1
|
Catalán M, González-Herrera F, Maya JD, Lorenzo O, Pedrozo Z, Olmedo I, Suarez-Rozas C, Molina-Berrios A, Díaz-Araya G, Vivar R. Boldine prevents the inflammatory response of cardiac fibroblasts induced by SGK1-NFκB signaling pathway activation. Cell Signal 2024; 120:111241. [PMID: 38825173 DOI: 10.1016/j.cellsig.2024.111241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
Cardiac fibroblasts (CF) are mesenchymal-type cells responsible for maintaining the homeostasis of the heart's extracellular matrix (ECM). Their dysfunction leads to excessive secretion of ECM proteins, tissue stiffening, impaired nutrient and oxygen exchange, and electrical abnormalities in the heart. Additionally, CF act as sentinel cells in the cardiac tissue microenvironment, responding to various stimuli that may affect heart function. Deleterious stimuli induce an inflammatory response in CF, increasing the secretion of cytokines such as IL-1β and TNF-α and the expression of cell adhesion molecules like ICAM1 and VCAM1, initially promoting damage resolution by recruiting immune cells. However, constant harmful stimuli lead to a chronic inflammatory process and heart dysfunction. Therefore, it is necessary to study the mechanisms that govern CF inflammation. NFκB is a key regulator of the cardiac inflammatory process, making the search for mechanisms of NFκB regulation and CF inflammatory response crucial for developing new treatment options for cardiovascular diseases. SGK1, a serine-threonine protein kinase, is one of the regulators of NFκB and is involved in the fibrotic effects of angiotensin II and aldosterone, as well as in CF differentiation. However, its role in the CF inflammatory response is unknown. On the other hand, many bioactive natural products have demonstrated anti-inflammatory effects, but their role in CF inflammation is unknown. One such molecule is boldine, an alkaloid obtained from Boldo (Peumus boldus), a Chilean endemic tree with proven cytoprotective effects. However, its involvement in the regulation of SGK1 and CF inflammation is unknown. In this study, we evaluated the role of SGK1 and boldine in the inflammatory response in CF isolated from neonatal Sprague-Dawley rats. The involvement of SGK1 was analyzed using GSK650394, a specific SGK1 inhibitor. Our results demonstrate that SGK1 is crucial for LPS- and IFN-γ-induced inflammatory responses in CF (cytokine expression, cell adhesion molecule expression, and leukocyte adhesion). Furthermore, a conditioned medium (intracellular content of CF subject to freeze/thaw cycles) was used to simulate a sterile inflammation condition. The conditioned medium induced a potent inflammatory response in CF, which was completely prevented by the SGK1 inhibitor. Finally, our results indicate that boldine inhibits both SGK1 activation and the CF inflammatory response induced by LPS, IFN-γ, and CF-conditioned medium. Taken together, our results position SGK1 as an important regulator of the CF inflammatory response and boldine as a promising anti-inflammatory drug in the context of cardiovascular diseases.
