1
|
Todhunter ME, Jubair S, Verma R, Saqe R, Shen K, Duffy B. Artificial intelligence and machine learning applications for cultured meat. Front Artif Intell 2024; 7:1424012. [PMID: 39381621 PMCID: PMC11460582 DOI: 10.3389/frai.2024.1424012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/21/2024] [Indexed: 10/10/2024] Open
Abstract
Cultured meat has the potential to provide a complementary meat industry with reduced environmental, ethical, and health impacts. However, major technological challenges remain which require time-and resource-intensive research and development efforts. Machine learning has the potential to accelerate cultured meat technology by streamlining experiments, predicting optimal results, and reducing experimentation time and resources. However, the use of machine learning in cultured meat is in its infancy. This review covers the work available to date on the use of machine learning in cultured meat and explores future possibilities. We address four major areas of cultured meat research and development: establishing cell lines, cell culture media design, microscopy and image analysis, and bioprocessing and food processing optimization. In addition, we have included a survey of datasets relevant to CM research. This review aims to provide the foundation necessary for both cultured meat and machine learning scientists to identify research opportunities at the intersection between cultured meat and machine learning.
Collapse
Affiliation(s)
| | - Sheikh Jubair
- Alberta Machine Intelligence Institute, Edmonton, AB, Canada
| | - Ruchika Verma
- Alberta Machine Intelligence Institute, Edmonton, AB, Canada
| | - Rikard Saqe
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Kevin Shen
- Department of Mathematics, University of Waterloo, Waterloo, ON, Canada
| | | |
Collapse
|
2
|
Walsh CJ, Rhody N, Main KL, Restivo J, Tarnecki AM. Advances in development of long-term embryonic stem cell-like cultures from a marine fish, Sciaenops ocellatus. Curr Res Food Sci 2024; 9:100841. [PMID: 39319109 PMCID: PMC11421352 DOI: 10.1016/j.crfs.2024.100841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/29/2024] [Accepted: 09/07/2024] [Indexed: 09/26/2024] Open
Abstract
The overall goal of our research was to develop an embryonic stem cell line from red drum, Sciaenops ocellatus. These experiments were conducted to support future production of cell-based cultivated seafood products as a means towards meeting the growing global demand for sustainable seafood. Our hypothesis was that characteristics of embryonic stem cells, such as high proliferation and pluripotency, would facilitate development of a continuous cell line that could eventually be directed toward a muscle cell phenotype. We isolated embryonic stem cells from fertilized red drum eggs at the blastomere stage. These cells were seeded into culture wells at 50,000 cells/well. We tested various media, supplements, growth factors, and plate coatings to achieve growth of red drum embryonic cells. Cells at isolation reacted positively with the stem cell markers, OCT4, Nanog, and Sox2. Our cells had a fibroblast-like appearance and were maintained in culture for more than 43 days before senescence. Over time, most of the cultures showed extensive differentiation or died. The establishment of in vitro cultures of embryonic stem cell-like cells derived from red drum embryos represents progress towards developing cultured seafood products from marine fish.
Collapse
Affiliation(s)
- Catherine J Walsh
- Marine Immunology Program, Mote Marine Laboratory, Sarasota, FL, 34236, USA
| | - Nicole Rhody
- Mote Aquaculture Research Park, Sarasota, FL, 34240, USA
| | - Kevan L Main
- Mote Aquaculture Research Park, Sarasota, FL, 34250, USA
| | - Jessica Restivo
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Andrea M Tarnecki
- Marine Immunology Program, Mote Marine Laboratory, Sarasota, FL, 34236, USA
- Auburn University Shellfish Lab, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Dauphin Island, AL, USA
| |
Collapse
|
3
|
Bomkamp C, Musgrove L, Marques DMC, Fernando GF, Ferreira FC, Specht EA. Differentiation and Maturation of Muscle and Fat Cells in Cultivated Seafood: Lessons from Developmental Biology. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1-29. [PMID: 36374393 PMCID: PMC9931865 DOI: 10.1007/s10126-022-10174-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Cultivated meat, also known as cultured or cell-based meat, is meat produced directly from cultured animal cells rather than from a whole animal. Cultivated meat and seafood have been proposed as a means of mitigating the substantial harms associated with current production methods, including damage to the environment, antibiotic resistance, food security challenges, poor animal welfare, and-in the case of seafood-overfishing and ecological damage associated with fishing and aquaculture. Because biomedical tissue engineering research, from which cultivated meat draws a great deal of inspiration, has thus far been conducted almost exclusively in mammals, cultivated seafood suffers from a lack of established protocols for producing complex tissues in vitro. At the same time, fish such as the zebrafish Danio rerio have been widely used as model organisms in developmental biology. Therefore, many of the mechanisms and signaling pathways involved in the formation of muscle, fat, and other relevant tissue are relatively well understood for this species. The same processes are understood to a lesser degree in aquatic invertebrates. This review discusses the differentiation and maturation of meat-relevant cell types in aquatic species and makes recommendations for future research aimed at recapitulating these processes to produce cultivated fish and shellfish.
