilhelm Heinrich Holzapfel
- Human Effective Microbes, Department of Advanced Convergence, Handong Global University, Pohang 37554, Gyeongbuk, South Korea.
| |
Collapse
|
4
|
Guo L, Ze X, Jiao Y, Song C, Zhao X, Song Z, Mu S, Liu Y, Ge Y, Jing Y, Yao S. Development and validation of a PMA-qPCR method for accurate quantification of viable Lacticaseibacillus paracasei in probiotics. Front Microbiol 2024; 15:1456274. [PMID: 39171269 PMCID: PMC11335531 DOI: 10.3389/fmicb.2024.1456274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024] Open
Abstract
The effectiveness of probiotic products hinges on the viability and precise quantification of probiotic strains. This study addresses this crucial requirement by developing and validating a precise propidium monoazide combination with quantitative polymerase chain reaction (PMA-qPCR) method for quantifying viable Lacticaseibacillus paracasei in probiotic formulations. Initially, species-specific primers were meticulously designed based on core genes from the whole-genome sequence (WGS) of L. paracasei, and they underwent rigorous validation against 462 WGSs, 25 target strains, and 37 non-target strains across various taxonomic levels, ensuring extensive inclusivity and exclusivity. Subsequently, optimal PMA treatment conditions were established using 25 different L. paracasei strains to effectively inhibit dead cell DNA amplification while preserving viable cells. The developed method exhibited a robust linear relationship (R 2 = 0.994) between cycle threshold (Cq) values and viable cell numbers ranging from 103 to 108 CFU/mL, with an impressive amplification efficiency of 104.48% and a quantification limit of 7.30 × 103 CFU/mL. Accuracy assessments revealed biases within ±0.5 Log10 units, while Bland-Altman analysis demonstrated a mean bias of 0.058 Log10, with 95% confidence limits of -0.366 to 0.482 Log10. Furthermore, statistical analysis (p = 0.76) indicated no significant differences between theoretical and measured values. This validated PMA-qPCR method serves as a robust and accurate tool for quantifying viable L. paracasei in various sample matrices, including pure cultures, probiotics as food ingredients, and composite probiotic products, thereby enhancing probiotic product quality assurance and contributing to consumer safety and regulatory compliance.
Collapse
Affiliation(s)
- Lizheng Guo
- China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries Co., LTD., Beijing, China
| | - Xiaolei Ze
- Microbiome Research and Application Center, BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Yingxin Jiao
- China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries Co., LTD., Beijing, China
| | - Chengyu Song
- China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries Co., LTD., Beijing, China
| | - Xi Zhao
- Microbiome Research and Application Center, BYHEALTH Institute of Nutrition & Health, Guangzhou, China
| | - Zhiquan Song
- China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries Co., LTD., Beijing, China
| | - Shuaicheng Mu
- China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries Co., LTD., Beijing, China
| | - Yiru Liu
- China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries Co., LTD., Beijing, China
| | - Yuanyuan Ge
- China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries Co., LTD., Beijing, China
| | - Yu Jing
- China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries Co., LTD., Beijing, China
| | - Su Yao
- China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries Co., LTD., Beijing, China
| |
Collapse
|
5
|
Lee J, Jo J, Wan J, Seo H, Han SW, Shin YJ, Kim DH. In Vitro Evaluation of Probiotic Properties and Anti-Pathogenic Effects of Lactobacillus and Bifidobacterium Strains as Potential Probiotics. Foods 2024; 13:2301. [PMID: 39063385 PMCID: PMC11276478 DOI: 10.3390/foods13142301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Probiotics restore gut microbial balance, thereby providing health-promoting effects to the host. They have long been suggested for managing intestinal disorders caused by pathogens and for improving gut health. This study evaluated the probiotic properties and anti-pathogenic effects of specific probiotic strains against the intestinal pathogens Staphylococcus aureus and Escherichia coli. The tested strains-Lactiplantibacillus plantarum LC27, Limosilactobacillus reuteri NK33, Lacticaseibacillus rhamnosus NK210, Bifidobacterium longum NK46, and Bifidobacterium bifidum NK175-were able to survive harsh conditions simulating gastric and intestinal fluids. These strains exhibited good auto-aggregation abilities (41.8-92.3%) and ideal hydrophobicity (30.9-85.6% and 38.3-96.1% for xylene and chloroform, respectively), along with the ability to co-aggregate with S. aureus (40.6-68.2%) and E. coli (38.6-75.2%), indicating significant adhesion levels to Caco-2 cells. Furthermore, these strains' cell-free supernatants (CFSs) demonstrated antimicrobial and antibiofilm activity against S. aureus and E. coli. Additionally, these strains inhibited gas production by E. coli through fermentative activity. These findings suggest that the strains tested in this study have potential as novel probiotics to enhance gut health.
Collapse
Affiliation(s)
- Jaekoo Lee
- PB Business Department, NVP Healthcare Inc., Suwon 16209, Republic of Korea; (J.L.); (J.J.); (J.W.); (H.S.); (S.-W.H.)
- Department of Food Regulatory Science, Korea University, Sejong 30019, Republic of Korea
| | - Jaehyun Jo
- PB Business Department, NVP Healthcare Inc., Suwon 16209, Republic of Korea; (J.L.); (J.J.); (J.W.); (H.S.); (S.-W.H.)
| | - Jungho Wan
- PB Business Department, NVP Healthcare Inc., Suwon 16209, Republic of Korea; (J.L.); (J.J.); (J.W.); (H.S.); (S.-W.H.)
| | - Hanseul Seo
- PB Business Department, NVP Healthcare Inc., Suwon 16209, Republic of Korea; (J.L.); (J.J.); (J.W.); (H.S.); (S.-W.H.)
| | - Seung-Won Han
- PB Business Department, NVP Healthcare Inc., Suwon 16209, Republic of Korea; (J.L.); (J.J.); (J.W.); (H.S.); (S.-W.H.)
| | - Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea;
| |
Collapse
|
6
|
Kim JH, Kang CE, Lee NK, Paik HD. Heat-Killed Lactilactobacillus sakei WB2305 and Lactiplantibacillus plantarum WB2324 Inhibited LPS-Induced Inflammation in Human Airway Epithelial Cells. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10251-1. [PMID: 38592556 DOI: 10.1007/s12602-024-10251-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
Asthma is characterized by inflammation of the airways, including the inflammatory and airway structural cells. Probiotics, which have diverse effects, even within the same species, are being studied to prevent and mitigate the severity of asthma. Lactilactobacillus sakei WB2305 and Lactiplantibacillus plantarum WB2324 were isolated from kimchi. These strains have acceptable probiotic properties and are safe. In addition, the anti-inflammatory potential of the heat-killed isolates against lipopolysaccharide (LPS)-induced inflammation in the human pulmonary epithelial cell line (A549) was investigated. The heat-killed Lact. sakei WB2305 and Lact. plantarum WB2324 reduced the chemokine and cytokines mRNA expression levels, as shown by the results of using real-time polymerase chain reaction. Western blotting results showed that the nuclear factor-kappa B (NF-κB) activation and mitogen-activated protein kinases (MAPK) signaling pathways were suppressed by treatment with the heat-killed strains. The production amounts of eotaxin, tumor necrosis factor-ɑ (TNF-α), and interleukin-6 (IL-6) were lower than those in LPS-only treated cells. Additionally, 2',7'-dichlorofluorescein diacetate (DCFH-DA) staining confirmed decreased reactive oxygen species (ROS) production in A549 cells. Therefore, the results of present study demonstrate the anti-inflammatory and anti-asthmatic activities of heat-killed Lact. sakei WB2305 and Lact. plantarum WB2324 in human airway epithelial cells.
