1
|
Zhu YX, Li ZY, Yu ZL, Lu YT, Liu JX, Chen JR, Xie ZZ. The underlying mechanism and therapeutic potential of IFNs in viral-associated cancers. Life Sci 2025; 361:123301. [PMID: 39675548 DOI: 10.1016/j.lfs.2024.123301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
Interferons (IFNs) are a diverse family of cytokines secreted by various cells, including immune cells, fibroblasts, and certain viral-parasitic cells. They are classified into three types and encompass 21 subtypes based on their sources and properties. The regulatory functions of IFNs closely involve cell surface receptors and several signal transduction pathways. Initially investigated for their antiviral properties, IFNs have shown promise in combating cancer-associated viruses, making them a potent therapeutic approach. Most IFNs have been identified for their role in inhibiting cancer; however, they have also demonstrated cancer-promoting effects under specific conditions. These mechanisms primarily rely on immune regulation and cytotoxic effects, significantly impacting cancer progression. Despite widespread use of IFN-based therapies in viral-related cancers, ongoing research aims to develop more effective treatments. This review synthesizes the signal transduction pathways and regulatory capabilities of IFNs, highlighting their connections with viruses, cancers, and emerging clinical treatments.
Collapse
Affiliation(s)
- Yu-Xin Zhu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Zi-Yi Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Zi-Lu Yu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Yu-Tong Lu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Jia-Xiang Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Jian-Rui Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Zhen-Zhen Xie
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330031, PR China.
| |
Collapse
|
2
|
Vickram S, Infant SS, Manikandan S, Jenila Rani D, Mathan Muthu CM, Chopra H. Immune biomarkers and predictive signatures in gastric cancer: Optimizing immunotherapy responses. Pathol Res Pract 2025; 265:155743. [PMID: 39616978 DOI: 10.1016/j.prp.2024.155743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/07/2024] [Accepted: 11/25/2024] [Indexed: 12/11/2024]
Abstract
Gastric cancer is a malignant disease with a poor prognosis and few therapeutic options once it has advanced. Immunotherapy using ICIs has emerged as a viable therapeutic method; nevertheless, reliable immunological biomarkers are required to identify who may benefit from these therapies. It focuses on key immune biomarkers and predictive signatures in gastric cancer, such as PD-L1 expression, microsatellite instability (MSI), tumor mutational burden (TMB), and Epstein-Barr virus (EBV) status, to optimize gastric cancer patients' immunotherapy responses. PD-L1 expression is a popular biomarker for ICI effectiveness. Tumors with high MSI-H and TMB are the most susceptible to ICIs because they are highly immunogenic. EBV-positive stomach tumors are highly immunogenic, and immunotherapy has a high response rate. Combining composite biomarker panels with multi-omics-based techniques improved patient selection accuracy. In recent years, machine learning models have been integrated into next-generation sequencing. Dynamic, real-time-monitorable biomarkers for real-time immune response monitoring are also being considered. Thus, enhancing biomarker-driven immunotherapy is critical for improving clinical outcomes with gastric cancer. There is still more work to be done in this field, and verifying developing biomarkers will be an important component in the future of customized cancer therapy.
Collapse
Affiliation(s)
- Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Shofia Saghya Infant
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - S Manikandan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - D Jenila Rani
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - C M Mathan Muthu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Hitesh Chopra
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
3
|
Zhang S, Lin Y, Li Z, Wang Z, Luo R, Zhang X. Clinical treatment strategy and follow-up of lymphoepithelioma-like carcinoma: a retrospective study. Future Sci OA 2024; 10:2384878. [PMID: 39215389 PMCID: PMC11385158 DOI: 10.1080/20565623.2024.2384878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Aim: To investigate the clinical features, diagnosis and treatment of lymphoepithelioma-like carcinoma (LELC).Materials & methods: The clinical data of 114 LELC patients were retrospectively analyzed.Results: Ninety-eight patients (86.0%) were Epstein-Barr virus-encoded small RNA (EBER) positive detected by situ hybridization. A 67.1% (51/76) patients had PD-L1 expression. The 5-year overall survival rate of EBER negative patients was 51.6% while the rate of positive patients was 84.8% (p = 0.015). The 5-year progression free survival rate of EBER negative patients was 40.2% while the rate of positive patients was 70.2% (p = 0.004).Conclusion: The progression of LELC is relatively slow and present a better prognosis. The occurrence of tumor is closely related to Epstein-Barr virus infection and PD-L1 is highly expressed in tumor cells.
Collapse
Affiliation(s)
- Shilong Zhang
- Department of Medical Oncology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yufu Lin
- Department of Medical Oncology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, China
- Clinical Research Center for Precision Medicine of Abdominal Tumor of Fujian Province, Xiamen, China
| | - Zhiyong Li
- Department of Medical Oncology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, China
- Clinical Research Center for Precision Medicine of Abdominal Tumor of Fujian Province, Xiamen, China
| | - Zhiming Wang
- Department of Medical Oncology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiuping Zhang
- Department of Medical Oncology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Xiamen Clinical Research Center for Cancer Therapy, Xiamen, China
- Clinical Research Center for Precision Medicine of Abdominal Tumor of Fujian Province, Xiamen, China
| |
Collapse
|
4
|
Zhang F, Li W, Zheng X, Ren Y, Li L, Yin H. The novel immune landscape of immune-checkpoint blockade in EBV-associated malignancies. FASEB J 2024; 38:e70139. [PMID: 39520274 DOI: 10.1096/fj.202301980rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 09/15/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
The Epstein-Barr virus (EBV) is a ubiquitous gamma-herpesvirus and a class 1 carcinogen that is closely associated with a series of malignant lymphomas and epithelial cell carcinomas. Although these EBV-related cancers may exhibit different features in clinical symptoms and anatomical sites, they all have a characteristic immune-suppressed tumor immune microenvironment (TIME) that is tightly correlated with an abundance of tumor-infiltrating lymphocytes (TILs) that primarily result from the EBV infection. Overwhelming evidence indicates that an upregulation of immune-checkpoint molecules is a powerful strategy employed by the EBV to escape immune surveillance. While previous studies have mainly focused on the therapeutic effects of PD-1 and CTLA-4 blockades in treating EBV-associated tumors, several novel inhibitory receptors (e.g., CD47, LAG-3, TIM-3, VISTA, and DDR1) have recently been identified as potential targets for treating EBV-associated malignancies (EBVaMs). This review retrospectively summarizes the biological mechanisms used for immune checkpoint evasion in EBV-associated tumors. Its purpose is to update our current knowledge concerning the underlying mechanisms by which an immune checkpoint blockade triggers host antitumor immunity against EBVaMs. Additionally, this review may help investigators to more fully understand the correlation between EBV infection and tumor development and subsequently develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wenjing Li
- The First Class Ward 2 of the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xinglong Zheng
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yinlong Ren
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lijun Li
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Haiyan Yin
- Department of Intensive Care Unit, the First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
5
|
Zeng R, Gou H, Lau HCH, Yu J. Stomach microbiota in gastric cancer development and clinical implications. Gut 2024; 73:2062-2073. [PMID: 38886045 PMCID: PMC11672014 DOI: 10.1136/gutjnl-2024-332815] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
Gastric cancer (GC) is one of the most common malignancies and a prominent cause of cancer mortality worldwide. A distinctive characteristic of GC is its intimate association with commensal microbial community. Although Helicobacter pylori is widely recognised as an inciting factor of the onset of gastric carcinogenesis, increasing evidence has indicated the substantial involvement of microbes that reside in the gastric mucosa during disease progression. In particular, dysregulation in gastric microbiota could play pivotal roles throughout the whole carcinogenic processes, from the development of precancerous lesions to gastric malignancy. Here, current understanding of the gastric microbiota in GC development is summarised. Potential translational and clinical implications of using gastric microbes for GC diagnosis, prognosis and therapeutics are also evaluated, with further discussion on conceptual haziness and limitations at present. Finally, we highlight that modulating microbes is a novel and promising frontier for the prevention and management of GC, which necessitates future in-depth investigations.
Collapse
Affiliation(s)
- Ruijie Zeng
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Hongyan Gou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Harry Cheuk Hay Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Ohsawa K, Momose S, Nishikori A, Nishimura MF, Gion Y, Sawada K, Higashi M, Tokuhira M, Tamaru JI, Sato Y. Copy Number Analysis of 9p24.1 in Classic Hodgkin Lymphoma Arising in Immune Deficiency/Dysregulation. Cancers (Basel) 2024; 16:1298. [PMID: 38610976 PMCID: PMC11011107 DOI: 10.3390/cancers16071298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
A subset of patients with rheumatoid arthritis receiving methotrexate develop immune deficiencies and dysregulation-associated lymphoproliferative disorders. Patients with these disorders often exhibit spontaneous regression after MTX withdrawal; however, chemotherapeutic intervention is frequently required in patients with classic Hodgkin lymphoma arising in immune deficiency/dysregulation. In this study, we examined PD-L1 expression levels and 9p24.1 copy number alterations in 27 patients with classic Hodgkin lymphoma arising from immune deficiency/dysregulation. All patients demonstrated PD-L1 protein expression and harbored 9p24.1 copy number alterations on the tumor cells. When comparing clinicopathological data and associations with 9p24.1 copy number features, the copy gain group showed a significantly higher incidence of extranodal lesions and clinical stages than the amplification group. Notably, all cases in the amplification group had latency type II, while 6/8 (75%) in the copy gain group had latency type II, and 2/8 (25%) had latency type I. Thus, a subset of the copy-gain group demonstrated more extensive extranodal lesions and higher clinical stages. This finding speculates the presence of a genetically distinct subgroup within the group of patients who develop immune deficiencies and dysregulation-associated lymphoproliferative disorders, which may explain certain characteristic features.
Collapse
Affiliation(s)
- Kumiko Ohsawa
- Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences, Okayama 700-8558, Japan; (K.O.); (A.N.); (M.F.N.)
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama 350-8550, Japan; (S.M.); (K.S.); (M.H.); (J.-i.T.)
| | - Shuji Momose
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama 350-8550, Japan; (S.M.); (K.S.); (M.H.); (J.-i.T.)
| | - Asami Nishikori
- Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences, Okayama 700-8558, Japan; (K.O.); (A.N.); (M.F.N.)
| | - Midori Filiz Nishimura
- Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences, Okayama 700-8558, Japan; (K.O.); (A.N.); (M.F.N.)
| | - Yuka Gion
- Department of Medical Technology, Faculty of Health Sciences, Ehime Prefectural University of Health Sciences, Tobe 791-2101, Japan;
| | - Keisuke Sawada
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama 350-8550, Japan; (S.M.); (K.S.); (M.H.); (J.-i.T.)
| | - Morihiro Higashi
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama 350-8550, Japan; (S.M.); (K.S.); (M.H.); (J.-i.T.)
| | - Michihide Tokuhira
- Department of Hematology, Japan Community Health Care Organization Saitama Medical Center, Saitama 330-0074, Japan
| | - Jun-ichi Tamaru
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Saitama 350-8550, Japan; (S.M.); (K.S.); (M.H.); (J.-i.T.)
