1
|
Denz PJ, Yount JS. IFITM3 variants point to a critical role in emergent virus infections. mBio 2025:e0334724. [PMID: 40237465 DOI: 10.1128/mbio.03347-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) is a cellular protein that restricts numerous viral infections by blocking virus-host membrane fusion. In humans, there are two IFITM3 single nucleotide polymorphisms (SNPs), rs12252-C and rs34481144-A, that decrease IFITM3 activity and have been associated with severe illness following influenza virus infections. Mice lacking IFITM3 show increased influenza severity, supporting this association. However, some studies do not find a consistent link between IFITM3 SNPs and infection severity, causing uncertainty about its role in vivo. Review of the literature indicates that IFITM3 SNPs are primarily associated with increased viral disease in infections with emergent influenza viruses, such as the 2009 H1N1 pandemic virus and zoonotic H7N9 virus. Similarly, IFITM3 SNPs are reported to be risk factors for increased severity in other emergent infections, including SARS-CoV-2, Hantaan virus, and HIV. In contrast, most studies that failed to find an association examined seasonal influenza. We posit that adaptive immune mechanisms, including pre-existing antibodies and memory T cells against seasonally circulating viruses, compensate for IFITM3 deficiencies, therefore masking its role in seasonal influenza. We propose that IFITM3 is most critical in defending against emergent viruses and should be a key focus of public health strategies to prevent the emergence and spread of novel pathogens, with individuals carrying IFITM3 SNPs potentially benefiting from broadened vaccine coverage, avoidance of animal reservoirs, or enhanced masking to protect themselves and the wider population.
Collapse
Affiliation(s)
- Parker J Denz
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Jacob S Yount
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, Ohio, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Nguyen THO, Rowntree LC, Chua BY, Thwaites RS, Kedzierska K. Defining the balance between optimal immunity and immunopathology in influenza virus infection. Nat Rev Immunol 2024; 24:720-735. [PMID: 38698083 DOI: 10.1038/s41577-024-01029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/05/2024]
Abstract
Influenza A viruses remain a global threat to human health, with continued pandemic potential. In this Review, we discuss our current understanding of the optimal immune responses that drive recovery from influenza virus infection, highlighting the fine balance between protective immune mechanisms and detrimental immunopathology. We describe the contribution of innate and adaptive immune cells, inflammatory modulators and antibodies to influenza virus-specific immunity, inflammation and immunopathology. We highlight recent human influenza virus challenge studies that advance our understanding of susceptibility to influenza and determinants of symptomatic disease. We also describe studies of influenza virus-specific immunity in high-risk groups following infection and vaccination that inform the design of future vaccines to promote optimal antiviral immunity, particularly in vulnerable populations. Finally, we draw on lessons from the COVID-19 pandemic to refocus our attention to the ever-changing, highly mutable influenza A virus, predicted to cause future global pandemics.
Collapse
Affiliation(s)
- Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Husain M. Influenza Virus Host Restriction Factors: The ISGs and Non-ISGs. Pathogens 2024; 13:127. [PMID: 38392865 PMCID: PMC10893265 DOI: 10.3390/pathogens13020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Influenza virus has been one of the most prevalent and researched viruses globally. Consequently, there is ample information available about influenza virus lifecycle and pathogenesis. However, there is plenty yet to be known about the determinants of influenza virus pathogenesis and disease severity. Influenza virus exploits host factors to promote each step of its lifecycle. In turn, the host deploys antiviral or restriction factors that inhibit or restrict the influenza virus lifecycle at each of those steps. Two broad categories of host restriction factors can exist in virus-infected cells: (1) encoded by the interferon-stimulated genes (ISGs) and (2) encoded by the constitutively expressed genes that are not stimulated by interferons (non-ISGs). There are hundreds of ISGs known, and many, e.g., Mx, IFITMs, and TRIMs, have been characterized to restrict influenza virus infection at different stages of its lifecycle by (1) blocking viral entry or progeny release, (2) sequestering or degrading viral components and interfering with viral synthesis and assembly, or (3) bolstering host innate defenses. Also, many non-ISGs, e.g., cyclophilins, ncRNAs, and HDACs, have been identified and characterized to restrict influenza virus infection at different lifecycle stages by similar mechanisms. This review provides an overview of those ISGs and non-ISGs and how the influenza virus escapes the restriction imposed by them and aims to improve our understanding of the host restriction mechanisms of the influenza virus.
Collapse
Affiliation(s)
- Matloob Husain
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
4
|
Yu K, Wang J, Li H, Wang W. IFITM3 rs12252 polymorphism and coronavirus disease 2019 severity: A meta‑analysis. Exp Ther Med 2023; 25:158. [PMID: 36911378 PMCID: PMC9996185 DOI: 10.3892/etm.2023.11857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/26/2023] [Indexed: 02/25/2023] Open
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) serves a critical role in the immune defense against viral infection, including that of severe acute respiratory syndrome coronavirus 2. To the best of our knowledge, the association between IFITM3 rs12252 polymorphism and coronavirus disease 2019 (COVID-19) severity has not been determined. In the present study, a meta-analysis of published case-control studies assessing the association between the IFITM3 rs12252 polymorphism and COVID-19 severity was performed. PubMed, EMBASE, China National Knowledge Infrastructure, Wanfang and preprint servers were searched up to March 30, 2022. A fixed-effect model was used to calculate odds ratio (OR) and 95% confidence interval (95% CI). Analyses were conducted for additive, dominant and recessive genetic models. A total of five studies were identified, with 1,443 mild-to-moderate cases and 667 severe cases, including 121 deaths. Overall, the CC genotype of IFITM3 rs12252 was associated with increased risk of severe COVID-19 (OR=1.97, 95% CI, 1.06-3.69) and mortality (OR=4.61, 95% CI, 1.44-14.75) compared with the CT/TT genotypes. Stratified analysis by ethnicity revealed that this association was strong in Chinese individuals (severity, OR=2.84, 95% CI, 1.34-6.04; mortality, OR=7.91, 95% CI, 1.29-48.44), but not notable in Caucasians (severity, OR=0.79, 95% CI, 0.23-2.80; mortality, OR=2.16, 95% CI, 0.37-12.55). A significant association with mortality was observed in Caucasians when comparing patients with the C allele of IFITM3 rs12252 and those without (CC/CT vs. TT: OR=1.73, 95% CI, 1.09-2.75). The results suggested that the IFTM3-rs12252 CC genotype is associated with severe COVID-19 and mortality in Chinese individuals and the IFTM3-rs12252 C allele may be associated with COVID-19 mortality in Caucasians. Large-scale studies are needed to confirm the association in different global populations.
Collapse
Affiliation(s)
- Kai Yu
- Department of Surgery, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Jingjing Wang
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Haibin Li
- Department of Surgery, Affiliated Hospital of Beihua University, Jilin, Jilin 132011, P.R. China
| | - Wenjun Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
5
|
Zhang Q, Pizzorno A, Miorin L, Bastard P, Gervais A, Le Voyer T, Bizien L, Manry J, Rosain J, Philippot Q, Goavec K, Padey B, Cupic A, Laurent E, Saker K, Vanker M, Särekannu K, García-Salum T, Ferres M, Le Corre N, Sánchez-Céspedes J, Balsera-Manzanero M, Carratala J, Retamar-Gentil P, Abelenda-Alonso G, Valiente A, Tiberghien P, Zins M, Debette S, Meyts I, Haerynck F, Castagnoli R, Notarangelo LD, Gonzalez-Granado LI, Dominguez-Pinilla N, Andreakos E, Triantafyllia V, Rodríguez-Gallego C, Solé-Violán J, Ruiz-Hernandez JJ, Rodríguez de Castro F, Ferreres J, Briones M, Wauters J, Vanderbeke L, Feys S, Kuo CY, Lei WT, Ku CL, Tal G, Etzioni A, Hanna S, Fournet T, Casalegno JS, Queromes G, Argaud L, Javouhey E, Rosa-Calatrava M, Cordero E, Aydillo T, Medina RA, Kisand K, Puel A, Jouanguy E, Abel L, Cobat A, Trouillet-Assant S, García-Sastre A, Casanova JL. Autoantibodies against type I IFNs in patients with critical influenza pneumonia. J Exp Med 2022; 219:e20220514. [PMID: 36112363 PMCID: PMC9485705 DOI: 10.1084/jem.20220514] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/04/2022] [Accepted: 08/08/2022] [Indexed: 12/31/2022] Open
Abstract
Autoantibodies neutralizing type I interferons (IFNs) can underlie critical COVID-19 pneumonia and yellow fever vaccine disease. We report here on 13 patients harboring autoantibodies neutralizing IFN-α2 alone (five patients) or with IFN-ω (eight patients) from a cohort of 279 patients (4.7%) aged 6-73 yr with critical influenza pneumonia. Nine and four patients had antibodies neutralizing high and low concentrations, respectively, of IFN-α2, and six and two patients had antibodies neutralizing high and low concentrations, respectively, of IFN-ω. The patients' autoantibodies increased influenza A virus replication in both A549 cells and reconstituted human airway epithelia. The prevalence of these antibodies was significantly higher than that in the general population for patients <70 yr of age (5.7 vs. 1.1%, P = 2.2 × 10-5), but not >70 yr of age (3.1 vs. 4.4%, P = 0.68). The risk of critical influenza was highest in patients with antibodies neutralizing high concentrations of both IFN-α2 and IFN-ω (OR = 11.7, P = 1.3 × 10-5), especially those <70 yr old (OR = 139.9, P = 3.1 × 10-10). We also identified 10 patients in additional influenza patient cohorts. Autoantibodies neutralizing type I IFNs account for ∼5% of cases of life-threatening influenza pneumonia in patients <70 yr old.