Collapse
Affiliation(s)
- Ji Hun Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Cho Eun Kang
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
7
|
Li X, Li W, Zhao L, Li Y, He W, Ding K, Cao P. Characterization and Assessment of Native Lactic Acid Bacteria from Broiler Intestines for Potential Probiotic Properties. Microorganisms 2024; 12:749. [PMID: 38674693 PMCID: PMC11052334 DOI: 10.3390/microorganisms12040749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Probiotics are the most promising alternative to antibiotics for improving animal production and controlling pathogenic infections, while strains derived from natural hosts are considered highly desirable due to their good adaptation to the gastrointestinal tract. The aim of this study was to screen Lactobacillus with broad-spectrum antibacterial activity from broilers fed an antibiotic-free diet and evaluate their potential as poultry probiotics. A total of 44 lactic acid bacteria (LAB) strains were isolated from the intestines of healthy broilers, among which 3 strains exhibited outstanding antimicrobial activity and were subsequently identified through 16S rRNA sequencing as Enterococcus faecium L8, Lactiplantibacillus plantarum L10, and Limosilactobacillus reuteri H11. These three isolates demonstrated potent bacteriostatic activity against Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, and Salmonella cholerae, with inhibition zones ranging from 15.67 ± 1.53 to 21.33 ± 0.58 mm. The selected LAB strains exhibited high tolerance to acid and bile salts, with L. reuteri H11 displaying the highest survival rate (ranging from 34.68% to 110.28%) after exposure to 0.3% (w/v) bile salts for 6 h or a low pH environment (pH 2, 2.5, and 3) for 3 h. Notably, L. reuteri H11 outperformed other strains in terms of hydrophobicity (84.31%), auto-aggregation (53.12%), and co-aggregation with E. coli ATCC 25922 (36.81%) and S. aureus ATCC 6538 (40.20%). In addition, the three LAB isolates were either fully or moderately susceptible to the tested antibiotics, except for strain L8, which resisted gentamycin and vancomycin. Consequently, these three LAB strains, especially L. reuteri H11, isolated from the intestines of broiler chickens, represent promising probiotic candidates that can be employed as feed additives to enhance production performance and control poultry pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pinghua Cao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
8
|
Bock HJ, Lee HW, Lee NK, Paik HD. Probiotic Lactiplantibacillus plantarum KU210152 and its fermented soy milk attenuates oxidative stress in neuroblastoma cells. Food Res Int 2024; 177:113868. [PMID: 38225133 DOI: 10.1016/j.foodres.2023.113868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
We evaluated the probiotic properties and neuroprotective effects of Lactiplantibacillus plantarum KU210152 and its application in soy milk. L. plantarum KU210152 exhibited high tolerance to artificial gastrointestinal conditions, high adhesion to intestinal cells (HT-29), and safe enzyme production. Conditioned medium acquired from HT-29 cells treated with heat-killed lactic acid bacteria (LAB-CM) was used to evaluate the neuroprotective effects. The CM exhibited neuroprotective effects via cell viability assay, morphological observations, and suppression of ROS production. Heat-killed L. plantarum KU210152 increased brain-derived neurotrophic factor (BDNF) and tyrosine hydroxylase (TH) expression in HT-29 cells. In SH-SY5Y cells, pretreatment with L. plantarum KU210152 CM decreased Bax/Bcl-2 ratio and upregulated BDNF and TH expression. The CM inhibited caspase-9 and caspase-3 activities. The neuroprotective effects of L. plantarum KU210152 were also confirmed in fermented soy milk. Therefore, both L. plantarum KU210152 and the fermented soy milk can be used as functional ingredients with neuroprotective effects against oxidative stress.
Collapse
Affiliation(s)
- Hyun-Ji Bock
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hye-Won Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
9
|
Jang HJ, Kim JH, Lee NK, Paik HD. Probiotic Lactobacillus plantarum Ln4 Showing Antimicrobial and Antibiofilm Effect against Streptococcus mutans KCTC 5124 Causing Dental Caries. J Microbiol Biotechnol 2024; 34:116-122. [PMID: 37674399 PMCID: PMC10840488 DOI: 10.4014/jmb.2306.06001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/08/2023]
Abstract
Dental caries has known as an infectious disease that is considered a serious global public health problem. Recently, report indicate that probiotics play a vital role in maintaining oral health. Therefore, this study aimed to evaluate the prevention effects of Lactobacillus plantarum Ln4 against dental infection by the pathogenic bacterium Streptococcus mutans KCTC 5124 through biofilm formation inhibition. To evaluate such prevention effects against S. mutans KCTC 5124, antimicrobial activity, auto-aggregation, co-aggregation, cell surface hydrophobicity, total exopolysaccharide (EPS) production rate, and biofilm formation were analyzed. Results showed that L. plantarum Ln4 showed higher antimicrobial activity than L. rhamnosus GG (LGG). In the group treated with L. plantarum Ln4, the co-aggregation (58.85%), cell surface hydrophobicity (16.75%), and EPS production rate (73.29%) values were lower than those of LGG and the negative control. Additionally, crystal violet staining and confocal laser scanning microscopy (CLSM) revealed that L. plantarum Ln4 effectively inhibited biofilm formation in S. mutans KCTC 5124. Therefore, L. plantarum Ln4 could be used in the industry as a probiotics to prevent and improve oral health.
Collapse
Affiliation(s)
- Hye Ji Jang
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Jong Ha Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
10
|
Arjmand S, Mollakhalili‐Meybodi N, Akrami Mohajeri F, Madadizadeh F, Khalili Sadrabad E. Quinoa dough fermentation by Saccharomyces cerevisiae and lactic acid bacteria: Changes in saponin, phytic acid content, and antioxidant capacity. Food Sci Nutr 2023; 11:7594-7604. [PMID: 38107108 PMCID: PMC10724584 DOI: 10.1002/fsn3.3679] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 12/19/2023] Open
Abstract
The effects of two fermentation processes (common fermentation with Saccharomyces cerevisiae and fermentation by Lacticaseibacillus casei subsp. casei PTCC 1608 and Lactiplantibacillus plantarum subsp. plantarum PTCC 1745) on pH, titratable acidity, total phenolic and flavonoid contents, antioxidant capacity, saponin content, as well as phytic acid content of quinoa dough were investigated during the 24-h fermentation (4-h interval). According to the results, the highest titratable acidity was observed in the samples fermented by L. casei subsp. casei. Moreover, the highest antioxidant capacity was observed after 12 h of fermentation by L. plantarum subsp. plantarum (31.22% for DPPH, 104.67% for FRAP) due to a higher concentration of phenolic compounds produced (170.5% for total phenolic content). Also, all samples have been able to reduce saponin by 67% on average. Furthermore, the samples fermented by L. plantarum subsp. plantarum showed the most significant decrease in phytic acid content (64.64%) during 24-h fermentation. By considering the reduction of the antinutritional compounds and improvement in the antioxidant properties of quinoa flour, the Lactiplantibacillus plantarum strain was recommended.
Collapse
Affiliation(s)
- Sanaz Arjmand
- Research Center for Food Hygiene and SafetyDepartment of Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Neda Mollakhalili‐Meybodi
- Research Center for Food Hygiene and SafetyDepartment of Food Science and Technology, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
| | - Fateme Akrami Mohajeri
- Research Center for Food Hygiene and SafetyDepartment of Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
- Infectious Diseases Research CenterShahid Sadoughi HospitalShahid Sadoughi University of Medical SciencesYazdIran
| | - Farzan Madadizadeh
- Center for Healthcare Data modelingDepartments of Biostatistics and Epidemiology, School of public healthShahid Sadoughi University of Medical SciencesYazdIran
| | - Elham Khalili Sadrabad
- Research Center for Food Hygiene and SafetyDepartment of Food Hygiene and Safety, School of Public HealthShahid Sadoughi University of Medical SciencesYazdIran
- Infectious Diseases Research CenterShahid Sadoughi HospitalShahid Sadoughi University of Medical SciencesYazdIran
| |
Collapse
|
11
|
Amelia R, Said FM, Yasmin F, Harun H, Tofrizal T. The anti-inflammatory activity of probiotic Dadiah to activate Sirtuin-1 in inhibiting diabetic nephropathy progression. J Diabetes Metab Disord 2023; 22:1425-1442. [PMID: 37975108 PMCID: PMC10638242 DOI: 10.1007/s40200-023-01265-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 07/13/2023] [Indexed: 11/19/2023]
Abstract
Purpose The activation of SIRT-1 in the kidney has become a new therapeutic target to increase resistance to many causal factors in DN development. Furthermore, antioxidative stress and anti-inflammation are essential to preventing renal fibrosis in DN. Therefore, finding "probiotic products" to treat and prevent DN is necessary. This study aimed to analyze the anti-inflammatory of probiotic dadiah to activate SIRT-1 in inhibiting DN progression. Methods This study is an experimental group designed with a post-test-only control group to observe the effect of dadiah, LAB, and bacteriocin on alloxan-induced nephropathy diabetic rats through two control groups and five intervention groups for eight weeks. The expression of antibodies SIRT-1 and TNF-α was examined using Immunohistochemistry and histopathology of kidney tissue. All data were analyzed using ANOVA test. Results The treatment of dadiah, lactic acid bacteria, and bacteriocin showed a higher expression of Sirtuin-1 than the positive control. They also, reduce TNF-α expression varies significantly between treatments. The highest average of interstitial fibrosis in the C + groups was substantially different from all groups, but all treatments showed decreased kidney fibrosis. Although all treatments showed a decrease in interstitial kidney fibrosis found in the control group, the treatment using dadiah showed the highest result. Conclusions Dadiah has the potential to the prevention of fibrosis on kidney tissue of alloxan-induced nephropathy diabetic rats. The findings could be to develop novel treatments for DN that aim to reduce the cascade of oxidative stress and inflammatory signals in kidney tissue.