- PCL Japan, Pathology and Cytology Center, Saitama 331-9530, Japan
| | - Yasuharu Sato
- Department of Molecular Hematopathology, Okayama University Graduate School of Health Sciences, Okayama 700-8558, Japan; (K.O.); (A.N.); (M.F.N.)
| |
Collapse
|
7
|
Salnikov MY, MacNeil KM, Mymryk JS. The viral etiology of EBV-associated gastric cancers contributes to their unique pathology, clinical outcomes, treatment responses and immune landscape. Front Immunol 2024; 15:1358511. [PMID: 38596668 PMCID: PMC11002251 DOI: 10.3389/fimmu.2024.1358511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/14/2024] [Indexed: 04/11/2024] Open
Abstract
Epstein-Barr virus (EBV) is a pathogen known to cause a number of malignancies, often taking years for them to develop after primary infection. EBV-associated gastric cancer (EBVaGC) is one such malignancy, and is an immunologically, molecularly and pathologically distinct entity from EBV-negative gastric cancer (EBVnGC). In comparison with EBVnGCs, EBVaGCs overexpress a number of immune regulatory genes to help form an immunosuppressive tumor microenvironment (TME), have improved prognosis, and overall have an "immune-hot" phenotype. This review provides an overview of the histopathology, clinical features and clinical outcomes of EBVaGCs. We also summarize the differences between the TMEs of EBVaGCs and EBVnGCs, which includes significant differences in cell composition and immune infiltration. A list of available EBVaGC and EBVnGC gene expression datasets and computational tools are also provided within this review. Finally, an overview is provided of the various chemo- and immuno-therapeutics available in treating gastric cancers (GCs), with a focus on EBVaGCs.
Collapse
Affiliation(s)
- Mikhail Y. Salnikov
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Katelyn M. MacNeil
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Joe S. Mymryk
- Department of Microbiology and Immunology, Western University, London, ON, Canada
- Department of Oncology, Western University, London, ON, Canada
- Department of Otolaryngology, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
8
|
Shi R, Wang S, Jiang Y, Zhong G, Li M, Sun Y. ERCC4: a potential regulatory factor in inflammatory bowel disease and inflammation-associated colorectal cancer. Front Endocrinol (Lausanne) 2024; 15:1348216. [PMID: 38516408 PMCID: PMC10954797 DOI: 10.3389/fendo.2024.1348216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/19/2024] [Indexed: 03/23/2024] Open
Abstract
The pathogenesis of inflammatory bowel disease (IBD) remains unclear and is associated with an increased risk of developing colitis-associated cancer (CAC). Under sustained inflammatory stimulation in the intestines, loss of early DNA damage response genes can lead to tumor formation. Many proteins are involved in the pathways of DNA damage response and play critical roles in protecting genes from various potential damages that DNA may undergo. ERCC4 is a structure-specific endonuclease that participates in the nucleotide excision repair (NER) pathway. The catalytic site of ERCC4 determines the activity of NER and is an indispensable gene in the NER pathway. ERCC4 may be involved in the imbalanced process of DNA damage and repair in IBD-related inflammation and CAC. This article primarily reviews the function of ERCC4 in the DNA repair pathway and discusses its potential role in the processes of IBD-related inflammation and carcinogenesis. Finally, we explore how this knowledge may open novel avenues for the treatment of IBD and IBD-related cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Sun
- *Correspondence: Yan Sun, ; Mingsong Li,
| |
Collapse
|
9
|
Fang T, Yin X, Wang Y, Zhang L, Yang S, Jiang X, Xue Y. Clinical significance of systemic inflammation response index and platelet-lymphocyte ratio in patients with adenocarcinoma of the esophagogastric junction and upper gastric cancer. Heliyon 2024; 10:e26176. [PMID: 38420481 PMCID: PMC10900425 DOI: 10.1016/j.heliyon.2024.e26176] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Background Tumor immunity plays an important role in assessing the tumor progression. The purpose of this study was to investigate the prognostic value of combined systemic inflammation response index (SIRI) and platelet-lymphocyte ratio (PLR) of gastroesophageal junction cancer (AEG) and upper gastric cancer (UGC) patients. Methods In this retrospective study, patients from 2003 to 2014 were divided into training and validation sets. The prognostic accuracy of each variable was compared using time-independent ROC analysis. The scoring system was calculated by cut-off values of SIRI and PLR in 5-year. Kaplan-Meier and Log-rank tests were used to analyze overall survival (OS). Chi-square test was used to analyze the association between clinical characteristics and the scoring system. Univariate and multivariate analyses based on the competitive risk regression model were used to analyze independent predictors of death due to AGC and UGC. R software was used to construct the Nomogram model of risk assessment. Results Patients with SIRI-PLR = 2 had worse survival time than those with 0 and 1 (P < 0.001) and more suitable for postoperative adjuvant chemotherapy (P = 0.002). High PLR patients were more suitable for proximal gastrectomy (P = 0.049). SIRI-PLR were independent predictors in training set (P < 0.001), which could be combined with age, pTNM stage and postoperative chemotherapy to construct Nomogram for predicting OS. Conclusions Preoperative SIRI-PLR score was an independent predictor for patients with AEG and UGC. The Nomogram model constructed by age, SIRI-PLR, pTNM stage and postoperative chemotherapy can correctly predict the prognosis of patients.
Collapse
Affiliation(s)
- Tianyi Fang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150081, China
| | - Xin Yin
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150081, China
| | - Yufei Wang
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150081, China
| | - Lei Zhang
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Shuo Yang
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Xinju Jiang
- Department of Pathology, Harbin Medical University, Harbin, 150081, China
| | - Yingwei Xue
- Department of Gastroenterological Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150081, China
| |
Collapse
|
10
|
Yu X, Zhai X, Wu J, Feng Q, Hu C, Zhu L, Zhou Q. Evolving perspectives regarding the role of the PD-1/PD-L1 pathway in gastric cancer immunotherapy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166881. [PMID: 37696462 DOI: 10.1016/j.bbadis.2023.166881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/08/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Gastric cancer (GC) is an increasing global health problem and is one of the leading cancers worldwide. Traditional therapies, such as radiation and chemotherapy, have made limited progress in enhancing their efficacy for advanced GC. The development of immunotherapy for advanced GC has considerably improved with a deeper understanding of the tumor microenvironment. Immunotherapy using checkpoint inhibitors is a new therapeutic option that has made substantial advances in the treatment of other malignancies and is increasingly used in other clinical oncology treatments. Particularly, therapeutic antibodies targeting the programmed cell death protein-1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway have been effectively used in the clinical treatment of cancer. Monoclonal antibodies blocking the PD-1/PD-L1 pathway have been developed for cancer immunotherapy to enhance T cell function to restore the immune response and represent a breakthrough in the treatment of GC. This review provides an outline of the progress of PD-1/PD-L1 blockade therapy and its expression characteristics and clinical application in advanced GC.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China; Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, No. 10 Qinyun Nan Street, Chengdu, Sichuan Province, People's Republic of China
| | - Xiaoqian Zhai
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Juan Wu
- Out-patient Department, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Qingbo Feng
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Affiliated Digestive Hospital of Zunyi Medical University, Zunyi, Guizhou Province, People's Republic of China
| | - Chenggong Hu
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China.
| | - Qinghua Zhou
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China.
| |
Collapse
|
11
|
Shang Z, Ma Z, Wu E, Chen X, Tuo B, Li T, Liu X. Effect of metabolic reprogramming on the immune microenvironment in gastric cancer. Biomed Pharmacother 2024; 170:116030. [PMID: 38128177 DOI: 10.1016/j.biopha.2023.116030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/03/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Gastric cancer (GC) is a malignant tumor of the gastrointestinal tract with a high mortality rate worldwide, a low early detection rate and a poor prognosis. The rise of metabolomics has facilitated the early detection and treatment of GC. Metabolism in the GC tumor microenvironment (TME) mainly includes glucose metabolism, lipid metabolism and amino acid metabolism, which provide energy and nutrients for GC cell proliferation and migration. Abnormal tumor metabolism can influence tumor progression by regulating the functions of immune cells and immune molecules in the TME, thereby contributing to tumor immune escape. Thus, in this review, we summarize the impact of metabolism on the TME during GC progression. We also propose novel strategies to modulate antitumor immune responses by targeting metabolism.
Collapse
Affiliation(s)
- Zhengye Shang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Enqin Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Xingzhao Chen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Taolang Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Dalian Road 149, Zunyi 563000, China.
| | - Xuemei Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China.
| |
Collapse
|
12
|
Sausen DG, Poirier MC, Spiers LM, Smith EN. Mechanisms of T cell evasion by Epstein-Barr virus and implications for tumor survival. Front Immunol 2023; 14:1289313. [PMID: 38179040 PMCID: PMC10764432 DOI: 10.3389/fimmu.2023.1289313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Epstein-Barr virus (EBV) is a prevalent oncogenic virus estimated to infect greater than 90% of the world's population. Following initial infection, it establishes latency in host B cells. EBV has developed a multitude of techniques to avoid detection by the host immune system and establish lifelong infection. T cells, as important contributors to cell-mediated immunity, make an attractive target for these immunoevasive strategies. Indeed, EBV has evolved numerous mechanisms to modulate T cell responses. For example, it can augment expression of programmed cell death ligand-1 (PD-L1), which inhibits T cell function, and downregulates the interferon response, which has a strong impact on T cell regulation. It also modulates interleukin secretion and can influence major histocompatibility complex (MHC) expression and presentation. In addition to facilitating persistent EBV infection, these immunoregulatory mechanisms have significant implications for evasion of the immune response by tumor cells. This review dissects the mechanisms through which EBV avoids detection by host T cells and discusses how these mechanisms play into tumor survival. It concludes with an overview of cancer treatments targeting T cells in the setting of EBV-associated malignancy.
Collapse
Affiliation(s)
- D. G. Sausen
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | | | | | | |
Collapse
|
13
|
Shin WS, Xie F, Chen B, Yu J, Lo KW, Tse GMK, To KF, Kang W. Exploring the Microbiome in Gastric Cancer: Assessing Potential Implications and Contextualizing Microorganisms beyond H. pylori and Epstein-Barr Virus. Cancers (Basel) 2023; 15:4993. [PMID: 37894360 PMCID: PMC10605912 DOI: 10.3390/cancers15204993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
While previous research has primarily focused on the impact of H. pylori and Epstein-Barr virus (EBV), emerging evidence suggests that other microbial influences, including viral and fungal infections, may also contribute to gastric cancer (GC) development. The intricate interactions between these microbes and the host's immune response provide a more comprehensive understanding of gastric cancer pathogenesis, diagnosis, and treatment. The review highlights the roles of established players such as H. pylori and EBV and the potential impacts of gut bacteria, mainly Lactobacillus, Streptococcus, hepatitis B virus, hepatitis C virus, and fungi such as Candida albicans. Advanced sequencing technologies offer unprecedented insights into the complexities of the gastric microbiome, from microbial diversity to potential diagnostic applications. Furthermore, the review highlights the potential for advanced GC diagnosis and therapies through a better understanding of the gut microbiome.
Collapse
Affiliation(s)
- Wing Sum Shin
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.S.); (F.X.); (B.C.); (K.W.L.); (G.M.K.T.); (K.F.T.)
| | - Fuda Xie
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.S.); (F.X.); (B.C.); (K.W.L.); (G.M.K.T.); (K.F.T.)
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong 999077, China;
- CUHK—Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Bonan Chen
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.S.); (F.X.); (B.C.); (K.W.L.); (G.M.K.T.); (K.F.T.)
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong 999077, China;
- CUHK—Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong 999077, China;
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Kwok Wai Lo
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.S.); (F.X.); (B.C.); (K.W.L.); (G.M.K.T.); (K.F.T.)
| | - Gary M. K. Tse
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.S.); (F.X.); (B.C.); (K.W.L.); (G.M.K.T.); (K.F.T.)
| | - Ka Fai To
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.S.); (F.X.); (B.C.); (K.W.L.); (G.M.K.T.); (K.F.T.)
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Wei Kang
- State Key Laboratory of Translational Oncology, Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China; (W.S.S.); (F.X.); (B.C.); (K.W.L.); (G.M.K.T.); (K.F.T.)
