1
|
Sun C, Zhu M, Wang L, Wen H, Qi X, Li C, Zhang X, Sun D, Li Y. Comprehensive genome-wide identification and functional characterization of mapk gene family in northern snakeheads (Channa argus). FISH & SHELLFISH IMMUNOLOGY 2025; 157:110076. [PMID: 39645216 DOI: 10.1016/j.fsi.2024.110076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
The mitogen-activated protein kinase (MAPK) signaling cascade, integral to cellular regulation, orchestrates cell growth, differentiation, stress response, and inflammatory reactions to adapt to challenging environments. The northern snakeheads (Channa argus), a valuable freshwater species known for its hypoxia tolerance, rapid growth, and high nutritional value, lacks comprehensive research on its mapk gene family. In this study, we identified 16 mapk genes in northern snakeheads, among which mapk8, mapk12 and mapk14 have duplicate copies. Phylogenetic analysis confirmed the evolutionary conservation of this gene family. Structural and motif analyses further underscored the conserved nature of these genes. Expression pattern analysis under abiotic and biotic stress conditions showed significant differences expression of mapks in the gills and suprabranchial organ (SBO) after air exposure, as well as in the brain following cold stress, highlighting the extensive role of mapks in stress regulation. It was worth noting that the significant expression differences of mapks were also observed in the spleen after N. seriolae infection, implicating that these genes may be involved in the regulation of innate immune responses. Additionally, analysis of protein-protein interaction (PPI) networks suggested that the co-activation of multiple MAPK signaling pathways may play a key role in regulating an organism's response to biotic and abiotic stresses. This study provides a detailed description of the mapk gene family in the northern snakeheads and elucidates its biological functions under various stress conditions, offering valuable insights into the regulatory mechanisms of the mapk gene family.
Collapse
Affiliation(s)
- Chaonan Sun
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Mingxin Zhu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Lingyu Wang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Haishen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Xin Qi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao, 266003, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaoyan Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Donglei Sun
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao, 266003, China.
| | - Yun Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education (KLMME), Fisheries College, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
2
|
Tang H, Li L. Effects of detergent component sodium dodecyl sulfate on growth hormone secretion in GH3 cells: Implications for pediatric exposure and accidental ingestion. Hum Exp Toxicol 2025; 44:9603271251332255. [PMID: 40170426 DOI: 10.1177/09603271251332255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
IntroductionSodium dodecyl sulfate (SDS), a widely used surfactant in detergents, has raised concerns due to its potential health risks, particularly in children. This study evaluates the impact of SDS exposure on GH secretion in GH3 cells, focusing on oxidative stress as a key mechanism.MethodsGH3 cells were treated with varying concentrations of SDS (0.001-10 mM) for 24 or 48 h. Cell viability was assessed using the MTT assay, while GH secretion was quantified via ELISA. Oxidative stress levels were evaluated through ROS fluorescence assays, and gene expression of Nrf2, IL-6, TNF-α, and caspase-3 was analyzed using qPCR. Additionally, the antioxidant N-acetylcysteine (NAC) was used to determine its protective effects against SDS-induced oxidative stress.ResultsSDS exposure led to a dose-dependent decrease in GH secretion and cell viability, with oxidative stress identified as a primary driver. Nrf2 exhibited a biphasic response, showing transient upregulation at low doses but suppression at higher concentrations, exacerbating oxidative damage. NAC treatment reduced ROS levels and partially restored GH secretion, confirming the role of oxidative stress in SDS-induced toxicity.DiscussionThese findings suggest that SDS exposure may disrupt endocrine function, warranting further risk assessment of its safety in consumer products. Given SDS's prevalence in household products, future research should focus on the long-term effects of SDS exposure to children and potential therapeutic interventions to mitigate oxidative damage.
Collapse
Affiliation(s)
- Hua Tang
- Pediatric Department, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Lanlan Li
- Pediatric Department, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Saki F, Rahimikashkooli N, Masjedi M, Dastghaib S, Koohpeyma F. Gender-Specific effects of L-arginine supplementation on bone mineral density and trabecular bone volume in Sprague-Dawley rats; stereological study. BMC Complement Med Ther 2024; 24:425. [PMID: 39725944 DOI: 10.1186/s12906-024-04736-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND L-arginine (Arg) is a semi-essential amino acid that can be used as a key mediator for the release of growth hormone (GH), insulin-like growth factor-1(IGF-1), and other growth factors. In this study, we comprehensively evaluated the effect of Arg intake on bone growth and associated markers. METHODS The study involved 24 Sprague-Dawley rats (12 males, 12 females) divided into two groups (Age = 24 days). One group received a standard diet, while the other was injected with 10 mg/kg of Arg daily for 90 days. Serum bone markers like calcium (Ca), phosphorous(P), and alkaline phosphatase (ALP) were analyzed via colorimetric assays. stereological study and bone mineral density (BMD) were conducted via dissector method and Hologic Dual-energy x-ray absorptiometry (DXA) system; respectively. RESULTS Biochemical assays showed no significant differences in Ca, P, and ALP levels between groups. Male rats in the case group exhibited lower testosterone levels (p.value = 0.009). Stereological and bone mineral density (BMD) analyses revealed contrasting gender-specific outcomes. Female rats in the case group had higher BMD (p.value = 0.001), while males had lower BMD compared to controls (p.value = 0.018). Arg consumption affects trabecula volume values differently in females compared to males (p.value = 0.022). Furthermore, the study observed decreased osteocytes and osteoblasts in male case rats. The gender-based differences in BMD were attributed to Arg's paradoxical impact on testosterone levels in males. CONCLUSION Overall, Arg supplementation was found to influence BMD and trabecular bone volume, with outcomes varying depending on gender. The study highlights the intricate interplay between Arg, sex hormones, and bone health, offering insights into these complex relationships.
Collapse
Affiliation(s)
- Forough Saki
- Pediatric Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, P.O. Box, Shiraz, 71345-1744, Iran
| | - Nima Rahimikashkooli
- Internal Medicine Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Masjedi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Dastghaib
- Pediatric Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, P.O. Box, Shiraz, 71345-1744, Iran.
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Clinical Biochemistry in Endocrine and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Farhad Koohpeyma
- Pediatric Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, P.O. Box, Shiraz, 71345-1744, Iran.
- Medical Physiology, Shiraz Endocrine and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Ibrahim RM, Kamoun EA, Badawi NM, El-Moslamy SH, Kh M, Salim SA. Cutting-edge biomaterials for advanced biomedical uses: self-gelation of l-arginine-loaded chitosan/PVA/vanillin hydrogel for accelerating topical wound healing and skin regeneration. RSC Adv 2024; 14:31126-31142. [PMID: 39351417 PMCID: PMC11441373 DOI: 10.1039/d4ra04430d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
The self-gelation utilizes natural vanillin as a primary component of vanilla bean extract, and as a crosslinking agent for entangling chitosan-PVA hydrogels. This involves a Schiff-base reaction, where amino group of chitosan (CH) interacts with aldehyde group of vanillin (Van). The optimized formula of formed hydrogels is chosen based on achieving a well-balanced combination of self-healing capability, mechanical strength, sustained release profile, and hydrophilic tendency. The prepared hydrogel is thoroughly characterized using SEM and FTIR analyses, swelling ratio, hydrolytic rate assessment, and in vitro drug release profiling. CH-PVA-Van hydrogels demonstrate controlled drug release that is sustained for over 7 days. Furthermore, antimicrobial tests indicate strong activity of CH-PVA-Van-l-arginine against Gram-positive bacteria, compared to tested yeast or Gram-negative bacteria using multiple human pathogens. Subsequently, in vitro biological assays are conducted to confirm the effectiveness of the prepared hydrogel in promoting wound healing and bone regeneration through cytotoxicity assay and wound scratch assay. The composite hydrogels achieved 95% wound healing after 24 hours, attributed to the release of NO from the loaded l-Arg and its essential role in the wound healing process. Consequently, CH-PVA-Van hydrogels emerge as a promising system for loading l-arginine and exhibiting potential for biomedical applications with antibacterial efficacy.