Collapse
Affiliation(s)
- Claire Bomkamp
- Department of Science & Technology, The Good Food Institute, Washington, DC USA
| | - Lisa Musgrove
- University of the Sunshine Coast, Sippy Downs, Queensland Australia
| | - Diana M. C. Marques
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Gonçalo F. Fernando
- Department of Science & Technology, The Good Food Institute, Washington, DC USA
| | - Frederico C. Ferreira
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Elizabeth A. Specht
- Department of Science & Technology, The Good Food Institute, Washington, DC USA
| |
Collapse
|
4
|
Vergès-Castillo A, González-Vargas IA, Muñoz-Cueto JA, Martín-Robles ÁJ, Pendon C. Establishment and characterisation of single cell-derived embryonic stem cell lines from the gilthead seabream, Sparus aurata. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110626. [PMID: 34044158 DOI: 10.1016/j.cbpb.2021.110626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 04/16/2021] [Accepted: 05/21/2021] [Indexed: 12/27/2022]
Abstract
An important bottleneck in fish aquaculture research is the supply and maintenance of embryos, larvae, juvenile and adult specimens. In this context, cell lines represent alternative experimental models for in vitro studies that complement in vivo assays. This allows us to perform easier experimental design and sampling and avoid the sacrifice of animals. Embryonic stem (ES) cell lines have attracted increasing attention because they have the capability to proliferate indefinitely and could be differentiated into any cell type of the organism. To minimise cell heterogeneity and increase uniformity of in vitro studies results, in this manuscript we report the development and characterisation of two single cell-derived ES cell lines (monoclonal) from the morula stage embryos of the gilthead seabream, Sparus aurata, named as SAEC-A3 and SAEC-H7. Both cell lines have been passaged for over 100 times, indicating the establishment of long-term, immortalised ES cell cultures. Sequence analyses confirmed the seabream origin of the cell lines, and growth analyses evidenced their high viability and proliferating activity, particularly in culture medium supplemented with 10-15% fetal bovine serum and 22 °C. Both cell lines showed the ability to generate embryoid bodies and show different sensitivity and response to all-trans retinoic acid. The analysis of epithelial (col1α1) and neuronal (sox3) markers in differentiated cultures revealed that SAEC-A3 tended to differentiate towards epithelial-like cells whereas SAEC-H7 tended to differentiate towards neuronal-like cells. Both cell lines were efficiently transfected with pDsRed2-ER and/or pEGFP-N1 plasmids, indicating that they could represent useful biotechnological tools. Daily expression of pcna showed significant expression rhythms, with maximum levels of cell proliferation during the day-night transition. Currently, these cell lines are being successfully used as experimental models for the study of cellular metabolism, physiology and rhythms as well as for toxicological, pharmacological and gene expression analyses.
Collapse
Affiliation(s)
- A Vergès-Castillo
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real, Cádiz, Spain.
| | - I A González-Vargas
- Bioquímica y Biología Molecular, Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, Puerto Real, Cádiz, Spain; Departamento de Ciencias Naturales, Exactas y Estadística, Facultad de Ciencias, Universidad de Santiago de Cali, Cali, Colombia
| | - J A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real, Cádiz, Spain; INMAR Research Institute, Marine Campus of International Excellence (CEIMAR), Agrifood Campus of International Excellence (ceiA3), The European University of the Seas (SEA-EU), University of Cádiz, Puerto Real, Cádiz, Spain.
| | - Á J Martín-Robles
- Bioquímica y Biología Molecular, Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, Puerto Real, Cádiz, Spain; INMAR Research Institute, Marine Campus of International Excellence (CEIMAR), Agrifood Campus of International Excellence (ceiA3), The European University of the Seas (SEA-EU), University of Cádiz, Puerto Real, Cádiz, Spain.
| | - C Pendon
- Bioquímica y Biología Molecular, Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz, Puerto Real, Cádiz, Spain; INBIO, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, Cádiz, Spain.
| |
Collapse
|
5
|
Effects of Temperatures and Basal Media on Primary Culture of the Blastomeres Derived from the Embryos at Blastula Stage in Marine Medaka Oryzias dancena. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2018. [DOI: 10.12750/jet.2018.33.4.343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
6
|
Fan Z, Liu L, Huang X, Zhao Y, Zhou L, Wang D, Wei J. Establishment and growth responses of Nile tilapia embryonic stem-like cell lines under feeder-free condition. Dev Growth Differ 2017; 59:83-93. [PMID: 28230233 DOI: 10.1111/dgd.12341] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 01/10/2017] [Accepted: 01/17/2017] [Indexed: 01/02/2023]
Abstract
Embryonic stem (ES) cells provide an invaluable tool for molecular analysis of vertebrate development and a bridge linking genomic manipulations in vitro and functional analysis of target genes in vivo. Work towards fish ES cells so far has focused on zebrafish (Danio renio) and medaka (Oryzias latipes). Here we describe the derivation, pluripotency, differentiation and growth responses of ES cell lines from Nile tilapia (Oreochromis niloticus), a world-wide commercial farmed fish. These cell lines, designated as TES1-3, were initiated from blastomeres of Nile tilapia middle blastula embryos (MBE). One representative line, TES1, showed stable growth and phenotypic characteristics of ES cells over 200 days of culture with more than 59 passages under feeder-free conditions. They exhibited high alkaline phosphatase activity and expression of pluripotency genes including pou5f3 (the pou5f1/oct4 homologue), sox2, myc and klf4. In suspension culture together with retinoic acid treatment, TES1 cells formed embryoid bodies, which exhibited expression profile of differentiation genes characteristics of all three germ cell layers. Notably, PKH26-labeled TES1 cells introduced into Nile tilapia MBE could contribute to body compartment development and led to hatched chimera formation with an efficacy of 13%. These results suggest that TES1 cells have pluripotency and differentiation potential in vitro and in vivo. In the conditioned DMEM, all of the supplements including the fetal bovine serum, fish embryonic extract, fish serum, basic fibroblast growth factor and non-protein supplement combination 5N were mitogenic for TES1 cell growth. This study will promote ES-based biotechnology in commercial fish.