Collapse
Affiliation(s)
- Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Andrés Pizzorno
- CIRI, Centre International de Recherche en Infectiologie - Team VirPath, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS Lyon, Lyon, France
| | - Lisa Miorin
- Dept. of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
- Dept. of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Lucy Bizien
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Jeremy Manry
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Kelian Goavec
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Blandine Padey
- CIRI, Centre International de Recherche en Infectiologie - Team VirPath, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS Lyon, Lyon, France
- Signia Therapeutics SAS, Lyon, France
| | - Anastasija Cupic
- Dept. of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Emilie Laurent
- CIRI, Centre International de Recherche en Infectiologie - Team VirPath, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS Lyon, Lyon, France
- VirNext, Faculty of Medicine RTH Laennec, Claude Bernard Lyon 1 University, Lyon University, Lyon, France
| | - Kahina Saker
- Joint Research Unit, Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Martti Vanker
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Karita Särekannu
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Tamara García-Salum
- Dept. of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Pathology Advanced Translational Research Unit, Dept. of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA
| | - Marcela Ferres
- Dept. of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicole Le Corre
- Dept. of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javier Sánchez-Céspedes
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), CSIC, University of Seville, Seville, Spain
| | - María Balsera-Manzanero
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), CSIC, University of Seville, Seville, Spain
| | - Jordi Carratala
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Pilar Retamar-Gentil
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Institute of Biomedicine of Seville (IBiS), CSIC, University of Seville, Seville, Spain
- Infectious Diseases, Microbiology Unit, Virgen Macarena University Hospital, Seville, Spain
| | - Gabriela Abelenda-Alonso
- Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Dept. of Infectious Diseases, Bellvitge University Hospital, Barcelona, Spain
| | - Adoración Valiente
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Sevilla, Spain
- Infectious Diseases, Microbiology Unit, Virgen Macarena University Hospital, Seville, Spain
| | - Pierre Tiberghien
- Etablissement Francais Du Sang, La Plaine-Saint Denis, Saint-Denis, France
| | - Marie Zins
- University of Paris Cite, University of Paris-Saclay, UVSQ, INSERM UMS11, Villejuif, France
| | - Stéphanie Debette
- University of Bordeaux, INSERM, Bordeaux Population Health Center, UMR1219, Bordeaux, France
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity, Dept. of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Filomeen Haerynck
- Dept. of Pediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency Ghent, PID Research Laboratory, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
| | - Riccardo Castagnoli
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Luis I. Gonzalez-Granado
- Immunodeficiencies Unit, Hospital October 12, Research Institute Hospital October 12, School of Medicine, Complutense University, Madrid, Spain
| | - Nerea Dominguez-Pinilla
- Pediatrics Service, Hematology and Oncology Unit, University Hospital 12 October, Madrid, Spain
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Vasiliki Triantafyllia
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Carlos Rodríguez-Gallego
- Dept. of Immunology, University Hospital of Gran Canaria Dr. Negrín, Canarian Health System, Las Palmas de Gran Canaria, Spain
- Dept. of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Jordi Solé-Violán
- Dept. of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Critical Care Unit, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - José Juan Ruiz-Hernandez
- Dept. of Internal Medicine, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
| | - Felipe Rodríguez de Castro
- Dept. of Respiratory Diseases, University Hospital of Gran Canaria Dr. Negrin, Canarian Health System, Las Palmas de Gran Canaria, Spain
- Dept. of Medical and Surgical Sciences, School of Medicine, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - José Ferreres
- Critical Care Unit, Hospital Clínico de Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Marisa Briones
- Dept. of Respiratory Diseases, Hospital Clínico y Universitario de Valencia, Valencia, Spain
| | - Joost Wauters
- Dept. of General Internal Medicine, Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Lore Vanderbeke
- Dept. of General Internal Medicine, Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Simon Feys
- Dept. of General Internal Medicine, Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium
| | - Chen-Yen Kuo
- Laboratory of Human Immunology and Infectious Disease, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
- Division of Infectious Diseases, Dept. of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wei-Te Lei
- Laboratory of Human Immunology and Infectious Disease, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
- Dept. of Pediatrics, Hsinchu MacKay Memorial Hospital, Hsinchu, Taiwan
| | - Cheng-Lung Ku
- Laboratory of Human Immunology and Infectious Disease, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan
- Dept. of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Galit Tal
- Metabolic Clinic, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
| | - Amos Etzioni
- Metabolic Clinic, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Suhair Hanna
- Metabolic Clinic, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Thomas Fournet
- Etablissement Français Du Sang, Université de Franche-Comté, Besançon, France
| | - Jean-Sebastien Casalegno
- Virology Laboratory, CNR des Virus des Infections Respiratoires, Institut des Agents Infectieux, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France
| | - Gregory Queromes
- CIRI, Centre International de Recherche en Infectiologie - Team VirPath, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS Lyon, Lyon, France
| | - Laurent Argaud
- Medical Intensive Care Dept., Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Etienne Javouhey
- Pediatric Intensive Care Unit, Hospices Civils de Lyon, Hopital Femme Mère Enfant, Lyon, France
| | - Manuel Rosa-Calatrava
- CIRI, Centre International de Recherche en Infectiologie - Team VirPath, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS Lyon, Lyon, France
- VirNext, Faculty of Medicine RTH Laennec, Claude Bernard Lyon 1 University, Lyon University, Lyon, France
| | - Elisa Cordero
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases, Microbiology and Preventive Medicine, Virgen del Rocío University Hospital, Sevilla, Spain
- Institute of Biomedicine of Seville (IBiS), CSIC, University of Seville, Seville, Spain
- Dept. of Medicine, School of Medicine, University of Seville, Seville, Spain
| | - Teresa Aydillo
- Dept. of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rafael A. Medina
- Dept. of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Dept. of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Aurélie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
| | - Sophie Trouillet-Assant
- CIRI, Centre International de Recherche en Infectiologie - Team VirPath, Univ Lyon, INSERM U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS Lyon, Lyon, France
- Joint Research Unit, Hospices Civils de Lyon-bioMérieux, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
| | - Adolfo García-Sastre
- Dept. of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Dept. of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Dept. of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Université Paris Cité, Imagine Institute, Paris, France
- Dept. of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France
- Howard Hughes Medical Institute, New York, NY
| |
Collapse
|
6
|
Choudhary ML, Chaudhary U, Salve M, Shinde P, Padbidri V, Sangle SA, Salvi S, Bavdekar AR, D'costa P, Alagarasu K. Functional Single-Nucleotide Polymorphisms in the MBL2 and TLR3 Genes Influence Disease Severity in Influenza A (H1N1)pdm09 Virus-Infected Patients from Maharashtra, India. Viral Immunol 2022; 35:303-309. [PMID: 35196173 DOI: 10.1089/vim.2021.0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The clinical outcome in influenza A (H1N1)pdm09 virus-infected subjects is determined by several factors, including host genetics. In the present study, single-nucleotide polymorphisms (SNPs) in the IFITM, MBL2, TLR3, TLR8, DDX58, IFIH1, CD55, and FCGR2, genes were investigated in influenza A (H1N1)pdm09 virus-infected subjects to find out their association with disease severity. Influenza A (H1N1)pdm09 virus-infected subjects with severe disease (n = 86) and mild disease (n = 293) from western India were included in the study. The SNPs were investigated by PCR-based methods. The results revealed a higher frequency of TLR3 rs5743313 T/T genotype [odds ratio (OR) with 95% confidence interval (CI) 2.55 (1.08-6.04) p = 0.039] and TLR3 two-locus haplotype rs3775291-rs3775290 T-A [OR with 95% CI 7.94 (2.05-30.68)] in severe cases. Lower frequency of the mutant allele of MBL2 rs1800450 [OR with 95% CI 0.51 (0.27-0.87), p = 0.01] and TLR3 two-locus haplotype rs3775291-rs3775290 T-G [OR with 95% CI 0.48 (0.27-0.85)] was observed in severe cases compared with cases with mild disease. Higher frequency of TLR3 two-locus haplotype rs3775291-rs3775290 T-A was observed in severe cases [OR with 95% CI 7.9 (2.0-30.7)]. The allele and genotype frequencies of other SNPs were not different between the study categories. The results suggest that the functional SNPs in MBL2 and TLR3 are associated with severe disease in influenza A (H1N1)pdm09 virus-infected subjects.
Collapse
Affiliation(s)
| | | | | | - Pooja Shinde
- ICMR-National Institute of Virology, Pune, India
| | | | | | - Sonali Salvi
- Department of Medicine, BJ Medical College, Pune, India
| | | | | | | |
Collapse
|
7
|
Van Goethem N, Danwang C, Bossuyt N, Van Oyen H, Roosens NHC, Robert A. A systematic review and meta-analysis of host genetic factors associated with influenza severity. BMC Genomics 2021; 22:912. [PMID: 34930124 PMCID: PMC8686082 DOI: 10.1186/s12864-021-08240-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/07/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The severity of influenza disease can range from mild symptoms to severe respiratory failure and can partly be explained by host genetic factors that predisposes the host to severe influenza. Here, we aimed to summarize the current state of evidence that host genetic variants play a role in the susceptibility to severe influenza infection by conducting a systematic review and performing a meta-analysis for all markers with at least three or more data entries. RESULTS A total of 34 primary human genetic association studies were identified that investigated a total of 20 different genes. The only significant pooled ORs were retrieved for the rs12252 polymorphism: an overall OR of 1.52 (95% CI [1.06-2.17]) for the rs12252-C allele compared to the rs12252-T allele. A stratified analysis by ethnicity revealed opposite effects in different populations. CONCLUSION With exception for the rs12252 polymorphism, we could not identify specific genetic polymorphisms to be associated with severe influenza infection in a pooled meta-analysis. This advocates for the use of large, hypothesis-free, genome-wide association studies that account for the polygenic nature and the interactions with other host, pathogen and environmental factors.