Collapse
Affiliation(s)
- Rinita Amelia
- Medical Faculty, Baiturrahmah University, Padang, West Sumatra Indonesia
| | | | - Farzana Yasmin
- Lincoln University College, Petaling Jaya, Selangor Malaysia
| | - Harnavi Harun
- Internist Medicine Department of Andalas University, Padang, West Sumatra Indonesia
| | - Tofrizal Tofrizal
- Pathology Anatomy Department of Medical Faculty Andalas University, Padang, West Sumatra Indonesia
| |
Collapse
|
12
|
Lee SW, Lim JM, Lee GM, Park JH, Seralathan KK, Oh BT. Evaluation of Lentilactobacillus parafarraginis A6-2 strain for aluminum removal and anti-inflammatory effects: implications for alleviating Al toxicity. J Appl Microbiol 2023; 134:lxad271. [PMID: 37989872 DOI: 10.1093/jambio/lxad271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/30/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
AIM To assess the effectiveness of Lentilactobacillus parafarraginis A6-2 cell lysate for the removal of aluminum (Al), which induces neurotoxicity, and its protective effect at cellular level. METHODS AND RESULTS The cell lysate of the selected L. parafarraginis A6-2 strain demonstrated superior Al removal compared to live or dead cells. The Al removal efficiency of L. parafarraginis A6-2 cell lysate increased with decreasing pH and increasing temperature, primarily through adsorption onto peptidoglycan. Neurotoxicity mitigation potential of L. parafarraginis A6-2 was evaluated using C6 glioma cells. C6 cells exposed with increasing concentration of Al led to elevated toxicity and inflammation, which were gradually alleviated upon treatment with L. parafarraginis A6-2. Moreover, Al-induced oxidative stress in C6 cells showed a concentration-dependent reduction upon treatment with L. parafarraginis A6-2. CONCLUSIONS This study demonstrated that L. parafarraginis A6-2 strain, particularly in its lysate form, exhibited enhanced capability for Al removal. Furthermore, it effectively mitigated Al-induced toxicity, inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Se-Won Lee
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Jeong-Muk Lim
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Gwang-Min Lee
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Jung-Hee Park
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Kamala-Kannan Seralathan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea
| |
Collapse
|
13
|
Zeighamy Alamdary S, Halimi S, Rezaei A, Afifirad R. Association between Probiotics and Modulation of Gut Microbial Community Composition in Colorectal Cancer Animal Models: A Systematic Review (2010-2021). THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:3571184. [PMID: 37719797 PMCID: PMC10505085 DOI: 10.1155/2023/3571184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/09/2023] [Accepted: 07/21/2023] [Indexed: 09/19/2023]
Abstract
Background Colorectal cancer (CRC) is one of the most prevalent gastrointestinal malignancies and is considered the third major cause of mortality globally. Probiotics have been shown to protect against the CRC cascade in numerous studies. Aims The goal of this systematic review was to gather the preclinical studies that examined the impact of probiotics on the alteration of gut microbiota profiles (bacterial communities) and their link to colorectal carcinogenesis as well as the potential processes involved. Methods The search was performed using Scopus, Web of Science, and PubMed databases. Five parameters were used to develop search filters: "probiotics," "prebiotics," "synbiotics," "colorectal cancer," and "animal model." Results Of the 399 full texts that were screened, 33 original articles met the inclusion criteria. According to the current findings, probiotics/synbiotics could significantly attenuate aberrant crypt foci (ACF) formation, restore beneficial bacteria in the microbiota population, increase short-chain fatty acids (SCFAs), and change inflammatory marker expression. Conclusions The present systematic review results indicate that probiotics could modulate the gut microbial composition and immune regulation to combat/inhibit CRC in preclinical models. However, where the evidence is more limited, it is critical to transfer preclinical research into clinical data.
Collapse
Affiliation(s)
| | - Shahnaz Halimi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Rezaei
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roghayeh Afifirad
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Vougiouklaki D, Tsironi T, Tsantes AG, Tsakali E, Van Impe JFM, Houhoula D. Probiotic Properties and Antioxidant Activity In Vitro of Lactic Acid Bacteria. Microorganisms 2023; 11:1264. [PMID: 37317238 DOI: 10.3390/microorganisms11051264] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/09/2023] [Accepted: 05/07/2023] [Indexed: 06/16/2023] Open
Abstract
The properties of probiotics such as lactic acid bacteria (LAB) have been widely studied over the last decades. In the present study, four different LAB species, namely Lactobacillus gasseri ATCC 33323, Lacticaseibacillus rhamnosus GG ATCC 53103, Levilactobacillus brevis ATCC 8287, and Lactiplantibacillus plantarum ATCC 14917, were investigated in order to determine their ability to survive in the human gut. They were evaluated based on their tolerance to acids, resistance to simulated gastrointestinal conditions, antibiotic resistance, and the identification of genes encoding bacteriocin production. All four tested strains demonstrated high resistance to simulated gastric juice after 3 h, and the viable counts revealed declines in cell concentrations of less than 1 log cycle. L. plantarum showed the highest level of survival in the human gut, with counts of 7.09 log CFU/mL. For the species L. rhamnosus and L. brevis, the values were 6.97 and 6.52, respectively. L. gasseri, after 12 h, showed a 3.96 log cycle drop in viable counts. None of the evaluated strains inhibited resistance to ampicillin, gentamicin, kanamycin, streptomycin, erythromycin, clindamycin, tetracycline, or chloramphenicol. With regard to bacteriocin genes, the Pediocin PA gene was identified in Lactiplantibacillus plantarum ATCC 14917, Lacticaseibacillus rhamnosus GG ATCC 53103, and Lactobacillus gasseri ATCC 33323. The PlnEF gene was detected in Lactiplantibacillus plantarum ATCC 14917 and Lacticaseibacillus rhamnosus GG ATCC 53103. The Brevicin 174A and PlnA genes were not detected in any bacteria. Moreover, the potential antioxidant activity of LAB's metabolites was evaluated. At the same time, the possible antioxidant activity of metabolites of LAB was first tested using the free radical DDPH• (a, a-Diphenyl-β-Picrylhydrazyl) and then evaluated with regard to their radical scavenging activity and inhibition against peroxyl radical induced DNA scission. All strains showed antioxidant activity; however, the best antioxidant activity was achieved by L. brevis (94.47%) and L. gasseri (91.29%) at 210 min. This study provides a comprehensive approach to the action of these LAB and their use in the food industry.
Collapse
Affiliation(s)
- Despina Vougiouklaki
- Department of Food Science and Technology, Faculty of Food Sciences, University of West Attica, 12461 Egaleo, Greece
| | - Theofania Tsironi
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | - Andreas G Tsantes
- Laboratory of Haematology and Blood Bank Unit, School of Medicine, 'Attiko' Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Efstathia Tsakali
- Department of Food Science and Technology, Faculty of Food Sciences, University of West Attica, 12461 Egaleo, Greece
- Department of Chemical Engineering, BioTeC+-Chemical and Biochemical Process Technology and Control, KU Leuven, 9000 Gent, Belgium
| | - Jan F M Van Impe
- Department of Chemical Engineering, BioTeC+-Chemical and Biochemical Process Technology and Control, KU Leuven, 9000 Gent, Belgium
| | - Dimitra Houhoula
- Department of Food Science and Technology, Faculty of Food Sciences, University of West Attica, 12461 Egaleo, Greece
| |
Collapse
|
15
|
Haranahalli Nataraj B, Behare PV, Yadav H, Srivastava AK. Emerging pre-clinical safety assessments for potential probiotic strains: a review. Crit Rev Food Sci Nutr 2023; 64:8155-8183. [PMID: 37039078 DOI: 10.1080/10408398.2023.2197066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Probiotics are amply studied and applied dietary supplements of greater consumer acceptance. Nevertheless, the emerging evidence on probiotics-mediated potential risks, especially among immunocompromised individuals, necessitates careful and in-depth safety studies. The traditional probiotic safety evaluation methods investigate targeted phenotypic traits, such as virulence factors and antibiotic resistance. However, the rapid innovation in omics technologies has offered an impactful means to ultimately sequence and unknot safety-related genes or their gene products at preliminary levels. Further validating the genome features using an array of phenotypic tests would provide an absolute realization of gene expression dynamics. For safety studies in animal models, the in vivo toxicity evaluation guidelines of chemicals proposed by the Organization for Economic Co-operation and Development (OECD) have been meticulously adopted in probiotic research. Future research should also focus on coupling genome-scale safety analysis and establishing a link to its transcriptome, proteome, or metabolome for a fine selection of safe probiotic strains. Considering the studies published over the years, it can be inferred that the safety of probiotics is strain-host-dose-specific. Taken together, an amalgamation of in silico, in vitro, and in vivo approaches are necessary for a fine scale selection of risk-free probiotic strain for use in human applications.
Collapse
Affiliation(s)
- Basavaprabhu Haranahalli Nataraj
- Technofunctional Starters Lab, National Collection of Dairy Culture (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Pradip V Behare
- Technofunctional Starters Lab, National Collection of Dairy Culture (NCDC), Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Hariom Yadav
- Department of Neurosurgery and Brain Repair, USF Center for Microbiome Research, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Anil Kumar Srivastava
- U.P. Pt. Deen Dayal Upadhyaya Veterinary Science University, Mathura, India
- Probiotic Association of India, Karnal, India
| |
Collapse
|
16
|
Geng S, Zhang T, Gao J, Li X, Chitrakar B, Mao K, Sang Y. In vitro screening of synbiotics composed of Lactobacillus paracasei VL8 and various prebiotics and mechanism to inhibits the growth of Salmonella Typhimurium. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114666] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
17
|
Hwang CH, Kim KT, Lee NK, Paik HD. Immune-Enhancing Effect of Heat-Treated Levilactobacillus brevis KU15159 in RAW 264.7 Cells. Probiotics Antimicrob Proteins 2023; 15:175-184. [PMID: 36178579 PMCID: PMC9523639 DOI: 10.1007/s12602-022-09996-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2022] [Indexed: 01/18/2023]
Abstract
Probiotics are alive microbes that present beneficial to the human's health. They influence immune responses through stimulating antibody production, activating T cells, and altering cytokine expression. The probiotic characteristics of Levilactobacillus brevis KU15159 were evaluated on the tolerance and adherence to gastrointestinal conditions. L. brevis KU15159 was safe in a view of producing various useful enzymes and antibiotic sensitivity. Heat-treated L. brevis KU15159 increased production of nitric oxide (NO) and phagocytic activity in RAW 264.7 cells. In addition, heat-treated L. brevis KU15159 upregulated the expression of inducible nitric oxide synthase (iNOS) and proinflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, at protein as well as mRNA levels. In addition, the mitogen-activated protein kinase (MAPK) pathway, which regulates the immune system, was activated by heat-treated L. brevis KU15159. Therefore, L. brevis KU15159 exhibited an immune-enhancing effect by the MAPK pathway in macrophage.