Collapse
Affiliation(s)
- Zhenhua Fan
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Linyan Liu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Xiaohuan Huang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Yang Zhao
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| | - Jing Wei
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Gao J, Wang X, Zhang Q. Evolutionary Conservation of pou5f3 Genomic Organization and Its Dynamic Distribution during Embryogenesis and in Adult Gonads in Japanese Flounder Paralichthys olivaceus. Int J Mol Sci 2017; 18:ijms18010231. [PMID: 28124980 PMCID: PMC5297860 DOI: 10.3390/ijms18010231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/09/2017] [Accepted: 01/17/2017] [Indexed: 01/06/2023] Open
Abstract
Octamer-binding transcription factor 4 (Oct4) is a member of POU (Pit-Oct-Unc) transcription factor family Class V that plays a crucial role in maintaining the pluripotency and self-renewal of stem cells. Though it has been deeply investigated in mammals, its lower vertebrate homologue, especially in the marine fish, is poorly studied. In this study, we isolated the full-length sequence of Paralichthys olivaceus pou5f3 (Popou5f3), and we found that it is homologous to mammalian Oct4. We identified two transcript variants with different lengths of 3′-untranslated regions (UTRs) generated by alternative polyadenylation (APA). Quantitative real-time RT-PCR (qRT-PCR), in situ hybridization (ISH) and immunohistochemistry (IHC) were implemented to characterize the spatial and temporal expression pattern of Popou5f3 during early development and in adult tissues. Our results show that Popou5f3 is maternally inherited, abundantly expressed at the blastula and early gastrula stages, then greatly diminishes at the end of gastrulation. It is hardly detectable from the heart-beating stage onward. We found that Popou5f3 expression is restricted to the adult gonads, and continuously expresses during oogenesis while its dynamics are downregulated during spermatogenesis. Additionally, numerous cis-regulatory elements (CRE) on both sides of the flanking regions show potential roles in regulating the expression of Popou5f3. Taken together, these findings could further our understanding of the functions and evolution of pou5f3 in lower vertebrates, and also provides fundamental information for stem cell tracing and genetic manipulation in Paralichthys olivaceus.
Collapse
Affiliation(s)
- Jinning Gao
- College of Marine Life Science, Ocean University of China, Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Qingdao 266003, China.
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Xubo Wang
- College of Marine Life Science, Ocean University of China, Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Qingdao 266003, China.
| | - Quanqi Zhang
- College of Marine Life Science, Ocean University of China, Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Qingdao 266003, China.
| |
Collapse
|
8
|
Lee D, Ryu JH, Lee ST, Nam YK, Kim DS, Gong SP. Identification of embryonic stem cell activities in an embryonic cell line derived from marine medaka (Oryzias dancena). FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1569-1576. [PMID: 26239820 DOI: 10.1007/s10695-015-0108-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 07/28/2015] [Indexed: 06/04/2023]
Abstract
This study was conducted to identify embryonic stem cell (ESC) activities of a long-term cultured embryonic cell line previously derived from blastula-stage Oryzias dancena embryos. Five sub-cell lines were established from the embryonic cell line via clonal expansion of single cells. ESC activities, including clonogenicity, alkaline phosphatase (AP) activity, and differentiation capacity, were examined in the five sub-cell lines. We observed both clonogenicity and AP activity in all five sub-cell lines, but the proportion of cells that exhibited both properties was significantly different among them. Even though we detected different formation rates and sizes of embryoid body (EB) among these cells, all lines were stably able to form EBs and further induction for differentiation showed their capability to differentiate into other cell types in a spontaneous manner. From this study, we determined that the embryonic cell lines examined possessed heterogeneous ESC activities and can be utilized as a marine model system for fish ESC-based research.
Collapse
Affiliation(s)
- Dongwook Lee
- Department of Fisheries Biology, Pukyong National University, Busan, 608-737, Korea
| | - Jun Hyung Ryu
- Department of Fisheries Biology, Pukyong National University, Busan, 608-737, Korea
| | - Seung Tae Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon, 200-701, Korea
| | - Yoon Kwon Nam
- Department of Fisheries Biology, Pukyong National University, Busan, 608-737, Korea
- Department of Marine Biomaterials and Aquaculture, Pukyong National University, Busan, 608-737, Korea
| | - Dong Soo Kim
- Department of Fisheries Biology, Pukyong National University, Busan, 608-737, Korea
- Department of Marine Biomaterials and Aquaculture, Pukyong National University, Busan, 608-737, Korea
| | - Seung Pyo Gong
- Department of Fisheries Biology, Pukyong National University, Busan, 608-737, Korea.
- Department of Marine Biomaterials and Aquaculture, Pukyong National University, Busan, 608-737, Korea.
| |
Collapse
|
9
|
Fan L, Jiang J, Gao J, Song H, Liu J, Yang L, Li Z, Chen Y, Zhang Q, Wang X. Identification and Characterization of a PRDM14 Homolog in Japanese Flounder (Paralichthys olivaceus). Int J Mol Sci 2015; 16:9097-118. [PMID: 25915026 PMCID: PMC4463580 DOI: 10.3390/ijms16059097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 11/27/2022] Open
Abstract
PRDM14 is a PR (PRDI-BF1-RIZ1 homologous) domain protein with six zinc fingers and essential roles in genome-wide epigenetic reprogramming. This protein is required for the establishment of germ cells and the maintenance of the embryonic stem cell ground state. In this study, we cloned the full-length cDNA and genomic DNA of the Paralichthys olivaceus prdm14 (Po-prdm14) gene and isolated the 5' regulatory region of Po-prdm14 by whole-genome sequencing. Peptide sequence alignment, gene structure analysis, and phylogenetic analysis revealed that Po-PRDM14 was homologous to mammalian PRDM14. Results of real-time quantitative polymerase chain reaction amplification (RT-qPCR) and in situ hybridization (ISH) in embryos demonstrated that Po-prdm14 was highly expressed between the morula and late gastrula stages, with its expression peaking in the early gastrula stage. Relatively low expression of Po-prdm14 was observed in the other developmental stages. ISH of gonadal tissues revealed that the transcripts were located in the nucleus of the oocytes in the ovaries but only in the spermatogonia and not the spermatocytes in the testes. We also presume that the Po-prdm14 transcription factor binding sites and their conserved binding region among vertebrates. The combined results suggest that Po-PRDM14 has a conserved function in teleosts and mammals.