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong 999077, China;
- CUHK—Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, China
| |
Collapse
|
14
|
Lu M, Wu Y, Zhang Y, Yu Y, Wang S, Su X. Immunotherapeutic strategy in the management of gastric cancer: molecular profiles, current practice, and ongoing trials. J Egypt Natl Canc Inst 2023; 35:32. [PMID: 37779128 DOI: 10.1186/s43046-023-00192-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023] Open
Abstract
Gastric cancer (GC) is the one of the most commonly solid cancer worldwide. Although under the aggressive treatment, the poor clinical outcomes of patients with GCs have not been improved. Current studies emphasized that targeting therapies or immune response-based therapeutic strategy may be a potential approach to improve the clinical outcomes. Moreover, accumulative evidence has reported the increasing expression of PD-L1 expression in GC cells and highlighted its role in the tumor progression. Currently, great development has been established in the immune checkpoint inhibitors (ICIs) and further changed the clinical practice of GC treatment and prognosis. In addition, the combination therapies with targeting therapy or traditional therapies are expected to push the development of immunotherapies. In our present review, we predominantly focus on the biomarkers and molecular profiles for immunotherapies in GCs and highlight the role and administration of ICIs-based immunotherapeutic strategies against the GCs.
Collapse
Affiliation(s)
- Mengxiao Lu
- Department of Gastrointestinal Minimally Invasive Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China.
| | - Yingjie Wu
- Department of Gastrointestinal Minimally Invasive Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Yixin Zhang
- Department of Gastrointestinal Minimally Invasive Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Yu Yu
- Department of Gastrointestinal Minimally Invasive Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | | | - Xiaobao Su
- Department of Gastrointestinal Minimally Invasive Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
15
|
Chen R, Lin Q, Zhu Y, Shen Y, Xu Q, Tang H, Cui N, Jiang L, Dai X, Chen W, Li X. Sintilimab treatment for chronic active Epstein-Barr virus infection and Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis in children. Orphanet J Rare Dis 2023; 18:297. [PMID: 37736751 PMCID: PMC10514962 DOI: 10.1186/s13023-023-02861-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/20/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Chronic active Epstein-Barr virus infection (CAEBV) and Epstein-Barr virus-associated hemophagocytic lymphohistiocytosis (EBV-HLH) are rare but life-threatening progressive diseases triggered by EBV infection. Glucocorticoid/immunosuppressants treatment is temporarily effective; however, most patients relapse and/or progress. Hematopoietic stem cell transplantation (HSCT) is a potentially curative therapy; however, there are risks of transplantation-associated complications. Currently there is no standard treatment for CAEBV and EBV-HLH. Programmed death protein 1 (PD-1) inhibitors have achieved a high response in many EBV-related diseases. Sintilimab (a recombinant human IgG4 monoclonal antibody against PD-1) disrupts the interaction between PD-1 and its ligand, leading to T cell reinvigoration. METHODS A retrospective analysis was performed on three children with CAEBV or EBV-HLH in the Children's Hospital of Soochow University between 12 December 2020 and 28 November 2022. The efficacy of sintilimab was evaluated. RESULTS Three patients, including two males and one female, were analyzed. Among them, two children were diagnosed with CAEBV with intermittent fever for more than four years, and one child was diagnosed with EBV-HLH. After sintilimab treatment and a mean follow-up of 17.1 months (range 10.0-23.3 months), patients 1 and 3 achieved a complete clinical response and patient 2 achieved a partial clinical response. All three children showed a > 50% decrease in EBV-DNA load in both blood and plasma. EBV-DNA copies in sorted T, B, and NK cells were also markedly decreased after sintilimab treatment. CONCLUSION Our data supported the efficacy of PD-1 targeted therapy in certain patients with CAEBV and EBV-HLH, and suggested that sintilimab could provide a cure for these diseases, without HSCT. More prospective studies and longer follow-up are needed to confirm these conclusions.
Collapse
Affiliation(s)
- Ruyue Chen
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No.303 Jing De Road, Gusu District, Suzhou, 215002, Jiangsu, China
| | - Qiang Lin
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No.303 Jing De Road, Gusu District, Suzhou, 215002, Jiangsu, China
| | - Yun Zhu
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No.303 Jing De Road, Gusu District, Suzhou, 215002, Jiangsu, China
| | - Yunyan Shen
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No.303 Jing De Road, Gusu District, Suzhou, 215002, Jiangsu, China
| | - Qinying Xu
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No.303 Jing De Road, Gusu District, Suzhou, 215002, Jiangsu, China
| | - Hanyun Tang
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No.303 Jing De Road, Gusu District, Suzhou, 215002, Jiangsu, China
| | - Ningxun Cui
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No.303 Jing De Road, Gusu District, Suzhou, 215002, Jiangsu, China
| | - Lu Jiang
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No.303 Jing De Road, Gusu District, Suzhou, 215002, Jiangsu, China
| | - Xiaomei Dai
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No.303 Jing De Road, Gusu District, Suzhou, 215002, Jiangsu, China
| | - Weiqing Chen
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No.303 Jing De Road, Gusu District, Suzhou, 215002, Jiangsu, China
| | - Xiaozhong Li
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No.303 Jing De Road, Gusu District, Suzhou, 215002, Jiangsu, China.
| |
Collapse
|
16
|
Zhao L, Ding JY, Tao YL, Zhu K, Chen G. Detection of Epstein-Barr virus infection in thymic epithelial tumors by nested PCR and Epstein-Barr-encoded RNA ISH. Infect Agent Cancer 2023; 18:37. [PMID: 37296417 DOI: 10.1186/s13027-023-00497-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 03/14/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is well known to be associated with a lot of tumors, including lymphoma, nasopharyngeal carcinoma, EBV-associated gastric carcinoma, and some other carcinomas with similar lymphoepithelioma-like features. However, the association between EBV and thymic epithelial tumors (TETs) is inconclusive as reports in this regard are not entirely consistent and the methods employed are of different sensitivity and specificity. The geographical difference of the patients is also one of the reasons for the different points of view. METHODS In our study, we examined 72 thymomas, including 3 cases of type A thymomas, 27 cases of type AB, 6 cases of type B1, 26 cases of type B2 and 10 cases of type B3 thymomas, and 15 thymic carcinomas to detect the viral genome at both DNA and RNA levels. The genome DNA of fresh tissues was first screened by nested polymerase chain reaction (PCR), which could be regarded as the most sensitive method to detect small amounts of DNA. Then all the tissue blocks were further submitted for viral localization by Epstein-Barr-encoded RNA (EBER) ISH. Group parameters were assessed using the chi-square test at a significance level of p < 0.05. RESULTS Nested PCR results showed that none of type A, eight (29.6%) type AB, one (16.7%) type B1, fifteen (57.7%) type B2, and four (40.0%) type B3 were positive for EBV genome. However, none of them detected EBER expression except for one case of type B2 thymoma. Fourteen (93.3%) thymic carcinomas were positive for EBV by nested PCR, of which three displayed weak nuclear signals within the tumor cells by EBER ISH. CONCLUSIONS These results showed that nested PCR was a sensitive method for screening the EBV genome in thymic epithelial tumors. As the malignancy of thymoma increases, the rate of EBV infection became higher. Thymic carcinomas were well associated with the Epstein-Barr virus.There was significant association between the EBV infection rate and thymoma type (p < 0.05). We further analyzed the association between EBV infection and myasthenia gravis. However, it showed no significant difference(p = 0.2754), although the EBV infection rate was higher in the thymomas with myasthenia gravis.
Collapse
Affiliation(s)
- Li Zhao
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian-Yong Ding
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun-Lan Tao
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kun Zhu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gang Chen
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
17
|
Zhao X, Li K, Chen M, Liu L. Metabolic codependencies in the tumor microenvironment and gastric cancer: Difficulties and opportunities. Biomed Pharmacother 2023; 162:114601. [PMID: 36989719 DOI: 10.1016/j.biopha.2023.114601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Oncogenesis and the development of tumors affect metabolism throughout the body. Metabolic reprogramming (also known as metabolic remodeling) is a feature of malignant tumors that is driven by oncogenic changes in the cancer cells themselves as well as by cytokines in the tumor microenvironment. These include endothelial cells, matrix fibroblasts, immune cells, and malignant tumor cells. The heterogeneity of mutant clones is affected by the actions of other cells in the tumor and by metabolites and cytokines in the microenvironment. Metabolism can also influence immune cell phenotype and function. Metabolic reprogramming of cancer cells is the result of a convergence of both internal and external signals. The basal metabolic state is maintained by internal signaling, while external signaling fine-tunes the metabolic process based on metabolite availability and cellular needs. This paper reviews the metabolic characteristics of gastric cancer, focusing on the intrinsic and extrinsic mechanisms that drive cancer metabolism in the tumor microenvironment, and interactions between tumor cell metabolic changes and microenvironment metabolic changes. This information will be helpful for the individualized metabolic treatment of gastric cancers.
Collapse
|
18
|
Narita Y, Muro K. Updated Immunotherapy for Gastric Cancer. J Clin Med 2023; 12:jcm12072636. [PMID: 37048719 PMCID: PMC10094960 DOI: 10.3390/jcm12072636] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Gastric cancer treatments are evolving rapidly. For example, immune checkpoint inhibitors, especially those that target PD-1 or PD-L1, have long-term efficacy in a subset of gastric cancer patients, and are currently the first-line therapy. Immunotherapies approved for use in untreated gastric cancer patients include monotherapy and chemotherapy-immunotherapy combinations. Major clinical trials have reported efficacy and safety data suggesting that PD-L1 expression is important for regimen selection, although other biomarkers, clinicopathologic factors, and patient preference might also be relevant in other situations. Currently, several novel biomarkers and therapeutic strategies are being assessed, which might refine the current treatment paradigm. In this review, we describe the current treatment regimens for patients with gastric cancer and detail the approach we use for the selection of first-line immunotherapy regimens.
Collapse
Affiliation(s)
- Yukiya Narita
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya 464-8681, Japan
| | - Kei Muro
- Department of Clinical Oncology, Aichi Cancer Center Hospital, Nagoya 464-8681, Japan
| |
Collapse
|
19
|
Salnikov M, Prusinkiewicz MA, Lin S, Ghasemi F, Cecchini MJ, Mymryk JS. Tumor-Infiltrating T Cells in EBV-Associated Gastric Carcinomas Exhibit High Levels of Multiple Markers of Activation, Effector Gene Expression, and Exhaustion. Viruses 2023; 15:176. [PMID: 36680216 PMCID: PMC9860965 DOI: 10.3390/v15010176] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Epstein-Barr virus (EBV) is a gamma-herpesvirus associated with 10% of all gastric cancers (GCs) and 1.5% of all human cancers. EBV-associated GCs (EBVaGCs) are pathologically and clinically distinct entities from EBV-negative GCs (EBVnGCs), with EBVaGCs exhibiting differential molecular pathology, treatment response, and patient prognosis. However, the tumor immune landscape of EBVaGC has not been well explored. In this study, a systemic and comprehensive analysis of gene expression and immune landscape features was performed for both EBVaGC and EBVnGC. EBVaGCs exhibited many aspects of a T cell-inflamed phenotype, with greater T and NK cell infiltration, increased expression of immune checkpoint markers (BTLA, CD96, CTLA4, LAG3, PD1, TIGIT, and TIM3), and multiple T cell effector molecules in comparison with EBVnGCs. EBVaGCs also displayed a higher expression of anti-tumor immunity factors (PDL1, CD155, CEACAM1, galectin-9, and IDO1). Six EBV-encoded miRNAs (miR-BARTs 8-3p, 9-5p, 10-3p, 22, 5-5p, and 14-3p) were strongly negatively correlated with the expression of immune checkpoint receptors and multiple markers of anti-tumor immunity. These profound differences in the tumor immune landscape between EBVaGCs and EBVnGCs may help explain some of the observed differences in pathological and clinical outcomes, with an EBV-positive status possibly being a potential biomarker for the application of immunotherapy in GC.