Collapse
Affiliation(s)
- Nina Van Goethem
- Scientific Directorate of Epidemiology and Public Health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
- Department of Epidemiology and Biostatistics, Institut de Recherche Expérimentale et Clinique, Faculty of Public Health, Université Catholique de Louvain, Clos Chapelle-aux-champs 30, 1200 Brussels, Belgium
| | - Célestin Danwang
- Department of Epidemiology and Biostatistics, Institut de Recherche Expérimentale et Clinique, Faculty of Public Health, Université Catholique de Louvain, Clos Chapelle-aux-champs 30, 1200 Brussels, Belgium
| | - Nathalie Bossuyt
- Scientific Directorate of Epidemiology and Public Health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Herman Van Oyen
- Scientific Directorate of Epidemiology and Public Health, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
- Department of Public Health and Primary Care, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Nancy H. C. Roosens
- Transversal Activities in Applied Genomics, Sciensano, J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - Annie Robert
- Department of Epidemiology and Biostatistics, Institut de Recherche Expérimentale et Clinique, Faculty of Public Health, Université Catholique de Louvain, Clos Chapelle-aux-champs 30, 1200 Brussels, Belgium
| |
Collapse
|
8
|
Cuesta-Llavona E, Albaiceta GM, García-Clemente M, Duarte-Herrera ID, Amado-Rodríguez L, Hermida-Valverde T, Enríquez-Rodriguez AI, Hernández-González C, Melón S, Alvarez-Argüelles ME, Boga JA, Rojo-Alba S, Vázquez-Coto D, Gómez J, Coto E. Association between the interferon-induced transmembrane protein 3 gene ( IFITM3) rs34481144 / rs12252 haplotypes and COVID-19. CURRENT RESEARCH IN VIROLOGICAL SCIENCE 2021; 2:100016. [PMID: 34870250 PMCID: PMC8629514 DOI: 10.1016/j.crviro.2021.100016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/26/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022]
Abstract
The interferon induced transmembrane-protein 3 (IFITM3) plays an important role in the defence against viral infection. IFITM3 gene variants have been linked to differences in expression and associated with the risk of severe influenza by some authors. More recently, these variants have been associated with the risk of COVID-19 after SARS-CoV-2 infection. We determined the effect of two common IFITM3 polymorphisms (rs34481144 C/T and rs12252 A/G) on the risk of hospitalization due to COVID-19 by comparing 484 patients (152 required support in thr intensive care unit, ICU) and 182 age and sex matched controls (no disease symptoms). We found significantly higher frequencies of rs34481144 T and rs12252 G carriers among the patients (OR = 2.02 and OR = 1.51, respectively). None of the two variants were associated with ICU-admission or death. We found a significantly higher frequency of rs34481144 CC + rs12252 AA genotype carriers among the controls, suggesting a protective effect (p = 0.001, OR = 0.56, 95%CI = 0.40–0.80). Moreover, haplotype rs34481144 C - rs12252 A was significantly increased in the controls (p = 0.008, OR = 0.71, 95%CI = 0.55–0.91). Our results showed a significant effect of the IFITM3 variants in the risk for hospitalization after SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Elías Cuesta-Llavona
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Guillermo M Albaiceta
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain.,Universidad de Oviedo, Oviedo, Spain.,CIBER-Enfermedades Respiratorias. Instituto de Salud Carlos III. Madrid, Spain.,Instituto Universitario de Oncología del Principado de Asturias. Oviedo, Spain
| | - Marta García-Clemente
- Neumología, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | | | - Laura Amado-Rodríguez
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain.,Universidad de Oviedo, Oviedo, Spain.,CIBER-Enfermedades Respiratorias. Instituto de Salud Carlos III. Madrid, Spain.,Instituto Universitario de Oncología del Principado de Asturias. Oviedo, Spain
| | - Tamara Hermida-Valverde
- Neumología, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Ana I Enríquez-Rodriguez
- Neumología, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Cristina Hernández-González
- Neumología, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Santiago Melón
- Microbiologia, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Marta E Alvarez-Argüelles
- Microbiologia, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - José A Boga
- Microbiologia, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Susana Rojo-Alba
- Microbiologia, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | | | - Juan Gómez
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Eliecer Coto
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain.,Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
9
|
Darbeheshti F, Mahdiannasser M, Uhal BD, Ogino S, Gupta S, Rezaei N. Interindividual immunogenic variants: Susceptibility to coronavirus, respiratory syncytial virus and influenza virus. Rev Med Virol 2021; 31:e2234. [PMID: 33724604 PMCID: PMC8250219 DOI: 10.1002/rmv.2234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Abstract
The coronavirus disease (Covid-19) pandemic is the most serious event of the year 2020, causing considerable global morbidity and mortality. The goal of this review is to provide a comprehensive summary of reported associations between inter-individual immunogenic variants and disease susceptibility or symptoms caused by the coronavirus strains severe acute respiratory syndrome-associated coronavirus, severe acute respiratory syndrome-associated coronavirus-2, and two of the main respiratory viruses, respiratory syncytial virus and influenza virus. The results suggest that the genetic background of the host could affect the levels of proinflammatory and anti-inflammatory cytokines and might modulate the progression of Covid-19 in affected patients. Notably, genetic variations in innate immune components such as toll-like receptors and mannose-binding lectin 2 play critical roles in the ability of the immune system to recognize coronavirus and initiate an early immune response to clear the virus and prevent the development of severe symptoms. This review provides promising clues related to the potential benefits of using immunotherapy and immune modulation for respiratory infectious disease treatment in a personalized manner.
Collapse
Affiliation(s)
- Farzaneh Darbeheshti
- Department of GeneticsSchool of MedicineTehran University of Medical SciencesTehranIran
- Medical Genetics Network (MeGeNe)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Mojdeh Mahdiannasser
- Department of GeneticsSchool of MedicineTehran University of Medical SciencesTehranIran
| | - Bruce D Uhal
- Department of PhysiologyMichigan State UniversityEast LansingMichiganUSA
| | - Shuji Ogino
- Department of EpidemiologyHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
- Department of Oncologic PathologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Cancer Immunology and Cancer Epidemiology ProgramsDana‐Farber Harvard Cancer CenterBostonMassachusettsUSA
| | - Sudhir Gupta
- Division of Basic and Clinical ImmunologyDepartment of MedicineUniversity of CaliforniaIrvineCaliforniaUSA
| | - Nima Rezaei
- Research Center for ImmunodeficienciesChildren's Medical CenterTehran University of Medical SciencesTehranIran
- Department of ImmunologySchool of MedicineTehran University of Medical SciencesTehranIran
- Network of Immunity in InfectionMalignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
| |
Collapse
|
10
|
Franz S, Pott F, Zillinger T, Schüler C, Dapa S, Fischer C, Passos V, Stenzel S, Chen F, Döhner K, Hartmann G, Sodeik B, Pessler F, Simmons G, Drexler JF, Goffinet C. Human IFITM3 restricts chikungunya virus and Mayaro virus infection and is susceptible to virus-mediated counteraction. Life Sci Alliance 2021; 4:e202000909. [PMID: 34078739 PMCID: PMC8200292 DOI: 10.26508/lsa.202000909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 11/29/2022] Open
Abstract
Interferon-induced transmembrane (IFITM) proteins restrict membrane fusion and virion internalization of several enveloped viruses. The role of IFITM proteins during alphaviral infection of human cells and viral counteraction strategies are insufficiently understood. Here, we characterized the impact of human IFITMs on the entry and spread of chikungunya virus and Mayaro virus and provide first evidence for a CHIKV-mediated antagonism of IFITMs. IFITM1, 2, and 3 restricted infection at the level of alphavirus glycoprotein-mediated entry, both in the context of direct infection and cell-to-cell transmission. Relocalization of normally endosomal IFITM3 to the plasma membrane resulted in loss of antiviral activity. rs12252-C, a naturally occurring variant of IFITM3 that may associate with severe influenza in humans, restricted CHIKV, MAYV, and influenza A virus infection as efficiently as wild-type IFITM3 Antivirally active IFITM variants displayed reduced cell surface levels in CHIKV-infected cells involving a posttranscriptional process mediated by one or several nonstructural protein(s) of CHIKV. Finally, IFITM3-imposed reduction of specific infectivity of nascent particles provides a rationale for the necessity of a virus-encoded counteraction strategy against this restriction factor.
Collapse
Affiliation(s)
- Sergej Franz
- Institute of Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- Vitalant Research Institute, San Francisco, CA, USA
| | - Fabian Pott
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Zillinger
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, Venusberg-Campus 1, Bonn, Germany
| | - Christiane Schüler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sandra Dapa
- Institute of Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Carlo Fischer
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
| | - Vânia Passos
- Institute of Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Saskia Stenzel
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Fangfang Chen
- Research Group Biomarkers for Infectious Diseases, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hanover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hanover, Germany
| | - Katinka Döhner
- Institute of Virology, Hannover Medical School, Hanover, Germany
| | - Gunther Hartmann
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, Hanover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Frank Pessler
- Research Group Biomarkers for Infectious Diseases, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hanover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hanover, Germany
| | | | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
| | - Christine Goffinet
- Institute of Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
11
|
Pérez-Rubio G, Ponce-Gallegos MA, Domínguez-Mazzocco BA, Ponce-Gallegos J, García-Ramírez RA, Falfán-Valencia R. Role of the Host Genetic Susceptibility to 2009 Pandemic Influenza A H1N1. Viruses 2021; 13:344. [PMID: 33671828 PMCID: PMC7926867 DOI: 10.3390/v13020344] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/07/2021] [Accepted: 02/18/2021] [Indexed: 01/05/2023] Open
Abstract
Influenza A virus (IAV) is the most common infectious agent in humans, and infects approximately 10-20% of the world's population, resulting in 3-5 million hospitalizations per year. A scientific literature search was performed using the PubMed database and the Medical Subject Headings (MeSH) "Influenza A H1N1" and "Genetic susceptibility". Due to the amount of information and evidence about genetic susceptibility generated from the studies carried out in the last influenza A H1N1 pandemic, studies published between January 2009 to May 2020 were considered; 119 papers were found. Several pathways are involved in the host defense against IAV infection (innate immune response, pro-inflammatory cytokines, chemokines, complement activation, and HLA molecules participating in viral antigen presentation). On the other hand, single nucleotide polymorphisms (SNPs) are a type of variation involving the change of a single base pair that can mean that encoded proteins do not carry out their functions properly, allowing higher viral replication and abnormal host response to infection, such as a cytokine storm. Some of the most studied SNPs associated with IAV infection genetic susceptibility are located in the FCGR2A, C1QBP, CD55, and RPAIN genes, affecting host immune responses through abnormal complement activation. Also, SNPs in IFITM3 (which participates in endosomes and lysosomes fusion) represent some of the most critical polymorphisms associated with IAV infection, suggesting an ineffective virus clearance. Regarding inflammatory response genes, single nucleotide variants in IL1B, TNF, LTA IL17A, IL8, IL6, IRAK2, PIK3CG, and HLA complex are associated with altered phenotype in pro-inflammatory molecules, participating in IAV infection and the severest form of the disease.