Collapse
Affiliation(s)
- Lin Fan
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| | - Jiajun Jiang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| | - Jinning Gao
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| | - Huayu Song
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| | - Likun Yang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| | - Zan Li
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| | - Yan Chen
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding (Ocean University of China), Ministry of Education, Qingdao 266003, China.
| |
Collapse
|
10
|
Higaki S, Shimada M, Koyama Y, Fujioka Y, Sakai N, Takada T. Development and characterization of an embryonic cell line from endangered endemic cyprinid Honmoroko Gnathopogon caerulescens (Sauvage, 1883). In Vitro Cell Dev Biol Anim 2015; 51:763-8. [PMID: 25832766 DOI: 10.1007/s11626-015-9894-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/15/2015] [Indexed: 10/23/2022]
Abstract
Establishing a cell line from endemic species facilitates the cell biological research of these species in the laboratory. In this study, an epithelium-like cell line RME1 was established from the blastula-stage embryos of the critically endangered cyprinid Honmoroko Gnathopogon caerulescens, which is endemic to ancient Lake Biwa in Japan. To the best of our knowledge, this is the first embryonic cell line from an endangered fish species. This cell line is well adapted to grow at 28°C in the culture medium, which was successfully used for establishing testicular and ovarian cell lines of G. caerulescens, and has displayed stable growth over 60 passages since its initiation in June 2011. Although RME1 did not express the genes detected in blastula-stage embryos, such as oct4, sox2, nanog, and klf4, it showed a high euploidy rate (2n = 50; 67.2%) with normal diploid karyotype morphology, suggesting that RME1 retains the genomic organization of G. caerulescens and can prove to be a useful tool to investigate the unique properties of endangered endemic fishes at cellular level.
Collapse
Affiliation(s)
- Shogo Higaki
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan.
| | - Manami Shimada
- Laboratory of Cell Engineering, Graduate School of Life Sciences, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan.
| | - Yoshie Koyama
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan.
| | - Yasuhiro Fujioka
- Lake Biwa Museum, Oroshimo 1091, Kusatsu, Shiga, 525-0001, Japan.
| | - Noriyoshi Sakai
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan.
| | - Tatsuyuki Takada
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan. .,Laboratory of Cell Engineering, Graduate School of Life Sciences, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan. .,Laboratory of Cell Engineering, Department of Pharmaceutical Sciences, Ritsumeikan University, Nojihigashi 1-1-1, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
11
|
Ho SY, Goh CWP, Gan JY, Lee YS, Lam MKK, Hong N, Hong Y, Chan WK, Shu-Chien AC. Derivation and long-term culture of an embryonic stem cell-like line from zebrafish blastomeres under feeder-free condition. Zebrafish 2014; 11:407-20. [PMID: 24967707 PMCID: PMC4172385 DOI: 10.1089/zeb.2013.0879] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Existing zebrafish embryonic stem (ES) cell lines are derived and maintained using feeder layers. We describe here the derivation and long-term culture of an ES cell-like line derived from zebrafish blastomeres without the use of feeder cells. This line, designated as ZES1, has been maintained for more than 800 days in defined Dulbecco's modified Eagle's medium supplemented with fetal bovine serum, zebrafish embryo extract, trout serum, and human basic fibroblast growth factor. ZES1 cells possessed a morphology typical of ES cells, being round or polygonal in shape with a large nucleus and sparse cytoplasm and were mostly diploid. The cells formed individual colonies consisting of tightly packed cells that stained positively for alkaline phosphatase. ZES1 cells also formed embryoid bodies when transferred onto uncoated wells. The pluripotent nature of ZES1 cells was confirmed when they could be induced to differentiate in vitro into several cell types, through low- or high-density culture conditions. Treatment with retinoic acid also induced the differentiation of ZES1 cells into primarily neuronal cells. Using immunostaining and real-time polymerase chain reaction, we showed that Sox2, a known pluripotent marker in mammalian ES cells, was also present in ZES1 cells. Chimera experiments revealed that fluorescent-labeled ZES1 cells microinjected into zebrafish blastulas participated in the formation of all three germ layers. Using GFP-labeled ZES1 cells, chimera germline transmission was also demonstrated at the F1 generation. In conclusion, ZES1 cells possess both in vitro and in vivo pluripotency characteristics, indicating that nonmammalian ES cells can be readily derived and maintained for a long term under feeder-free culture conditions.