Collapse
Affiliation(s)
- Chang-Hoon Hwang
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Kee-Tae Kim
- Research Center, WithBio Inc., Seoul, 05029, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
18
|
Characterization of Probiotic Properties of Lacticaseibacillus paracasei L2 Isolated from a Traditional Fermented Food "Lben". Life (Basel) 2022; 13:life13010021. [PMID: 36675968 PMCID: PMC9863983 DOI: 10.3390/life13010021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Lben is a dairy fermented food that is largely consumed in Tunisia for its numerous health benefits that are related to the existence of probiotics. Lactic Acid Bacteria (LAB) are well known for their beneficial probiotic properties for humans, especially when administered in adequate amounts. The aim of this study was to isolate and investigate the probiotics properties of Lacticaseibacillus paracasei L2 from Lben. The isolated strain was identified by 16S r-RNA gene sequences and MALDI- TOF MS. To evaluate the probiotic potential of the isolated bacterium, in vitro tests were performed, including adhesion ability to HCT-116 cells, survival in acid and bile salt conditions, lysozyme resistance, biofilm formation, hemolytic activity, antioxidant activity, and antimicrobial activity. Our results revealed that the selected Lacticaseibacillus paracasei L2 strain expressed a high adherence to HCT-116 cells (45.03%), survived under acidic conditions (pH3), and showed a resistance to bile salts. The strain was considered as safe (α-hemolysis). L. paracasei L2 showed a high biofilm-formation ability (OD 570 > 1.7) after 24 h of incubation. It also demonstrated an important antioxidant activity in the range of 85.31% for the intact cells. However, an antimicrobial activity against pathogens, namely Staphylococcus aureus, was detected with an IZ that was above 19 mm. In conjunction with the results obtained and the technological properties of Lacticaseibacillus paracasei L2 (proteolytic property, autolytic activity, acidifying activity, and EPS production), this strain may be used as a probiotic for manufacturing fermented foods.
Collapse
|
19
|
Soleiman Meiguni F, Imanparast S, Salimi F, Nemati F. The Probiotic Biosurfactant From Levilactobacillus brevis Strain F20 Isolated from a Diary Product with Potential Food Applications. FOOD BIOTECHNOL 2022. [DOI: 10.1080/08905436.2022.2127758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Fatemeh Soleiman Meiguni
- Department of Biotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Somaye Imanparast
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Fatemeh Salimi
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, Iran
| | - Fahimeh Nemati
- Department of Biotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
20
|
Characterisation of the probiotic potential of Lactiplantibacillus plantarum K16 and its ability to produce the postbiotic metabolite γ-aminobutyric acid. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
21
|
Calabrese FM, Ameur H, Nikoloudaki O, Celano G, Vacca M, Junior WJFL, Manzari C, Vertè F, Di Cagno R, Pesole G, De Angelis M, Gobbetti M. Metabolic framework of spontaneous and synthetic sourdough metacommunities to reveal microbial players responsible for resilience and performance. MICROBIOME 2022; 10:148. [PMID: 36104726 PMCID: PMC9472446 DOI: 10.1186/s40168-022-01301-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In nature, microbial communities undergo changes in composition that threaten their resiliency. Here, we interrogated sourdough, a natural cereal-fermenting metacommunity, as a dynamic ecosystem in which players are subjected to continuous environmental and spatiotemporal stimuli. RESULTS The inspection of spontaneous sourdough metagenomes and transcriptomes revealed dominant, subdominant and satellite players that are engaged in different functional pathways. The highest microbial richness was associated with the highest number of gene copies per pathway. Based on meta-omics data collected from 8 spontaneous sourdoughs and their identified microbiota, we de novo reconstructed a synthetic microbial community SDG. We also reconstructed SMC-SD43 from scratch using the microbial composition of its spontaneous sourdough equivalent for comparison. The KEGG number of dominant players in the SDG was not affected by depletion of a single player, whereas the subdominant and satellite species fluctuated, revealing unique contributions. Compared to SMC-SD43, SDG exhibited broader transcriptome redundancy. The invariant volatilome profile of SDG after in situ long-term back slopping revealed its stability. In contrast, SMC-SD43 lost many taxon members. Dominant, subdominant and satellite players together ensured gene and transcript redundancy. CONCLUSIONS Our study demonstrates how, by starting from spontaneous sourdoughs and reconstructing these communities synthetically, it was possible to unravel the metabolic contributions of individual players. For resilience and good performance, the sourdough metacommunity must include dominant, subdominant and satellite players, which together ensure gene and transcript redundancy. Overall, our study changes the paradigm and introduces theoretical foundations for directing food fermentations. Video Abstract.
Collapse
Affiliation(s)
| | - Hana Ameur
- Faculty of Science and Technology, Libera Università Di Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Olga Nikoloudaki
- Faculty of Science and Technology, Libera Università Di Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Giuseppe Celano
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Mirco Vacca
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Wilson JFLemos Junior
- Faculty of Science and Technology, Libera Università Di Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| | - Caterina Manzari
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Fabienne Vertè
- Puratos NV, Industrialaan 25, 1702, Groot-Bijgaarden, Belgium
| | - Raffaella Di Cagno
- Faculty of Science and Technology, Libera Università Di Bolzano, Piazza Università 5, 39100, Bolzano, Italy.
| | - Graziano Pesole
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Marco Gobbetti
- Faculty of Science and Technology, Libera Università Di Bolzano, Piazza Università 5, 39100, Bolzano, Italy
| |
Collapse
|
22
|
Xie Y, Wang Y, Han Y, Zhang J, Wang S, Lu S, Wang H, Lu F, Jia L. Complete Genome Sequence of a Novel Lactobacillus paracasei TK1501 and Its Application in the Biosynthesis of Isoflavone Aglycones. Foods 2022; 11:foods11182807. [PMID: 36140935 PMCID: PMC9498081 DOI: 10.3390/foods11182807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/27/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Lactobacillus strains are considered safe and healthy probiotics for manufacturing “natural food” products; this is due to their ability to produce bioactive compounds that reduce the incidence of various human diseases. Lactobacillus paracasei TK1501 is a novel probiotic strain isolated from naturally fermented congee; and can produce a high yield of genistein, one of the most widely studied isoflavone aglycones with plenty of physiological functions. To better understand the molecular basis of isoflavone aglycones biosynthesis, the complete 2,942,538 bp genome of L. paracasei TK1501 was sequenced and assembled; a group of genes that are involved in isoflavone aglycones production were identified. Of note, a β-glucosidase was analyzed in the L. paracasei TK1501. Moreover, we also found that L. paracasei TK1501 could be used in soymilk fermentation; which would remarkably increase the contents of genistein, daidzein, and glycitein. This work was meaningful to the application of L. paracasei TK1501 and the molecular mechanism analysis of isoflavone aglycones biosynthesis in Lactobacillus strains.
Collapse
Affiliation(s)
- Yufeng Xie
- College of Food Science and Engineering, Harbin University, Harbin 150086, China
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yingxue Wang
- College of Food Science and Engineering, Harbin University, Harbin 150086, China
| | - Yang Han
- College of Pharmacy, Qilu Medical University, Zibo City 255300, China
| | - Jing Zhang
- College of Pharmacy, Qilu Medical University, Zibo City 255300, China
| | - Shumei Wang
- College of Food Science and Engineering, Harbin University, Harbin 150086, China
| | - Shuwen Lu
- Food Processing Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Haikuan Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Fuping Lu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Longgang Jia
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
- Correspondence: ; Tel.: +86-22-60912442
| |
Collapse
|
23
|
Amini E, Salimi F, Imanparast S, Mansour FN. Isolation and characterization of exopolysaccharide derived from Lacticaseibacillus paracasei AS20(1) with probiotic potential and evaluation of its antibacterial activity. Lett Appl Microbiol 2022; 75:967-981. [PMID: 35716384 DOI: 10.1111/lam.13771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
This study was done to find exopolysaccharide (EPS)-producing lactic acid bacteria (LAB) against foodborne pathogens. Isolated LAB were screened to find the ones with the ability to produce antibacterial EPS against foodborne pathogens. Among tested EPSs, EPS of AS20(1) isolate showed inhibitory effects on the growth of Listeria monocytogenes (MIC = 0·935 mg ml-1 , MBC = 0·935 mg ml-1 ), Yersinia enterocolitica (MIC = 12·5 mg ml-1 , MBC = 50 mg ml-1 ) and Bacillus cereus (MIC = 6·25 mg ml-1 , MBC = 12·5 mg ml-1 ). According to 16S rRNA sequencing, AS20(1) showed the closest similarity to Lacticaseibacillus paracasei (100%). This antibacterial EPS showed negligible toxicity (4·4%-5·2%) against red blood cells. Lacticaseibacillus paracasei AS20(1) showed probiotic properties, including high acid resistance, hydrophobicity (47·5%), autoaggregation and coaggregation with foodborne pathogens. Also, L. paracasei AS20(1) showed no haemolysis activity and antibiotic resistance. Characterization of antibacterial EPS revealed that it is a heteropolysaccharide with various functional groups, amorphous structure, and smooth surface, sheet and compact structure, which can be suitable for food packaging. L. paracasei AS20(1) and its antimicrobial EPS can be used to make functional food.