Collapse
Affiliation(s)
- M Catalán
- Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - F González-Herrera
- Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - J D Maya
- Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - O Lorenzo
- IIS-Fundación Jiménez Díaz, Faculty of Medicine, Universidad Autónoma de Madrid, Spain
| | - Z Pedrozo
- Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - I Olmedo
- Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile
| | - C Suarez-Rozas
- Medicinal Chemistry Center, Faculty of Medicine, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - A Molina-Berrios
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - G Díaz-Araya
- Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile
| | - R Vivar
- Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
2
|
Szczepanska-Sadowska E, Czarzasta K, Bogacki-Rychlik W, Kowara M. The Interaction of Vasopressin with Hormones of the Hypothalamo-Pituitary-Adrenal Axis: The Significance for Therapeutic Strategies in Cardiovascular and Metabolic Diseases. Int J Mol Sci 2024; 25:7394. [PMID: 39000501 PMCID: PMC11242374 DOI: 10.3390/ijms25137394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
A large body of evidence indicates that vasopressin (AVP) and steroid hormones are frequently secreted together and closely cooperate in the regulation of blood pressure, metabolism, water-electrolyte balance, and behavior, thereby securing survival and the comfort of life. Vasopressin cooperates with hormones of the hypothalamo-pituitary-adrenal axis (HPA) at several levels through regulation of the release of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and multiple steroid hormones, as well as through interactions with steroids in the target organs. These interactions are facilitated by positive and negative feedback between specific components of the HPA. Altogether, AVP and the HPA cooperate closely as a coordinated functional AVP-HPA system. It has been shown that cooperation between AVP and steroid hormones may be affected by cellular stress combined with hypoxia, and by metabolic, cardiovascular, and respiratory disorders; neurogenic stress; and inflammation. Growing evidence indicates that central and peripheral interactions between AVP and steroid hormones are reprogrammed in cardiovascular and metabolic diseases and that these rearrangements exert either beneficial or harmful effects. The present review highlights specific mechanisms of the interactions between AVP and steroids at cellular and systemic levels and analyses the consequences of the inappropriate cooperation of various components of the AVP-HPA system for the pathogenesis of cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | | | | | | |
Collapse
|
3
|
Le Moli R, Naselli A, Costanzo G, Piticchio T, Tumino D, Pellegriti G, Frasca F, Belfiore A. Determinants of clinical outcome in patients with moderate/severe Graves' orbitopathy undergoing treatment with parenteral glucocorticoids: a retrospective study. Front Endocrinol (Lausanne) 2024; 15:1401155. [PMID: 39027472 PMCID: PMC11254611 DOI: 10.3389/fendo.2024.1401155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Background Graves' orbitopathy (GO) occurs in approximately 25-40% of patients with Graves' disease (GD). High levels of anti-thyrotropin receptor antibodies (TRAbs), smoking habit, sex, older age, longer duration and amount of hyperthyroidism or hypothyroidism are well-recognized risk factors for the occurrence, severity and clinical course of GO. Oxidative stress (OX) has recently been shown to play a role in the pathogenesis of GO, and several clinical conditions related to OX have been investigated regarding the presentation and severity of GO. Aim We aimed to evaluate the impact of clinical conditions related to oxidative stress on the outcome of intravenous glucocorticoid (ivGCs) therapy in a cohort of patients with active moderate to severe GO (AMS-GOs) treated at a single institution. Methods We retrospectively studied a series of patients with AMS-GOs who were treated with ivGCs from January 2013 to May 2022. GO clinical evaluation was performed at baseline and at 6 (W6), 12 (W12) and 24 (W24) weeks after starting ivGCs by the seven-point clinical activity score (CAS) alone and by overall clinical criteria (CI) according to the European Group of Graves' Ophthalmopathy (EUGOGO). Total cholesterol and calculated LDL cholesterol (LDLc), triglyceride, body mass index (BMI), diabetes status, history of hypertension (HoH), smoking status, age and sex were used as covariates for the clinical outcome of GO to ivGCs. Results and conclusions LDLc and HoH negatively and independently modulated the response of AMS-GOs to ivGCs. Notably, slightly elevated LDLc levels (> 130 mg/dl) reduced the response of orbital soft tissue to ivGCs, whereas more elevated LDLc levels (from 175 mg/dl to 190 mg/dl) and HoH were associated with poorer clinical response of eye motility and proptosis.