Collapse
Affiliation(s)
- Sing Yee Ho
- 1 Malaysian Institute of Pharmaceuticals and Nutraceuticals , Malaysian Ministry of Science, Technology and Innovation, Pulau Pinang, Malaysia
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hong N, Schartl M, Hong Y. Derivation of stable zebrafish ES-like cells in feeder-free culture. Cell Tissue Res 2014; 357:623-32. [DOI: 10.1007/s00441-014-1882-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 03/18/2014] [Indexed: 01/07/2023]
|
13
|
Derivation and characterization of a ES-like cell line from indian catfish Heteropneustes fossilis blastulas. ScientificWorldJournal 2014; 2014:427497. [PMID: 24574890 PMCID: PMC3918398 DOI: 10.1155/2014/427497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 10/30/2013] [Indexed: 11/18/2022] Open
Abstract
A cell line designated as HFB-ES was established from blastula stage embryos of H. fossilis (Singhi). The embryonic cells were harvested and maintained in Leibovitz's medium supplemented with 15% fetal bovine serum. The cell line had been subcultured for more than 90 passages in a period of 24 months. HFB-ES cells were able to grow at temperatures between 25 and 35°C with an optimum temperature of 28°C. The growth rate of HFB-ES was proportional to FBS concentration, with optimum growth seen at 15% FBS concentration. The originality of the cell line was confirmed by sequencing of cytochrome oxidase c subunit I (COI), cytochrome b gene, and microsatellite DNA profile. Results of chromosome complements of HFB showed normal karyo-morphology with 56 (2n) diploid number of chromosomes after 40 passages which indicated that the developed cell line is chromosomally stable. The pluripotency of HFB was demonstrated by alkaline phosphatase activity and Oct-4 gene expression. Expression of GFP reporter gene was successful in HFB-ES. These results indicated that HFB-ES could be utilized for future gene expression studies.
Collapse
|
14
|
Rebello SC, Rathore G, Punia P, Sood N, Elangovan V. Development and characterization of a continuous macrophage cell line, LRTM, derived from thymus of Labeo rohita (Hamilton 1822). In Vitro Cell Dev Biol Anim 2014; 50:22-38. [PMID: 23955429 DOI: 10.1007/s11626-013-9674-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/21/2013] [Indexed: 10/26/2022]
Abstract
A long-term thymic macrophage cell line from the thymus explants of Labeo rohita designated as LRTM (L. rohita thymic macrophages) was established, which has been maintained in culture for more than 1 yr. This cell line designated LRTM cells have been subcultured for 70 passages. The cells shape was initially long and elongated; with subsequent passages, the cells became short and epithelial like. The cells exhibited optimum growth in L-15 containing 10% fetal bovine serum and also in Dulbecco's modified Eagle's medium at 37°C with 5% CO2 and showed 85+-% viability after 12 mo storage in liquid nitrogen. In addition, cells showed nonspecific esterase and surface expression of Fc receptors for immunoglobulin G and classes I and II major histocompatibility complex antigens. These observations confirmed that this cell line had the morphologic and functional features as a macrophage. The cells exhibited phagocytic activity by engulfing yeast cells as well as fluorescent latex beads, which was demonstrated by scanning electron microscopy and Giemsa staining. The long-term cultured cells show rapid production of reactive oxygen and nitrogen intermediates following stimulation with lipopolysaccharides and phorbol miristate acetate (PMA). Mostly, all the cells were alpha napthyl esterase acetate positive. After stimulation with PMA and lipopolysaccharide, cultured fish macrophages produced reactive oxygen and nitrogen intermediates. The karyotype analysis showed that these cells have a tetraploid karyotype with 100 chromosomes in each cell, indicating that they are normal L. rohita cells. Amplification, sequencing, and alignment of fragments of two mitochondrial genes 12S rRNA from rohu confirmed that the cell line originated from L. rohita. This cell line should be useful for studying the role of thymic macrophages in differentiation and maturation of thymocytes and can be source of macrophage-specific enzymes and cytokines. The macrophage cell line will be invaluable in studies of pathogen/macrophage interactions, the mechanisms of macrophage antimicrobial effector functions and the contribution of macrophages to the specific immune responses of teleosts.
Collapse
Affiliation(s)
- Sanjay C Rebello
- National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002, Uttar Pradesh, India,
| | | | | | | | | |
Collapse
|
15
|
Identification and characterization of a nanog homolog in Japanese flounder (Paralichthys olivaceus). Gene 2013; 531:411-21. [PMID: 24013085 DOI: 10.1016/j.gene.2013.08.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/28/2013] [Accepted: 08/10/2013] [Indexed: 02/06/2023]
Abstract
The homeodomain-containing transcription factor nanog plays a key role in maintaining the pluripotency and self-renewal of embryonic stem cells in mammals. Stem cells offered as a significant and effective tool for generation of transgenic animals and preservation of genetic resources. The molecular genetic organization and expression of nanog gene in marine fish have not been reported yet. In this study, we isolated and characterized the flounder nanog gene as a first step towards understanding the mechanism of the plurpotency of fish stem cells and develop a potential molecular marker to identify the stem cells in vivo and in vitro. Phylogenetic, gene structure and chromosome synteny analysis provided the evidence that Po-nanog is homologous to the mammalian nanog gene. Protein sequence comparison showed that flounder Nanog shared low similarity with other vertebrate orthologs except for a conserved homeodomain. Quantitative RT-PCR analysis showed that flounder nanog was maternally expressed, and the transcripts were present from the one-cell stage to the neurula stage with the peaking at blastula stage. Whole mount in situ hybridization analyses demonstrated that the transcripts were present in all blastomeres of the early embryo. Tissue distribution analysis indicated that nanog was detectable only in gonads. Further, the expression was significantly high in ovary than in testis. In situ hybridization revealed that the transcripts were located in the cytoplasm of the oogonia and oocytes in ovary, only in the spermatogonia but no spermatocytes or spermatids in testis. The promoter region was also analyzed to have several basal core promoter elements and transcription factor binding sites. All these results suggest that Po-Nanog may have a conservative function between teleosts and mammals.