Collapse
Affiliation(s)
- E Amini
- Faculty of Advanced Sciences and Technology, Department of Biotechnology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - F Salimi
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, Iran
| | - S Imanparast
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - F N Mansour
- Faculty of Advanced Sciences and Technology, Department of Biotechnology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
24
|
Bhatia R, Sharma S, Bhadada SK, Bishnoi M, Kondepudi KK. Lactic Acid Bacterial Supplementation Ameliorated the Lipopolysaccharide-Induced Gut Inflammation and Dysbiosis in Mice. Front Microbiol 2022; 13:930928. [PMID: 35770157 PMCID: PMC9235405 DOI: 10.3389/fmicb.2022.930928] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/16/2022] [Indexed: 12/31/2022] Open
Abstract
Lipopolysaccharide (LPS), a gut-transmitted endotoxin from Gram-negative bacteria, causes inflammatory diseases leading to the loss of gut barrier integrity and has been identified as a major pathogenic stimulator in many dysfunctions. Hence, supplementation with probiotics is believed to be one of the most effective strategies for treating many inflammatory gut disorders. Although probiotics are known to have a variety of therapeutic characteristics and to play a beneficial role in host defense responses, the molecular mechanisms by which they achieve these beneficial effects are unknown due to species- and strain-specific behaviors. Therefore, in this study, the protective role of five indigenous lactic acid bacterial strains in ameliorating LPS-induced gut barrier impairment in the C57BL/6 mice model was elucidated. Lacticaseibacillus rhamnosus LAB3, Levilactobacillus brevis LAB20, and Lactiplantibacillus plantarum LAB31 were isolated from infant feces; Pediococcus acidilactici LAB8 from fermented food (Bekang); and Lactiplantibacillus plantarum LAB39 from beetroot. Intraperitoneal injection of LPS (10 mg/kg of body weight) increased the levels of lipocalin and serum markers TNF-α, IL-6, and IL-1β, and the overall disease activity index in the treated group. Furthermore, gene expression of NF-kB, IL-12, and Cox-2; mucin-producing genes Muc-2 and Muc-4; and intestinal alkaline phosphatase (IAP) was deleteriously altered in the ileum of LPS-treated mice. Furthermore, LPS also induced dysbiosis in gut microbiota where higher abundances of Klebsiella, Enterobacter, and Salmonella and decreased abundances of Lactobacillus, Bifidobacteria, Roseburia, and Akkermansia were observed. Western blotting results also suggested that LPS treatment causes the loss of gut barrier integrity relative to the pre-supplementation with LAB strains, which enhanced the expression of tight junction proteins and ameliorated the LPS-induced changes and inflammation. Taken together, the study suggested that LAB3 and LAB39 were more potent in ameliorating LPS-induced gut inflammation and dysbiosis.
Collapse
Affiliation(s)
- Ruchika Bhatia
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Shikha Sharma
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, India
- Department of Biotechnology, Panjab University, Chandigarh, India
- Regional Centre of Biotechnology, Faridabad, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Centre for Excellence in Functional Foods, Food and Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar, India
- Department of Biotechnology, Panjab University, Chandigarh, India
- Regional Centre of Biotechnology, Faridabad, India
- *Correspondence: Kanthi Kiran Kondepudi, ; orcid.org/0000-0001-8036-7555
| |
Collapse
|
25
|
Abid S, Farid A, Abid R, Rehman MU, Alsanie WF, Alhomrani M, Alamri AS, Asdaq SMB, Hefft DI, Saqib S, Muzammal M, Morshedy SA, Alruways MW, Ghazanfar S. Identification, Biochemical Characterization, and Safety Attributes of Locally Isolated Lactobacillus fermentum from Bubalus bubalis (buffalo) Milk as a Probiotic. Microorganisms 2022; 10:954. [PMID: 35630398 PMCID: PMC9144466 DOI: 10.3390/microorganisms10050954] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/03/2022] Open
Abstract
The demand of functional foods is on the rise, and researchers are trying to develop nutritious dairy products by using well-characterized strains of bacteria. In this study, we identified locally isolated strains of Lactobacillus fermentum from Bubalus bubalis (Nilli Ravi buffalo) milk and evaluated their potential as probiotics in food products like fermented milk. Fifteen Lactobacillus strains were initially isolated, and only four strains (NMCC-2, NMCC-14, NMCC-17, and NMCC-27) were examined for morphological and biochemical characterizations due to their ability of gas production in Durham tubes. Moreover, these strains were selected for further probiotic characterizations due to their extreme morphological resemblance with lactic acid bacteria for their antimicrobial activity, enzymatic potential, autoaggregation capability, hydrophobicity, and acid and bile tolerance. All selected isolates showed significant probiotic potential. However, NMCC-14 and NMCC-17 strains showed maximum probiotic potential. The isolates (NMCC-2, NMCC-14, NMCC-17, and NMCC-27) were identified as Lactobacillus fermentum utilizing 16S rRNA gene sequencing. The in vivo safety study of NMCC-14 (dose: 1010 CFU/day/mice; 21 days, orally) showed no histological dysfunctions in a mouse model. Pathogenic bacterial enzymes reduced the beneficial bacterial load in the host gastrointestinal tract. These results suggest that the NMCC-14 strain is safe and can be potentially used as a probiotic. Moreover, fermented milk was prepared by using the NMCC-14 strain. The results revealed that NMCC-14 strain-based fermented milk had significantly (p < 0.05) higher protein content (4.4 ± 0.06), water-holding capacity (WHC), and dynamic viscosity as compared to non-fermented milk. The results suggest that L. fermentum NMCC-14 is safe and nontoxic; hence, it can be a beneficial supplement to be used for the development of dairy products to be subjected to further clinical testing.
Collapse
Affiliation(s)
- Sana Abid
- Department of Biology, Faculty of Science & Technology, Virtual University, Lahore 54000, Pakistan;
| | - Arshad Farid
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D.I.Khan 29050, Pakistan; (A.F.); (M.M.)
| | - Rameesha Abid
- Department of Biotechnology, University of Sialkot, Sialkot 51310, Pakistan;
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan
| | - Mujeeb Ur Rehman
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45500, Pakistan;
| | - Walaa F. Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Al Hawiyah 21944, Saudi Arabia; (W.F.A.); (M.A.); (A.S.A.)
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Al Hawiyah 21944, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Al Hawiyah 21944, Saudi Arabia; (W.F.A.); (M.A.); (A.S.A.)
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Al Hawiyah 21944, Saudi Arabia
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Al Hawiyah 21944, Saudi Arabia; (W.F.A.); (M.A.); (A.S.A.)
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Al Hawiyah 21944, Saudi Arabia
| | | | - Daniel Ingo Hefft
- Reaseheath College, University Centre Reaseheath, Nantwich CW5 6DF, UK;
| | - Saddam Saqib
- Department of Biotechnology, Mohi- ud-Din Islamic University, Nerian Sharif 12080, Pakistan;
| | - Muhammad Muzammal
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D.I.Khan 29050, Pakistan; (A.F.); (M.M.)
| | - Sabrin Abdelrahman Morshedy
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21526, Egypt;
| | - Mashael W. Alruways
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 15273, Saudi Arabia;
| | - Shakira Ghazanfar
- National Institute of Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan
| |
Collapse
|
26
|
Swallah MS, Yang X, Li J, Korese JK, Wang S, Fan H, Yu H, Huang Q. The Pros and Cons of Soybean Bioactive Compounds: An Overview. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Mohammed Sharif Swallah
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
- Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of SciencesCAS Key, Hefei, China
| | - Xiaoqing Yang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Jiaxin Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Joseph Kudadam Korese
- Agricultural Mechanization and Irrigation Technology, Faculty of Agriculture, Food and Consumer Sciences, University for Development StudiesDepartment of, Tamale, Ghana
| | - Sainan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Hongliang Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Qing Huang
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
- Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of SciencesCAS Key, Hefei, China
| |
Collapse
|
27
|
Jang HJ, Kim JH, Lee HS, Paik HD. Physicochemical analysis of non-fermented probiotic milk with probiotic Lactobacillus plantarum Ln1 isolated from Korea traditional fermented food. Food Sci Biotechnol 2022; 31:731-737. [PMID: 35646416 PMCID: PMC9133277 DOI: 10.1007/s10068-022-01076-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
The objective of this study was to develop a non-fermented probiotic milk that maintains its physicochemical properties, microbial properties, antioxidant activity, and sensory properties during storage (0, 7, and 14 days). During storage, pH and viable cell counts decreased; however, titratable acidity increased. In addition, the composition and sensory characteristics of the non-fermented probiotic milk showed no significant differences between samples (MLN; milk with Lactobacillus plantarum Ln1, MGG; milk with Lactobacillus rhamnosus GG, and milk control). The antioxidant activities of MLN determined using 2,2-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging, ABTS+ radical scavenging, and reducing power assay were higher during the examined storage periods when compared with those of the other samples. Overall, the physicochemical properties, microbial properties, and sensory factors of MLN showed no significant differences. However, high antioxidant activity was observed. Thus, we present a new functional dairy product with antioxidant activity.