Collapse
Affiliation(s)
- Rabab M Ibrahim
- Polymeric and Biomaterials for Medical and Pharmaceutical Applications Research Group, Nanotechnology Research Center (NTRC), The British University in Egypt (BUE) Cairo 11837 Egypt
| | - Elbadawy A Kamoun
- Department of Chemistry, College of Science, King Faisal University Al-Ahsa 31982 Saudi Arabia +201283320302
- Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City) New Borg Al-Arab City 21934 Alexandria Egypt
| | - Noha M Badawi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE) Cairo 11837 Egypt
| | - Shahira H El-Moslamy
- Bioprocess Development Department (BID), Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City) New Borg Al-Arab City 21934 Alexandria Egypt
| | - Mahmoud Kh
- Department of Pharmacognosy, National Research Center (NRC) Dokki 12622 Giza Egypt
| | - Samar A Salim
- Polymeric and Biomaterials for Medical and Pharmaceutical Applications Research Group, Nanotechnology Research Center (NTRC), The British University in Egypt (BUE) Cairo 11837 Egypt
| |
Collapse
|
5
|
Li S, Ye X, Wen X, Yang X, Wang L, Gao K, Xiao H, Jiang Z. Arginine and its metabolites stimulate proliferation, differentiation, and physiological function of porcine trophoblast cells through β-catenin and mTOR pathways. BMC Vet Res 2024; 20:167. [PMID: 38689278 PMCID: PMC11062007 DOI: 10.1186/s12917-024-04023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
Arginine, which is metabolized into ornithine, proline, and nitric oxide, plays an important role in embryonic development. The present study was conducted to investigate the molecular mechanism of arginine in proliferation, differentiation, and physiological function of porcine trophoblast cells (pTr2) through metabolic pathways. The results showed that arginine significantly increased cell viability (P < 0.05). The addition of arginine had a quadratic tendency to increase the content of progesterone (P = 0.06) and protein synthesis rate (P = 0.03), in which the maximum protein synthesis rate was observed at 0.4 mM arginine. Arginine quadratically increased (P < 0.05) the intracellular contents of spermine, spermidine and putrescine, as well as linearly increased (P < 0.05) the intracellular content of NO in a dose-dependent manner. Arginine showed a quadratic tendency to increase the content of putrescine (P = 0.07) and a linear tendency to increase NO content (P = 0.09) in cell supernatant. Moreover, increasing arginine activated (P < 0.05) the mRNA expressions for ARG, ODC, iNOS and PCNA. Furthermore, inhibitors of arginine metabolism (L-NMMA and DFMO) both inhibited cell proliferation, while addition of its metabolites (NO and putrescine) promoted the cell proliferation and cell cycle, the mRNA expressions of PCNA, EGF and IGF-1, and increased (P < 0.05) cellular protein synthesis rate, as well as estradiol and hCG secretion (P < 0.05). In conclusion, our results suggested that arginine could promote cell proliferation and physiological function by regulating the metabolic pathway. Further studies showed that arginine and its metabolites modulate cell function mainly through β-catenin and mTOR pathways.
Collapse
Affiliation(s)
- Shuai Li
- Institute of Animal Science, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xiangyang Ye
- Institute of Animal Science, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xiaolu Wen
- Institute of Animal Science, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xuefen Yang
- Institute of Animal Science, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Li Wang
- Institute of Animal Science, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Kaiguo Gao
- Institute of Animal Science, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Hao Xiao
- Institute of Animal Science, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Zongyong Jiang
- Institute of Animal Science, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| |
Collapse
|
6
|
Nersesova L, Petrosyan M, Tsakanova G. Review of the evidence of radioprotective potential of creatine and arginine as dietary supplements. Int J Radiat Biol 2024; 100:849-864. [PMID: 38683545 DOI: 10.1080/09553002.2024.2345098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/10/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE Creatine (Cr) and l-arginine are naturally occurring guanidino compounds, commonly used as ergogenic dietary supplements. Creatine and l-arginine exhibit also a number of non-energy-related features, such as antioxidant, anti-apoptotic, and anti-inflammatory properties, which contribute to their protective action against oxidative stress (OS). In this regard, there are a number of studies emphasizing the protective effect of Cr against OS, which develops in the process of aging, increased physical loads as part of athletes' workouts, as well as a number of neurological diseases and toxic effects associated with xenobiotics and UV irradiation. Against this backdrop, and since ionizing radiation causes OS in cells, leading to radiotoxicity, there is an increasing interest to understand whether Cr has the full potential to serve as an effective radioprotective agent. The extensive literature search did not provide any data on this issue. In this narrative review, we have summarized some of our own experimental data published over the last years addressing the respective radioprotective effects of Cr. Next, we have additionally reviewed the existing data on the radiomodifying effects of l-arginine presented earlier by other research groups. CONCLUSIONS Creatine possesses significant radioprotective potential including: (1) radioprotective effect on the survival rate of rats subjected to acute whole-body X-ray irradiation in a LD70/30 dose of 6.5 Gy, (2) radioprotective effect on the population composition of peripheral blood cells, (3) radioprotective effect on the DNA damage of peripheral blood mononuclear cells, (4) radioprotective effect on the hepatocyte nucleus-nucleolar apparatus, and (5) radioprotective effect on the brain and liver Cr-Cr kinase systems of the respective animals. Taking into account these cytoprotective, gene-protective, hepatoprotective and energy-stimulating features of Cr, as well as its significant radioprotective effect on the survival rate of rats, it can be considered as a potentially promising radioprotector for further preclinical and clinical studies. The review of the currently available data on radiomodifying effects of l-arginine has indicated its significant potential as a radioprotector, radiomitigator, and radiosensitizer. However, to prove the effectiveness of arginine (Arg) as a radioprotective agent, it appears necessary to expand and deepen the relevant preclinical studies, and, most importantly, increase the number of proof-of-concept clinical trials, which are evidently lacking as of now.
Collapse
Affiliation(s)
| | | | - Gohar Tsakanova
- Institute of Molecular Biology NAS RA, Yerevan, Armenia
- CANDLE Synchrotron Research Institute, Yerevan, Armenia
| |
Collapse
|
7
|
Inoue Y, Ueda S, Tanikawa T, Sano A, Suzuki R, Todo H, Higuchi Y, Akao K. Characterization of Carbohydrates, Amino Acids, Viscosity, and Antioxidant Capacity in Rice Wines Made in Saitama, Japan, with Different Sake Rice. Foods 2023; 12:4004. [PMID: 37959123 PMCID: PMC10647497 DOI: 10.3390/foods12214004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
We investigated the physicochemical properties of Japanese rice wines, including their functional properties and carbohydrate and amino acid content in solution and solid state. Three samples were tested. The glucose, allose, and raffinose contents in samples (A, B, C) in g/100 g were (3.47, 3.45, 7.05), (1.60, 1.63, 1.61), and (2.14, 2.75, 1.49), respectively. The total amino acid in µmol/mL was (3.1, 3.5, 4.4). Glutamic acid, alanine, and arginine varied in content across the samples. The viscosity (10 °C) and activation energy (ΔE) calculated using the Andrade equation were (2.81 ± 0.03, 2.74 ± 0.06, 2.69 ± 0.03) mPa-s and (22.3 ± 1.1, 22.0 ± 0.2, 21.3 ± 0.5) kJ/mol, respectively. Principal component analysis using FT-IR spectra confirmed the separation of the samples into principal components 2 and 3. The IC50 values from the DPPH radical scavenging test were (2364.7 ± 185.3, 3041.9 ± 355.1, 3842.7 ± 228.1) µg/mL. Thus, the three rice wines had different carbohydrate and amino acid contents, viscosities, and antioxidant capacities.