Collapse
|
16
|
A SRCF cell line from snowtrout, Schizothorax richardsonii: Development and characterization. Tissue Cell 2013; 45:219-26. [DOI: 10.1016/j.tice.2013.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 01/15/2013] [Accepted: 02/18/2013] [Indexed: 11/19/2022]
|
17
|
Taju G, Abdul Majeed S, Nambi KSN, Sahul Hameed AS. Development and characterization of cell line from the gill tissue of Catla catla (Hamilton, 1822) for toxicological studies. CHEMOSPHERE 2013; 90:2172-2180. [PMID: 23237299 DOI: 10.1016/j.chemosphere.2012.11.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 11/04/2012] [Accepted: 11/16/2012] [Indexed: 06/01/2023]
Abstract
Catla gill cell line (ICG) was established from gill tissue of Indian major carp (Catla catla), a freshwater fish cultivated in India. The cell line was maintained in Leibovitz's L-15 supplemented with 10% fetal bovine serum. These cells have been sub-cultured more than 55 passages over a period of 2 years. The ICG cell line consists predominantly of epithelial-like cells. The cells were able to grow at a wide range of temperatures from 24°C to 32°C with an optimum temperature of 28°C. The growth rate of gill cells increased as the fetal bovine serum (FBS) proportion increased from 2% to 20% at 28°C with optimum growth at the concentrations of 10% or 15% FBS. Amplification of mitochondrial gene 12s rRNA using primers specific to C. catla confirmed the origin of this cell line from C. catla. The cells were successfully cryopreserved and revived at passage numbers 25, 35, 45 and 55. The cytotoxicity of three metal salts (ZnCl(2), CuSO(4) and CdCl(2)) was assessed in ICG cell line using multiple endpoints such as MTT, Neutral Red assay, Alamar Blue assay and Coomassie Blue protein assay. Acute toxicity assay on fish were conducted by exposing C. catla for 96 h to three metal salts under static conditions. Statistical analysis revealed good correlation with r(2)=0.908-0.985 for all combinations between endpoints employed. Linear correlations between each in vitro EC(50) and the in vivo LC(50) data were highly significant.
Collapse
Affiliation(s)
- G Taju
- OIE Reference Laboratory for WTD, Aquaculture Biotechnology Division, PG and Research Department of Zoology, C. Abdul Hakeem College, Melvisharam 632 509, Tamil Nadu, India
| | | | | | | |
Collapse
|
18
|
Goswami M, Lakra WS, Yadav K, Jena JK. Development of an ES-like cell culture system (RESC) from rohu, Labeo rohita (Ham.). FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:1775-1783. [PMID: 22707190 DOI: 10.1007/s10695-012-9674-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/30/2012] [Indexed: 06/01/2023]
Abstract
An embryonic stem (ES)-like cell culture system RESC from a commercially important freshwater carp, Labeo rohita, was developed using blastula stage embryos. The cells were cultured in Leibovitz-15 (L-15) medium in gelatin-coated cell culture flask supplemented with 15 % fetal bovine serum along with 10 ng ml(-1) basic fibroblast growth factor at 28 °C under feeder-free conditions. The ES-like cells were characterized by their unique morphology, alkaline phosphatase activity, embryoid body formation tendency, expression of transcription factor Oct4, and consistent chromosome count. The RESC cells when treated with retinoic acid differentiated into cells of different lineages. The RESC developed from mid-blastula embryos of L. rohita would be a useful tool for cellular differentiation and gene expression studies.
Collapse
Affiliation(s)
- M Goswami
- National Bureau of Fish Genetic Resources (NBFGR), Lucknow, 226002, UP, India.
| | - W S Lakra
- Central Institute of Fisheries Education, Versova, Andheri (W), Mumbai, 400061, India
| | - Kamalendra Yadav
- National Bureau of Fish Genetic Resources (NBFGR), Lucknow, 226002, UP, India
| | - J K Jena
- National Bureau of Fish Genetic Resources (NBFGR), Lucknow, 226002, UP, India
| |
Collapse
|
19
|
ESSA1 embryonic stem like cells from gilthead seabream: A new tool to study mesenchymal cell lineage differentiation in fish. Differentiation 2012; 84:240-51. [DOI: 10.1016/j.diff.2012.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 07/06/2012] [Accepted: 07/16/2012] [Indexed: 11/18/2022]
|
20
|
Sarath Babu V, Chandra V, Nambi KSN, Majeed SA, Taju G, Patole MS, Hameed ASS. Development and characterization of novel cell lines from Etroplus suratensis and their applications in virology, toxicology and gene expression. JOURNAL OF FISH BIOLOGY 2012; 80:312-334. [PMID: 22268432 DOI: 10.1111/j.1095-8649.2011.03167.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Four novel cell lines from tissues of eye, gill, kidney and brain of Etroplus suratensis were developed and characterized. The cell lines of eye, gill, kidney and brain were sub-cultured for 245, 185, 170 and 90 passages, respectively, since 2008. These cell lines showed predominantly epithelial-like cells. Effects of temperature and foetal bovine serum concentration on the growth of these cell lines were examined and optimum growth was found at the temperature of 28° C with 20% foetal bovine serum. All the four cell lines were successfully cryopreserved and revived at different passage levels. Cell-cycle analysis of these cell lines was carried out by fluorescence-activated cell sorting. Polymerase chain reaction (PCR) products obtained from the cells and tissues of E. suratensis with primers specific to the conserved region of 16S ribosomal RNA and cytochrome oxidase I genes of E. suratensis revealed the origin of cell lines from E. suratensis. Antibodies raised against the tissues and cells of eye, kidney and gill were highly cross reacted to their specific tissue and cells of E. suratensis. Chromosomal analysis revealed that E. suratensis cells have a normal diploid karyotype with 2n = 48. The cells of these cell lines were successfully transfected with pEGFP vector DNA. The eye (IEE), gill (IEG) and kidney (IEK) cell lines were found to be susceptible to nodavirus but resistant to infectious pancreatic necrosis virus (IPNV). The cells of gill, kidney and eye were applied to test the cytotoxicity of tannery effluents.