Collapse
Affiliation(s)
- Rosario Le Moli
- Endocrinology Unit, Department of Clinical and Experimental Medicine, Garibaldi Nesima Hospital, University of Catania, Catania, Italy
- Department of Medicine and Surgery, University of Enna "Kore", Enna, Italy
| | - Adriano Naselli
- Endocrinology Unit, Department of Clinical and Experimental Medicine, Garibaldi Nesima Hospital, University of Catania, Catania, Italy
| | - Gabriele Costanzo
- Endocrinology Unit, Department of Clinical and Experimental Medicine, Garibaldi Nesima Hospital, University of Catania, Catania, Italy
| | - Tommaso Piticchio
- Endocrinology Unit, Department of Clinical and Experimental Medicine, Garibaldi Nesima Hospital, University of Catania, Catania, Italy
- Department of Medicine and Surgery, University of Enna "Kore", Enna, Italy
| | - Dario Tumino
- Endocrinology Unit, Department of Clinical and Experimental Medicine, Garibaldi Nesima Hospital, University of Catania, Catania, Italy
| | - Gabriella Pellegriti
- Endocrinology Unit, Department of Clinical and Experimental Medicine, Garibaldi Nesima Hospital, University of Catania, Catania, Italy
| | - Francesco Frasca
- Endocrinology Unit, Department of Clinical and Experimental Medicine, Garibaldi Nesima Hospital, University of Catania, Catania, Italy
| | - Antonino Belfiore
- Endocrinology Unit, Department of Clinical and Experimental Medicine, Garibaldi Nesima Hospital, University of Catania, Catania, Italy
| |
Collapse
|
4
|
Reiss AB, Jacob B, Zubair A, Srivastava A, Johnson M, De Leon J. Fibrosis in Chronic Kidney Disease: Pathophysiology and Therapeutic Targets. J Clin Med 2024; 13:1881. [PMID: 38610646 PMCID: PMC11012936 DOI: 10.3390/jcm13071881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Chronic kidney disease (CKD) is a slowly progressive condition characterized by decreased kidney function, tubular injury, oxidative stress, and inflammation. CKD is a leading global health burden that is asymptomatic in early stages but can ultimately cause kidney failure. Its etiology is complex and involves dysregulated signaling pathways that lead to fibrosis. Transforming growth factor (TGF)-β is a central mediator in promoting transdifferentiation of polarized renal tubular epithelial cells into mesenchymal cells, resulting in irreversible kidney injury. While current therapies are limited, the search for more effective diagnostic and treatment modalities is intensive. Although biopsy with histology is the most accurate method of diagnosis and staging, imaging techniques such as diffusion-weighted magnetic resonance imaging and shear wave elastography ultrasound are less invasive ways to stage fibrosis. Current therapies such as renin-angiotensin blockers, mineralocorticoid receptor antagonists, and sodium/glucose cotransporter 2 inhibitors aim to delay progression. Newer antifibrotic agents that suppress the downstream inflammatory mediators involved in the fibrotic process are in clinical trials, and potential therapeutic targets that interfere with TGF-β signaling are being explored. Small interfering RNAs and stem cell-based therapeutics are also being evaluated. Further research and clinical studies are necessary in order to avoid dialysis and kidney transplantation.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (B.J.); (A.Z.); (A.S.); (M.J.); (J.D.L.)
| | | | | | | | | | | |
Collapse
|
5
|
Ertuglu LA, Pitzer Mutchler A, Elijovich F, Laffer CL, Sheng Q, Wanjalla CN, Kirabo A. Regulation of human salt-sensitivite hypertension by myeloid cell renin-angiotensin-aldosterone system. Front Physiol 2023; 14:1208270. [PMID: 37534363 PMCID: PMC10390697 DOI: 10.3389/fphys.2023.1208270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/06/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction: Salt sensitivity of blood pressure is a phenomenon in which blood pressure changes according to dietary sodium intake. Our previous studies found that high salt activates antigen presenting cells, resulting in the development of hypertension. The mechanisms by which salt-induced immune cell activation is regulated in salt sensitivity of blood pressure are unknown. In the current study, we investigated dietary salt-induced effects on the renin-angiotensin-aldosterone system (RAAS) gene expression in myeloid immune cells and their impact on salt sensitive hypertension in humans. Methods: We performed both bulk and single-cell sequencing analysis on immune cells with in vitro and in vivo high dietary salt treatment in humans using a rigorous salt-loading/depletion protocol to phenotype salt-sensitivity of blood pressure. We also measured plasma renin and aldosterone using radioimmunoassay. Results: We found that while in vitro high sodium exposure downregulated the expression of renin, renin binding protein and renin receptor, there were no significant changes in the genes of the renin-angiotensin system in response to dietary salt loading and depletion in vivo. Plasma renin in salt sensitive individuals tended to be lower with a blunted response to the salt loading/depletion challenge as previously reported. Discussion: These findings suggest that unlike systemic RAAS, acute changes in dietary salt intake do not regulate RAAS expression in myeloid immune cells.