Collapse
Affiliation(s)
- Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (G.P.-R.); (M.A.P.-G.); (B.A.D.-M.); (R.A.G.-R.)
| | - Marco Antonio Ponce-Gallegos
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (G.P.-R.); (M.A.P.-G.); (B.A.D.-M.); (R.A.G.-R.)
| | - Bruno André Domínguez-Mazzocco
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (G.P.-R.); (M.A.P.-G.); (B.A.D.-M.); (R.A.G.-R.)
| | - Jaime Ponce-Gallegos
- High Speciality Cardiology Unit “Korazón”, Puerta de Hierro Hospital, Tepic 63173, Nayarit, Mexico;
| | - Román Alejandro García-Ramírez
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (G.P.-R.); (M.A.P.-G.); (B.A.D.-M.); (R.A.G.-R.)
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (G.P.-R.); (M.A.P.-G.); (B.A.D.-M.); (R.A.G.-R.)
| |
Collapse
|
12
|
Forbester JL, Humphreys IR. Genetic influences on viral-induced cytokine responses in the lung. Mucosal Immunol 2021; 14:14-25. [PMID: 33184476 PMCID: PMC7658619 DOI: 10.1038/s41385-020-00355-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
Infection with respiratory viruses such as influenza, respiratory syncytial virus and coronavirus provides a difficult immunological challenge for the host, where a balance must be established between controlling viral replication and limiting damage to the delicate lung structure. Although the genetic architecture of host responses to respiratory viral infections is not yet understood, it is clear there is underlying heritability that influences pathogenesis. Immune control of virus replication is essential in respiratory infections, but overt activation can enhance inflammation and disease severity. Cytokines initiate antiviral immune responses but are implicated in viral pathogenesis. Here, we discuss how host genetic variation may influence cytokine responses to respiratory viral infections and, based on our current understanding of the role that cytokines play in viral pathogenesis, how this may influence disease severity. We also discuss how induced pluripotent stem cells may be utilised to probe the mechanistic implications of allelic variation in genes in virus-induced inflammatory responses. Ultimately, this could help to design better immune modulators, stratify high risk patients and tailor anti-inflammatory treatments, potentially expanding the ability to treat respiratory virus outbreaks in the future.
Collapse
Affiliation(s)
- Jessica L Forbester
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK.
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DS, UK.
| | - Ian R Humphreys
- Division of Infection and Immunity/Systems Immunity University Research Institute, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK
| |
Collapse
|
13
|
Kim YC, Jeong MJ, Jeong BH. Genetic association between the rs12252 SNP of the interferon-induced transmembrane protein gene and influenza A virus infection in the Korean population. Mol Cell Toxicol 2020; 17:51-57. [PMID: 33169083 PMCID: PMC7640581 DOI: 10.1007/s13273-020-00108-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 11/29/2022]
Abstract
Background Interferon-induced transmembrane protein 3 (IFITM3) is a potent host antiviral effector protein that blocks the invasion of various viruses, including the influenza A virus (IAV). The C allele of the rs12252 single nucleotide polymorphism (SNP) shows vulnerability to the pandemic 2009 H1N1 IAV in European and Asian populations. Objective Here, we estimated the disease susceptibility of the rs12252 SNP with the pandemic 2009 H1N1 IAV infection in the Korean population. Results We carried out direct sequencing of the IFITM3 gene and compared the genotype and allele frequencies of the rs12252 SNP of the IFITM3 gene in healthy Koreans and pandemic 2009 H1N1 IAV-infected patients. Notably, we observed that healthy individuals had a similar genotype distribution of the rs12252 SNP (P = 0.140) as patients. The dominant model and recessive model did not find a statistically significant difference in genotype distribution between healthy individuals and patients. In addition, the allele distribution of the rs12252 SNP of in healthy individuals and patients also showed a similar genetic distribution (P = 0.757). However, the genetic distribution of rs12252 SNP in merged patient group (Koreans and Chinese populations) showed significant association with susceptibility of pandemic 2009 IAV (P = 0.0393). Conclusion To the best of our knowledge, this was the first evaluation of the susceptibility of the pandemic 2009 H1N1 IAV in the Korean population.
Collapse
Affiliation(s)
- Yong-Chan Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-ro, Iksan, Jeonbuk 54531 Republic of Korea.,Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Jeonbuk 54896 Republic of Korea
| | - Min-Ju Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-ro, Iksan, Jeonbuk 54531 Republic of Korea.,Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Jeonbuk 54896 Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-ro, Iksan, Jeonbuk 54531 Republic of Korea.,Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Jeonbuk 54896 Republic of Korea
| |
Collapse
|
14
|
Winkler M, Gärtner S, Markus L, Hoffmann M, Nehlmeier I, Krawczak M, Sauermann U, Pöhlmann S. Role of rhesus macaque IFITM3(2) in simian immunodeficiency virus infection of macaques. PLoS One 2019; 14:e0224082. [PMID: 31682595 PMCID: PMC6827983 DOI: 10.1371/journal.pone.0224082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/04/2019] [Indexed: 11/19/2022] Open
Abstract
The experimental infection of rhesus macaques (rh) with simian immunodeficiency virus (SIV) is an important model for human immunodeficiency virus (HIV) infection of humans. The interferon-induced transmembrane protein 3 (IFITM3) inhibits HIV and SIV infection at the stage of host cell entry. However, it is still unclear to what extent the antiviral activity of IFITM3 observed in cell culture translates into inhibition of HIV/SIV spread in the infected host. We have shown previously that although rhIFITM3 inhibits SIV entry into cultured cells, polymorphisms in the rhIFITM3 gene are not strongly associated with viral load or disease progression in SIV infected macaques. Here, we examined whether rhIFITM3(2), which is closely related to rhIFITM3 at the sequence level, exerts antiviral activity and whether polymorphisms in the rhIFITM3(2) gene impact the course of SIV infection. We show that expression of rhIFITM3(2) is interferon-inducible and inhibits SIV entry into cells, although with reduced efficiency as compared to rhIFITM3. We further report the identification of 19 polymorphisms in the rhIFITM3(2) gene. However, analysis of a well characterized cohort of SIV infected macaques revealed that none of the polymorphisms had a significant impact upon the course of SIV infection. These results and our previous work suggest that polymorphisms in the rhIFITM3 and rhIFITM3(2) genes do not strongly modulate the course of SIV infection in macaques.
Collapse
Affiliation(s)
- Michael Winkler
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
- * E-mail: (SP); (MW)
| | - Sabine Gärtner
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
| | - Lara Markus
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
| | - Inga Nehlmeier
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Kiel University, Kiel, Germany
| | - Ulrike Sauermann
- Infection Models Unit, German Primate Center—Leibniz Institute for Primate Research, Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, University Göttingen, Göttingen, Germany
- * E-mail: (SP); (MW)
| |
Collapse
|
15
|
Gounder AP, Boon ACM. Influenza Pathogenesis: The Effect of Host Factors on Severity of Disease. THE JOURNAL OF IMMUNOLOGY 2019; 202:341-350. [PMID: 30617115 DOI: 10.4049/jimmunol.1801010] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
Influenza viruses continue to be a major global health threat. Severity and clinical outcome of influenza disease is determined by both viral and host factors. Viral factors have long been the subject of intense research and many molecular determinants have been identified. However, research into the host factors that protect or predispose to severe and fatal influenza A virus infections is lagging. The goal of this review is to highlight the recent insights into host determinants of influenza pathogenesis.
Collapse
Affiliation(s)
- Anshu P Gounder
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110.,Department of Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; and
| | - Adrianus C M Boon
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; .,Department of Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; and.,Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| |
Collapse
|
16
|
IFITM3 Clusters on Virus Containing Endosomes and Lysosomes Early in the Influenza A Infection of Human Airway Epithelial Cells. Viruses 2019; 11:v11060548. [PMID: 31212878 PMCID: PMC6631848 DOI: 10.3390/v11060548] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 11/20/2022] Open
Abstract
Interferon-induced transmembrane proteins (IFITMs) have been shown to strongly affect influenza A virus (IAV) infectivity in tissue culture. Moreover, polymorphisms in IFITM3 have been associated with the severity of the disease in humans. IFITM3 appears to act early in the infection, but its mechanism of action and potential interactions with incoming IAV structures are not yet defined. Here, we visualized endogenous IFITM3 interactions with IAV in the human lung epithelial cell line A549 and in primary human airway epithelial cells employing stimulated emission depletion super-resolution microscopy. By applying an iterative approach for the cluster definition and computational cluster analysis, we found that IFITM3 reorganizes into clusters as IAV infection progresses. IFITM3 cluster formation started at 2-3 h post infection and increased over time to finally coat IAV-containing endosomal vesicles. This IAV-induced phenotype was due to the endosomal recruitment of IFITM3 rather than to an overall increase in the IFITM3 abundance. While the IAV-induced IFITM3 clustering and localization to endosomal vesicles was comparable in primary human airway epithelial cells and the human lung epithelial cell line A549, the endogenous IFITM3 signal was higher in primary cells. Moreover, we observed IFITM3 signals adjacent to IAV-containing recycling endosomes.
Collapse
|
17
|
Eisfeld AJ, Kawaoka Y. Calculated risk: a new single-nucleotide polymorphism linked to severe influenza disease. Nat Med 2019; 23:911-912. [PMID: 28777788 DOI: 10.1038/nm.4383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amie J Eisfeld
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan, and the International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
Wellington D, Laurenson-Schafer H, Abdel-Haq A, Dong T. IFITM3: How genetics influence influenza infection demographically. Biomed J 2019; 42:19-26. [PMID: 30987701 PMCID: PMC6468115 DOI: 10.1016/j.bj.2019.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/06/2018] [Accepted: 01/07/2019] [Indexed: 12/18/2022] Open
Abstract
The role of host genetics in influenza infection is unclear despite decades of interest. Confounding factors such as age, sex, ethnicity and environmental factors have made it difficult to assess the role of genetics without influence. In recent years a single nucleotide polymorphism, interferon-induced transmembrane protein 3 (IFITM3) rs12252, has been shown to alter the severity of influenza infection in Asian populations. In this review we investigate this polymorphism as well as several others suggested to alter the host's defence against influenza infection. In addition, we highlight the open questions surrounding the viral restriction protein IFITM3 with the hope that by answering some of these questions we can elucidate the mechanism of IFITM3 viral restriction and therefore how this restriction is altered due to the rs12252 polymorphism.