Collapse
Affiliation(s)
- V Sarath Babu
- Aquaculture Biotechnology Division, C. Abdul Hakeem College, Melvisharam 632 509, Tamilnadu, India
| | | | | | | | | | | | | |
Collapse
|
21
|
Gong J, Huang Y, Huang X, Ouyang Z, Guo M, Qin Q. Establishment and characterization of a new cell line derived from kidney of grouper, Epinephelus akaara (Temminck & Schlegel), susceptible to Singapore grouper iridovirus (SGIV). JOURNAL OF FISH DISEASES 2011; 34:677-686. [PMID: 21838711 DOI: 10.1111/j.1365-2761.2011.01281.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A marine fish cell line derived from the kidney of red-spotted grouper, Epinephelus akaara, designated as EAGK was established and characterized. The EAGK cells multiplied well in Leibovitz's L-15 medium containing 10% foetal bovine serum at 25 °C and have been subcultured for more than 90 passages. Karyotyping, chromosomal typing and ribosomal RNA (rRNA) genotyping analysis revealed that EAGK had a modal diploid chromosome number of 82 and was a fibroblast cell line originated from grouper. A severe cytopathic effect was observed in EAGK cells incubated with Singapore grouper iridovirus (SGIV), but not with soft-shelled turtle iridovirus, viral nervous necrosis virus or spring viraemia of carp virus. SGIV replication was further confirmed by immunofluorescence, electron microscopy and virus titre determination. Bright fluorescence was observed after transfection with fluorescent protein reporter plasmids, indicating that EAGK cells can be used to identify gene functions in vitro. In addition, the cell organelles including mitochondria and endoplasm reticulum changed and aggregated around virus factories after SGIV infection, suggested that the EAGK cell line could be an important tool for investigation of iridovirus-host interactions.
Collapse
Affiliation(s)
- J Gong
- Key Laboratory of Marine Bio-Resources Sustainable Utilization, South China Sea Institute of Oceanology, The Chinese Academy of Sciences, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
22
|
Babu VS, Nambi KSN, Chandra V, Ishaq Ahmed VP, Bhonde R, Sahul Hameed AS. Establishment and characterization of a fin cell line from Indian walking catfish, Clarias batrachus (L.). JOURNAL OF FISH DISEASES 2011; 34:355-364. [PMID: 21401643 DOI: 10.1111/j.1365-2761.2011.01247.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A new cell line, Indian Catfish Fin, derived from the fin tissue of Indian walking catfish, Clarias batrachus, was established and characterized. The cell line grew well in Leibovitz's L-15 medium supplemented with 15% foetal bovine serum (FBS) and has been subcultured more than 110 times since its initiation in 2007. The cells were able to grow at a range of temperature from 28 to 37 °C with optimal growth at 28 °C. The cell line predominantly consists of fibroblast-like cells. The growth rate of fin cells increased as the FBS concentration increased from 2% to 20% at 28 °C with optimum growth at a concentration of 15% or 20% and poor growth at a concentration of 5%. The cells were found to be susceptible to fish nodavirus and IPNV-ab and infection was confirmed by cytopathic effect and reverse transcriptase-polymerase chain reaction. PCR amplification of mitochondrial 12S rRNA using primers specific to C. batrachus confirmed the catfish origin of the cell line. The cell line was characterized further by immunocytochemistry, transfection efficiency with pEGFP-N1 and cell cycle analysis by fluorescent-activated cell sorting.
Collapse
Affiliation(s)
- V S Babu
- Aquaculture Biotechnology Division, OIE Reference Laboratory for WTD, Department of Zoology, C.Abdul Hakeem College, Melvisharam, Tamilnadu, India
| | | | | | | | | | | |
Collapse
|
23
|
Abstract
Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on "Fish Stem Cells and Nuclear Transfer", we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer.
Collapse
Affiliation(s)
- Ni Hong
- Department of Biological Science, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| | | | | |
Collapse
|
24
|
Lakra WS, Swaminathan TR, Joy KP. Development, characterization, conservation and storage of fish cell lines: a review. FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:1-20. [PMID: 20607393 DOI: 10.1007/s10695-010-9411-x] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 06/12/2010] [Indexed: 05/23/2023]
Abstract
Cell lines provide an important biological tool for carrying out investigations into physiology, virology, toxicology, carcinogenesis and transgenics. Teleost fish cell lines have been developed from a broad range of tissues such as ovary, fin, swim bladder, heart, spleen, liver, eye muscle, vertebrae, brain, skin. One hundred and twenty-four new fish cell lines from different fish species ranging from grouper to eel have been reported since the last review by Fryer and Lannan (J Tissue Culture Methods 16: 87-94, 1994). Among the cell lines listed, more than 60% were established from species from Asia, which contributes more than 80% of total fish production. This includes 59 cell lines from 19 freshwater, 54 from 22 marine and 11 from 3 brackish water fishes. Presently, about 283 cell lines have been established from finfish around the world. In addition to the listing and a scientific update on new cell lines, the importance of authentication, applications, cross-contamination and implications of overpassaged cell lines has also been discussed in this comprehensive review. The authors feel that the review will serve an updated database for beginners and established researchers in the field of fish cell line research and development.