Collapse
Affiliation(s)
- Mikhail Salnikov
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
| | - Martin A Prusinkiewicz
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
| | - Sherman Lin
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Farhad Ghasemi
- Department of General Surgery, Western University, London, ON N6A 3K7, Canada
| | - Matthew J Cecchini
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A 3K7, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
| | - Joe S Mymryk
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
- Department of Oncology, Western University, London, ON N6A 3K7, Canada
- London Regional Cancer Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Otolaryngology, Western University, London, ON N6A 5W9, Canada
| |
Collapse
|
20
|
Liang M, Wang X, Cai D, Guan W, Shen X. Tissue-resident memory T cells in gastrointestinal tumors: turning immune desert into immune oasis. Front Immunol 2023; 14:1119383. [PMID: 36969190 PMCID: PMC10033836 DOI: 10.3389/fimmu.2023.1119383] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Tissue-resident memory T cells (Trm) are a particular type of T cell subgroup, which stably reside in tissues and have been revealed to be the most abundant memory T cell population in various tissues. They can be activated in the local microenvironment by infection or tumor cells and rapidly clean them up to restore homeostasis of local immunity in gastrointestinal tissues. Emerging evidence has shown that tissue-resident memory T cells have great potential to be mucosal guardians against gastrointestinal tumors. Therefore, they are considered potential immune markers for immunotherapy of gastrointestinal tumors and potential extraction objects for cell therapy with essential prospects in clinical translational therapy. This paper systematically reviews the role of tissue-resident memory T cells in gastrointestinal tumors and looks to the future of their prospect in immunotherapy to provide a reference for clinical application.
Collapse
|
21
|
Iizasa H, Kartika AV, Fekadu S, Okada S, Onomura D, Wadi AFAA, Khatun MM, Moe TM, Nishikawa J, Yoshiyama H. Development of Epstein-Barr virus-associated gastric cancer: Infection, inflammation, and oncogenesis. World J Gastroenterol 2022; 28:6249-6257. [PMID: 36504553 PMCID: PMC9730441 DOI: 10.3748/wjg.v28.i44.6249] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/24/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Epstein-Barr virus (EBV)-associated gastric cancer (EBVaGC) cells originate from a single-cell clone infected with EBV. However, more than 95% of patients with gastric cancer have a history of Helicobacter pylori (H. pylori) infection, and H. pylori is a major causative agent of gastric cancer. Therefore, it has long been argued that H. pylori infection may affect the development of EBVaGC, a subtype of gastric cancer. Atrophic gastrointestinal inflammation, a symptom of H. pylori infection, is observed in the gastric mucosa of EBVaGC. Therefore, it remains unclear whether H. pylori infection is a cofactor for gastric carcinogenesis caused by EBV infection or whether H. pylori and EBV infections act independently on gastric cancer formation. It has been reported that EBV infection assists in the onco-genesis of gastric cancer caused by H. pylori infection. In contrast, several studies have reported that H. pylori infection accelerates tumorigenesis initiated by EBV infection. By reviewing both clinical epidemiological and experimental data, we reorganized the role of H. pylori and EBV infections in gastric cancer formation.
Collapse
Affiliation(s)
- Hisashi Iizasa
- Department of Microbiology, Shimane University Faculty of Medicine, Izumo 693-8501, Shimane, Japan
| | - Andy Visi Kartika
- Department of Microbiology, Shimane University Faculty of Medicine, Izumo 693-8501, Shimane, Japan
- Faculty of Medicine, Muslim University of Indonesia, Makassar 90231, Indonesia
| | - Sintayehu Fekadu
- Department of Microbiology, Shimane University Faculty of Medicine, Izumo 693-8501, Shimane, Japan
- Department of Medical Microbiology and Parasitology, Hawassa University, College of Medicine and Health Science, Hawassa 1560, Ethiopia
| | - Shunpei Okada
- Department of Microbiology, Shimane University Faculty of Medicine, Izumo 693-8501, Shimane, Japan
| | - Daichi Onomura
- Department of Microbiology, Shimane University Faculty of Medicine, Izumo 693-8501, Shimane, Japan
| | | | - Mosammat Mahmuda Khatun
- Department of Microbiology, Shimane University Faculty of Medicine, Izumo 693-8501, Shimane, Japan
| | - Thin Myat Moe
- Department of Microbiology, Shimane University Faculty of Medicine, Izumo 693-8501, Shimane, Japan
| | - Jun Nishikawa
- Faculty of Laboratory Science, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Hironori Yoshiyama
- Department of Microbiology, Shimane University Faculty of Medicine, Izumo 693-8501, Shimane, Japan
| |
Collapse
|
22
|
Shechter O, Sausen DG, Gallo ES, Dahari H, Borenstein R. Epstein-Barr Virus (EBV) Epithelial Associated Malignancies: Exploring Pathologies and Current Treatments. Int J Mol Sci 2022; 23:14389. [PMID: 36430864 PMCID: PMC9699474 DOI: 10.3390/ijms232214389] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Epstein-Barr virus (EBV) is one of eight known herpesviruses with the potential to infect humans. Globally, it is estimated that between 90-95% of the population has been infected with EBV. EBV is an oncogenic virus that has been strongly linked to various epithelial malignancies such as nasopharyngeal and gastric cancer. Recent evidence suggests a link between EBV and breast cancer. Additionally, there are other, rarer cancers with weaker evidence linking them to EBV. In this review, we discuss the currently known epithelial malignancies associated with EBV. Additionally, we discuss and establish which treatments and therapies are most recommended for each cancer associated with EBV.
Collapse
Affiliation(s)
- Oren Shechter
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Daniel G. Sausen
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Elisa S. Gallo
- Tel-Aviv Sourasky Medical Center, Division of Dermatology, Tel-Aviv 6423906, Israel
| | - Harel Dahari
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Ronen Borenstein
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
23
|
Deep learning model to predict Epstein-Barr virus associated gastric cancer in histology. Sci Rep 2022; 12:18466. [PMID: 36323712 PMCID: PMC9630260 DOI: 10.1038/s41598-022-22731-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/18/2022] [Indexed: 11/20/2022] Open
Abstract
The detection of Epstein-Barr virus (EBV) in gastric cancer patients is crucial for clinical decision making, as it is related with specific treatment responses and prognoses. Despite its importance, the limited medical resources preclude universal EBV testing. Herein, we propose a deep learning-based EBV prediction method from H&E-stained whole-slide images (WSI). Our model was developed using 319 H&E stained WSI (26 EBV positive; TCGA dataset) from the Cancer Genome Atlas, and 108 WSI (8 EBV positive; ISH dataset) from an independent institution. Our deep learning model, EBVNet consists of two sequential components: a tumor classifier and an EBV classifier. We visualized the learned representation by the classifiers using UMAP. We externally validated the model using 60 additional WSI (7 being EBV positive; HGH dataset). We compared the model's performance with those of four pathologists. EBVNet achieved an AUPRC of 0.65, whereas the four pathologists yielded a mean AUPRC of 0.41. Moreover, EBVNet achieved an negative predictive value, sensitivity, specificity, precision, and F1-score of 0.98, 0.86, 0.92, 0.60, and 0.71, respectively. Our proposed model is expected to contribute to prescreen patients for confirmatory testing, potentially to save test-related cost and labor.
Collapse
|
24
|
Zhang H, Zhao S, Cao Z. Impact of Epstein-Barr virus infection in patients with inflammatory bowel disease. Front Immunol 2022; 13:1001055. [PMID: 36389673 PMCID: PMC9651941 DOI: 10.3389/fimmu.2022.1001055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/07/2022] [Indexed: 08/10/2023] Open
Abstract
A high prevalence of Epstein-Barr virus (EBV) infection in patients with inflammatory bowel disease (IBD) has been reported in many case reports and studies; thus, the association between EBV and IBD has gained increasing attention. Patients with IBD are at an increased risk of opportunistic EBV infection owing to the common use of immunomodulators. EBV infection in IBD patients can cause various complications, including superimposed viral colitis, which is associated with chronicity, exacerbation, and poor prognosis of refractory IBD, and can induce progression to lymphoproliferative disorders, such as EBV-positive mucocutaneous ulcer (EBVMCU), lymphomatoid granulomatosis (LYG), hemophagocytic lymphohistiocytosis (HLH) and diffuse large B-cell lymphoma (DLBCL). It has been suggested to screen for EBV before initiating immunosuppressive therapy and monitor the status of EBV infection in patients with IBD, especially those who are EBV-seronegative and have a risk of primary EBV infection. Clinicians should also be careful of misdiagnosing IBD and EBV-associated lymphoproliferative diseases due to similarities in both clinical symptoms and endoscopic manifestations. Withdrawal of immunosuppressants has been shown to be an effective strategy to achieve remission of disease at the time of EBV diagnosis, but antiviral therapy remains controversial. The present review aims to describe the characteristics of the complications caused by EBV infection and generalize the recent research progress on and challenges caused by EBV infection in IBD patients. The literature for writing this review was collected from 'PubMed' research engine. The keywords 'inflammatory bowel disease and Epstein-Barr virus' or 'ulcerative colitis and Epstein-Barr virus' or 'Crohn's disease and Epstein-Barr virus' were used to collect the literature and relevant papers were collected to help writing this review.
Collapse
Affiliation(s)
| | | | - Zhijun Cao
- *Correspondence: Zhijun Cao, ; Shuliang Zhao,
| |
Collapse
|
25
|
Lei ZN, Teng QX, Tian Q, Chen W, Xie Y, Wu K, Zeng Q, Zeng L, Pan Y, Chen ZS, He Y. Signaling pathways and therapeutic interventions in gastric cancer. Signal Transduct Target Ther 2022; 7:358. [PMID: 36209270 PMCID: PMC9547882 DOI: 10.1038/s41392-022-01190-w] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/14/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Gastric cancer (GC) ranks fifth in global cancer diagnosis and fourth in cancer-related death. Despite tremendous progress in diagnosis and therapeutic strategies and significant improvements in patient survival, the low malignancy stage is relatively asymptomatic and many GC cases are diagnosed at advanced stages, which leads to unsatisfactory prognosis and high recurrence rates. With the recent advances in genome analysis, biomarkers have been identified that have clinical importance for GC diagnosis, treatment, and prognosis. Modern molecular classifications have uncovered the vital roles that signaling pathways, including EGFR/HER2, p53, PI3K, immune checkpoint pathways, and cell adhesion signaling molecules, play in GC tumorigenesis, progression, metastasis, and therapeutic responsiveness. These biomarkers and molecular classifications open the way for more precise diagnoses and treatments for GC patients. Nevertheless, the relative significance, temporal activation, interaction with GC risk factors, and crosstalk between these signaling pathways in GC are not well understood. Here, we review the regulatory roles of signaling pathways in GC potential biomarkers, and therapeutic targets with an emphasis on recent discoveries. Current therapies, including signaling-based and immunotherapies exploited in the past decade, and the development of treatment for GC, particularly the challenges in developing precision medications, are discussed. These advances provide a direction for the integration of clinical, molecular, and genomic profiles to improve GC diagnosis and treatments.