Collapse
Affiliation(s)
- Dannielle Wellington
- MRC Human Immunology Unit, WIMM, University of Oxford, OX3 9DS, UK; CAMS Oxford Institute, Nuffield Department of Medicine, Oxford University, OX3 9FZ, UK.
| | - Henry Laurenson-Schafer
- MRC Human Immunology Unit, WIMM, University of Oxford, OX3 9DS, UK; CAMS Oxford Institute, Nuffield Department of Medicine, Oxford University, OX3 9FZ, UK
| | - Adi Abdel-Haq
- MRC Human Immunology Unit, WIMM, University of Oxford, OX3 9DS, UK; Martin-Luther-University, Halle-Wittenberg, Germany
| | - Tao Dong
- MRC Human Immunology Unit, WIMM, University of Oxford, OX3 9DS, UK; CAMS Oxford Institute, Nuffield Department of Medicine, Oxford University, OX3 9FZ, UK.
| |
Collapse
|
19
|
Spence JS, He R, Hoffmann HH, Das T, Thinon E, Rice CM, Peng T, Chandran K, Hang HC. IFITM3 directly engages and shuttles incoming virus particles to lysosomes. Nat Chem Biol 2019; 15:259-268. [PMID: 30643282 PMCID: PMC6466627 DOI: 10.1038/s41589-018-0213-2] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/03/2018] [Indexed: 12/16/2022]
Abstract
Interferon-induced transmembrane proteins (IFITMs 1, 2 and 3) have emerged as important innate immune effectors that prevent diverse virus infections in vertebrates. However, the cellular mechanisms and live-cell imaging of these small membrane proteins have been challenging to evaluate during viral entry of mammalian cells. Using CRISPR–Cas9-mediated IFITM-mutant cell lines, we demonstrate that human IFITM1, IFITM2 and IFITM3 act cooperatively and function in a dose-dependent fashion in interferon-stimulated cells. Through site-specific fluorophore tagging and live-cell imaging studies, we show that IFITM3 is on endocytic vesicles that fuse with incoming virus particles and enhances the trafficking of this pathogenic cargo to lysosomes. IFITM3 trafficking is specific to restricted viruses, requires S-palmitoylation and is abrogated with loss-of-function mutants. The site-specific protein labeling and live-cell imaging approaches described here should facilitate the functional analysis of host factors involved in pathogen restriction as well as their mechanisms of regulation. Live-cell imaging and virus trafficking studies show that the host innate immune receptor IFITM3 localizes with endocytic vesicles that fuse with incoming viruses to ultimately enhance their traffic to lysosomes.![]()
Collapse
Affiliation(s)
- Jennifer S Spence
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ruina He
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY, USA
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, USA
| | - Tandrila Das
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY, USA
| | - Emmanuelle Thinon
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, Center for the Study of Hepatitis C, The Rockefeller University, New York, NY, USA
| | - Tao Peng
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY, USA. .,School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
20
|
Zhao X, Li J, Winkler CA, An P, Guo JT. IFITM Genes, Variants, and Their Roles in the Control and Pathogenesis of Viral Infections. Front Microbiol 2019; 9:3228. [PMID: 30687247 PMCID: PMC6338058 DOI: 10.3389/fmicb.2018.03228] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/12/2018] [Indexed: 01/01/2023] Open
Abstract
Interferon-induced transmembrane proteins (IFITMs) are a family of small proteins that localize in the plasma and endolysosomal membranes. IFITMs not only inhibit viral entry into host cells by interrupting the membrane fusion between viral envelope and cellular membranes, but also reduce the production of infectious virions or infectivity of progeny virions. Not surprisingly, some viruses can evade the restriction of IFITMs and even hijack the antiviral proteins to facilitate their infectious entry into host cells or promote the assembly of virions, presumably by modulating membrane fusion. Similar to many other host defense genes that evolve under the selective pressure of microorganism infection, IFITM genes evolved in an accelerated speed in vertebrates and many single-nucleotide polymorphisms (SNPs) have been identified in the human population, some of which have been associated with severity and prognosis of viral infection (e.g., influenza A virus). Here, we review the function and potential impact of genetic variation for IFITM restriction of viral infections. Continuing research efforts are required to decipher the molecular mechanism underlying the complicated interaction among IFITMs and viruses in an effort to determine their pathobiological roles in the context of viral infections in vivo.
Collapse
Affiliation(s)
- Xuesen Zhao
- Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Disease, Beijing, China
| | - Jiarui Li
- Institute of Infectious Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Disease, Beijing, China
| | - Cheryl A Winkler
- Basic Research Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | - Ping An
- Basic Research Laboratory, Frederick National Laboratory for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Hepatitis B Foundation, Doylestown, PA, United States
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Interferon-induced transmembrane protein 3 (IFITM3) is a cellular restriction factor that blocks fusion between virus and host membranes. Here, we provide an introduction to IFITM3 and the biochemical regulation underlying its antiviral activity. Further, we analyze and summarize the published literature examining phenotypes of IFITM3 knockout mice upon infections with viral pathogens and discuss the controversial association between single nucleotide polymorphisms (SNPs) in the human IFITM3 gene and severe virus infections. RECENT FINDINGS Recent publications show that IFITM3 knockout mice experience more severe pathologies than wild-type mice in diverse virus infections, including infections with influenza A virus, West Nile virus, Chikungunya virus, Venezuelan equine encephalitis virus, respiratory syncytial virus, and cytomegalovirus. Likewise, numerous studies of humans of Chinese ancestry have associated the IFITM3 SNP rs12252-C with severe influenza virus infections, though examinations of other populations, such as Europeans, in which this SNP is rare, have largely failed to identify an association with severe infections. A second SNP, rs34481144-A, found in the human IFITM3 promoter has also recently been reported to be a risk allele for severe influenza virus infections. SUMMARY There is significant evidence for a protective role of IFITM3 against virus infections in both mice and humans, though additional work is required to identify the range of pathogens restricted by IFITM3 and the mechanisms by which human SNPs affect IFITM3 levels or functionality.
Collapse
Affiliation(s)
- Ashley Zani
- Department of Microbial Infection and Immunity, Infectious, Diseases Institute, The Ohio State University, 460 W 12th Ave, Biomedical Research Tower 790, Columbus, OH 43210, USA
| | - Jacob S Yount
- Department of Microbial Infection and Immunity, Infectious, Diseases Institute, The Ohio State University, 460 W 12th Ave, Biomedical Research Tower 790, Columbus, OH 43210, USA
| |
Collapse
|
22
|
Abstract
In several lately published studies, the association between single-nucleotide polymorphism (SNP, rs12252) of IFITM3 and the risk of influenza is inconsistent. To further understand the association between the SNP of IFITM3 and the risk of influenza, we searched related studies in five databases including PubMed published earlier than 9 November 2017. Ten sets of data from nine studies were included and data were analysed by Revman 5.0 and Stata 12.0 in our updated meta-analysis, which represented 1365 patients and 5425 no-influenza controls from four different ethnicities. Here strong association between rs12252 and influenza was found in all four genetic models. The significant differences in the allelic model (C vs. T: odds ratio (OR) = 1.35, 95% confidence interval (CI) (1.03–1.79), P = 0.03) and homozygote model (CC vs. TT: OR = 10.63, 95% CI (3.39–33.33), P < 0.00001) in the Caucasian subgroup were discovered, which is very novel and striking. Also novel discoveries were found in the allelic model (C vs. T: OR = 1.37, 95% CI (1.08–1.73), P = 0.009), dominant model (CC + CT vs. TT: OR = 1.48, 95% CI (1.08–2.02), P = 0.01) and homozygote model (CC vs. TT: OR = 2.84, 95% CI (1.36–5.92), P = 0.005) when we compared patients with mild influenza with healthy individuals. Our meta-analysis suggests that single-nucleotide T to C polymorphism of IFITM3 associated with increasingly risk of severe and mild influenza in both Asian and Caucasian populations.
Collapse
|
23
|
Prabhu SS, Chakraborty TT, Kumar N, Banerjee I. Association between IFITM3 rs12252 polymorphism and influenza susceptibility and severity: A meta-analysis. Gene 2018; 674:70-79. [PMID: 29940276 DOI: 10.1016/j.gene.2018.06.070] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/21/2018] [Indexed: 01/01/2023]
Abstract
Intrinsic host susceptibility to viral infections plays a major role in determining infection severity in different individuals. In human influenza virus infections, multiple genetic association studies have identified specific human gene variants that might contribute to enhanced susceptibility or resistance to influenza. Recent studies suggested, the rs12252 T > C polymorphism in the interferon-inducible transmembrane protein 3 (IFITM3) gene might be associated with susceptibility to severe influenza. However, the studies reported conflicting and inconclusive results. To resolve the controversy, we conducted a systematic meta-analysis to evaluate the role of the IFITM3 rs12252 polymorphism in influenza susceptibility and severity, including twelve studies published before February 19, 2018 with a total 16,263 subjects (1836 influenza cases and 14,427 controls). Odds ratios (OR) and 95% confidence intervals were used to assess the strength of the association. Our results indicated increased risk of both severe and mild influenza in subjects carrying the IFITM3 rs12252 polymorphism in the allele contrast C vs. T: OR (severe) = 1.69, 95% CI = 1.23-2.33, P = 0.001, and OR (mild) = 1.46, 95% CI = 1.13-1.87, P = 0.004. Similar results were obtained in the homozygote comparison and dominant model. Stratified analyses by ethnicity revealed increased risk of severe influenza in both the White and East Asian populations, but significant association with mild influenza was found only in the White population. Overall, our meta-analysis suggests a significant association between the IFITM3 rs12252 polymorphism and the risk of influenza in both the White and East Asian populations.