Collapse
Affiliation(s)
- Hye Ji Jang
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
| | - Jong Ha Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
| | - Hyun-Sook Lee
- Department of Foodservice Management and Nutrition, Sangmyung University, Seoul, 51767 Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Korea
| |
Collapse
|
28
|
Luan C, Jiang N, Zhou X, Zhang C, Zhao Y, Li Z, Li C. Antibacterial and anti-biofilm activities of probiotic Lactobacillus curvatus BSF206 and Pediococcus pentosaceus AC1-2 against Streptococcus mutans. Microb Pathog 2022; 164:105446. [DOI: 10.1016/j.micpath.2022.105446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/01/2022]
|
29
|
Abstract
Oxidative stress, which can cause imbalance in the body by damaging cells and tissues, arises from the immoderate production of reactive oxygen species (ROS)/reactive nitrogen species (RNS). Therefore, external supplements having antioxidant activity are required for reducing oxidative stress. In our study, we investigated DPPH and ABTS radical scavenging ability, and the inhibition effect on the nitric oxide (NO) production of 15 food-derived bacterial strains in LPS-activated RAW264.7 cells. Among these LAB strains, eight strains with an excellent inhibition effect on NO production were selected through comparisons within the same genera. Moreover, the selected strains, including Leuconostoc mesenteroides MG860, Leu. citreum MG210, Pediococcus acidilactici MG5001, P. pentosaceus MG5078, Weissella cibaria MG5090, Levilactobacillus brevis MG5306, Latilactobacillus curvatus MG5020, and Latilactobacillus sakei MG5048 diminished the inducible nitric oxide synthase (iNOS)/cyclooxygenase-2 (COX-2) expression. In addition, the stability and adhesion ability of the eight LAB strains in the gastrointestinal tract were determined. In conclusion, the selected strains have potential as new probiotics with antioxidant effects.
Collapse
|
30
|
A novel probiotic strain of Lactobacillus fermentum TIU19 isolated from Haria beer showing both in vitro antibacterial and antibiofilm properties upon two multi resistant uro-pathogen strains. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100150. [PMID: 35909596 PMCID: PMC9325903 DOI: 10.1016/j.crmicr.2022.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/23/2022] Open
Abstract
L. fermentum TIU19 was isolated from the ethnic traditional rice beverage, Haria. L. fermentum TIU19 showed antagonistic activity against uro-pathogens in both planktonic and biofilm conditions. L. fermentum TIU19 had potential probiotic traits.
Probiotics with antimicrobial activity are gaining interest as a topic in the research field. Urinary tract infections (UTIs), acquired in the hospital or the community, are among the most prevalent infections. The emergence of multidrug resistance (MDR) uro-pathogens has made the current situation more critical in terms of global public health. To face this situation, in this study, Lactobacillus fermentum TIU19 (L. fermentum TIU19) was isolated and characterized as a new probiotic strain of the rice-based fermented beverage Haria. Subsequently, we also investigated its application as a biological agent that inhibits the growth of multidrug-resistant uro-pathogens, Escherichia coli, and Enterococcus faecalis. The results showed that, the isolated strain L. fermentum TIU19 was sensitive to all antibiotics tested except vancomycin and was devoid of virulence factors, such as haemolytic and gelatinase activities. Therefore, it may be considered safe for public health. It has many probiotic properties, such as survival in simulated gastrointestinal fluid, antioxidant activity, β-galactosidase producing ability, high cell surface hydrophobicity, adhesion ability to epithelial cells, and strong biofilm producer. The growth inhibitory and antibiofilm activities were shown against two uro-pathogens. All these results suggest that L. fermentum TIU19 can be explored as a potential probiotic with antagonistic activity against MDR uro-pathogenic E. coli and E. faecalis.
Collapse
|
31
|
Trung VT, Van Huynh T, Thinh PD, San PT, Bang TH, Hang NT. Probiotic Fermented Beverage From Macroalgae. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211066145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have tested the hypothesis that a fermented beverage from the macroalgae Hydropuntia eucheumatoides exhibits antioxidant and enzymatic activity. The macroalga was hydrolyzed (maximum hydrolysis yield: 78%) with a mixture of the enzymes viscozyme and lactozyme. Then, the hydrolyzate was fermented with Lactobacillus casei and Saccharomyces boulardii. This beverage contained oligosaccharide prebiotics. The lactic acid, acetic acid, ethanol, methanol, cell count, pH, and heavy metal content of the beverage were determined. All tested heavy metals were either not detected (eg, As) or within the US Food and Drug Administration limits (eg, Fe).
Collapse
Affiliation(s)
- Vo T. Trung
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Khanh Hoa, Viet Nam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Tran Van Huynh
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Khanh Hoa, Viet Nam
| | - Pham D. Thinh
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Khanh Hoa, Viet Nam
| | - Pham T. San
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Khanh Hoa, Viet Nam
| | - Truong H. Bang
- Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, Khanh Hoa, Viet Nam
| | - Nguyen T. Hang
- School of Biotechnology and Food Technology, Hanoi University of Science and Technology, Ha Noi, Viet Nam
| |
Collapse
|
32
|
Yang SY, Chae SA, Bang WY, Lee M, Ban OH, Kim SJ, Jung YH, Yang J. Anti-inflammatory potential of Lactiplantibacillus plantarum IDCC 3501 and its safety evaluation. Braz J Microbiol 2021; 52:2299-2306. [PMID: 34495527 PMCID: PMC8578256 DOI: 10.1007/s42770-021-00603-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/21/2021] [Indexed: 01/04/2023] Open
Abstract
This study investigated the anti-inflammatory activity of Lactiplantibacillus plantarum IDCC 3501 isolated from kimchi (Korean fermented food) and its safety. When lipopolysaccharide (LPS)-induced RAW 264.7 macrophages were treated with cell-free supernatant from L. plantarum IDCC 3501, the mRNA expression level of inflammatory markers (i.e., TNF-α, IL-1β, and IL-6) was significantly reduced. In addition, the decreased cell viability by LPS was recovered and NO production in LPS-induced cell was also decreased. For the safety assessment, the genes responsible for antibiotic resistance and virulence were not detected from the genome analysis of this strain. Consistent with this, minimal inhibitory concentrations against various antibiotics, biogenic amines, and D-lactate production, as well as enzymatic and hemolysis activities, indicated that L. plantarum IDCC 3501 did not produce any harmful compounds during fermentation. Furthermore, no acute toxicity and mortality were observed in a murine mouse model. Based on our findings, L. plantarum IDCC 3501 is safe and beneficial for human consumption.
Collapse
Affiliation(s)
- Soo-Yeon Yang
- Ildong Bioscience, 17 Poseunggongdan-ro, Pyeongtaek-si, Gyeonggi-do, 17957, Republic of Korea
| | - Seung A Chae
- Ildong Bioscience, 17 Poseunggongdan-ro, Pyeongtaek-si, Gyeonggi-do, 17957, Republic of Korea
| | - Won Yeong Bang
- Ildong Bioscience, 17 Poseunggongdan-ro, Pyeongtaek-si, Gyeonggi-do, 17957, Republic of Korea
| | - Minjee Lee
- Ildong Bioscience, 17 Poseunggongdan-ro, Pyeongtaek-si, Gyeonggi-do, 17957, Republic of Korea
| | - O-Hyun Ban
- Ildong Bioscience, 17 Poseunggongdan-ro, Pyeongtaek-si, Gyeonggi-do, 17957, Republic of Korea
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Soo-Jung Kim
- Department of Integrative Food Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Jungwoo Yang
- Ildong Bioscience, 17 Poseunggongdan-ro, Pyeongtaek-si, Gyeonggi-do, 17957, Republic of Korea.
| |
Collapse
|
33
|
Chung Y, Park JY, Lee JE, Kim KT, Paik HD. Antioxidant Activity and Inhibitory Effect on Nitric Oxide Production of Hydroponic Ginseng Fermented with Lactococcus lactis KC24. Antioxidants (Basel) 2021; 10:1614. [PMID: 34679749 PMCID: PMC8533331 DOI: 10.3390/antiox10101614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Panax ginseng Meyer is used as a medicinal plant. The aim of this study was to ferment hydroponic ginseng with Lactococcus lactis KC24 and confirm its antioxidant activity and inhibitory effect on nitric oxide (NO) production. Flavonoid and phenol contents in fermented ginseng extracts were measured. Antioxidant activity was measured by DPPH, ABTS, reducing power, FRAP and β-carotene assays. Additionally, inhibitory effects on NO production and toxicity of the fermented extract were determined using RAW 264.7 cells. Phenol and flavonoid contents increased as the fermentation time increased, and the contents were higher in hydroponic ginseng than in soil-cultivated ginseng. The DPPH assay revealed that the antioxidant activity of the 24 h fermented extract significantly increased from 32.57% to 41% (p < 0.05). The increase in antioxidant activity may be affected by an increase in phenol and flavonoid contents. At 1 mg/mL solid content, the 24 h fermented hydroponic ginseng extract inhibited NO production from 9.87 ± 0.06 μM to 1.62 ± 0.26 μM. In conclusion, the increase in antioxidant activity affects the inhibition of NO production, suggesting that fermented hydroponic ginseng may be used in the industries of functional food and pharmaceutical industry as a functional material with anti-inflammatory effects.