Collapse
Affiliation(s)
- Yutaka Inoue
- Laboratory of Nutri-Pharmacotherapeutics Management, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 3500295, Saitama, Japan
| | - Sae Ueda
- Laboratory of Nutri-Pharmacotherapeutics Management, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 3500295, Saitama, Japan
| | - Takashi Tanikawa
- Laboratory of Nutri-Pharmacotherapeutics Management, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 3500295, Saitama, Japan
| | - Aiko Sano
- Laboratory of Natural Products and Phytochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 3500295, Saitama, Japan (R.S.)
| | - Ryuichiro Suzuki
- Laboratory of Natural Products and Phytochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 3500295, Saitama, Japan (R.S.)
| | - Hiroaki Todo
- Laboratory of Pharmaceutics and Cosmeceutics, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado 3500295, Saitama, Japan
| | - Yuji Higuchi
- Applicative Solution Lab, JASCO Corporation, 2967-5 Ishikawa-machi, Hachioji 1928537, Tokyo, Japan
| | - Kenichi Akao
- Applicative Solution Lab, JASCO Corporation, 2967-5 Ishikawa-machi, Hachioji 1928537, Tokyo, Japan
| |
Collapse
|
8
|
Stroup BM, Li X, Ho S, Zhouyao H, Chen Y, Ani S, Dawson B, Jin Z, Marom R, Jiang MM, Lorenzo I, Rosen D, Lanza D, Aceves N, Koh S, Seavitt JR, Heaney JD, Lee B, Burrage LC. Delayed skeletal development and IGF-1 deficiency in a mouse model of lysinuric protein intolerance. Dis Model Mech 2023; 16:dmm050118. [PMID: 37486182 PMCID: PMC10445726 DOI: 10.1242/dmm.050118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023] Open
Abstract
SLC7A7 deficiency, or lysinuric protein intolerance (LPI), causes loss of function of the y+LAT1 transporter critical for efflux of arginine, lysine and ornithine in certain cells. LPI is characterized by urea cycle dysfunction, renal disease, immune dysregulation, growth failure, delayed bone age and osteoporosis. We previously reported that Slc7a7 knockout mice (C57BL/6×129/SvEv F2) recapitulate LPI phenotypes, including growth failure. Our main objective in this study was to characterize the skeletal phenotype in these mice. Compared to wild-type littermates, juvenile Slc7a7 knockout mice demonstrated 70% lower body weights, 87% lower plasma IGF-1 concentrations and delayed skeletal development. Because poor survival prevents evaluation of mature knockout mice, we generated a conditional Slc7a7 deletion in mature osteoblasts or mesenchymal cells of the osteo-chondroprogenitor lineage, but no differences in bone architecture were observed. Overall, global Slc7a7 deficiency caused growth failure with low plasma IGF-1 concentrations and delayed skeletal development, but Slc7a7 deficiency in the osteoblastic lineage was not a major contributor to these phenotypes. Future studies utilizing additional tissue-specific Slc7a7 knockout models may help dissect cell-autonomous and non-cell-autonomous mechanisms underlying phenotypes in LPI.
Collapse
Affiliation(s)
- Bridget M. Stroup
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaohui Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sara Ho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haonan Zhouyao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuqing Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Safa Ani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brian Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zixue Jin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Isabel Lorenzo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel Rosen
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Denise Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nathalie Aceves
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sara Koh
- Rice University, Houston, TX 77005, USA
| | - John R. Seavitt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason D. Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lindsay C. Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
| |
Collapse
|
9
|
Amleh A, Chen HP, Watad L, Abramovich I, Agranovich B, Gottlieb E, Ben-Dov IZ, Nechama M, Volovelsky O. Arginine depletion attenuates renal cystogenesis in tuberous sclerosis complex model. Cell Rep Med 2023:101073. [PMID: 37290438 DOI: 10.1016/j.xcrm.2023.101073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 03/02/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023]
Abstract
Cystic kidney disease is a leading cause of morbidity in patients with tuberous sclerosis complex (TSC). We characterize the misregulated metabolic pathways using cell lines, a TSC mouse model, and human kidney sections. Our study reveals a substantial perturbation in the arginine biosynthesis pathway in TSC models with overexpression of argininosuccinate synthetase 1 (ASS1). The rise in ASS1 expression is dependent on the mechanistic target of rapamycin complex 1 (mTORC1) activity. Arginine depletion prevents mTORC1 hyperactivation and cell cycle progression and averts cystogenic signaling overexpression of c-Myc and P65. Accordingly, an arginine-depleted diet substantially reduces the TSC cystic load in mice, indicating the potential therapeutic effects of arginine deprivation for the treatment of TSC-associated kidney disease.
Collapse
Affiliation(s)
- Athar Amleh
- Pediatric Nephrology Unit, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Hadass Pri Chen
- Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Department of Nephrology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lana Watad
- Pediatric Nephrology Unit, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ifat Abramovich
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Bella Agranovich
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Eyal Gottlieb
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Iddo Z Ben-Dov
- Department of Nephrology, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Laboratory of Medical Transcriptomics, Department of Nephrology and Hypertension and Internal Medicine B, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Morris Nechama
- Pediatric Nephrology Unit, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | - Oded Volovelsky
- Pediatric Nephrology Unit, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Wohl Institute for Translational Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
10
|
Brugaletta G, Zampiga M, Laghi L, Indio V, Oliveri C, De Cesare A, Sirri F. Feeding broiler chickens with arginine above recommended levels: effects on growth performance, metabolism, and intestinal microbiota. J Anim Sci Biotechnol 2023; 14:33. [PMID: 36864475 PMCID: PMC9983211 DOI: 10.1186/s40104-023-00839-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/10/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Arginine is an essential amino acid for chickens and feeding diets with arginine beyond the recommended levels has been shown to influence the growth performance of broiler chickens in a positive way. Nonetheless, further research is required to understand how arginine supplementation above the widely adopted dosages affects metabolism and intestinal health of broilers. Therefore, this study was designed to assess the effects of arginine supplementation (i.e., total arginine to total lysine ratio of 1.20 instead of 1.06-1.08 recommended by the breeding company) on growth performance of broiler chickens and to explore its impacts on the hepatic and blood metabolic profiles, as well as on the intestinal microbiota. For this purpose, 630 one-day-old male Ross 308 broiler chicks were assigned to 2 treatments (7 replicates each) fed a control diet or a crystalline L-arginine-supplemented diet for 49 d. RESULTS Compared to control birds, those supplemented with arginine performed significantly better exhibiting greater final body weight at D49 (3778 vs. 3937 g; P < 0.001), higher growth rate (76.15 vs. 79.46 g of body weight gained daily; P < 0.001), and lower cumulative feed conversion ratio (1.808 vs. 1.732; P < 0.05). Plasma concentrations of arginine, betaine, histidine, and creatine were greater in supplemented birds than in their control counterparts, as were those of creatine, leucine and other essential amino acids at the hepatic level. In contrast, leucine concentration was lower in the caecal content of supplemented birds. Reduced alpha diversity and relative abundance of Firmicutes and Proteobacteria (specifically Escherichia coli), as well as increased abundance of Bacteroidetes and Lactobacillus salivarius were found in the caecal content of supplemented birds. CONCLUSIONS The improvement in growth performance corroborates the advantages of supplementing arginine in broiler nutrition. It can be hypothesized that the performance enhancement found in this study is associated with the increased availability of arginine, betaine, histidine, and creatine in plasma and the liver, as well as to the ability of extra dietary arginine to potentially ameliorate intestinal conditions and microbiota of supplemented birds. However, the latter promising property, along with other research questions raised by this study, deserve further investigations.