Collapse
Affiliation(s)
- Suchitra S Prabhu
- Cellular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, India
| | - Trirupa Tapas Chakraborty
- Cellular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, India
| | - Nirmal Kumar
- Cellular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, India
| | - Indranil Banerjee
- Cellular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, India.
| |
Collapse
|
24
|
Qin L, Wang D, Li D, Zhao Y, Peng Y, Wellington D, Dai Y, Sun H, Sun J, Liu G, McMichael A, Dong T, Zhang Y. High Level Antibody Response to Pandemic Influenza H1N1/09 Virus Is Associated With Interferon-Induced Transmembrane Protein-3 rs12252-CC in Young Adults. Front Cell Infect Microbiol 2018; 8:134. [PMID: 29868492 PMCID: PMC5962690 DOI: 10.3389/fcimb.2018.00134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/18/2018] [Indexed: 01/27/2023] Open
Abstract
Background: The C allele of the interferon-induced transmembrane protein-3 (IFITM3) SNP rs12252, a common allele in South East Asia and China, is strongly associated with severe influenza infection. However, despite the high occurrence of rs12252-CC genotype in Chinese population (~25%), severe influenza infection is rare. The aim of study is to determine whether rs12252-CC individuals have pre-existing antibody responses to previous seasonal influenza infections. Cohort and Method: A total 99 young healthy volunteers (18-20 years) were recruited and received an influenza seasonal Vaccination [A/Switzerland/9715293/2013(H3N2), A/California/7/2009 (pdm09H1N1) and B/Jeep/3073/2013-like virus (Flu-B)]. Plasma and gDNA was isolated from each volunteer before, and 14, 28, 180, 360, and 540 days after vaccination. Additionally, 68 elderlies (>65 years) were also recruited as a control group to compare the levels of antibodies at baseline between the young adults and the elderly. For each sample IFITM3 rs12252 genotype was determined and antibody levels in response to pdmH1N1, H3N2 and Influenza B infection were measured for each time point. Results: We found a significantly higher level of pre-existing antibodies to pandemic influenza H1N1/09 virus (pdm09H1N1) but not to H3N2 or FluB in CC donors in comparison with CT/TT donors prior to vaccination. No impact of IFITM3 genotype in boosting influenza specific antibodies in young adults within 1 year after receiving seasonal influenza vaccination was observed. In addition, there was no difference in pdm09H1N1 specific antibody levels observed in the elderly cohort between volunteers carrying different IFITM3 genotypes. Higher levels of antibodies to pdmH1N1 were observed in elderly CC carriers when compared to the young CC carriers, but this trend was not replicated in TT carriers. Conclusion:IFITM3-rs12252 CC carriers exhibit a high level of pre-existing immunity to pdm09H1N1 compared to TT carriers in the young cohort. This suggests that compensatory mechanisms exist which might contribute to viral control in patients carrying the rs12252-CC genotype who do not become sick after flu infection. However, such a potential compensatory effect appears to be lost overtime, as evidenced in the elderly cohort. If this compensatory mechanism is lost, it may make the CC carrying elderly more susceptible to severe influenza infection.
Collapse
Affiliation(s)
- Ling Qin
- Beijing Youan Hospital, Capital Medical University, Beijing, China.,Nuffield Department of Medicine, CAMS-Oxford Center for Translational Immunology, Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Dayan Wang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, China Centre for Disease Control (China CDC), Beijing, China
| | - Dongfu Li
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yan Zhao
- Beijing Youan Hospital, Capital Medical University, Beijing, China.,Nuffield Department of Medicine, CAMS-Oxford Center for Translational Immunology, Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, United Kingdom
| | - Yanchun Peng
- Nuffield Department of Medicine, CAMS-Oxford Center for Translational Immunology, Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, United Kingdom.,MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Dannielle Wellington
- Nuffield Department of Medicine, CAMS-Oxford Center for Translational Immunology, Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, United Kingdom.,MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Yanchao Dai
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Huanqin Sun
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jinping Sun
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Guihai Liu
- Beijing Youan Hospital, Capital Medical University, Beijing, China.,Nuffield Department of Medicine, CAMS-Oxford Center for Translational Immunology, Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, United Kingdom.,Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, China Centre for Disease Control (China CDC), Beijing, China
| | - Andrew McMichael
- Nuffield Department of Medicine, CAMS-Oxford Center for Translational Immunology, Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, United Kingdom.,MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Tao Dong
- Beijing Youan Hospital, Capital Medical University, Beijing, China.,Nuffield Department of Medicine, CAMS-Oxford Center for Translational Immunology, Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, United Kingdom.,MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Yonghong Zhang
- Beijing Youan Hospital, Capital Medical University, Beijing, China.,Nuffield Department of Medicine, CAMS-Oxford Center for Translational Immunology, Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
Sologuren I, Martínez-Saavedra MT, Solé-Violán J, de Borges de Oliveira E, Betancor E, Casas I, Oleaga-Quintas C, Martínez-Gallo M, Zhang SY, Pestano J, Colobran R, Herrera-Ramos E, Pérez C, López-Rodríguez M, Ruiz-Hernández JJ, Franco N, Ferrer JM, Bilbao C, Andújar-Sánchez M, Álvarez Fernández M, Ciancanelli MJ, Rodríguez de Castro F, Casanova JL, Bustamante J, Rodríguez-Gallego C. Lethal Influenza in Two Related Adults with Inherited GATA2 Deficiency. J Clin Immunol 2018; 38:513-526. [PMID: 29882021 PMCID: PMC6429553 DOI: 10.1007/s10875-018-0512-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 03/28/2018] [Indexed: 11/18/2022]
Abstract
The pathogenesis of life-threatening influenza A virus (IAV) disease remains elusive, as infection is benign in most individuals. We studied two relatives who died from influenza. We Sanger sequenced GATA2 and evaluated the mutation by gene transfer, measured serum cytokine levels, and analyzed circulating T- and B-cells. Both patients (father and son, P1 and P2) died in 2011 of H1N1pdm IAV infection at the ages of 54 and 31 years, respectively. They had not suffered from severe or moderately severe infections in the last 17 (P1) and 15 years (P2). A daughter of P1 had died at 20 years from infectious complications. Low B-cell, NK- cell, and monocyte numbers and myelodysplastic syndrome led to sequence GATA2. Patients were heterozygous for a novel, hypomorphic, R396L mutation leading to haplo-insufficiency. B- and T-cell rearrangement in peripheral blood from P1 during the influenza episode showed expansion of one major clone. No T-cell receptor excision circles were detected in P1 and P3 since they were 35 and 18 years, respectively. Both patients presented an exuberant, interferon (IFN)-γ-mediated hypercytokinemia during H1N1pdm infection. No data about patients with viremia was available. Two previously reported adult GATA2-deficient patients died from severe H1N1 IAV infection; GATA2 deficiency may predispose to life-threatening influenza in adulthood. However, a role of other genetic variants involved in immune responses cannot be ruled out. Patients with GATA2 deficiency can reach young adulthood without severe infections, including influenza, despite long-lasting complete B-cell and natural killer (NK) cell deficiency, as well as profoundly diminished T-cell thymic output.
Collapse
Affiliation(s)
- Ithaisa Sologuren
- Department of Immunology, Gran Canaria Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain
| | | | - Jordi Solé-Violán
- Intensive Care Unit, Gran Canaria Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Edgar de Borges de Oliveira
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Paris, France
| | - Eva Betancor
- Department of Biochemistry, Molecular Biology, Physiology, Genetics and Immunology, School of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Inmaculada Casas
- National Influenza Center-Madrid, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Oleaga-Quintas
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Paris, France
| | | | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
| | - Jose Pestano
- Department of Biochemistry, Molecular Biology, Physiology, Genetics and Immunology, School of Medicine, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Roger Colobran
- Department of Immunology, Vall d'Hebrón University Hospital, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain
| | - Estefanía Herrera-Ramos
- Department of Immunology, Gran Canaria Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain
| | - Carmen Pérez
- Department of Microbiology, Gran Canaria Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain
| | - Marta López-Rodríguez
- Department of Immunology, Gran Canaria Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain
| | - José Juan Ruiz-Hernández
- Department of Internal Medicine, Gran Canaria Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain
| | - Nieves Franco
- Intensive Care Unit, Mostoles University Hospital, Madrid, Spain
| | - José María Ferrer
- Intensive Care Unit, Gran Canaria Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Bilbao
- Department of Hematology, Gran Canaria Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain
| | - Miguel Andújar-Sánchez
- Department of Pathology, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas de Gran Canaria, Spain
| | | | - Michael J Ciancanelli
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
| | - Felipe Rodríguez de Castro
- Department of Respiratory Diseases, Gran Canaria Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Paris, France
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, 10065, USA
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Paris, France
- Department of Immunology, Hospital Universitario de Gran Canaria Dr. Negrín, Calle Barranco de la Ballena s/n, 35019, Las Palmas de Gran Canaria, Spain
| | - Carlos Rodríguez-Gallego
- Department of Immunology, Gran Canaria Dr. Negrín University Hospital, Las Palmas de Gran Canaria, Spain.
- Department of Immunology, Hospital Universitario de Gran Canaria Dr. Negrín, Calle Barranco de la Ballena s/n, 35019, Las Palmas de Gran Canaria, Spain.
| |
Collapse
|
26
|
Foster TL, Pickering S, Neil SJD. Inhibiting the Ins and Outs of HIV Replication: Cell-Intrinsic Antiretroviral Restrictions at the Plasma Membrane. Front Immunol 2018; 8:1853. [PMID: 29354117 PMCID: PMC5758531 DOI: 10.3389/fimmu.2017.01853] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/07/2017] [Indexed: 01/01/2023] Open
Abstract
Like all viruses, human immunodeficiency viruses (HIVs) and their primate lentivirus relatives must enter cells in order to replicate and, once produced, new virions need to exit to spread to new targets. These processes require the virus to cross the plasma membrane of the cell twice: once via fusion mediated by the envelope glycoprotein to deliver the viral core into the cytosol; and secondly by ESCRT-mediated scission of budding virions during release. This physical barrier thus presents a perfect location for host antiviral restrictions that target enveloped viruses in general. In this review we will examine the current understanding of innate host antiviral defences that inhibit these essential replicative steps of primate lentiviruses associated with the plasma membrane, the mechanism by which these viruses have adapted to evade such defences, and the role that this virus/host battleground plays in the transmission and pathogenesis of HIV/AIDS.