Collapse
Affiliation(s)
- Zi-Ning Lei
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qin Tian
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Yuhao Xie
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA
| | - Kaiming Wu
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Qianlin Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China
| | - Leli Zeng
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Yihang Pan
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
- Institute for Biotechnology, St. John's University, Queens, NY, 11439, USA.
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, 518107, Shenzhen, Guangdong, China.
| |
Collapse
|
26
|
Zhang YJ, Zhao LY, He X, Yao RF, Lu F, Lu BN, Pang ZR. CBXs-related prognostic gene signature correlates with immune microenvironment in gastric cancer. Aging (Albany NY) 2022; 14:6227-6254. [PMID: 35969177 PMCID: PMC9417237 DOI: 10.18632/aging.204214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/12/2022] [Indexed: 12/09/2022]
Abstract
Background: Chromobox (CBX) proteins are important Polycomb family proteins in the development of gastric cancer. Nonetheless, the relationship between CBXs and gastric cancer microenvironment remains unclear. Methods: Multiple databases were used for the analysis of CBXs expression and clinical value in gastric cancer patients. A Cox regression analysis was used to evaluate the prognostic importance of CBXs. Thereafter, regression analysis of LASSO Cox was used to construct the prognostic model. Spearman's correlation between risk score and immune infiltration was analyzed using the McP-counter algorithm. A predicted nomogram was developed to predict the overall survival of gastric cancer patients after 1, 2, and 3 years. Results: In contrast with normal tissues, mRNA and protein expression levels of CBX2/3 were significantly high in gastric cancer tissues, whereas those of CBX6/7 were low. CBXs significantly correlated with immune subtypes and molecular subtypes. A prognostic gene model based on five CBX genes (CBX1, CBX2, CBX3, CBX7, and CBX8) predicted the overall survival of gastric cancer patients. A significant correlation was noted between the risk score of the CBXs-related prognostic gene model and immune-cell infiltration. Low risk patients could achieve a better response to immune checkpoint inhibitors. A predictive nomogram constructed using the above five CBX genes revealed that overall survival rates over 1, 2, and 3 years could be reasonably predicted. Therefore, the roles of CBXs were associated with chromatin modifications and histone methylation, etc. Conclusion: In summary, we identified a prognostic CBXs model comprising five genes (CBX1, CBX2, CBX3, CBX7, and CBX8) for gastric cancer patients through bioinformatics analysis.
Collapse
Affiliation(s)
- Yin Jiang Zhang
- School of Pharmacy, Minzu University of China, Beijing, P.R. China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, P.R. China
| | - Lin Yi Zhao
- School of Pharmacy, Minzu University of China, Beijing, P.R. China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, P.R. China
| | - Xu He
- School of Pharmacy, Minzu University of China, Beijing, P.R. China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, P.R. China
| | - Rong Fei Yao
- School of Pharmacy, Minzu University of China, Beijing, P.R. China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, P.R. China
| | - Fan Lu
- School of Pharmacy, Minzu University of China, Beijing, P.R. China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, P.R. China
| | - Bi Nan Lu
- School of Pharmacy, Minzu University of China, Beijing, P.R. China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, P.R. China
| | - Zong Ran Pang
- School of Pharmacy, Minzu University of China, Beijing, P.R. China
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, P.R. China
| |
Collapse
|
27
|
High CHAF1A Expression Levels Are Positively-Correlated with PD-L1 Expression and Indicate Poor Prognosis in Gastric Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1323321. [PMID: 35911136 PMCID: PMC9325625 DOI: 10.1155/2022/1323321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/17/2022] [Indexed: 12/01/2022]
Abstract
Objective The aim of this study was to analyze the association between the expression of chromatin assembly factor 1 subunit A (CHAF1A) in gastric cancer (GC) and clinicopathological features, disease prognosis, and expression of programmed cell death-ligand 1 (PD-L1). Material and Methods. A total of 140 GC tissue specimens were collected between January 2013 and December 2017. CHAF1A expression in GC and paracancerous tissues was determined. Then, the associations between CHAF1A expression level in the collected tissues and clinicopathological features as well as PD-L1 expression level were investigated. Cox regression analyses were carried out to determine whether CHAF1A is an independent prognostic factor for GC. Finally, the association between CHAF1A expression levels and survival of the GC patients was investigated. Results A significantly higher level of CHAF1A expression in GC tissues was found compared to that in paracancerous tissues (p=0.042). CHAF1A expression level in GC tissues was found to be strongly associated with family history (p=0.005), smoking history (p=0.016), T stage (p=0.001), tumor marker AFP (p=0.017), tumor marker CEA (p=0.027), and PD-L1 expression (p=0.029). CHAF1A expression was also found to be positively correlated to PD-L1 expression (p=0.012). Moreover, high CHAF1A expression levels were found to lead to poor prognosis (p=0.019). Univariate and multivariate analyses all showed that CHAF1A was an independent poorer prognostic factor for gastric cancer (p=0.021, HR = 1.175, 95% CI: 1.090–2.890 for univariate analyses; p=0.014, HR = 2.191, 95% CI:1.170–4.105 for multivariate analyses). A high level of CHAF1A expression was thus found to be an independent risk factor for GC prognosis. Conclusion High CHAF1A expression is associated with poor GC prognosis and positively correlated to PD-L1 expression. Thus, CHAF1A expression level may be used as a novel biomarker for GC diagnosis.
Collapse
|
28
|
Zhang WT, Zhu GL, Xu WQ, Zhang W, Wang HZ, Wang YB, Li YX. Association of PD-1/PD-L1 expression and Epstein--Barr virus infection in patients with invasive breast cancer. Diagn Pathol 2022; 17:61. [PMID: 35842661 PMCID: PMC9287995 DOI: 10.1186/s13000-022-01234-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/19/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Causative factors of breast cancer include infections, such as Epstein-Barr virus (EBV) infection. The aim of this study was to analyze the clinicopathological features of EBV-positive (IBC) and determine if EBV affects programmed cell death receptor 1 (PD-1)/PD ligand 1 (PD-L1) expression in IBC, similar to other EBV-infected tumors with PD-L1/PD-1 expression. METHODS We collected 140 samples of IBC tissues and 25 samples of adjacent tissues. All patients were followed-up by telephone from the day of surgery to December 2020. Chromogenic in-situ hybridization was performed to evaluate EBV-encoded RNA (EBER). Immunohistochemistry was performed to evaluate PD-L1 and PD-1 expressions. The correlation between PD1/PDL1 expression and clinicopathological features was also analyzed. RESULTS EBER was detected in 57 of 140 (40.7%) IBC tissues and not detected in any adjacent tissue (P < 0.05). Clinicopathologic features of patients were consistent with EBV-associated IBC. EBV infection was correlated with the mass size, menopausal status, axillary lymph node metastasis, vascular invasion, Ki-67 index, clinical stage, and estrogen receptor and progesterone receptor expressions (all P < 0.05), but not with the histological type, invasive ductal carcinoma histological grade, or human epidermal growth factor receptor 2 (HER2) expression (all P > 0.05). The positive rate of PD-1/PD-L1 expression was higher in the EBV-positive group than in the EBV-negative group (P < 0.05). The Kaplan-Meier univariate survival analysis showed that EBV was associated with poor disease-free survival and overall survival in patients with IBC. PD-L1/PD-1 expression could predict a poor prognosis. CONCLUSIONS In this study, clinicopathologic characteristics of patients were consistent with EBV-infected IBC. Patients with EBV-positive breast cancer were more likely to have elevated PD-1/PDL-1 expression compared to those with EBV-negative breast cancer. This finding could serve as a basis to explore therapeutic targets, particularly immunotherapy, for patients with IBC.
Collapse
Affiliation(s)
- Wei-Tong Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Gui-Lu Zhu
- Department of Clinical Pathology, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, China
| | - Wu-Qin Xu
- Department of Clinical Pathology, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, China
| | - Wei Zhang
- Department of Clinical Pathology, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, China
| | - Hui-Zhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Ya-Bing Wang
- Breast Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, 241001, China.
| | - Yong-Xiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
29
|
Koustas E, Trifylli EM, Sarantis P, Papadopoulos N, Karapedi E, Aloizos G, Damaskos C, Garmpis N, Garmpi A, Papavassiliou KA, Karamouzis MV, Papavassiliou AG. Immunotherapy as a Therapeutic Strategy for Gastrointestinal Cancer-Current Treatment Options and Future Perspectives. Int J Mol Sci 2022; 23:6664. [PMID: 35743107 PMCID: PMC9224428 DOI: 10.3390/ijms23126664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal (GI) cancer constitutes a highly lethal entity among malignancies in the last decades and is still a major challenge for cancer therapeutic options. Despite the current combinational treatment strategies, including chemotherapy, surgery, radiotherapy, and targeted therapies, the survival rates remain notably low for patients with advanced disease. A better knowledge of the molecular mechanisms that influence tumor progression and the development of optimal therapeutic strategies for GI malignancies are urgently needed. Currently, the development and the assessment of the efficacy of immunotherapeutic agents in GI cancer are in the spotlight of several clinical trials. Thus, several new modalities and combinational treatments with other anti-neoplastic agents have been identified and evaluated for their efficiency in cancer management, including immune checkpoint inhibitors, adoptive cell transfer, chimeric antigen receptor (CAR)-T cell therapy, cancer vaccines, and/or combinations thereof. Understanding the interrelation among the tumor microenvironment, cancer progression, and immune resistance is pivotal for the optimal therapeutic management of all gastrointestinal solid tumors. This review will shed light on the recent advances and future directions of immunotherapy for malignant tumors of the GI system.
Collapse
Affiliation(s)
- Evangelos Koustas
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (E.-M.T.); (P.S.); (K.A.P.)
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece; (N.P.); (E.K.); (G.A.)
| | - Eleni-Myrto Trifylli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (E.-M.T.); (P.S.); (K.A.P.)
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece; (N.P.); (E.K.); (G.A.)
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (E.-M.T.); (P.S.); (K.A.P.)
| | - Nikolaos Papadopoulos
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece; (N.P.); (E.K.); (G.A.)
| | - Eleni Karapedi
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece; (N.P.); (E.K.); (G.A.)
| | - Georgios Aloizos
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece; (N.P.); (E.K.); (G.A.)
| | - Christos Damaskos
- ‘N.S. Christeas’ Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Renal Transplantation Unit, ‘Laiko’ General Hospital, 11527 Athens, Greece
| | - Nikolaos Garmpis
- Second Department of Propaedeutic Surgery, ‘Laiko’ General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Anna Garmpi
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Kostas A. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (E.-M.T.); (P.S.); (K.A.P.)
| | - Michalis V. Karamouzis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (E.-M.T.); (P.S.); (K.A.P.)
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.K.); (E.-M.T.); (P.S.); (K.A.P.)
| |
Collapse
|
30
|
Bacteria and tumor: Understanding the roles of bacteria in tumor genesis and immunology. Microbiol Res 2022; 261:127082. [PMID: 35660471 DOI: 10.1016/j.micres.2022.127082] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/08/2021] [Accepted: 05/26/2022] [Indexed: 02/05/2023]
Abstract
In the past, tumor and microbial infection were commonly regarded as independent diseases with few interrelations. The discovery of bacteria in tumor tissue changed the knowledge of bacteria-tumor relationship. Recently, more and more findings have demonstrated the significant effects of bacteria on the genesis, development and metastasis of tumor. Particularly, the influence of bacteria on tumor immunity is of great interest. Bacteria can inhibit the function of immune system through multiple mechanisms. On the other hand, some bacteria can also enhance the immune response and inhibit tumor progression. Understanding the bacteria-tumor interactions is of great importance for developing novel anticancer approaches. Herein, we aim to provide a comprehensive understanding of the tumor/tumor immunology, the biogenesis of bacteria in tumor and the relation of tumorigenesis with bacteria. In addition, the roles of bacteria in tumor immunology and the potential approaches to use bacteria for cancer therapy are discussed.