Collapse
Affiliation(s)
- Giorgio Brugaletta
- grid.6292.f0000 0004 1757 1758Department of Agricultural and Food Sciences, Alma Mater Studiorum – University of Bologna, Ozzano Dell’Emilia, 40064 Bologna, Italy
| | - Marco Zampiga
- grid.6292.f0000 0004 1757 1758Department of Agricultural and Food Sciences, Alma Mater Studiorum – University of Bologna, Ozzano Dell’Emilia, 40064 Bologna, Italy
| | - Luca Laghi
- grid.6292.f0000 0004 1757 1758Department of Agricultural and Food Sciences, Alma Mater Studiorum – University of Bologna, Ozzano Dell’Emilia, 40064 Bologna, Italy
| | - Valentina Indio
- grid.6292.f0000 0004 1757 1758Department of Veterinary Medical Sciences, Alma Mater Studiorum – University of Bologna, Ozzano Dell’Emilia, 40064 Bologna, Italy
| | - Chiara Oliveri
- grid.6292.f0000 0004 1757 1758Department of Physics and Astronomy, Alma Mater Studiorum – University of Bologna, 40127 Bologna, Italy
| | - Alessandra De Cesare
- grid.6292.f0000 0004 1757 1758Department of Veterinary Medical Sciences, Alma Mater Studiorum – University of Bologna, Ozzano Dell’Emilia, 40064 Bologna, Italy
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Ozzano Dell'Emilia, 40064, Bologna, Italy.
| |
Collapse
|
11
|
Metabolomics and Biomarkers in Retinal and Choroidal Vascular Diseases. Metabolites 2022; 12:metabo12090814. [PMID: 36144219 PMCID: PMC9503269 DOI: 10.3390/metabo12090814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
The retina is one of the most important structures in the eye, and the vascular health of the retina and choroid is critical to visual function. Metabolomics provides an analytical approach to endogenous small molecule metabolites in organisms, summarizes the results of “gene-environment interactions”, and is an ideal analytical tool to obtain “biomarkers” related to disease information. This study discusses the metabolic changes in neovascular diseases involving the retina and discusses the progress of the study from the perspective of metabolomics design and analysis. This study advocates a comparative strategy based on existing studies, which encompasses optimization of the performance of newly identified biomarkers and the consideration of the basis of existing studies, which facilitates quality control of newly discovered biomarkers and is recommended as an additional reference strategy for new biomarker discovery. Finally, by describing the metabolic mechanisms of retinal and choroidal neovascularization, based on the results of existing studies, this study provides potential opportunities to find new therapeutic approaches.
Collapse
|
12
|
Oliveira CH, Dias KM, Bernardes RD, Diana TF, Rodrigueiro RJ, Calderano AA, Albino LF. The effects of arginine supplementation through different ratios of arginine:lysine on performance, skin quality and creatine levels of broiler chickens fed diets reduced in protein content. Poult Sci 2022; 101:102148. [PMID: 36152435 PMCID: PMC9508590 DOI: 10.1016/j.psj.2022.102148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/03/2022] [Accepted: 08/19/2022] [Indexed: 12/29/2022] Open
Abstract
Two trials were carried out to assess the effects of arginine supplementation through ratios of digestible arginine:lysine on growth performance, skin quality and creatine levels in muscle and serum of broiler chickens fed diets reduced in protein content. A total of 1,540 Cobb500 male chickens were distributed into 7 treatments, with 10 replicates with 22 birds each. The experimental diets were based on corn and soybean meal, and a control diet was formulated to satisfy broiler nutritional requirements. A basal diet with reduced protein content was formulated to meet broiler nutritional requirements, except for SID Arg levels. The experimental diets were obtained by adding L-arginine to basal diets, meeting 6 different SID Arg:Lys ratios (94, 100, 106, 112, 118, and 124%). Body weight, body weight gain, average daily feed intake, and feed conversion ratio were evaluated from 01 to 21 d old (trial 1) and from 22 to 44 d old (trial 2). At 21 and 44 d, in trials 1 and 2, respectively, birds were slaughtered to assess skin thickness (ST), skin strength (SS), creatine level in muscle (CRM) and serum (CRS). Data were subjected to ANOVA, and treatments were compared to the control group by Dunnett's test (P ≤ 0.05). Regression analyses were performed to model the variables assessed and the ratios of SID Arg:Lys. The SID Arg:Lys ratios did not affect ADFI of broilers in both trials (P > 0.05), whereas it linearly increased the BW, BWG, and ST, in both trials (P < 0.001). The FCR of broilers linearly decreased, in trial 1 (P = 0.038) and trial 2 (P < 0.001). The CRM of birds had a linear effect (P < 0.001) in trial 1, and a quadratic effect (P = 0.001) in trial 2. The CRS and SS of broilers linearly increased, in trial 2 (P < 0.001). In conclusion, increasing SID Arg:Lys ratios in diets reduced CP enhanced growth performance, skin quality and CR levels in muscle and serum of broiler chickens from 01 to 21 and 22 to 44 d old.
Collapse
Affiliation(s)
- Carlos H. Oliveira
- Department of Animal Science, Universidade Federal de Viçosa, 36570-900, Viçosa - MG, Brazil,Corresponding author:
| | - Kelly M.M. Dias
- Department of Animal Science, Universidade Federal de Viçosa, 36570-900, Viçosa - MG, Brazil
| | - Romário D. Bernardes
- Department of Animal Science, Universidade Federal de Viçosa, 36570-900, Viçosa - MG, Brazil
| | - Thiago F. Diana
- Department of Animal Science, Universidade Federal de Viçosa, 36570-900, Viçosa - MG, Brazil
| | | | - Arele A. Calderano
- Department of Animal Science, Universidade Federal de Viçosa, 36570-900, Viçosa - MG, Brazil
| | - Luiz F.T. Albino
- Department of Animal Science, Universidade Federal de Viçosa, 36570-900, Viçosa - MG, Brazil
| |
Collapse
|
13
|
Uyanga VA, Zhao J, Wang X, Jiao H, Onagbesan OM, Lin H. Dietary L-citrulline modulates the growth performance, amino acid profile, and the growth hormone/insulin-like growth factor axis in broilers exposed to high temperature. Front Physiol 2022; 13:937443. [PMID: 36003654 PMCID: PMC9393253 DOI: 10.3389/fphys.2022.937443] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Heat stress adversely affects the growth performance, muscle development, and protein metabolism in poultry. l-Citrulline (L-Cit), is a non-essential amino acid that is known to stimulate muscle protein synthesis under stress conditions. This study investigated whether L-Cit could influence the growth performance, amino acid profile, and protein metabolism in broilers exposed to high ambient temperature. In a 2 × 2 factorial arrangement, Arbor acre broilers (288 chickens) were fed with basal diet (CON) or 1% L-Cit supplemented diet and later subjected to either thermoneutral (TNZ: 24°C, 24 h/d) or heat stress (HS: 35°C for 8 h/d) environment for 21 days. The results showed that L-Cit diet promoted the body weight and body weight gain of broilers higher than the CON diet, and it further alleviated HS suppression of body weight and feed intake at certain periods (p < 0.05). Plasma urea, uric acid, glucose, and total cholesterol were elevated during HS, whereas, the triglyceride content was decreased (p < 0.05). Serum amino acids including citrulline, alanine, aspartate, and taurine were decreased by HS. L-Cit supplementation restored the citrulline level and alleviated HS induction of 3-methylhistidine (p < 0.05). L-Cit supplementation increased the plasma growth hormone (GH) and insulin-like growth factor-1 (IGF-1) concentration, as well as the GH concentration in the breast muscle (p < 0.05). The mRNA expression showed that HS elicited tissue-specific responses by upregulating some growth factors in the breast muscle, but downregulated the GH receptor, GH binding protein, and IGF-1 expression in the hypothalamus. L-Cit supplementation upregulated the GHRH and IGFBP2 expression in the hypothalamus. L-Cit also upregulated the expression of IGF-1R and IGFBP2 in the breast muscle of HS broilers. The total mTOR protein level in the breast muscle of HS broilers was also increased by L-Cit diet (p < 0.05). Therefore, this study demonstrated that HS negatively affected the growth performance of broilers and dysregulated the expression of growth factors related to protein metabolism. Contrarily, L-Cit promoted the growth responses of broilers via its stimulation of circulating GH/IGF-1 concentration. To certain extents, L-Cit supplementation elicited protective effects on the growth performance of HS broilers by diminishing protein catabolism.