Collapse
Affiliation(s)
- W S Lakra
- National Bureau of Fish Genetic Resources, Canal Ring Road, Lucknow, UP, India.
| | | | | |
Collapse
|
25
|
Wang XL, Wang N, Sha ZX, Chen SL. Establishment, characterization of a new cell line from heart of half smooth tongue sole (Cynoglossus semilaevis). FISH PHYSIOLOGY AND BIOCHEMISTRY 2010; 36:1181-1189. [PMID: 20376698 DOI: 10.1007/s10695-010-9396-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 03/22/2010] [Indexed: 05/29/2023]
Abstract
A new cell line was established from the heart of a cultured marine fish, half smooth tongue sole (Cynoglossus semilaevis), designated as CSH (Cynoglossus semilaevis heart cell line). The CSH cells grow over 400 days in minimum essential medium (MEM) supplemented with 10% fetal bovine serum (FBS) and 2 ng/ml basic fibroblast growth factor (bFGF). The suitable temperature for the cell growth was 24-30°C with the optimum growth at 24°C and a reduced growth at 12 and 30°C. FBS and bFGF concentration were the two important components for CSH cells proliferation. Twenty percent FBS in the medium was found to be the optimum concentration and bFGF promoted the growth of CSH cells. The double time of the cells at 24°C was determined to 73.39 h. Chromosome analysis revealed that 44% of the cells maintained a normal diploid chromosome number (2n=42) in the CSH cells at Passage 58. The fluorescent signals were observed in CSH after the cells were transfected with green fluorescent protein (GFP) reporter plasmids. CSH cells showed the cytopathic effect (CPE) after infection with lymphosystis disease virus (LCDV). Moreover, the LCDV particles can be observed in the cytoplasm of virus-infected cells by electron microscopy, and a segment of MCP gene for major capsid protein of LCDV was found by PCR amplification DNA of virus-infected cells.
Collapse
Affiliation(s)
- X L Wang
- Key Lab for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, 266071, Qingdao, China
| | | | | | | |
Collapse
|
26
|
Dash C, Routray P, Tripathy S, Verma DK, Guru BC, Meher PK, Nandi S, Eknath AE. Derivation and characterization of embryonic stem-like cells of Indian major carp Catla catla. JOURNAL OF FISH BIOLOGY 2010; 77:1096-1113. [PMID: 21039493 DOI: 10.1111/j.1095-8649.2010.02755.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Embryonic stem (ES)-like cells were derived from mid-blastula stage embryos of a freshwater fish, catla Catla catla, under feeder-free condition and designated as CCES cells. The conditioned media was optimized with 10% foetal bovine serum (FBS), fish embryo extract (FEE) having 100 µg ml(-1) protein concentration, 15 ng ml(-1) basic fibroblast growth factor (bFGF) and basic media containing Leibovitz-15, DMEM with 4·5 g l(-1) glucose and Ham's F12 (LDF) in 2:1:1 ratio using a primary culture of CCES cells. Cells attached to gelatin-coated plates after 24 h of seeding and ES-like colonies were obtained at day 5 onwards. A stable cell culture was obtained after passage 10 and further maintained up to passage 44. These cells were characterized by their typical morphology, high alkaline phosphatase activity, positive expression of cell-surface antigen SSEA-1, transcription factor Oct4, germ cell marker vasa and consistent karyotype up to extended periods. The undifferentiated state was confirmed by their ability to form embryoid bodies and their differentiation potential.
Collapse
Affiliation(s)
- C Dash
- Division of Aquaculture Production and Environment, Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751002, India
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Medaka fish stem cells and their applications. SCIENCE CHINA-LIFE SCIENCES 2010; 53:426-34. [PMID: 20596908 DOI: 10.1007/s11427-010-0079-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 12/02/2009] [Indexed: 10/19/2022]
Abstract
Stem cells are present in developing embryos and adult tissues of multicellular organisms. Owing to their unique features, stem cells provide excellent opportunities for experimental analyses of basic developmental processes such as pluripotency control and cell fate decision and for regenerative medicine by stem cell-based therapy. Stem cell cultures have been best studied in 3 vertebrate organisms. These are the mouse, human and a small laboratory fish called medaka. Specifically, medaka has given rise to the first embryonic stem (ES) cells besides the mouse, the first adult testis-derived male stem cells spermatogonia capable of test-tube sperm production, and most recently, even haploid ES cells capable of producing Holly, a semi-cloned fertile female medaka from a mosaic oocyte created by microinjecting a haploid ES cell nucleus directly into a normal oocyte. These breakthroughs make medaka a favoring vertebrate model for stem cell research, the topic of this review.
Collapse
|
28
|
Cheng TC, Lai YS, Lin IY, Wu CP, Chang SL, Chen TI, Su MS. Establishment, characterization, virus susceptibility and transfection of cell lines from cobia, Rachycentron canadum (L.), brain and fin. JOURNAL OF FISH DISEASES 2010; 33:161-169. [PMID: 19925591 DOI: 10.1111/j.1365-2761.2009.01113.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Establishment and characterization of two cobia, Rachycentron canadum, cell lines derived from cobia brain (CB) and cobia fin (CF) are described. Caudal fin and brain from juvenile cobia were dissociated for 30 and 10 min, respectively, in phosphate-buffered saline containing 0.25% trypsin at 25 degrees C. The optimal culture condition for both dissociated cells (primary cell culture) was at 28 degrees C in Leibovitz-15 medium containing 10% foetal bovine serum. The cells have been sub-cultured at a ratio of 1:2 for more than 160 passages over a period of 3 years. Origin of the cultured cells was verified by comparison of their sequences of mitochondrial cytochrome oxidase subunit I genes (cox I) with the cox 1 sequence from cobia muscle tissue. The cell lines showed polyploidy. No mycoplasma contamination was detected. Susceptibility to grouper iridovirus was observed for the CB cell line but not the CF cell line. Both cell lines expressed green fluorescent protein after being transfected with green fluorescent reporter gene driven by the cytomegalovirus promoter.
Collapse
Affiliation(s)
- T-C Cheng
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Taiwan
| | | | | | | | | | | | | |
Collapse
|