Collapse
|
31
|
Immunosuppressive Tumor Microenvironment and Immunotherapy of Epstein–Barr Virus-Associated Malignancies. Viruses 2022; 14:v14051017. [PMID: 35632758 PMCID: PMC9146158 DOI: 10.3390/v14051017] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023] Open
Abstract
The Epstein–Barr virus (EBV) can cause different types of cancer in human beings when the virus infects different cell types with various latent patterns. EBV shapes a distinct and immunosuppressive tumor microenvironment (TME) to its benefit by influencing and interacting with different components in the TME. Different EBV-associated malignancies adopt similar but slightly specific immunosuppressive mechanisms by encoding different EBV products to escape both innate and adaptive immune responses. Strategies reversing the immunosuppressive TME of EBV-associated malignancies have been under evaluation in clinical practice. As the interactions among EBV, tumor cells, and TME are intricate, in this review, we mainly discuss the epidemiology of EBV, the life cycle of EBV, the cellular and molecular composition of TME, and a landscape of different EBV-associated malignancies and immunotherapy by targeting the TME.
Collapse
|
32
|
Wang B, Du C, Li L, Xie Y, Hu C, Li Z, Zhu Y, Yuan Y, Liu X, Lu N, Xue L. New substituted molecular classifications of advanced gastric adenocarcinoma: characteristics and probable treatment strategies. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:50-59. [PMID: 39035211 PMCID: PMC11256717 DOI: 10.1016/j.jncc.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Gastric adenocarcinoma (GA) is a heterogeneous tumor, and the accurate classification of GA is important. Previous classifications are based on molecular analysis and have not focused on GA with the primitive enterocyte phenotype (GAPEP), a unique subtype with a poor prognosis and frequent liver metastases. New substituted molecular (SM) classifications based on immunohistochemistry (IHC) are needed. Methods According to the IHC staining results, we divided 582 cases into six types: mismatch repair deficient (dMMR), Epstein-Barr virus associated (EBVa), the primitive enterocyte phenotype (PEP), the epithelial mesenchymal transition (EMT) phenotype, not otherwise specified/P53 mutated (NOS/P53m) and not otherwise specified/P53 wild-type (NOS/P53w). We analyzed the clinicopathological features, the immune microenvironment (PD-L1, CD8) and expression of HER2 and VEGFR2 of those types. Results There were 31 (5.3%) cases of the dMMR type, 13 (2.2%) cases of the EBVa type, 44 (7.6%) cases of the PEP type, 122 (21.0%) cases of the EMT type, 127 (21.8%) cases of the NOS/P53m type and 245 (42.1%) cases of the NOS/P53w type. Patients with the dMMR type had the best survival (P < 0.001). Patients with the EBVa type were younger (P < 0.001) and had higher PD-L1 and CD8 expression (P < 0.001) than other patients. Patients with the EMT type exhibited poor differentiation and a higher rate of abdominal metastasis. Patients with the NOS/P53m and PEP types had the worst survival rates and the highest PD-L1/HER2/VEGFR2 expression levels among all patients (P < 0.001). Conclusion Different SM classifications have different clinicopathological features and expression patterns, which indicate the probable clinical treatment strategies for these subtypes.
Collapse
Affiliation(s)
- Bingzhi Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chunxia Du
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yibin Xie
- Department of Abdominal Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chunfang Hu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhuo Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yongjian Zhu
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yanling Yuan
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiuyun Liu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ning Lu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
33
|
Li Y, Zhou T, Cheng X, Li D, Zhao M, Zheng WV. microRNA-378a-3p regulates the progression of hepatocellular carcinoma by regulating PD-L1 and STAT3. Bioengineered 2022; 13:4730-4743. [PMID: 35184646 PMCID: PMC8973785 DOI: 10.1080/21655979.2022.2031408] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Programmed death ligand 1 (PD-L1) plays an essential role in the development or progression of hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) are small RNA molecules that regulate gene expression during normal and pathophysiological events. Here, we explored the functions and detailed mechanisms of miR-378a-3p and PD-L1 in HCC progression. First, miR-378a-3p was selected by analyzing miRNA levels in two HCC Gene Expression Omnibus datasets. We found that miR-378a-3p levels exhibited a downward trend in HCC and were negatively correlated with PD-L1 levels. Additionally, a dual luciferase assay predicted that miR-378a-3p directly targets PD-L1. Moreover, the transfection of miR-378a-3p mimics into Li-7 and HuH-7 cells effectively decreased the PD-L1 mRNA and protein expression levels, and inhibited Treg differentiation in co-culture models by modulating the expression levels of certain cytokines. Furthermore, the overexpression of miR-378a-3p hindered cell proliferation and migration but facilitated apoptosis by repressing STAT3 signaling in HCC cells. In conclusion, miR-378a-3p appears to inhibit HCC tumorigenesis by regulating PD-L1 and STAT3 levels. Thus, miR-378a-3p may be a potential target for HCC therapy.
Collapse
Affiliation(s)
- Yaqin Li
- Department of Infectious Disease, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Tao Zhou
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Xianyi Cheng
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Dezhi Li
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| | - Meng Zhao
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei V. Zheng
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong, P.R. China
| |
Collapse
|
34
|
Bin YL, Hu HS, Tian F, Wen ZH, Yang MF, Wu BH, Wang LS, Yao J, Li DF. Metabolic Reprogramming in Gastric Cancer: Trojan Horse Effect. Front Oncol 2022; 11:745209. [PMID: 35096565 PMCID: PMC8790521 DOI: 10.3389/fonc.2021.745209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/12/2021] [Indexed: 12/24/2022] Open
Abstract
Worldwide, gastric cancer (GC) represents the fifth most common cancer for incidence and the third leading cause of death in developed countries. Despite the development of combination chemotherapies, the survival rates of GC patients remain unsatisfactory. The reprogramming of energy metabolism is a hallmark of cancer, especially increased dependence on aerobic glycolysis. In the present review, we summarized current evidence on how metabolic reprogramming in GC targets the tumor microenvironment, modulates metabolic networks and overcomes drug resistance. Preclinical and clinical studies on the combination of metabolic reprogramming targeted agents and conventional chemotherapeutics or molecularly targeted treatments [including vascular endothelial growth factor receptor (VEGFR) and HER2] and the value of biomarkers are examined. This deeper understanding of the molecular mechanisms underlying successful pharmacological combinations is crucial in finding the best-personalized treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Yu-Ling Bin
- Department of Rheumatology and Immunology, ZhuZhou Central Hospital, Zhuzhou, China
| | - Hong-Sai Hu
- Department of Gastroenterology, ZhuZhou Central Hospital, Zhuzhou, China
| | - Feng Tian
- Department of Rheumatology and Immunology, ZhuZhou Central Hospital, Zhuzhou, China
| | - Zhen-Hua Wen
- Department of Rheumatology and Immunology, ZhuZhou Central Hospital, Zhuzhou, China
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People's Hospital, Shenzhen, China
| | - Ben-Hua Wu
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| |
Collapse
|
35
|
Kinases and therapeutics in pathogen mediated gastric cancer. Mol Biol Rep 2022; 49:2519-2530. [PMID: 35031925 DOI: 10.1007/s11033-021-07063-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/08/2021] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Many pathogens have coexisted with humans for millennia and can cause chronic inflammation which is the cause of gastritis. Gastric cancer (GC) is associated with 8.8% of cancer related deaths, making it one of the leading causes of cancer related deaths worldwide. This review is intended to give brief information about Helicobacter pylori (H. pylori), Epstein-Barr virus (EBV), human cytomegalovirus (HCMV) role in GC and associated kinases. These organisms can trigger multiple cellular pathways aiming for unnatural cellular proliferation, apoptosis, migration and inflammatory response. Kinases also can activate and deactivate the signalling leading to aforementioned pathways. Therefore, studying kinases is inevitable. MATERIAL AND METHODS This review is the comprehensive collection of information from different data sources such as journals, book, book chapters and verified online information. CONCLUSION Kinase amplifications could be used as diagnostic, prognostic, and predictive biomarkers in various cancer types. Hence targeting kinase and related signalling molecules could be considered as a potential approach to prevent cancer through these organisms. Here we summarize the brief information about the role of kinases, signalling and their therapeutics in GC concerning H. pylori, EBV and HCMV.
Collapse
|
36
|
Li M, Kaili D, Shi L. Biomarkers for response to immune checkpoint inhibitors in gastrointestinal cancers. World J Gastrointest Oncol 2022; 14:19-37. [PMID: 35116101 PMCID: PMC8790411 DOI: 10.4251/wjgo.v14.i1.19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/08/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal (GI) cancers account for a large proportion of cancer deaths worldwide and pose a major public health challenge. Immunotherapy is considered to be one of the prominent and successful approaches in cancer treatment in recent years. Among them, immune checkpoint inhibitor (ICI) therapy, has received widespread attention, and many clinical findings support the feasibility of ICIs, with sustained responses and significantly prolonged lifespan observed in a wide range of tumors. However, patients treated with ICIs have not fully benefited, and therefore, the identification and development of biomarkers for predicting ICI treatment response have received further attention and exploration. From tumor genome to molecular interactions in the tumor microenvironment, and further expanding to circulating biomarkers and patient characteristics, the exploration of biomarkers is evolving with high-throughput sequencing as well as bioinformatics. More large-scale prospective and specific studies are needed to explore biomarkers in GI cancers. In this review, we summarize the known biomarkers used in ICI therapy for GI tumors. In addition, some ICI biomarkers applied to other tumors are included to provide insights and further validation for GI tumors. Moreover, we present single-cell analysis and machine learning approaches that have emerged in recent years. Although there are no clear applications yet, it can be expected that these techniques will play an important role in the application of biomarker prediction.
Collapse
Affiliation(s)
- Meng Li
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Denis Kaili
- Department of Surgery, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, United States
| | - Lei Shi
- School of Life Sciences, Chongqing University, Chongqing 400044, China
| |
Collapse
|
37
|
You Y, Wang J, Wang Z. Programmed death 1 monoclonal antibody helped to treat mixed chimeric and reactivation of Epstein-Barr virus in a patient with adult-onset chronic active Epstein-Barr virus infection after allogeneic hematopoietic stem cell transplantation: A case report. Medicine (Baltimore) 2022; 101:e28542. [PMID: 35029211 PMCID: PMC8758036 DOI: 10.1097/md.0000000000028542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/21/2021] [Indexed: 01/05/2023] Open
Abstract
RATIONALE Systemic forms of chronic active Epstein-Barr virus infection (CAEBV) can predispose a patient to a protracted course of fulminant hemophagocytic lymphohistiocytosis, which has a poor prognosis. Epstein-Barr virus (EBV) infection may persist even after theoretically curative hematopoietic stem cell transplantation. PATIENT CONCERNS A female patient with CAEBV underwent chemotherapy followed by allogeneic hematopoietic stem cell transplantation from her human leukocyte antigen-matched sister. Neutrophil and platelet engraftment was observed on day +12 and +10. Full donor chimerism (DC) was achieved on Day +21. DIAGNOSES From day +38, EBV-DNA in the blood was persistently positive, and DC declined. We attempted empirical interventions such as withdrawal of immune suppression, multiple donor lymphocyte infusion, stem cell boost, and interferon-α treatment. However, EBV-DNA copies continued to increase aggressively, whereas DC decreased rapidly and then reached a nadir of 63.27%. INTERVENTIONS Salvage programmed death 1 (PD-1) antibody treatment was administered as salvage therapy at +69 and +84. OUTCOMES EBV-DNA was negative on day +97 and was ultimately undetectable. Equivalently, a full and stable DC was obtained at +97. LESSONS We summarize a case of PD-1 antibody used as salvage treatment in a post-transplant patient with CAEBV, which was eradicated and full DC was obtained. This case suggests that the PD-1 antibody appears to be a promising option for fighting EBV and mixed DCs.