Collapse
Affiliation(s)
- Victoria Anthony Uyanga
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Jingpeng Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Xiaojuan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Hongchao Jiao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | | | - Hai Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control, Department of Animal Science, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| |
Collapse
|
14
|
Chetla VS, Khurana A, Bommu S, Laxmi NA, Putty K, Banothu AK, Reddy KK, Bharani KK. Comparative evaluation of the effect of L-Arginine and L-Homoarginine supplementation on reproductive physiology in ewes. Res Vet Sci 2022; 149:159-171. [DOI: 10.1016/j.rvsc.2022.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/13/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022]
|
15
|
Santinelli L, Laghi L, Innocenti GP, Pinacchio C, Vassalini P, Celani L, Lazzaro A, Borrazzo C, Marazzato M, Tarsitani L, Koukopoulos AE, Mastroianni CM, d'Ettorre G, Ceccarelli G. Oral Bacteriotherapy Reduces the Occurrence of Chronic Fatigue in COVID-19 Patients. Front Nutr 2022; 8:756177. [PMID: 35096923 PMCID: PMC8790565 DOI: 10.3389/fnut.2021.756177] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Long COVID refers to patients with symptoms as fatigue, “brain fog,” pain, suggesting the chronic involvement of the central nervous system (CNS) in COVID-19. The supplementation with probiotic (OB) would have a positive effect on metabolic homeostasis, negatively impacting the occurrence of symptoms related to the CNS after hospital discharge. On a total of 58 patients hospitalized for COVID-19, 24 (41.4%) received OB during hospitalization (OB+) while 34 (58.6%) taken only the standard treatment (OB–). Serum metabolomic profiling of patients has been performed at both hospital acceptance (T0) and discharge (T1). Six months after discharge, fatigue perceived by participants was assessed by administrating the Fatigue Assessment Scale. 70.7% of participants reported fatigue while 29.3% were negative for such condition. The OB+ group showed a significantly lower proportion of subjects reporting fatigue than the OB– one (p < 0.01). Furthermore, OB+ subjects were characterized by significantly increased concentrations of serum Arginine, Asparagine, Lactate opposite to lower levels of 3-Hydroxyisobutirate than those not treated with probiotics. Our results strongly suggest that in COVID-19, the administration of probiotics during hospitalization may prevent the development of chronic fatigue by impacting key metabolites involved in the utilization of glucose as well as in energy pathways.
Collapse
Affiliation(s)
- Letizia Santinelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Luca Laghi
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy.,Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, Bologna, Italy
| | | | - Claudia Pinacchio
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Paolo Vassalini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Luigi Celani
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Alessandro Lazzaro
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Cristian Borrazzo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Massimiliano Marazzato
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Tarsitani
- Department of Human Neurosciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Alexia E Koukopoulos
- Department of Human Neurosciences, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Claudio M Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Gabriella d'Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
16
|
Alchujyan N, Hovhannisyan M, Movsesyan N, Melkonyan A, Shaboyan V, Aghajanova Y, Minasyan G, Kevorkian G. Sexual Dimorphism in Alternative Metabolic Pathways of L-Arginine in Circulating Leukocytes in Young People with Type 1 Diabetes Mellitus. Endocr Res 2021; 46:149-159. [PMID: 33944639 DOI: 10.1080/07435800.2021.1920608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: Sexual dimorphism in specific biochemical pathways and immune response, underlies the heterogeneity of type 1 diabetes mellitus (T1DM) and affects the outcome of immunotherapy. Arginase and nitric oxide (NO) synthase (NOS) metabolize L-arginine and play opposite roles in the immune response and autoimmune processes.Objective: We hypothesized that the above mentioned enzymes can be involved in sex and age differences in T1DM and its treatment. Based on this, the enzymes have been studied in peripheral blood leukocytes (PBL) and plasma of young people with T1DM.Methods: Patients were recruited from Muratsan University Hospital (Yerevan, Armenia) and were divided into groups: girls and boys by age, from children to adolescents and adolescents/young adults with recent-onset T1DM (RO-T1DM) (0.1-1 years) and long-term T1DM (LT-T1DM) (1.6-9.9 years). Arginase activity was assessed by L-arginine-dependent production of L-ornithine, and the NOS activity was assessed by NO/nitrite production. Glycemic control was assessed using hemoglobin A1c test. Plasma HbA1c concentration below 7.5% (median (range) 6.7 [6.2-7.5]) was taken as good glycemic control (+) and above 7.5% (median (range) 10.5 [7.6-13]) as poor glycemic control (-). Healthy volunteers with corresponding sex and age were used as the control group.Results: All the patients with RO-T1DM, with poor glycemic control, had increased arginase activity in the cytoplasm (cARG) and mitochondria (mARG) in PBL. In girls with RO-T1DM, with good glycemic control, the subcellular arginase activity decreased, and normalized in LT-T1DM, regardless of age. In contrast, boys from both age groups showed high arginase activity, regardless of glycemic control and duration of T1DM along with insulin therapy. At the same time, a significant decrease in the subcellular production of bioavailable NO was observed in children/preadolescents, regardless of glycemic control and duration of diabetes. In adolescents/young adult boys with RO-T1DM, with (-), the subcellular production of NO decreased significantly, and with LT-T1DM, the decrease was attenuated, but even with (+) remained lower than in healthy people. In contrast, in the group of same age girls with RO-T1DM, NO production increased above normal in both cellular compartments, while with LT-T1DM it normalized in the cytoplasm. In adolescents/young adults with LT-T1DM, NO production in PBL mitochondria decreased by almost a half, regardless of glycemic control and gender. Changes in the metabolic pathways of L-arginine in plasma differed and were less substantial than in the PBL cellular compartments in T1DM.Conclusions: Glycemic status and duration of T1DM along with insulin therapy affect the activity of arginase and NOS-dependent production of bioavailable NO in the cytoplasm and mitochondria in PBL of young patients with T1DM, depending on sex and age. Arginase and NOS can directly affect the processes occurring in the pancreas and the outcome of therapy through infiltrated leukocytes. Obtained data can be useful for understanding the heterogeneity of T1DM and using it to develop available criteria for assessing the severity and treatment of autoimmune diabetes.
Collapse
Affiliation(s)
- Nina Alchujyan
- Department of Pathological Biochemistry, Institute of Biochemistryafter H. Buniatyan, NAS RA, Yerevan, Armenia
| | - Margarita Hovhannisyan
- Department of Pathological Biochemistry, Institute of Biochemistryafter H. Buniatyan, NAS RA, Yerevan, Armenia
| | - Nina Movsesyan
- Department of Pathological Biochemistry, Institute of Biochemistryafter H. Buniatyan, NAS RA, Yerevan, Armenia
| | - Arthur Melkonyan
- Department of Endocrinology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| | - Vanuhi Shaboyan
- Department of Endocrinology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| | - Yelena Aghajanova
- Department of Endocrinology, Yerevan State Medical University after Mkhitar Heratsi, Yerevan, Armenia
| | - Grigory Minasyan
- Department of Organic Chemistry, Scientific Technological Center of Organic and Pharmaceutical Chemistry, NAS RA, Yerevan, Armenia
| | - Guevork Kevorkian
- Department of Pathological Biochemistry, Institute of Biochemistryafter H. Buniatyan, NAS RA, Yerevan, Armenia
| |
Collapse
|
17
|
Al-Malki AL, Bakkar A, Huwait EA, Barbour EK, Abulnaja KO, Kumosani TA, Moselhy SS. Strigol1/albumin/chitosan nanoparticles decrease cell viability, induce apoptosis and alter metabolomics profile in HepG2 cancer cell line. Biomed Pharmacother 2021; 142:111960. [PMID: 34352718 DOI: 10.1016/j.biopha.2021.111960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma is one of the most common causes of cancer-related deaths globally. Bioavailable, effective and safe therapeutic agents are urgently needed for cancer treatment. This study evaluated the metabolomics profiling, anti-proliferative and pro-apoptotic effects of strigol/albumin/chitosan nanoparticles (S/A/CNP) on HepG2 cell line. The diameter of S/A/CNP was (5 ± 0.01) nm. The IC50 was 180.4 nM and 47.6 nM for Strigol1 and S/A/CNP, respectively, after incubation for 24 h with HepG2 cells. By increasing the concentration of S/A/CNP, there was chromatin condensation, degranulation in the cytoplasm and shrinking in cell size indicating pro-apoptotic activity. Metabolomics profiling of the exposed cells by LC/MS/MS revealed that S/A/CNP up-regulated epigenetic intermediates (spermine and spermidine) and down-regulated energy production pathway and significantly decreased glutamine (P < 0.001). These findings demonstrated that S/A/CNP has anti-proliferative, apoptotic effects and modulate energetic, and epigenetic metabolites in the hepatocellular carcinoma cell line (HepG2).