Collapse
Affiliation(s)
| | | | | | | | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea; (Y.C.); (J.-Y.P.); (J.-E.L.); (K.-T.K.)
| |
Collapse
|
34
|
Luz C, Calpe J, Manuel Quiles J, Torrijos R, Vento M, Gormaz M, Mañes J, Meca G. Probiotic characterization of Lactobacillus strains isolated from breast milk and employment for the elaboration of a fermented milk product. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104599] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
35
|
Dey G, Mookherjee S. Probiotics-targeting new milestones from gut health to mental health. FEMS Microbiol Lett 2021; 368:6332281. [PMID: 34329424 DOI: 10.1093/femsle/fnab096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/28/2021] [Indexed: 12/15/2022] Open
Abstract
Conventional probiotic food research was primarily focused on their benefits for gut health. Recently with the confirmation that the gut microbiota has a bidirectional connection with the brain, it is being proposed that modification of the microbiota can possibly extirpate neurological diseases. Development of probiotic foods and formulations for neural health benefits has garnered interest, with a renewed focus. In this context, this review discusses the evidences collected on the anxiolytic and antidepressant effects of probiotics, especially during the time span of 2015-till now. Although, more clinical trials are necessary to elucidate the exact mechanism of probiotic mode of action but several of the established probiotic strains have been investigated and it appears that few of them have demonstrated their potential as 'psychobiotics'. The formulation of new psychobiotic-based therapeutics is in the spotlight. It is expected that in near future, biological effect of probiotics on neurological conditions will open up an entirely new avenue for personalized medication and healthcare in mental health, and they can be tailored according to the gut-microbiota of specific individuals.
Collapse
Affiliation(s)
- Gargi Dey
- School of Biotechnology, Campus 11, Kalinga Institute of Industrial Technology, Deemed to be University, Patia, Bhubaneswar, Odisha. PIN-751024, India
| | - Sohom Mookherjee
- School of Biotechnology, Campus 11, Kalinga Institute of Industrial Technology, Deemed to be University, Patia, Bhubaneswar, Odisha. PIN-751024, India.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
36
|
Gao J, Li X, Zhang G, Sadiq FA, Simal-Gandara J, Xiao J, Sang Y. Probiotics in the dairy industry-Advances and opportunities. Compr Rev Food Sci Food Saf 2021; 20:3937-3982. [PMID: 33938124 DOI: 10.1111/1541-4337.12755] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
The past two decades have witnessed a global surge in the application of probiotics as functional ingredients in food, animal feed, and pharmaceutical products. Among food industries, the dairy industry is the largest sector where probiotics are employed in a number of dairy products including sour/fermented milk, yogurt, cheese, butter/cream, ice cream, and infant formula. These probiotics are either used as starter culture alone or in combination with traditional starters, or incorporated into dairy products following fermentation, where their presence imparts many functional characteristics to the product (for instance, improved aroma, taste, and textural characteristics), in addition to conferring many health-promoting properties. However, there are still many challenges related to the stability and functionality of probiotics in dairy products. This review highlights the advances, opportunities, and challenges of application of probiotics in dairy industries. Benefits imparted by probiotics to dairy products including their role in physicochemical characteristics and nutritional properties (clinical and functional perspective) are also discussed. We transcend the traditional concept of the application of probiotics in dairy products and discuss paraprobiotics and postbiotics as a newly emerged concept in the field of probiotics in a particular relation to the dairy industry. Some potential applications of paraprobiotics and postbiotics in dairy products as functional ingredients for the development of functional dairy products with health-promoting properties are briefly elucidated.
Collapse
Affiliation(s)
- Jie Gao
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xiyu Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Guohua Zhang
- School of Life Science, Shanxi University, Taiyuan, China
| | | | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
37
|
Fitriani VY, Suprapti B, Amin M. The characteristics of lactic acid bacteria isolated from fermented food as potential probiotics. J Basic Clin Physiol Pharmacol 2021; 32:743-749. [PMID: 34214350 DOI: 10.1515/jbcpp-2020-0482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/25/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES This study aims to determine the characteristics of Lactobacillus acidophilus and Lactobacillus reuteri from fermented soursop fruit juice and cow's milk, respectively as probiotic candidate based on exposure to pH, bile salts, pathogenic bacteria, and antibiotics. METHODS In vitro studies were conducted to examine the resistance of Lactobacillus acidophilus and Lactobacillus reuteri in pH 2, 2.5, 3.2, and 7.2, resistance to bile salts, resistance to pathogenic bacteria (Escherichia coli, Staphylococcus aureus and Enterococcus faecalis) and antituberculosis antibiotics. RESULTS Viability of Lactobacillus acidophilus and Lactobacillus reuteri isolates remained unchanged (6.3 × 107 CFU/mL and 5.03 × 107 CFU/mL) at various acidic pH, and had a low survival rate in Ox gall 0.3% (bile salts). These isolates also showed antibacterial properties against pathogens in the gastrointestinal tract. Both of these bacteria are quite safe to be used together with ofloxacin, linezolid, moxifloxacin, and levofloxacin, antibiotic for tuberculosis therapy. CONCLUSIONS The results showed that Lactobacillus acidophilus and Lactobacillus reuteri from fermented soursop fruit juice and cow's milk respectively fulfilled the characteristics of probiotic and could potentially be used as adjunct therapy in tuberculosis drug-resistance.
Collapse
Affiliation(s)
- Victoria Yulita Fitriani
- Doctoral Programme in Pharmaceutical Science, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Budi Suprapti
- Department of Clinical Pharmacy, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Muhammad Amin
- Department of Pulmonology, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
38
|
Song MW, Kim KT, Paik HD. Probiotics as a Functional Health Supplement in Infant Formulas for the Improvement of Intestinal Microflora and Immunity. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1928178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Myung Wook Song
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Kee-Tae Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
39
|
Lee NK, Lim SM, Cheon MJ, Paik HD. Physicochemical Analysis of Yogurt Produced by Leuconostoc mesenteroides H40 and Its Effects on Oxidative Stress in Neuronal Cells. Food Sci Anim Resour 2021; 41:261-273. [PMID: 33987547 PMCID: PMC8115002 DOI: 10.5851/kosfa.2020.e97] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Leuconostoc mesenteroides H40 (H40) was isolated from kimchi,
and its probiotic properties and neuroprotective effect was evaluated in
oxidatively stressed SH-SY5Y cells. H40 was stable in artificial gastric
conditions and can be attached in HT-29 cells. In addition, H40 did not produce
β-glucuronidase and showed resistant to several antibiotics. The
conditioned medium (CM) was made using HT-29 cells refined with heat-killed
probiotics (Probiotics-CM) and heated yogurts (Y-CM) to investigate the
neuroprotective effect. Treatment with H40-CM not only increased cell viability
but also significantly improved brain derived neurotropic factor
(BDNF) expression and reduced the
Bax/Bcl-2 ratio in oxidatively stress-induced SH-SY5Y
cells. Besides, probiotic Y-CM significantly increased BDNF
mRNA expression and decreased Bax/Bcl-2 ratio. The
physicochemical properties of probiotic yogurt with H40 was not significantly
different from the control yogurt. The viable cell counts of lactic acid
bacteria in control and probiotic yogurt with H40 was 8.66 Log CFU/mL and 8.96
Log CFU/mL, respectively. Therefore, these results indicate that H40 can be used
as prophylactic functional dairy food having neuroprotective effects.
Collapse
Affiliation(s)
- Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Sung-Min Lim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Min-Jeong Cheon
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
40
|
Lee JE, Lee NK, Paik HD. Antimicrobial and anti-biofilm effects of probiotic Lactobacillus plantarum KU200656 isolated from kimchi. Food Sci Biotechnol 2021; 30:97-106. [PMID: 33552621 DOI: 10.1007/s10068-020-00837-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/14/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022] Open
Abstract
The probiotic properties and anti-pathogenic effects of Lactobacillus plantarum KU200656 (KU200656) isolated from Korean fermented kimchi against Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, and Salmonella Typhimurium were investigated. KU200656 showed high tolerance to artificial gastric acid (99.48%) and bile salts (102.40%) and this strain was safe according to antibiotic sensitivity test; it could not produce harmful enzymes, including β-glucuronidase. KU200656 exhibited high adhesion (4.45%) to intestinal cells, HT-29 cells, with high cell surface hydrophobicity (87.31% for xylene and 81.11% for toluene). Moreover, KU200656 co-aggregated with pathogenic bacteria and exhibited antibacterial activity and anti-adhesion properties against pathogens. The cell-free supernatant (CFS) of KU200656 inhibited biofilm formation by pathogenic bacteria. In addition, half of the minimum inhibitory concentration of the KU200656 CFS downregulated the expression of biofilm-related genes, as determined by quantitative real-time PCR. Therefore, KU200656 was demonstrated to possess anti-pathogenic effects and have potential for use as probiotics in the food industry.