Collapse
|
38
|
Yanagi Y, Hara Y, Mabuchi S, Watanabe T, Sato Y, Kimura H, Murata T. PD-L1 upregulation by lytic induction of Epstein-Barr Virus. Virology 2022; 568:31-40. [DOI: 10.1016/j.virol.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
|
39
|
Guo Z, Zhou C, Zhou L, Wang Z, Zhu X, Mu X. Overexpression of DAPK1-mediated inhibition of IKKβ/CSN5/PD-L1 axis enhances natural killer cell killing ability and inhibits tumor immune evasion in gastric cancer. Cell Immunol 2021; 372:104469. [DOI: 10.1016/j.cellimm.2021.104469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022]
|
40
|
Zhang B, Yao K, Xu M, Wu J, Cheng C. Deep Learning Predicts EBV Status in Gastric Cancer Based on Spatial Patterns of Lymphocyte Infiltration. Cancers (Basel) 2021; 13:6002. [PMID: 34885112 PMCID: PMC8656870 DOI: 10.3390/cancers13236002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/28/2022] Open
Abstract
EBV infection occurs in around 10% of gastric cancer cases and represents a distinct subtype, characterized by a unique mutation profile, hypermethylation, and overexpression of PD-L1. Moreover, EBV positive gastric cancer tends to have higher immune infiltration and a better prognosis. EBV infection status in gastric cancer is most commonly determined using PCR and in situ hybridization, but such a method requires good nucleic acid preservation. Detection of EBV status with histopathology images may complement PCR and in situ hybridization as a first step of EBV infection assessment. Here, we developed a deep learning-based algorithm to directly predict EBV infection in gastric cancer from H&E stained histopathology slides. Our model can not only predict EBV infection in gastric cancers from tumor regions but also from normal regions with potential changes induced by adjacent EBV+ regions within each H&E slide. Furthermore, in cohorts with zero EBV abundances, a significant difference of immune infiltration between high and low EBV score samples was observed, consistent with the immune infiltration difference observed between EBV positive and negative samples. Therefore, we hypothesized that our model's prediction of EBV infection is partially driven by the spatial information of immune cell composition, which was supported by mostly positive local correlations between the EBV score and immune infiltration in both tumor and normal regions across all H&E slides. Finally, EBV scores calculated from our model were found to be significantly associated with prognosis. This framework can be readily applied to develop interpretable models for prediction of virus infection across cancers.
Collapse
Affiliation(s)
- Baoyi Zhang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77030, USA;
| | - Kevin Yao
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA;
| | - Min Xu
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
- Computer Vision Department, Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi 144534, United Arab Emirates
| | - Jia Wu
- Department of Imaging Physics, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
41
|
Kelly AD, Murugesan K, Kuang Z, Montesion M, Ross JS, Albacker LA, Huang RSP, Lin DI, Demirci U, Creeden J. Pan-cancer landscape of CD274 (PD-L1) rearrangements in 283,050 patient samples, its correlation with PD-L1 protein expression, and immunotherapy response. J Immunother Cancer 2021; 9:jitc-2021-003550. [PMID: 34815356 PMCID: PMC8611421 DOI: 10.1136/jitc-2021-003550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) benefit patients with multiple cancer types, however, additional predictive biomarkers of response are needed. CD274 (programmed cell death ligand-1, PD-L1) gene rearrangements are positively associated with PD-L1 expression and may confer benefit to ICI, thus a pan-cancer characterization of these alterations is needed. METHODS We analyzed 283,050 patient samples across multiple tumor types that underwent comprehensive genomic profiling for activating CD274 rearrangements and other alterations. The DAKO 22C3 Tumor Proportion Scoring (TPS) method was used for PD-L1 immunohistochemistry (IHC) testing in a small subset with available data (n=55,423). A retrospective deidentified real-world clinico-genomic database (CGDB) was examined for ICI treatment outcomes. We also report a detailed case of CD274-rearranged metastatic rectal adenocarcinoma. RESULTS We identified 145 samples with functional rearrangements in CD274. There were significant enrichments for PIK3CA, JAK2, PDCD1LG2, CREBBP, and PBRM1 co-mutations (ORs=2.1, 16.7, 17.8, 3.6, and 3.4, respectively, p<0.01). Genomic human papillomavirus (HPV)-16, Epstein-Barr virus, and mismatch repair genes also co-occurred (OR=6.2, 8.4, and 4.3, respectively, p<0.05). Median tumor mutational burden (TMB) was higher compared with CD274 wild-type samples (7.0 vs 3.5 mutations/Mb, p=1.7e-11), with disease-specific TMB enrichment in non-small cell lung, colorectal, unknown primary, and stomach cancers. PD-L1 IHC skewed toward positivity (N=39/43 samples with ≥1% positivity). Of eight patients from the CGDB, three remained on ICI treatment after 6 months. Separately, one patient with metastatic rectal adenocarcinoma experienced a pathologic complete response on chemoimmunotherapy. CONCLUSIONS CD274 gene rearrangements are associated with increased PD-L1 IHC scores, higher TMB, and potential clinical benefit in ICI-treated patients with cancer.
Collapse
Affiliation(s)
- Andrew D Kelly
- Department of Medical Oncology, Foundation Medicine Inc, Cambridge, Massachusetts, USA
| | - Karthikeyan Murugesan
- Department of Medical Oncology, Foundation Medicine Inc, Cambridge, Massachusetts, USA
| | - Zheng Kuang
- Department of Medical Oncology, Foundation Medicine Inc, Cambridge, Massachusetts, USA
| | - Meagan Montesion
- Department of Medical Oncology, Foundation Medicine Inc, Cambridge, Massachusetts, USA
| | - Jeffrey S Ross
- Department of Medical Oncology, Foundation Medicine Inc, Cambridge, Massachusetts, USA.,Department of Pathology and Urology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Lee A Albacker
- Department of Medical Oncology, Foundation Medicine Inc, Cambridge, Massachusetts, USA
| | - Richard S P Huang
- Department of Medical Oncology, Foundation Medicine Inc, Cambridge, Massachusetts, USA.,Foundation Medicine Inc, Morrisville, North Carolina, USA
| | - Douglas I Lin
- Department of Medical Oncology, Foundation Medicine Inc, Cambridge, Massachusetts, USA
| | - Umut Demirci
- Department of Medical Oncology, Memorial Ankara Hospital, Ankara, Turkey
| | - James Creeden
- Department of Medical Oncology, Foundation Medicine Inc, Cambridge, Massachusetts, USA
| |
Collapse
|
42
|
Zhang L, Xue L, Wu Y, Wu Q, Ren H, Song X. Exosomes loaded with programmed death ligand-1 promote tumor growth by immunosuppression in osteosarcoma. Bioengineered 2021; 12:9520-9530. [PMID: 34699324 PMCID: PMC8810114 DOI: 10.1080/21655979.2021.1996509] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Osteosarcoma (OS) is a malignant tumor commonly observed in adolescents, who experience relapse and metastasis (30% of the total cases). Its progression is attributed to immune escape mediated by immune checkpoints. However, the intercellular connection between tumor cells and T cells remain unclear. This study was conducted to explore the effects of PD-L1-loaded exosomes on the tumor growth of OS. The exosomes were extracted from cells and tissues through ultracentrifugation. IFN-γ production was determined to evaluate the activity of Jurkat cells. The in vivo growth of OS cells was examined using a C3H xenograft model in mice, tumor volumes were monitored, and the proportion of CD3 + T cells in tumor tissues was detected. Results revealed that PD-L1 was significantly upregulated in the OS cell lines. MG63 and Saos-2 cells were the most abundant in PD-L1, so they were selected as investigation targets. PD-L1 was found to be also highly expressed in the exosomes isolated from MG63 and Saos-2 cells. The exosomes elicited significant inhibitory effects on IFN-γ secretion in Jurkat cells, which were abolished by the PD-L1 antibody or siRNAs. The in vivo growth of C3H cells was significantly facilitated by the overexpression of mPD-L1 or by the administration of mPD-L1-overloaded exosomes. The infiltration of CD3 + T cells was also decreased. The exosomes extracted from clinical PD-L1-positive OS tissues showed a promising inhibitory property against activated T cells. Therefore, PD-L1-loaded exosomes extracted from OS cells aggravated OS progression by suppressing T cell activities.
Collapse
Affiliation(s)
- Lei Zhang
- Oncology Department, The second hospital of Shanxi Medical University, China
| | - Lili Xue
- Oncology Department, The second hospital of Shanxi Medical University, China
| | - Yanjuan Wu
- Cardio-Thoracic Surgery, The second hospital of Shanxi Medical University, China
| | - Qilong Wu
- Oncology Department, The second hospital of Shanxi Medical University, China
| | - Hongwei Ren
- Oncology Department, The second hospital of Shanxi Medical University, China
| | - Xiang Song
- Oncology Department, The second hospital of Shanxi Medical University, China
| |
Collapse
|
43
|
Kouzu K, Tsujimoto H, Kishi Y, Ueno H, Shinomiya N. Role of Microbial Infection-Induced Inflammation in the Development of Gastrointestinal Cancers. MEDICINES 2021; 8:medicines8080045. [PMID: 34436224 PMCID: PMC8400127 DOI: 10.3390/medicines8080045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022]
Abstract
There has been increasing evidence that a local inflammatory response stimulates tumor cells to acquire metastatic potential, and the concept of inflammatory oncotaxis has been spreading in recent years. However, the interaction between microbial inflammation and the development of gastrointestinal cancer is still unclear. This review summarizes the present knowledge on the role of microbial inflammation in the development of gastrointestinal cancers from the perspective of molecular biological findings. Chronic inflammation caused by bacterial infection is known to induce cancers as exemplified by Helicobacter pylori, which is associated with the development of gastric cancer via the activation of the TLR4 pathway by bacterial lipopolysaccharide followed by cancer growth through CagA-MET signaling. In addition, the development of inflammatory bowel diseases has been known to become a risk factor for colorectal cancers, where inflammation caused by certain bacterial infections plays a key role. It is also known that the cancer microenvironment is associated with cancer growth. Moreover, infectious complication after surgery for gastrointestinal cancers may promote tumor progression via the stimulation of pathogen-associated molecular patterns and various inflammatory mediators secreted by immunocytes. Further research on the link between microbial inflammation and cancer progression is needed to drive a paradigm shift in cancer treatment.
Collapse
Affiliation(s)
- Keita Kouzu
- Department of Surgery, National Defense Medical College, Saitama 359-0042, Japan; (K.K.); (Y.K.); (H.U.)
| | - Hironori Tsujimoto
- Department of Surgery, National Defense Medical College, Saitama 359-0042, Japan; (K.K.); (Y.K.); (H.U.)