Collapse
Affiliation(s)
- Abdulrahman L Al-Malki
- Biochemistry Department, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia; Experimental Biochemistry Unit, King Fahd Medical Research Centre, King Abdulaziz University, Saudi Arabia; Bioactive Natural Products Research Group, King Abdulaziz University. Jeddah, Saudi Arabia
| | - Ashraf Bakkar
- Modern Sciences and Arts University (MSA), 6th October, Giza, Egypt
| | - Etimad A Huwait
- Biochemistry Department, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Elie K Barbour
- Biochemistry Department, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia; Experimental Biochemistry Unit, King Fahd Medical Research Centre, King Abdulaziz University, Saudi Arabia; Director of R and D Department, Opticon Hygiene Consulting, Oechsli 7, 8807 Freienbach, Switzerland
| | - Kalid O Abulnaja
- Biochemistry Department, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia; Experimental Biochemistry Unit, King Fahd Medical Research Centre, King Abdulaziz University, Saudi Arabia; Bioactive Natural Products Research Group, King Abdulaziz University. Jeddah, Saudi Arabia
| | - Taha A Kumosani
- Biochemistry Department, Faculty of Science, King Abdulaziz University (KAU), Jeddah, Saudi Arabia; Experimental Biochemistry Unit, King Fahd Medical Research Centre, King Abdulaziz University, Saudi Arabia; Production of Bio-products for Industrial Applications Research Group, King Abdulaziz University
| | - Said S Moselhy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
18
|
The immune status, oxidative and epigenetic changes in tissues of turkeys fed diets with different ratios of arginine and lysine. Sci Rep 2021; 11:15975. [PMID: 34354153 PMCID: PMC8342415 DOI: 10.1038/s41598-021-95529-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
In the present experiment, it was assumed that the appropriate dietary ratio of arginine (Arg) to lysine (Lys) can improve the immune status and growth performance of turkeys. The aim of this study was to evaluate the effects of two inclusion rates of Arg relative to Lys in turkey diets with Lys content consistent with National Research Council (NRC) recommendations or 10% higher on the immune status of birds and indicators of protein and DNA damage due to oxidation, nitration or epigenetic changes. Another goal was to determine which dietary Arg:Lys ratio stimulates the immune response of turkeys vaccinated against Ornithobacterium rhinotracheale. The experiment was performed on 576 turkeys randomly assigned to four groups with two levels of Lys (low = NRC recommendation or high = NRC + 10%) and two levels of Arg (95% or 105% Arg relative to the content of dietary Lys). It was found that the Lys content of turkey diets should be 10% higher than that recommended by the NRC and combined with the higher Arg level (105% of Lys). Although the above Arg:Lys ratio did not improve the growth performance of birds, it stimulated their immune system and reduced protein nitration as well as protein and DNA oxidation.
Collapse
|
19
|
Melnik BC. Lifetime Impact of Cow's Milk on Overactivation of mTORC1: From Fetal to Childhood Overgrowth, Acne, Diabetes, Cancers, and Neurodegeneration. Biomolecules 2021; 11:404. [PMID: 33803410 PMCID: PMC8000710 DOI: 10.3390/biom11030404] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
The consumption of cow's milk is a part of the basic nutritional habits of Western industrialized countries. Recent epidemiological studies associate the intake of cow's milk with an increased risk of diseases, which are associated with overactivated mechanistic target of rapamycin complex 1 (mTORC1) signaling. This review presents current epidemiological and translational evidence linking milk consumption to the regulation of mTORC1, the master-switch for eukaryotic cell growth. Epidemiological studies confirm a correlation between cow's milk consumption and birthweight, body mass index, onset of menarche, linear growth during childhood, acne vulgaris, type 2 diabetes mellitus, prostate cancer, breast cancer, hepatocellular carcinoma, diffuse large B-cell lymphoma, neurodegenerative diseases, and all-cause mortality. Thus, long-term persistent consumption of cow's milk increases the risk of mTORC1-driven diseases of civilization. Milk is a highly conserved, lactation genome-controlled signaling system that functions as a maternal-neonatal relay for optimized species-specific activation of mTORC1, the nexus for regulation of eukaryotic cell growth, and control of autophagy. A deeper understanding of milk´s impact on mTORC1 signaling is of critical importance for the prevention of common diseases of civilization.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Am Finkenhügel 7a, D-49076 Osnabrück, Germany
| |
Collapse
|
20
|
Angove JL, Willson NL, Cadogan DJ, Forder REA. In ovo corticosterone administration alters body composition irrespective of arginine supplementation in 35-day-old female chicken meat birds. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Exposure to maternal hormones can permanently alter an embryo’s developmental trajectory. Maternal mediated effects have significant potential in the chicken meat industry, as breeder hens are feed restricted in a bid to improve performance. Evidence suggests breeder hens are chronically stressed, resulting from periods of prolonged hunger. However, evidence linking embryonic exposure to early-life stress and altered offspring phenotype in meat chickens is lacking. Additionally, methods to alleviate the phenotypic consequences of early-life stress have not been comprehensively explored. Nutritional supplementation with amino acids, such as arginine (Arg), may provide one such option, as Arg reportedly enhances performance characteristics in chicken meat birds.
Aims
An in ovo study was conducted to investigate whether exposure to in ovo stress altered offspring performance in meat chickens. Additionally, Arg was supplemented post-hatch to alleviate reductions in performance, hypothesised to occur as a result of exposure to corticosterone.
Method
A total of 400 eggs were divided into two groups and administered a corticosterone (CORT) or control (CON) solution at embryonic Day 11. At hatch, birds were separated into four groups based on in ovo and dietary treatments: CORT-Control, CORT-Arg, CON-Arg and CON-Control. Birds fed supplementary Arg diets received an Arg:lysine inclusion of 125%. Bodyweight (bwt) and feed conversion were recorded weekly. Birds were euthanised at embryonic Day 15, Day 0, 7, 21 (n = 40 birds/time point), 28 and 35 (n = 48 birds/time point) for organ collection. A total of 12 additional female birds were euthanised and subjected to a dual-energy X-ray absorptiometry scan for body composition at Day 35.
Results
Neither in ovo nor diet treatments influenced bwt, bwt gain, feed conversion or plasma corticosterone at any time point, nor did any in ovo by diet interaction exist. Female birds exposed to CORT exhibited significantly greater fat mass (%bwt; P = 0.007) and reduced lean mass (%bwt; P = 0.026) compared with CON females at Day 35. Supplementary Arg did not influence bird body composition.
Conclusions
These findings suggest in ovo exposure to CORT may negatively influence body composition of female birds.
Implications
Understanding the effects of the maternal/in ovo environment may provide a novel approach to further improve carcass quality and flock uniformity.
Collapse
|
21
|
Amino Acids in Cell Signaling: Regulation and Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:17-33. [PMID: 34251636 DOI: 10.1007/978-3-030-74180-8_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amino acids are the main building blocks for life. Aside from their roles in composing proteins, functional amino acids and their metabolites play regulatory roles in key metabolic cascades, gene expressions, and cell-to-cell communication via a variety of cell signaling pathways. These metabolic networks are necessary for maintenance, growth, reproduction, and immunity in humans and animals. These amino acids include, but are not limited to, arginine, glutamine, glutamate, glycine, leucine, proline, and tryptophan. We will discuss these functional amino acids in cell signaling pathways in mammals with a particular emphasis on mTORC1, AMPK, and MAPK pathways for protein synthesis, nutrient sensing, and anti-inflammatory responses, as well as cell survival, growth, and development.