Collapse
Affiliation(s)
- Lale A. Ertuglu
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ashley Pitzer Mutchler
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, Nashville, TN, United States
| | - Fernando Elijovich
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, Nashville, TN, United States
| | - Cheryl L. Laffer
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, Nashville, TN, United States
| | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Celestine N. Wanjalla
- Department of Internal Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center Nashville, Nashville, TN, United States
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center Nashville, Nashville, TN, United States
| |
Collapse
|
6
|
The Effect of Aldosterone on Cardiorenal and Metabolic Systems. Int J Mol Sci 2023; 24:ijms24065370. [PMID: 36982445 PMCID: PMC10049192 DOI: 10.3390/ijms24065370] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Aldosterone, a vital hormone of the human body, has various pathophysiological roles. The excess of aldosterone, also known as primary aldosteronism, is the most common secondary cause of hypertension. Primary aldosteronism is associated with an increased risk of cardiovascular disease and kidney dysfunction compared to essential hypertension. Excess aldosterone can lead to harmful metabolic and other pathophysiological alterations, as well as cause inflammatory, oxidative, and fibrotic effects in the heart, kidney, and blood vessels. These alterations can result in coronary artery disease, including ischemia and myocardial infarction, left ventricular hypertrophy, heart failure, arterial fibrillation, intracarotid intima thickening, cerebrovascular disease, and chronic kidney disease. Thus, aldosterone affects several tissues, especially in the cardiovascular system, and the metabolic and pathophysiological alterations are related to severe diseases. Therefore, understanding the effects of aldosterone on the body is important for health maintenance in hypertensive patients. In this review, we focus on currently available evidence regarding the role of aldosterone in alterations of the cardiovascular and renal systems. We also describe the risk of cardiovascular events and renal dysfunction in hyperaldosteronism.
Collapse
|
7
|
Fuller PJ, Young MJ, Yang J, Cole TJ. Structure-function relationships of the aldosterone receptor. VITAMINS AND HORMONES 2023; 123:285-312. [PMID: 37717989 DOI: 10.1016/bs.vh.2022.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The cellular response to the adrenal steroid aldosterone is mediated by the mineralocorticoid receptor (MR), a member of the nuclear receptor superfamily of ligand-dependent transcription factors. The MR binds more than one physiological ligand with binding at the MR determined by pre-receptor metabolism of glucocorticoid ligands by 11β hydroxysteroid dehydrogenase type 2. The MR has a wide tissue distribution with multiple roles beyond the classical role in electrolyte homeostasis including cardiovascular function, immune cell signaling, neuronal fate and adipocyte differentiation. The MR has three principal functional domains, an N-terminal ligand domain, a central DNA binding domain and a C-terminal, ligand binding domain, with structures having been determined for the latter two domains but not for the whole receptor. MR signal-transduction can be best viewed as a series of interactions which are determined by the conformation conferred on the receptor by ligand binding. This conformation then determines subsequent intra- and inter-molecular interactions. These interactions include chromatin, coregulators and other transcription factors, and additional less well characterized cytoplasmic non-genomic effects via crosstalk with other signaling pathways. This chapter will provide a review of MR structure and function, and an analysis of the critical interactions involved in MR-mediated signal transduction, which contribute to ligand- and tissue-specificity. Understanding the relevant mechanisms for selective MR signaling in terms of these interactions opens the possibility of novel therapeutic approaches for the treatment of MR-mediated diseases.
Collapse
Affiliation(s)
- Peter J Fuller
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular Translational Science, Monash University, Clayton, VIC, Australia.