Collapse
Affiliation(s)
- Ji-Eun Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029 Republic of Korea
| |
Collapse
|
41
|
Role of Lactic Acid Bacteria Phospho-β-Glucosidases during the Fermentation of Cereal by-Products. Foods 2021; 10:foods10010097. [PMID: 33466465 PMCID: PMC7830935 DOI: 10.3390/foods10010097] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Bioprocessing using lactic acid bacteria (LAB) is a powerful means to exploit plant-derived by-products as a food ingredient. LAB have the capability to metabolize a large variety of carbohydrates, but such metabolism only relies on few metabolic routes, conferring on them a high fermentation potential. One example of these pathways is that involving phospho-β-glucosidase genes, which are present in high redundancy within LAB genomes. This enzymatic activity undertakes an ambivalent role during fermentation of plant-based foods related to the release of a wide range of phenolic compounds, from their β-D-glycosylated precursors and the degradation of β-glucopyranosyl derived carbohydrates. We proposed a novel phenomic approach to characterize the metabolism drift of Lactiplantibacillus plantarum and Leuconostoc pseudomesenteroides caused by a lignocellulosic by-product, such as the brewers’ spent grain (BSG), in contrast to Rich De Man, Rogosa and Sharpe (MRS) broth. We observed an increased metabolic activity for gentiobiose, cellobiose and β-glucoside conjugates of phenolic compounds during BSG fermentation. Gene expression analysis confirmed the importance of cellobiose metabolism while a release of lignin-derived aglycones was found during BSG fermentation. We provided a comprehensive view of the important role exerted by LAB 6-phospho-β-glucosidases as well the major metabolic routes undertaken during plant-based fermentations. Further challenges will consider a controlled characterization of pbg gene expression correlated to the metabolism of β-glucosides with different aglycone moieties.
Collapse
|
42
|
Lim SM, Lee NK, Kim KT, Paik HD. Probiotic Lactobacillus fermentum KU200060 isolated from watery kimchi and its application in probiotic yogurt for oral health. Microb Pathog 2020; 147:104430. [DOI: 10.1016/j.micpath.2020.104430] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/16/2020] [Accepted: 07/28/2020] [Indexed: 11/27/2022]
|
43
|
Lactobacillus paracasei alleviates genotoxicity, oxidative stress status and histopathological damage induced by Fumonisin B1 in BALB/c mice. Toxicon 2020; 185:46-56. [DOI: 10.1016/j.toxicon.2020.06.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/19/2020] [Accepted: 06/27/2020] [Indexed: 01/17/2023]
|
44
|
Isolation of Bile Salt Hydrolase and Uricase Producing Lactobacillus brevis SF121 from Pak Sian Dong (Fermented Spider Plant) for using as Probiotics. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.3.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The interesting application of bile salt hydrolase enzyme is reduction of cholesterol in serum and amelioration lipid profile. While uricase enzyme can be applied to convert insoluble uric acid to be soluble form and excrete from the body. Probiotics are living organisms with generally know that they can provide beneficial effects to their host. Several reports show that probiotic bacteria with bile salt hydrolase and uricase can improve hypercholesterolemia and hyperuricemia patient. The novel isolate of Lactobacillus from Pak Sian Dong in this study is identified as L. brevis SF121 and probably use as probiotic bacteria in the future. However, this isolate still need further experiments to investigate and improve properties of probiotics. Moreover, this finding suggests that Pak Sian Dong or fermented spider plant can be designated as a good source for probiotic screening and also defines as health-promoting diet.
Collapse
|
45
|
Bindu A, Lakshmidevi N. Identification and in vitro evaluation of probiotic attributes of lactic acid bacteria isolated from fermented food sources. Arch Microbiol 2020; 203:579-595. [PMID: 32990771 DOI: 10.1007/s00203-020-02037-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 08/18/2020] [Accepted: 09/03/2020] [Indexed: 01/11/2023]
Abstract
Consumer's vigilance towards health-promoting foods beyond only taste and nutrition has increased the recognition for probiotic products. In the present study, various parameters have been studied to define the probiotic properties of cultures isolated from different fermented products. Around 118 samples were selectively screened for antimicrobial compound (AMC) producing isolates by overlay-plate assay using Micrococcus luteus ATCC9341. Among 134 zone producing isolates, 48 cultures showing Gram-positive, catalase negative, non-spore forming and non-motile rods and cocci were selected. Subsequently, 18 strains were chosen based on non-hemolytic, absence of biogenic amine production, gelatinase and lecithinase negative trait for safer isolates. These were identified by biochemical assays and then subjected to RAPD-PCR. The selected cultures DB-1aa, DB-b2-15b, Cu2-PM7, Cu3-PM8 and IB-pM15 were identified by 16S rDNA sequencing as Enterococcus durans, Enterococcus faecium, Lactobacillus plantarum, and two Lactobacillus fermentum, respectively. Several in vitro experiments were carried out including acid and bile tolerance, survival under simulated gastrointestinal condition, adhesion assay to evaluate the probiotic potential of the isolates. In addition, the isolates were studied for competent properties such as antibacterial, antioxidant activity, and enzyme production for their functional application. The results of the study prove the efficiency of selected isolates as potential probiotic cultures and hence can be recommended for application in any functional food formulations.
Collapse
Affiliation(s)
- Amrutha Bindu
- DOS in Microbiology, University of Mysore, Manasa Gangothri, Mysore, 570, India
| | - N Lakshmidevi
- DOS in Microbiology, University of Mysore, Manasa Gangothri, Mysore, 570, India.
| |
Collapse
|
46
|
Synbiotic VSL#3 and yacon-based product modulate the intestinal microbiota and prevent the development of pre-neoplastic lesions in a colorectal carcinogenesis model. Appl Microbiol Biotechnol 2020; 104:8837-8857. [DOI: 10.1007/s00253-020-10863-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/06/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
|
47
|
Li T, Yang J, Zhang H, Xie Y, Jin J. Bifidobacterium from breastfed infant faeces prevent high-fat-diet-induced glucose tolerance impairment, mediated by the modulation of glucose intake and the incretin hormone secretion axis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3308-3318. [PMID: 32108348 DOI: 10.1002/jsfa.10360] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/16/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Probiotics are defined as microorganisms that can exert health benefits for the host. Among the recognized probiotics, Bifidobacterium are the most frequently used probiotics in humans. The aim of this study was to evaluate the antidiabetic activity of Bifidobacterium strains isolated from breastfed infant faeces, both in vitro, using the Caco-2 monolayer transwell model, and in vivo, using a mice model of impaired glucose tolerance induced by a high-fat diet (HFD). RESULTS The cell-free supernatant of Bifidobacterium lactis A12 showed better inhibitory activity of α-glucosidase and inhibited the glucose absorption and transport than B. lactis BB12, which is a typical probiotic with antidiabetic capabilities. B. lactis A12 improved the impaired glucose intolerance, restored islet function and morphology with insulin resistance induced by the HFD in C57BL/6J mice. Furthermore, in small intestine tissues, the cell-free supernatant of B. lactis A12 decreased the messenger RNA expressions of sucrase-isomaltase, live B. lactis A12 cells decreased glucose transporters 2. B. lactis A12 significantly stimulated the glucagon like peptide-1 (GLP-1) secretion and upregulated proglucagon messenger RNA levels. CONCLUSION B. lactis A12 protect against the deleterious effects of HFD-induced diabetes by inhibiting the utilization, absorption, and transport of glucose by intestinal epithelial cells and promoting the expression and secretion of GLP-1. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tong Li
- Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing, China
| | - Jianjun Yang
- Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing, China
| | - Hongxing Zhang
- Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing, China
| | - Yuanhong Xie
- Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing, China
| | - Junhua Jin
- Food Science and Engineering College, Beijing University of Agriculture, Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Detection and Control of Spoilage Organisms and Pesticide Residues in Agricultural Products, Beijing, China
| |
Collapse
|
48
|
Torres S, Verón H, Contreras L, Isla MI. An overview of plant-autochthonous microorganisms and fermented vegetable foods. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2020.02.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
49
|
Probiotic characteristics of Lactobacillus brevis B13-2 isolated from kimchi and investigation of antioxidant and immune-modulating abilities of its heat-killed cells. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109452] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
Nwagu TN, Ugwuodo CJ, Onwosi CO, Inyima O, Uchendu OC, Akpuru C. Evaluation of the probiotic attributes of Bacillus strains isolated from traditional fermented African locust bean seeds (Parkia biglobosa), “daddawa”. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01564-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Background
The involvement of probiotic cultures in food fermentation guarantees enhanced organoleptic properties and maximum consumer health benefits. In this study, isolated Bacillus cultures used in the fermentation of African locust bean seeds “Parkia biglobosa” into the food condiment “daddawa” were evaluated for probiotic attributes. Bacillus cereus strains BC1 and BC2 were tested for tolerance to acid, common salt (NaCl), and bile salt. Auto-aggregation and adhesion to epithelial cells, antibiotic sensitivity profile, hemolytic pattern, and antibacterial activity were also evaluated. To demonstrate further health benefit, spores of strain BC1 were investigated for anti-inflammatory potential employing the rat paw edema technique.
Results
Both Bacillus cereus strains showed antagonistic activity against pathogenic Escherichia coli and Staphylococcus aureus. BC1 was more acid-stress tolerant than BC2, maintaining 107.6% viability after 3 h incubation in MRS broth of pH 2.5. However, at 97.74% viability after incubation for 3 h, BC2 was more tolerant to 0.4 % bile salt. The Bacillus cereus strains were susceptible to all antibiotics tested with the exception of norfloxacin and thrived under high saline stress. Both strains were protease producers and non-hemolytic on sheep blood agar. The edema inhibition study revealed that spores of Bacillus cereus strain BC1 had anti-inflammation potential and produced no physiological toxicity on the animals.
Conclusion
These results indicate that the Bacillus cultures for “daddawa” production are good candidates for probiotics and have the potential for application in both animal and human formulations for increased health benefit to consumers.
Collapse
|