Collapse
|
22
|
Herring Milt and Herring Milt Protein Hydrolysate Are Equally Effective in Improving Insulin Sensitivity and Pancreatic Beta-Cell Function in Diet-Induced Obese- and Insulin-Resistant Mice. Mar Drugs 2020; 18:md18120635. [PMID: 33322303 PMCID: PMC7763884 DOI: 10.3390/md18120635] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
Although genetic predisposition influences the onset and progression of insulin resistance and diabetes, dietary nutrients are critical. In general, protein is beneficial relative to carbohydrate and fat but dependent on protein source. Our recent study demonstrated that 70% replacement of dietary casein protein with the equivalent quantity of protein derived from herring milt protein hydrolysate (HMPH; herring milt with proteins being enzymatically hydrolyzed) significantly improved insulin resistance and glucose homeostasis in high-fat diet-induced obese mice. As production of protein hydrolysate increases the cost of the product, it is important to determine whether a simply dried and ground herring milt product possesses similar benefits. Therefore, the current study was conducted to investigate the effect of herring milt dry powder (HMDP) on glucose control and the associated metabolic phenotypes and further to compare its efficacy with HMPH. Male C57BL/6J mice on a high-fat diet for 7 weeks were randomized based on body weight and blood glucose into three groups. One group continued on the high-fat diet and was used as the insulin-resistant/diabetic control and the other two groups were given the high-fat diet modified to have 70% of casein protein being replaced with the same amount of protein from HMDP or HMPH. A group of mice on a low-fat diet all the time was used as the normal control. The results demonstrated that mice on the high-fat diet increased weight gain and showed higher blood concentrations of glucose, insulin, and leptin, as well as impaired glucose tolerance and pancreatic β-cell function relative to those on the normal control diet. In comparison with the high-fat diet, the replacement of 70% dietary casein protein with the same amount of HMDP or HMPH protein decreased weight gain and significantly improved the aforementioned biomarkers, insulin sensitivity or resistance, and β-cell function. The HMDP and HMPH showed similar effects on every parameter except blood lipids where HMDP decreased total cholesterol and non-HDL-cholesterol levels while the effect of HMPH was not significant. The results demonstrate that substituting 70% of dietary casein protein with the equivalent amount of HMDP or HMPH protein protects against obesity and diabetes, and HMDP is also beneficial to cholesterol homeostasis.
Collapse
|
23
|
Zhao G, Chen W, He J, Cui C, Zhao L, Zhao Y, Sun C, Nie D, Jin F, Kong L. Analysis of Cyclooxygenase 2, Programmed Cell Death Ligand 1, and Arginase 1 Expression in Human Pituitary Adenoma. World Neurosurg 2020; 144:e660-e673. [PMID: 32920160 DOI: 10.1016/j.wneu.2020.09.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cyclooxygenase 2 (COX-2) is a key enzyme in the synthesis of prostaglandins. Recent studies have shown that overexpression of COX-2 can reduce the antitumor effect of the immune system by inhibiting the proliferation of B and T lymphocytes. Programmed cell death ligand 1 (PD-L1) was the first functionally characterized ligand of programmed cell death protein 1. It plays an important role in maintaining peripheral and central immune tolerance by combining with programmed cell death protein 1. Arginase 1 (ARG1) can process L-arginine in the local microenvironment and affect the function of T cells, resulting in immune escape. In this study, COX-2, PD-L1, and ARG1 expression in human pituitary adenoma (PA) and their relationship were investigated, which provided an initial theoretic basis for further study of the immune escape mechanism in PA in cellular and animal experiments. METHODS The protein expression of COX-2, PD-L1, and ARG1 in 55 PA samples was detected by immunohistochemistry, with 10 normal brain tissues as the control group. The location of COX-2, PD-L1, and ARG1 in PA cells was studied by double immunofluorescence colocalization. The results of immunohistochemistry were further verified by Western blot. RESULTS The expression of COX-2, PD-L1, and ARG1 in PA was significantly higher than that in normal brain tissue. In functional PA (FPA) and nonfunctional PA (NFPA), there was no significant difference in the expression of COX-2 and PD-L1, whereas ARG1 was higher in NFPA. Moreover, the protein expression level of COX-2 was positively correlated with that of PD-L1 and ARG1, and the expression of PD-L1 was positively correlated with that of ARG1. Immunofluorescence confocal imaging showed that COX-2, PD-L1, and ARG1 were all expressed in the cytoplasm of PA cells, and the physical positions of COX-2, PD-L1, and ARG1 were partially coincident. CONCLUSIONS These findings indicate that overexpression of COX-2, PD-L1, and ARG1 may be involved in the pathogenesis of PA. ARG1 plays a more important role in the development of NFPA. By upregulating the expression of PD-L1, COX-2 may promote the expression of ARG1, forming the COX-2/PD-L1/ARG1 signal pathway in promoting the occurrence and development of PA. Perhaps further study of the pathogenesis of PA can start with the mechanism of immune escape.
Collapse
Affiliation(s)
- Guodong Zhao
- Clinical Medical College, Jining Medical University, Jining, Shandong Province, China
| | - Weike Chen
- Clinical Medical College, Jining Medical University, Jining, Shandong Province, China
| | - Juanjuan He
- Clinical Medical College, Jining Medical University, Jining, Shandong Province, China
| | - Changmeng Cui
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Lihua Zhao
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Yueshu Zhao
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Cuilian Sun
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Dongli Nie
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Feng Jin
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China
| | - Lingsheng Kong
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, Shandong Province, China.
| |
Collapse
|
24
|
Stroup BM, Marom R, Li X, Hsu CW, Chang CY, Truong LD, Dawson B, Grafe I, Chen Y, Jiang MM, Lanza D, Green JR, Sun Q, Barrish JP, Ani S, Christiansen AE, Seavitt JR, Dickinson ME, Kheradmand F, Heaney JD, Lee B, Burrage LC. A global Slc7a7 knockout mouse model demonstrates characteristic phenotypes of human lysinuric protein intolerance. Hum Mol Genet 2020; 29:2171-2184. [PMID: 32504080 PMCID: PMC7399531 DOI: 10.1093/hmg/ddaa107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/30/2020] [Accepted: 05/19/2020] [Indexed: 12/18/2022] Open
Abstract
Lysinuric protein intolerance (LPI) is an inborn error of cationic amino acid (arginine, lysine, ornithine) transport caused by biallelic pathogenic variants in SLC7A7, which encodes the light subunit of the y+LAT1 transporter. Treatments for the complications of LPI, including growth failure, renal disease, pulmonary alveolar proteinosis, autoimmune disorders and osteoporosis, are limited. Given the early lethality of the only published global Slc7a7 knockout mouse model, a viable animal model to investigate global SLC7A7 deficiency is needed. Hence, we generated two mouse models with global Slc7a7 deficiency (Slc7a7em1Lbu/em1Lbu; Slc7a7Lbu/Lbu and Slc7a7em1(IMPC)Bay/em1(IMPC)Bay; Slc7a7Bay/Bay) using CRISPR/Cas9 technology by introducing a deletion of exons 3 and 4. Perinatal lethality was observed in Slc7a7Lbu/Lbu and Slc7a7Bay/Bay mice on the C57BL/6 and C57BL/6NJ inbred genetic backgrounds, respectively. We noted improved survival of Slc7a7Lbu/Lbu mice on the 129 Sv/Ev × C57BL/6 F2 background, but postnatal growth failure occurred. Consistent with human LPI, these Slc7a7Lbu/Lbu mice exhibited reduced plasma and increased urinary concentrations of the cationic amino acids. Histopathological assessment revealed loss of brush border and lipid vacuolation in the renal cortex of Slc7a7Lbu/Lbu mice, which combined with aminoaciduria suggests proximal tubular dysfunction. Micro-computed tomography of L4 vertebrae and skeletal radiographs showed delayed skeletal development and suggested decreased mineralization in Slc7a7Lbu/Lbu mice, respectively. In addition to delayed skeletal development and delayed development in the kidneys, the lungs and liver were observed based on histopathological assessment. Overall, our Slc7a7Lbu/Lbu mouse model on the F2 mixed background recapitulates multiple human LPI phenotypes and may be useful for future studies of LPI pathology.