| | - Morag J Young
- Cardiovascular Endocrinology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; University of Melbourne and Baker HDI Department of Cardiometabolic Health and Disease, Melbourne, VIC, Australia
| | - Jun Yang
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Molecular Translational Science, Monash University, Clayton, VIC, Australia
| | - Timothy J Cole
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
8
|
De R, Azad RK. Molecular signatures in the progression of COVID-19 severity. Sci Rep 2022; 12:22058. [PMID: 36543855 PMCID: PMC9768786 DOI: 10.1038/s41598-022-26657-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
SARS-CoV-2 is the causative agent of COVID-19 that has infected over 642 million and killed over 6.6 million people around the globe. Underlying a wide range of clinical manifestations of this disease, from moderate to extremely severe systemic conditions, could be genes or pathways differentially expressing in the hosts. It is therefore important to gain insights into pathways involved in COVID-19 pathogenesis and host defense and thus understand the host response to this pathogen at the physiological and molecular level. To uncover genes and pathways involved in the differential clinical manifestations of this disease, we developed a novel gene co-expression network based pipeline that uses gene expression obtained from different SARS-CoV-2 infected human tissues. We leveraged the network to identify novel genes or pathways that likely differentially express and could be physiologically significant in the COVID-19 pathogenesis and progression but were deemed statistically non-significant and therefore not further investigated in the original studies. Our network-based approach aided in the identification of co-expression modules enriched in differentially expressing genes (DEGs) during different stages of COVID-19 and enabled discovery of novel genes involved in the COVID-19 pathogenesis, by virtue of their transcript abundance and association with genes expressing differentially in modules enriched in DEGs. We further prioritized by considering only those enriched gene modules that have most of their genes differentially expressed, inferred by the original studies or this study, and document here 7 novel genes potentially involved in moderate, 2 in severe, 48 in extremely severe COVID-19, and 96 novel genes involved in the progression of COVID-19 from severe to extremely severe conditions. Our study shines a new light on genes and their networks (modules) that drive the progression of COVID-19 from moderate to extremely severe condition. These findings could aid development of new therapeutics to combat COVID-19.
Collapse
Affiliation(s)
- Ronika De
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| | - Rajeev K Azad
- Department of Biological Sciences and BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA.
- Department of Mathematics, University of North Texas, Denton, TX, 76203, USA.
| |
Collapse
|
9
|
Bioletto F, Bollati M, Lopez C, Arata S, Procopio M, Ponzetto F, Ghigo E, Maccario M, Parasiliti-Caprino M. Primary Aldosteronism and Resistant Hypertension: A Pathophysiological Insight. Int J Mol Sci 2022; 23:ijms23094803. [PMID: 35563192 PMCID: PMC9100181 DOI: 10.3390/ijms23094803] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 12/10/2022] Open
Abstract
Primary aldosteronism (PA) is a pathological condition characterized by an excessive aldosterone secretion; once thought to be rare, PA is now recognized as the most common cause of secondary hypertension. Its prevalence increases with the severity of hypertension, reaching up to 29.1% in patients with resistant hypertension (RH). Both PA and RH are "high-risk phenotypes", associated with increased cardiovascular morbidity and mortality compared to non-PA and non-RH patients. Aldosterone excess, as occurs in PA, can contribute to the development of a RH phenotype through several mechanisms. First, inappropriate aldosterone levels with respect to the hydro-electrolytic status of the individual can cause salt retention and volume expansion by inducing sodium and water reabsorption in the kidney. Moreover, a growing body of evidence has highlighted the detrimental consequences of "non-classical" effects of aldosterone in several target tissues. Aldosterone-induced vascular remodeling, sympathetic overactivity, insulin resistance, and adipose tissue dysfunction can further contribute to the worsening of arterial hypertension and to the development of drug-resistance. In addition, the pro-oxidative, pro-fibrotic, and pro-inflammatory effects of aldosterone may aggravate end-organ damage, thereby perpetuating a vicious cycle that eventually leads to a more severe hypertensive phenotype. Finally, neither the pathophysiological mechanisms mediating aldosterone-driven blood pressure rise, nor those mediating aldosterone-driven end-organ damage, are specifically blocked by standard first-line anti-hypertensive drugs, which might further account for the drug-resistant phenotype that frequently characterizes PA patients.
Collapse
|
10
|
Immunomodulatory Potential of Diuretics. BIOLOGY 2021; 10:biology10121315. [PMID: 34943230 PMCID: PMC8698805 DOI: 10.3390/biology10121315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022]
Abstract
In this review, diuretics and their immunomodulatory functions are described. The effects on the immune response of this group of drugs are reported in patients suffering from hypertension and under experimental conditions involving animal models and cell line studies. The pathogenesis of hypertension is strongly connected to chronic inflammation. The vast majority of diuretics modulate the immune response, changing it in favor of the anti-inflammatory response, but depending on the drug, these effects may differ. This topic is significantly important in medical practice regarding the treatment of patients who have coexisting diseases with chronic inflammatory pathogenesis, including hypertension or chronic heart failure. In patients with metabolic syndrome, allergies, or autoimmune disorders, the anti-inflammatory effect is favorable, because of the overstimulation of their immune system. Otherwise, in the geriatric population, it is important to find the proper anti- and pro-inflammatory balance to avoid an enhancement of immune response suppression, which can result in reducing the risk of serious infections that can occur due to the age-diminished function of the immune system. This article is intended to facilitate the selection of an antihypertensive drug that depends on the patient's immune situation.