Collapse
Affiliation(s)
- Toshana L Foster
- Department of Infectious Disease, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Suzanne Pickering
- Department of Infectious Disease, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Stuart J D Neil
- Department of Infectious Disease, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
27
|
Makvandi-Nejad S, Laurenson-Schafer H, Wang L, Wellington D, Zhao Y, Jin B, Qin L, Kite K, Moghadam HK, Song C, Clark K, Hublitz P, Townsend AR, Wu H, McMichael AJ, Zhang Y, Dong T. Lack of Truncated IFITM3 Transcripts in Cells Homozygous for the rs12252-C Variant That is Associated With Severe Influenza Infection. J Infect Dis 2017; 217:257-262. [DOI: 10.1093/infdis/jix512] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/26/2017] [Indexed: 01/19/2023] Open
Affiliation(s)
- Shokouh Makvandi-Nejad
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University
| | - Henry Laurenson-Schafer
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University
| | - LiLi Wang
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University
| | - Dannielle Wellington
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University
| | - Yan Zhao
- Chinese Academy of Medical Sciences-Oxford Center for Translational Immunology, Nuffield Department of Medicine, Oxford University, United Kingdom
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Boquan Jin
- Fourth Military Medical University, Xian, China
| | - Ling Qin
- Chinese Academy of Medical Sciences-Oxford Center for Translational Immunology, Nuffield Department of Medicine, Oxford University, United Kingdom
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Kerry Kite
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University
| | | | | | - Kevin Clark
- Flow Cytometry Facility, Oxford University, United Kingdom
| | - Philip Hublitz
- Genome Engineering Department, Weatherall Institute of Molecular Medicine, Oxford University, United Kingdom
| | - Alain R Townsend
- Chinese Academy of Medical Sciences-Oxford Center for Translational Immunology, Nuffield Department of Medicine, Oxford University, United Kingdom
| | - Hao Wu
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Andrew J McMichael
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University
- Chinese Academy of Medical Sciences-Oxford Center for Translational Immunology, Nuffield Department of Medicine, Oxford University, United Kingdom
| | - YongHong Zhang
- Chinese Academy of Medical Sciences-Oxford Center for Translational Immunology, Nuffield Department of Medicine, Oxford University, United Kingdom
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Tao Dong
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford University
- Chinese Academy of Medical Sciences-Oxford Center for Translational Immunology, Nuffield Department of Medicine, Oxford University, United Kingdom
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
28
|
Carter TC, Hebbring SJ, Liu J, Mosley JD, Shaffer CM, Ivacic LC, Kopitzke S, Stefanski EL, Strenn R, Sundaram ME, Meece J, Brilliant MH, Ferdinands JM, Belongia EA. Pilot screening study of targeted genetic polymorphisms for association with seasonal influenza hospital admission. J Med Virol 2017; 90:436-446. [PMID: 29053189 DOI: 10.1002/jmv.24975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/07/2017] [Indexed: 11/11/2022]
Abstract
Host response to influenza is highly variable, suggesting a potential role of host genetic variation. To investigate the host genetics of severe influenza in a targeted fashion, 32 single nucleotide polymorphisms (SNPs) within viral immune response genes were evaluated for association with seasonal influenza hospitalization in an adult study population with European ancestry. SNP allele and genotype frequencies were compared between hospitalized influenza patients (cases) and population controls in a case-control study that included a discovery group (26 cases and 993 controls) and two independent, validation groups (1 with 84 cases and 4076 controls; the other with 128 cases and 9187 controls). Cases and controls had similar allele frequencies for variant rs12252 in interferon-inducible transmembrane protein 3 (IFITM3) (P > 0.05), and the study did not replicate the previously reported association of rs12252 with hospitalized influenza. In the discovery group, the preliminary finding of an association with a nonsense polymorphism (rs8072510) within the schlafen family member 13 (SFLN13) gene (P = 0.0099) was not confirmed in either validation group. Neither rs12252 nor rs8072510 showed an association according to the presence of clinical risk factors for influenza complications (P > 0.05), suggesting that these factors did not modify associations between the SNPs and hospitalized influenza. No other SNPs showed a statistically significant association with hospitalized influenza. Further research is needed to identify genetic factors involved in host response to seasonal influenza infection and to assess whether rs12252, a low-frequency variant in Europeans, contributes to influenza severity in populations with European ancestry.
Collapse
Affiliation(s)
- Tonia C Carter
- Center for Human Genetics, Marshfield Clinic Research Institute, Marshfield, Wisconsin
| | - Scott J Hebbring
- Center for Human Genetics, Marshfield Clinic Research Institute, Marshfield, Wisconsin
| | - Jixia Liu
- Center for Human Genetics, Marshfield Clinic Research Institute, Marshfield, Wisconsin
| | - Jonathan D Mosley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Christian M Shaffer
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lynn C Ivacic
- Integrated Research and Development Laboratory, Marshfield Clinic Research Institute, Marshfield, Wisconsin
| | - Sarah Kopitzke
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, Marshfield, Wisconsin
| | - Elisha L Stefanski
- Integrated Research and Development Laboratory, Marshfield Clinic Research Institute, Marshfield, Wisconsin
| | - Rob Strenn
- Biomedical Informatics Research Center, Marshfield Clinic Research Institute, Marshfield, Wisconsin
| | - Maria E Sundaram
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, Marshfield, Wisconsin
| | - Jennifer Meece
- Integrated Research and Development Laboratory, Marshfield Clinic Research Institute, Marshfield, Wisconsin
| | - Murray H Brilliant
- Center for Human Genetics, Marshfield Clinic Research Institute, Marshfield, Wisconsin
| | - Jill M Ferdinands
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Edward A Belongia
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, Marshfield, Wisconsin
| |
Collapse
|
29
|
Mehrbod P, Eybpoosh S, Fotouhi F, Shokouhi Targhi H, Mazaheri V, Farahmand B. Association of IFITM3 rs12252 polymorphisms, BMI, diabetes, and hypercholesterolemia with mild flu in an Iranian population. Virol J 2017; 14:218. [PMID: 29121968 PMCID: PMC5680824 DOI: 10.1186/s12985-017-0884-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 10/31/2017] [Indexed: 11/10/2022] Open
Abstract
Background IFITM3 has been suggested to be associated with infection in some ethnic groups. Diabetes and hypercholesterolemia are also important clinical conditions that can predispose individuals to infection. The aim of this study was to investigate the association of rs12252 C polymorphism, BMI, diabetes, and hypercholesterolemia with mild flu in an Iranian population. Methods We conducted a case-control study, including 79 mild flu and 125 flu-negative individuals attending primary care centers of three provinces of Iran (i.e, Markazi, Semnan, and Zanjan). Pharyngeal swab specimens were collected from all participants, and were subjected to RNA and DNA extractions for Real-time PCR and PCR tests. All PCR products were then sequenced to find T/C polymorphisms in the rs12252 region. Data on demographic, anthropometric, and clinical variables were collected from participants’ medical records available in the primary care centers. The data was analyzed using DNASIS (v. 2.5) and Stata (v.11) software. Results All participants were of Fars ethnic background. The allele frequency for rs12252-C was found to be 9.49% among cases and 2.40% among controls. Carriers of the rs12252 C allele (CT + CC genotypes) showed 5.92 folds increase in the risk of mild flu comparing to the T allele homozygotes (P value: 0.007). We also found a significant positive association between rs12252 C allele heterozygote and mild flu (OR: 7.62, P value: 0.008), but not in C allele homozygote group (OR: 2.71, P value: 0.406). Similarly, we did not find a significant association between mild flu and BMI (OR: 1.06, P value: 0.087), diabetes (OR: 0.61, P value: 0.392), and hypercholesterolemia (OR: 0.50, P value: 0.393) in multivariable logistic regression. Conclusions This is the first study evaluating the association between rs12252 polymorphisms, diabetes, hypercholesterolemia, and BMI and susceptibility to mild flu in an Iranian population. Our results suggest a significant positive association between mild flu and rs12252 C allele heterozygous and carriage. Future replication of the strong association observed here between rs12252 C allele carriage and mild flu might candidate this polymorphism as a genetic marker for early screening of susceptibility to mild flu. Lack of significant association between C allele homozygous and mild flu, observed in this study, might be the result of small sample size in this group. Trial registration IR.PII.REC.1395.3. Electronic supplementary material The online version of this article (10.1186/s12985-017-0884-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Parvaneh Mehrbod
- Influenza and Other Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Sana Eybpoosh
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Fotouhi
- Influenza and Other Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | | | - Vahideh Mazaheri
- Influenza and Other Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Behrokh Farahmand
- Influenza and Other Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
30
|
Randolph AG, Yip WK, Allen EK, Rosenberger CM, Agan AA, Ash SA, Zhang Y, Bhangale TR, Finkelstein D, Cvijanovich NZ, Mourani PM, Hall MW, Su HC, Thomas PG. Evaluation of IFITM3 rs12252 Association With Severe Pediatric Influenza Infection. J Infect Dis 2017; 216:14-21. [PMID: 28531322 DOI: 10.1093/infdis/jix242] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/15/2017] [Indexed: 02/03/2023] Open
Abstract
Background Interferon-induced transmembrane protein 3 (IFITM3) restricts endocytic fusion of influenza virus. IFITM3 rs12252_C, a putative alternate splice site, has been associated with influenza severity in adults. IFITM3 has not been evaluated in pediatric influenza. Methods The Pediatric Influenza (PICFLU) study enrolled children with suspected influenza infection across 38 pediatric intensive care units during November 2008 to April 2016. IFITM3 was sequenced in patients and parents were genotyped for specific variants for family-based association testing. rs12252 was genotyped in 54 African-American pediatric outpatients with influenza (FLU09), included in the population-based comparisons with 1000 genomes. Splice site analysis of rs12252_C was performed using PICFLU and FLU09 patient RNA. Results In PICFLU, 358 children had influenza infection. We identified 22 rs12252_C homozygotes in 185 white non-Hispanic children. rs12252_C was not associated with influenza infection in population or family-based analyses. We did not identify the Δ21 IFITM3 isoform in RNAseq data. The rs12252 genotype was not associated with IFITM3 expression levels, nor with critical illness severity. No novel rare IFITM3 functional variants were identified. Conclusions rs12252 was not associated with susceptibility to influenza-related critical illness in children or with critical illness severity. Our data also do not support it being a splice site.