- Correspondence: ; Tel.: +81-4-2995-1637
| | - Yoji Kishi
- Department of Surgery, National Defense Medical College, Saitama 359-0042, Japan; (K.K.); (Y.K.); (H.U.)
| | - Hideki Ueno
- Department of Surgery, National Defense Medical College, Saitama 359-0042, Japan; (K.K.); (Y.K.); (H.U.)
| | | |
Collapse
|
44
|
Dai YH, Wang YF, Shen PC, Lo CH, Yang JF, Lin CS, Chao HL, Huang WY. Radiosensitivity index emerges as a potential biomarker for combined radiotherapy and immunotherapy. NPJ Genom Med 2021; 6:40. [PMID: 34078917 PMCID: PMC8172905 DOI: 10.1038/s41525-021-00200-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
In the era of immunotherapy, there lacks of a reliable genomic predictor to identify optimal patient populations in combined radiotherapy and immunotherapy (CRI). The purpose of this study is to investigate whether genomic scores defining radiosensitivity are associated with immune response. Genomic data from Merged Microarray-Acquired dataset (MMD) were established and the Cancer Genome Atlas (TCGA) were obtained. Based on rank-based regression model including 10 genes, radiosensitivity index (RSI) was calculated. A total of 12832 primary tumours across 11 major cancer types were analysed for the association with DNA repair, cellular stemness, macrophage polarisation, and immune subtypes. Additional 585 metastatic tissues were extracted from MET500. RSI was stratified into RSI-Low and RSI-High by a cutpoint of 0.46. Proteomic differential analysis was used to identify significant proteins according to RSI categories. Gene Set Variance Analysis (GSVA) was applied to measure the genomic pathway activity (18 genes for T-cell inflamed activity). Kaplan-Meier analysis was performed for survival analysis. RSI was significantly associated with homologous DNA repair, cancer stemness and immune-related molecular features. Lower RSI was associated with higher fraction of M1 macrophage. Differential proteomic analysis identified significantly higher TAP2 expression in RSI-Low colorectal tumours. In the TCGA cohort, dominant interferon-γ (IFN-γ) response was characterised by low RSI and predicted better response to programmed cell death 1 (PD-1) blockade. In conclusion, in addition to radiation response, our study identified RSI to be associated with various immune-related features and predicted response to PD-1 blockade, thus, highlighting its potential as a candidate biomarker for CRI.
Collapse
Affiliation(s)
- Yang-Hong Dai
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ying-Fu Wang
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Po-Chien Shen
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Hsiang Lo
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jen-Fu Yang
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Shu Lin
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsing-Lung Chao
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wen-Yen Huang
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan. .,Instititue of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
45
|
Liang Y, Liu Y, Zhang Q, Zhang H, Du J. Tumor-derived extracellular vesicles containing microRNA-1290 promote immune escape of cancer cells through the Grhl2/ZEB1/PD-L1 axis in gastric cancer. Transl Res 2021; 231:102-112. [PMID: 33321257 DOI: 10.1016/j.trsl.2020.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022]
Abstract
Gastric cancer (GC) is a highly prevalent malignancy featured by dismal oncological outcomes. Accumulating pieces of evidence have consensus over the therapeutic significance of extracellular vesicles (EVs) and its role in carcinogenesis. Here, we planned to uncover EVs' role in GC by shuttling microRNA-1290 (miR-1290) and to identify the possible molecular mechanism associated with Grhl2, PD-L1, and ZEB1. Grhl2 was under-expressed in GC tissues, exhibiting a negative correlation with PD-L1 expression. In addition, Grhl2 promoted T cell proliferation by down-regulating PD-L1 via inhibiting ZEB1, while miR-1290 was found to negatively regulate Grhl2. EVs were also isolated from GC cells or normal gastric epithelial cells and identified with the presence of EV markers. miR-1290 expression was determined to be enriched in the EVs derived from GC cells and observed to promote the suppressive action of GC cells on T cell activation by up-regulating PD-L1 via the Grhl2/ZEB1 pathway in the co-culture system of GC cells with or without treatment of EVs with T cells. Moreover, we also developed a mouse model of GC and injected the EVs derived from miR-1290-inhibitor-treated GC cells into the tumor-bearing mice for further validation of mechanism in vivo. Intriguingly, the pivotal role of EVs-shuttled miR-1290 as an oncomiR was demonstrated in vivo. Collectively, we found that miR-1290 in EVs secreted from GC cells contributed to immune escape through the Grhl2/ZEB1/PD-L1 axis.
Collapse
Affiliation(s)
- Yuan Liang
- Medical Oncology Department of Thoracic Cancer(2), Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, PR China
| | - Yang Liu
- Department of Pathology, College of Basic Medical Science and The First Affiliated Hospital, China Medical University, Shenyang 110122, PR China
| | - Qingfu Zhang
- Department of Pathology, College of Basic Medical Science and The First Affiliated Hospital, China Medical University, Shenyang 110122, PR China
| | - Heng Zhang
- Department of Pathology, College of Basic Medical Science and The First Affiliated Hospital, China Medical University, Shenyang 110122, PR China
| | - Jiang Du
- Department of Pathology, College of Basic Medical Science and The First Affiliated Hospital, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
46
|
Murata T. Human Herpesvirus and the Immune Checkpoint PD-1/PD-L1 Pathway: Disorders and Strategies for Survival. Microorganisms 2021; 9:microorganisms9040778. [PMID: 33917804 PMCID: PMC8068157 DOI: 10.3390/microorganisms9040778] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 12/28/2022] Open
Abstract
The immune system has evolved as a complex and efficient means of coping with extrinsic materials, such as pathogens and toxins, as well as intrinsic abnormalities, such as cancers. Although rapid and timely activation of the immune system is obviously important, regulated downregulation of the system is almost as significant as activation to prevent runaway immunity, such as allergies and hypercytokinemia. Therefore, the immune checkpoint programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway is beneficial for the host. On the other hand, pathogens have evolved to evade host immunity by taking advantage of the PD-1/PD-L1 pathway. This review is focused on human herpesviruses, such as herpes simplex virus (HSV), cytomegalovirus (CMV), and Epstein-Barr virus (EBV), which cause various types of disorders, and their relationships with the PD-1/PD-L1 pathway. Understanding such relationships will be useful for developing preventative and therapeutic methods for disorders caused by herpesviruses.
Collapse
Affiliation(s)
- Takayuki Murata
- Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| |
Collapse
|
47
|
Li X, Zhang W. Expression of PD-L1 in EBV-associated malignancies. Int Immunopharmacol 2021; 95:107553. [PMID: 33765613 DOI: 10.1016/j.intimp.2021.107553] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/22/2021] [Accepted: 02/28/2021] [Indexed: 02/06/2023]
Abstract
Epstein-Barr virus infection is closely related to the occurrence and development of a variety of malignant tumors. Tumor immunotherapy has been combined with modern biological high-tech technology, and has become the fourth cancer treatment mode after surgery, chemotherapy and radiotherapy. In 2013, immunotherapy was named the first of ten scientific breakthroughs by science. It aims to control and destroy tumor cells by stimulating and enhancing autoimmune function. In recent years, immune checkpoint inhibitors (ICIs) targeting PD-L1 have become a research hotspot in the field of cancer. Recent studies have shown that EBV infection can upregulate PD-L1 through complex mechanisms. Further understanding of these mechanisms and prevention of hyperprogressive disease (HPD) can make PD-L1 immune checkpoint inhibitors an effective way of immunotherapy for EBV related malignant tumors.
Collapse
Affiliation(s)
- Xiaoxu Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China; Clinical Laboratory, The Second People's Hospital of Wuhu City, Wuhu 241001, Anhui, People's Republic of China
| | - Wenling Zhang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
48
|
Abstract
Purpose of Review Virus-associated malignancies are a global health burden, constituting 10-12% of cancers worldwide. As these tumors express foreign viral antigens that can elicit specific T cell responses, virus-directed immunotherapies are a promising treatment strategy. Specifically, adoptive cell transfer of virus-specific T cells (VSTs) has demonstrated the potential to eradicate cancers associated with certain viruses. Recent Findings Initial studies in 1990s first showed that VSTs specific for the Epstein-Barr virus (EBVSTs) can induce complete remissions in patients with post-transplant lymphoproliferative disease. Since then, studies have validated the specificity and safety of VSTs in multiple lymphomas and solid malignancies. However, challenges remain to optimize this platform for widespread use, including enhancing potency and persistence, overcoming the immunosuppressive tumor microenvironment, and streamlining manufacturing processes that comply with regulatory requirements. Summary This review focuses on data from clinical trials evaluating VSTs directed against three viruses (EBV, HPV and MCPyV), as well as recent preclinical and clinical advances, and potential future directions.
Collapse
|
49
|
Khoshghamat N, Jafari N, Moetamani-Ahmadi M, Khalili-Tanha G, Khajavi Rad MH, Sahebdel S, Khalili-Tanha N, Soleimanpour S, Khazaei M, Hassanian SM, Ferns GA, Avan A. Programmed cell death 1 as prognostic marker and therapeutic target in upper gastrointestinal cancers. Pathol Res Pract 2021; 220:153390. [PMID: 33640713 DOI: 10.1016/j.prp.2021.153390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/28/2022]
Abstract
Gastrointestinal (GIs) cancers are among the most common causes of cancer related death, and hence the importance for the identification of novel prognostic/predictive biomarkers for detection of patients at an early stage, and for using these to identify novel targeted therapies to improve the efficacy of existing chemotherapeutic regimens. Programmed cell death 1 has been reported as a potential target in several malignancies, and targeting agents are being developed, some already approved by FDA, such as: pembrolizumab, Atezolizumab, Nivolumab. Pembrolizumab that have been approved for the treatment of metastatic non-small cell lung cancer. Here we provide an overview of the mechanism of action PD-1/PD-L1, prognostic value and current progress in clinical trials using PD-1/PD-L1 inhibitors, and the resistant mechanisms at underlie the inhibitory effect of these agents in the treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Negar Khoshghamat
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91387-35499, Iran
| | - Niloufar Jafari
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ghazaleh Khalili-Tanha
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Saeed Sahebdel
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Khalili-Tanha
- Veterinary Medicine Student, Faculty of Veterinary Medicine, Ferdowsi University Mashhad, Iran
| | - Saman Soleimanpour
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, UK
| | - Amir Avan
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
50
|
Luo Y, Liu Y, Wang C, Gan R. Signaling pathways of EBV-induced oncogenesis. Cancer Cell Int 2021; 21:93. [PMID: 33549103 PMCID: PMC7868022 DOI: 10.1186/s12935-021-01793-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is closely associated with multiple human cancers. EBV-associated cancers are mainly lymphomas derived from B cells and T cells (Hodgkin lymphoma, Burkitt lymphoma, NK/T-cell lymphoma, and posttransplant lymphoproliferative disorder (PTLD)) and carcinomas derived from epithelial cells (nasopharyngeal carcinoma and gastric carcinoma). EBV can induce oncogenesis in its host cell by activating various signaling pathways, such as nuclear factor-κB (NF-κB), phosphoinositide-3-kinase/protein kinase B (PI3K/AKT), Janus kinase/signal transducer and transcription activator (JAK/STAT), mitogen-activated protein kinase (MAPK), transforming growth factor-β (TGF-β), and Wnt/β-catenin, which are regulated by EBV-encoded proteins and noncoding RNA. In this review, we focus on the oncogenic roles of EBV that are mediated through the aforementioned signaling pathways.
Collapse
Affiliation(s)
- Yin Luo
- Cancer Research Institute, Medical School, University of South China, Chang Sheng Xi Avenue 28, Hengyang, 421001, Hunan, People's Republic of China
| | - Yitong Liu
- Cancer Research Institute, Medical School, University of South China, Chang Sheng Xi Avenue 28, Hengyang, 421001, Hunan, People's Republic of China
| | - Chengkun Wang
- Cancer Research Institute, Medical School, University of South China, Chang Sheng Xi Avenue 28, Hengyang, 421001, Hunan, People's Republic of China.
| | - Runliang Gan
- Cancer Research Institute, Medical School, University of South China, Chang Sheng Xi Avenue 28, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|