Collapse
|
11
|
Glomerular Mesangial Cell pH Homeostasis Mediates Mineralocorticoid Receptor-Induced Cell Proliferation. Biomedicines 2021; 9:biomedicines9091117. [PMID: 34572303 PMCID: PMC8468551 DOI: 10.3390/biomedicines9091117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022] Open
Abstract
Mineralocorticoids (e.g., aldosterone) support chronic inflammatory tissue damage, including glomerular mesangial injury leading to glomerulosclerosis. Furthermore, aldosterone leads to activation of the extracellular signal-regulated kinases (ERK1/2) in rat glomerular mesangial cells (GMC). Because ERK1/2 can affect cellular pH homeostasis via activation of Na+/H+-exchange (NHE) and the resulting cellular alkalinization may support proliferation, we tested the hypothesis that aldosterone affects pH homeostasis and thereby cell proliferation as well as collagen secretion also in primary rat GMC. Cytoplasmic pH and calcium were assessed by single-cell fluorescence ratio imaging, using the dyes BCECF or FURA2, respectively. Proliferation was determined by cell counting, thymidine incorporation and collagen secretion by collagenase-sensitive proline incorporation and ERK1/2-phosphorylation by Western blot. Nanomolar aldosterone induces a rapid cytosolic alkalinization which is prevented by NHE inhibition (10 µmol/L EIPA) and by blockade of the mineralocorticoid receptor (100 nmol/L spironolactone). pH changes were not affected by inhibition of HCO3- transporters and were not dependent on HCO3-. Aldosterone enhanced ERK1/2 phosphorylation and inhibition of ERK1/2-phosphorylation (10 µmol/L U0126) prevented aldosterone-induced alkalinization. Furthermore, aldosterone induced proliferation of GMC and collagen secretion, both of which were prevented by U0126 and EIPA. Cytosolic calcium was not involved in this aldosterone action. In conclusion, our data show that aldosterone can induce GMC proliferation via a MR and ERK1/2-mediated activation of NHE with subsequent cytosolic alkalinization. GMC proliferation leads to glomerular hypercellularity and dysfunction. This effect presents a possible mechanism contributing to mineralocorticoid receptor-induced pathogenesis of glomerular mesangial injury during chronic kidney disease.
Collapse
|
12
|
Huoxue Jiedu Huayu Formula Alleviates Cell Pyroptosis in Contralateral Kidneys of 6-Month-Old UUO Rats through the NLRP3/Caspase-1/IL-1 β Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5533911. [PMID: 34335814 PMCID: PMC8292056 DOI: 10.1155/2021/5533911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 07/01/2021] [Indexed: 12/03/2022]
Abstract
Objectives To study the protective effects and mechanisms of Huoxue Jiedu Huayu formula on cell pyroptosis through the NLRP3/caspase-1/IL-1β pathway in contralateral kidneys in 6-month-old unilateral ureteral obstruction (UUO) rats. Methods Wistar rats were randomly assigned to 5 groups: a Sham group, a unilateral nephrectomy group (UNX group), a UUO group, a UUO treated with spironolactone group (Spi group), and a UUO treated with Huoxue Jiedu Huayu formula group (HJHF group). After 6 months of oral drug intervention, blood and contralateral kidneys were collected for research. Results The morphology and function of the contralateral kidneys were essentially normal after unilateral nephrectomy. HJHF obviously decreased serum creatinine, urea, and inflammatory lesions and depressed cell pyroptosis based on the NLRP3/caspase-1/IL-1β pathway. Moreover, spironolactone, a mineralocorticoid receptor (MR) blocker, suppressed cell pyroptosis through SGK-1 and NF-кB. Conclusion HJHF and spirolactone inhibited excessive activation of MR and then reduced cell pyroptosis, which was dependent on the NLRP3/caspase-1/IL-1β pathway, to protect the contralateral kidneys of 6-month-old UUO rats.