Collapse
Affiliation(s)
- Bridget M Stroup
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
| | - Xiaohui Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chih-Wei Hsu
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cheng-Yen Chang
- Department of Medicine-Pulmonary, Baylor College of Medicine, Houston, TX 77030, USA
| | - Luan D Truong
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Brian Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ingo Grafe
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Center for Healthy Aging, University Clinic, Dresden D-01307, Germany
| | - Yuqing Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Denise Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennie Rose Green
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qin Sun
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Baylor Genetics, Houston, TX 77021, USA
| | - J P Barrish
- Department of Pathology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Safa Ani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Audrey E Christiansen
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - John R Seavitt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary E Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Farrah Kheradmand
- Department of Medicine-Pulmonary, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Texas Children's Hospital, Houston, TX 77030, USA
| |
Collapse
|
25
|
Intermittent Hypoxic Exposure with High Dose of Arginine Impact on Circulating Mediators of Tissue Regeneration. Nutrients 2020; 12:nu12071933. [PMID: 32610647 PMCID: PMC7400083 DOI: 10.3390/nu12071933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
Intermittent exposure to hypoxia (IHE) increases production of reactive oxygen and nitrogen species which, as signalling molecules, participate in tissue injury–repair–regeneration cascade. The process is also stimulated by arginine whose bioavailability is a limiting factor for NO synthesis. The effects of IHE in combination with arginine (Arg) intake on myogenesis and angiogenesis mediators were examined in a randomized and placebo-controlled trial. Blood samples were collected from 38 elite athletes on the 1st, 7th and 14th days during the training camp. The oral doses of arginine (2 × 6 g/day) and/or IHE using hypoxicator GO2Altitude (IHE and Arg/IHE) were applied. Serum NO and H2O2 concentrations increased significantly and were related to muscle damage (CK activity >900 IU/mL) in IHE and Arg/IHE compared to placebo. The changes in NO and H2O2 elevated the levels of circulating growth factors such as HGF, IHG-1, PDGFBB, BDNF, VEGF and EPO. Modification of the lipid profile, especially reduced non-HDL, was an additional beneficial effect of hypoxic exposure with arginine intake. Intermittent hypoxic exposure combined with high-dose arginine intake was demonstrated to affect circulating mediators of injury–repair–regeneration. Therefore, a combination of IHE and arginine seems to be a potential therapeutic and non-pharmacological method to modulate the myogenesis and angiogenesis in elite athletes.
Collapse
|
26
|
Vélez EJ, Unniappan S. A Comparative Update on the Neuroendocrine Regulation of Growth Hormone in Vertebrates. Front Endocrinol (Lausanne) 2020; 11:614981. [PMID: 33708174 PMCID: PMC7940767 DOI: 10.3389/fendo.2020.614981] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/31/2020] [Indexed: 12/22/2022] Open
Abstract
Growth hormone (GH), mainly produced from the pituitary somatotrophs is a key endocrine regulator of somatic growth. GH, a pleiotropic hormone, is also involved in regulating vital processes, including nutrition, reproduction, physical activity, neuroprotection, immunity, and osmotic pressure in vertebrates. The dysregulation of the pituitary GH and hepatic insulin-like growth factors (IGFs) affects many cellular processes associated with growth promotion, including protein synthesis, cell proliferation and metabolism, leading to growth disorders. The metabolic and growth effects of GH have interesting applications in different fields, including the livestock industry and aquaculture. The latest discoveries on new regulators of pituitary GH synthesis and secretion deserve our attention. These novel regulators include the stimulators adropin, klotho, and the fibroblast growth factors, as well as the inhibitors, nucleobindin-encoded peptides (nesfatin-1 and nesfatin-1-like peptide) and irisin. This review aims for a comparative analysis of our current understanding of the endocrine regulation of GH from the pituitary of vertebrates. In addition, we will consider useful pharmacological molecules (i.e. stimulators and inhibitors of the GH signaling pathways) that are important in studying GH and somatotroph biology. The main goal of this review is to provide an overview and update on GH regulators in 2020. While an extensive review of each of the GH regulators and an in-depth analysis of specifics are beyond its scope, we have compiled information on the main endogenous and pharmacological regulators to facilitate an easy access. Overall, this review aims to serve as a resource on GH endocrinology for a beginner to intermediate level knowledge seeker on this topic.
Collapse
|
27
|
Effect of In Ovo Injection of L-Arginine in Different Chicken Embryonic Development Stages on Post-Hatchability, Immune Response, and Myo-D and Myogenin Proteins. Animals (Basel) 2019; 9:ani9060357. [PMID: 31207968 PMCID: PMC6617498 DOI: 10.3390/ani9060357] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 01/26/2023] Open
Abstract
Simple Summary In the current study, we hypothesized that the in ovo injection of L-arginine (L-Arg) at different stages of embryonic development, which would have positive effects on the survival rate, hatching rate, immunoglobulin M (IgM) levels, heat shock proteins (HSPs) such as HSP-47, HSP-60, and HSP-70, and muscle development markers as well: Mainly, myoblast determination protein (myoD) and myogenin in pectoral muscles. As indicated, the in ovo injection of L-Arg resulted in an increased hatch rate and weight, survival rate, higher levels of IgM, and myogenin and MyoD expression in the muscles. At the same time, a decrease in the level of HSP-47, HSP-60, and HSP-70 expressions in the tissues was observed on the 14th day of injection compared to the eighth and 18th day of the injection period. In addition, the in ovo injection of L-Arg decreased the serum glutamate oxaloacetate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT) concentration in serum as well micronuclei and nuclear abnormality in the blood on the 14th day of the incubation period. Hence, the 14th day would be a suitable day for the injection of L-Arg to promote the hatching rate and muscle growth of broiler chickens. Abstract The aim of this study was to evaluate the effect of in ovo injection with different ratios of L-arginine (L-Arg) into Ross broiler eggs at three different embryonic developmental stages (eighth day (d), 14th day, and 18th day) on the survival, hatchability, and body weight (BW) of one-day-old hatched chicks. Additionally, we have analyzed the levels of serum glutamate oxaloacetate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT), the protein expression of heat shock proteins (HSPs), and we have also determined micronuclei (MN) and nuclear abnormality (NA). In addition, the genotoxic effect was observed in peripheral blood cells such as the presence of micronuclei and nuclear abnormalities in the experimental groups. The results showed that survival and hatching rates as well as body weight were increased on the 14th day of incubation compared to the eighth and 18th day of incubation at lower concentrations of L-Arg. Moreover, the levels of SGOT and SGPT were also significantly (p < 0.05) increased on the 14th day of incubation at the same concentration (100 μg/μL/egg) of injection. In addition, immunoglobulin (IgM) levels were increased on the 14th day of incubation compared to other days. The protein expressions of HSP-47, HSP-60, and HSP-70 in the liver were significantly down-regulated, whereas the expression of myogenin and myoblast determination protein (MyoD) were significantly up-regulated on the 14th day after incubation when treated with all different doses such as 100 μg, 1000 μg, and 2500 μg/μL/egg, namely 3T1, 3T2, and 3T3, respectively. However, the treatment with low doses of L-Arg down-regulated the expression levels of those proteins on the 14th day of incubation. Histopathology of the liver by hematoxylin and eosin (H&E) staining showed that the majority of liver damage, specifically intracytoplasmic vacuoles, were observed in the 3T1, 3T2, and 3T3 groups. The minimum dose of 100 μg/mL/egg on the 14th day of incubation significantly prevented intracytoplasmic vacuole damages. These results demonstrate that in ovo administration of L-Arg at (100 μg/μL/egg) may be an effective method to increase chick BW, hatch rate, muscle growth-related proteins, and promote the immune response through increasing IgM on the 14th day of the incubation period.
Collapse
|
28
|
Gu F, Liang S, Wei Z, Wang C, Liu H, Liu J, Wang D. Short communication: Effects of dietary addition of N-carbamoylglutamate on milk composition in mid-lactating dairy cows. J Dairy Sci 2018; 101:10985-10990. [DOI: 10.3168/jds.2018-15162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/20/2018] [Indexed: 01/08/2023]
|