Collapse
Affiliation(s)
- Adrienne G Randolph
- Department of Anesthesia, Perioperative and Pain Medicine, Boston Children's Hospital
- Departments of Anaesthesia and Pediatrics, Harvard Medical School, Boston
| | - Wai-Ki Yip
- Foundation Medicine Inc, Cambridge, Massachusetts
| | - Emma Kaitlynn Allen
- Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Anna A Agan
- Department of Anesthesia, Perioperative and Pain Medicine, Boston Children's Hospital
| | - Stephanie A Ash
- Department of Anesthesia, Perioperative and Pain Medicine, Boston Children's Hospital
| | - Yu Zhang
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | | - David Finkelstein
- Department of Computational Biology, St Jude Children's Research Hospital, Memphis, Tennessee
| | | | - Peter M Mourani
- Section of Critical Care, Department of Pediatrics, University of Colorado School of Medicine and Research Institute, Children's Hospital Colorado, Aurora
| | - Mark W Hall
- Critical Care Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Helen C Su
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
31
|
Mindaye ST, Ilyushina NA, Fantoni G, Alterman MA, Donnelly RP, Eichelberger MC. Impact of Influenza A Virus Infection on the Proteomes of Human Bronchoepithelial Cells from Different Donors. J Proteome Res 2017; 16:3287-3297. [DOI: 10.1021/acs.jproteome.7b00286] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Samuel T. Mindaye
- Division
of Viral Products, OVRR, CBER, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Natalia A. Ilyushina
- Division
of Biotechnology Research and Review II, CDER, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Giovanna Fantoni
- Division
of Viral Products, OVRR, CBER, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Michail A. Alterman
- Division
of Cellular and Gene Therapies, OTAT, CBER, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Raymond P. Donnelly
- Division
of Biotechnology Research and Review II, CDER, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Maryna C. Eichelberger
- Division
of Viral Products, OVRR, CBER, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| |
Collapse
|
32
|
SNP-mediated disruption of CTCF binding at the IFITM3 promoter is associated with risk of severe influenza in humans. Nat Med 2017; 23:975-983. [PMID: 28714988 DOI: 10.1038/nm.4370] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/15/2017] [Indexed: 12/13/2022]
Abstract
Previous studies have reported associations of IFITM3 SNP rs12252 with severe influenza, but evidence of association and the mechanism by which risk is conferred remain controversial. We prioritized SNPs in IFITM3 on the basis of putative biological function and identified rs34481144 in the 5' UTR. We found evidence of a new association of rs34481144 with severe influenza in three influenza-infected cohorts characterized by different levels of influenza illness severity. We determined a role for rs34481144 as an expression quantitative trait locus (eQTL) for IFITM3, with the risk allele associated with lower mRNA expression. The risk allele was found to have decreased IRF3 binding and increased CTCF binding in promoter-binding assays, and risk allele carriage diminished transcriptional correlations among IFITM3-neighboring genes, indicative of CTCF boundary activity. Furthermore, the risk allele disrupts a CpG site that undergoes differential methylation in CD8+ T cell subsets. Carriers of the risk allele had reduced numbers of CD8+ T cells in their airways during natural influenza infection, consistent with IFITM3 promoting accumulation of CD8+ T cells in airways and indicating that a critical function for IFITM3 may be to promote immune cell persistence at mucosal sites.Our study identifies a new regulator of IFITM3 expression that associates with CD8+ T cell levels in the airways and a spectrum of clinical outcomes.
Collapse
|
33
|
Pan Y, Yang P, Dong T, Zhang Y, Shi W, Peng X, Cui S, Zhang D, Lu G, Liu Y, Wu S, Wang Q. IFITM3 Rs12252-C Variant Increases Potential Risk for Severe Influenza Virus Infection in Chinese Population. Front Cell Infect Microbiol 2017; 7:294. [PMID: 28713779 PMCID: PMC5491636 DOI: 10.3389/fcimb.2017.00294] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/16/2017] [Indexed: 11/13/2022] Open
Abstract
Background: Interferon Inducible Transmembrane 3 (IFITM3) is a key factor in interferon pathway and it involves host's immune response against multiple viruses. IFITM3 rs12252-C was associated with severe influenza virus infection in several studies, however whether this association is universal to all types of influenza virus or diverse ethnic populations remain controversial. Method: A case-control genetic association study was performed from September 2013 to April 2014 and September 2014 to April 2015. All samples were tested for influenza using RT-PCR, and genotyped by High Resolution Melting assay. Results: A total of 65 healthy people, 165 mild influenza-like illness (ILI) cases and 315 severe acute respiratory infection (SARI) cases were enrolled in this study. The frequency of CC genotype was much higher in SARI cases with IVI than that in ILI cases with IVI (61.59 vs. 27.16%), leading a 4.67-fold greater risk for severe IVI than other two genotypes. Moreover, the risk of IFITM3 rs12252-C variant for severe IVI was specific for both influenza A and influenza B. Conclusion:IFITM3 rs12252 CC genotype was associated with severity rather than susceptibility of IVI in Chinese population, and this strong effect was observed in all subtypes of seasonal influenza infection.
Collapse
Affiliation(s)
- Yang Pan
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and ControlBeijing, China.,Research Centre for Preventive Medicine of BeijingBeijing, China.,Capital Medical University School of Public HealthBeijing, China
| | - Peng Yang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and ControlBeijing, China.,Research Centre for Preventive Medicine of BeijingBeijing, China.,Capital Medical University School of Public HealthBeijing, China
| | - Tao Dong
- MRC Human Immunology Unit, Weather all Institute of Molecular Medicine, University of OxfordOxford, United Kingdom
| | - Yi Zhang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and ControlBeijing, China.,Research Centre for Preventive Medicine of BeijingBeijing, China
| | - Weixian Shi
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and ControlBeijing, China.,Research Centre for Preventive Medicine of BeijingBeijing, China
| | - Xiaomin Peng
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and ControlBeijing, China.,Research Centre for Preventive Medicine of BeijingBeijing, China
| | - Shujuan Cui
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and ControlBeijing, China.,Research Centre for Preventive Medicine of BeijingBeijing, China
| | - Daitao Zhang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and ControlBeijing, China.,Research Centre for Preventive Medicine of BeijingBeijing, China
| | - Guilan Lu
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and ControlBeijing, China.,Research Centre for Preventive Medicine of BeijingBeijing, China
| | - Yimeng Liu
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and ControlBeijing, China.,Research Centre for Preventive Medicine of BeijingBeijing, China
| | - Shuangsheng Wu
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and ControlBeijing, China.,Research Centre for Preventive Medicine of BeijingBeijing, China
| | - Quanyi Wang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and ControlBeijing, China.,Research Centre for Preventive Medicine of BeijingBeijing, China.,Capital Medical University School of Public HealthBeijing, China
| |
Collapse
|
34
|
pH Optimum of Hemagglutinin-Mediated Membrane Fusion Determines Sensitivity of Influenza A Viruses to the Interferon-Induced Antiviral State and IFITMs. J Virol 2017; 91:JVI.00246-17. [PMID: 28356532 DOI: 10.1128/jvi.00246-17] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/20/2017] [Indexed: 12/24/2022] Open
Abstract
The replication and pathogenicity of influenza A viruses (IAVs) critically depend on their ability to tolerate the antiviral interferon (IFN) response. To determine a potential role for the IAV hemagglutinin (HA) in viral sensitivity to IFN, we studied the restriction of IAV infection in IFN-β-treated human epithelial cells by using 2:6 recombinant IAVs that shared six gene segments of A/Puerto Rico/8/1934 virus (PR8) and contained HAs and neuraminidases of representative avian, human, and zoonotic H5N1 and H7N9 viruses. In A549 and Calu-3 cells, viruses displaying a higher pH optimum of HA-mediated membrane fusion, H5N1-PR8 and H7N9-PR8, were less sensitive to the IFN-induced antiviral state than their counterparts with HAs from duck and human viruses, which fused at a lower pH. The association between a high pH optimum of fusion and reduced IFN sensitivity was confirmed by using HA point mutants of A/Hong Kong/1/1968-PR8 that differed solely by their fusion properties. Furthermore, similar effects of the viral fusion pH on IFN sensitivity were observed in experiments with (i) primary human type II alveolar epithelial cells and differentiated cultures of human airway epithelial cells, (ii) nonrecombinant zoonotic and pandemic IAVs, and (iii) preparations of IFN-α and IFN-λ1. A higher pH of membrane fusion and reduced sensitivity to IFN correlated with lower restriction of the viruses in MDCK cells stably expressing the IFN-inducible transmembrane proteins IFITM2 and IFITM3, which are known to inhibit viral fusion. Our results reveal that the pH optimum of HA-driven membrane fusion of IAVs is a determinant of their sensitivity to IFN and IFITM proteins.IMPORTANCE The IFN system constitutes an important innate defense against viral infection. Substantial information is available on how IAVs avoid detection by sensors of the IFN system and disable IFN signaling pathways. Much less is known about the ability of IAVs to tolerate the antiviral activity of IFN-induced cellular proteins. The IFN-induced proteins of the IFITM family block IAV entry into target cells and can restrict viral spread and pathogenicity. Here we show for the first time that the sensitivity of IAVs to the IFN-induced antiviral state and IFITM2 and IFITM3 proteins depends on the pH value at which the viral HA undergoes a conformational transition and mediates membrane fusion. Our data imply that the high pH optimum of membrane fusion typical of zoonotic IAVs of gallinaceous poultry, such as H5N1 and H7N9, may contribute to their enhanced virulence in humans.
Collapse
|