Collapse
|
13
|
Ferreira NS, Tostes RC, Paradis P, Schiffrin EL. Aldosterone, Inflammation, Immune System, and Hypertension. Am J Hypertens 2021; 34:15-27. [PMID: 32820797 PMCID: PMC7891246 DOI: 10.1093/ajh/hpaa137] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/15/2020] [Accepted: 08/17/2020] [Indexed: 12/23/2022] Open
Abstract
Aldosterone is a mineralocorticoid hormone that controls body fluid and electrolyte balance. Excess aldosterone is associated with cardiovascular and metabolic diseases. Inflammation plays a critical role on vascular damage promoted by aldosterone and aggravates vascular abnormalities, including endothelial dysfunction, vascular remodeling, fibrosis and oxidative stress, and other manifestations of end-organ damage that are associated with hypertension, other forms of cardiovascular disease, and diabetes mellitus and the metabolic syndrome. Over the past few years, many studies have consistently shown that aldosterone activates cells of the innate and adaptive immune systems. Macrophages and T cells accumulate in the kidneys, heart, and vasculature in response to aldosterone, and infiltration of immune cells contributes to end-organ damage in cardiovascular and metabolic diseases. Aldosterone activates various subsets of innate immune cells such as dendritic cells and monocytes/macrophages, as well as adaptive immune cells such as T lymphocytes, and, by activation of mineralocorticoid receptors stimulates proinflammatory transcription factors and the production of adhesion molecules and inflammatory cytokines and chemokines. This review will briefly highlight some of the studies on the involvement of aldosterone in activation of innate and adaptive immune cells and its impact on the cardiovascular system. Since aldosterone plays a key role in many cardiovascular and metabolic diseases, these data will open up promising perspectives for the identification of novel biomarkers and therapeutic targets for prevention and treatment of diseases associated with increased levels of aldosterone, such as arterial hypertension, obesity, the metabolic syndrome, and heart failure.
Collapse
Affiliation(s)
- Nathanne S Ferreira
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Pierre Paradis
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, Québec, Canada
| | - Ernesto L Schiffrin
- Hypertension and Vascular Research Unit, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Department of Medicine, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montréal, Québec, Canada
| |
Collapse
|
14
|
Wu X, Liu X, Yang H, Chen Q, Zhang N, Li Y, Du X, Liu X, Jiang X, Jiang Y, Zhou Z, Yang Z. P-Selectin Glycoprotein Ligand-1 Deficiency Protects Against Aortic Aneurysm Formation Induced by DOCA Plus Salt. Cardiovasc Drugs Ther 2021; 36:31-44. [PMID: 33432452 DOI: 10.1007/s10557-020-07135-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE P-selectin glycoprotein ligand-1 (PSGL-1) acts as a crucial regulator for the inflammatory cells infiltration by mediating the adhesion of leukocytes. However, the role of PSGL-1 in aortic aneurysm remains elusive. Here, we investigated the role of PSGL-1 in aortic aneurysm (AA) development. METHODS We first detected PSGL-1 expression in samples from aortic aneurysm patients and mouse AA models via western blotting, immunofluorescence, and flow cytometry, and then we used global PSGL-1 knockout mice and their wild type controls to establish an aortic aneurysm model induced by deoxycorticosterone acetate (DOCA) plus high salt (HS). The incidence, fatality rates, and the pathological changes of aortic aneurysm were analyzed in each group. The inflammation, adhesion molecules expression, and PSGL-1 mediated leukocyte-endothelial adhesion and their underlying mechanisms were explored further. RESULTS Increased PSGL-1 levels were observed in human and mouse aortic aneurysm, and on leukocytes of mice treated with DOCA+HS. PSGL-1 deficiency reduced the incidence and severity of aortic aneurysm significantly, as well as decreased elastin fragmentation, collagen accumulation, and smooth muscle cells degeneration. Mechanistically, the protective effect of PSGL-1 inhibition was mediated by the reduced adhesion molecules, and the subsequently reduced leukocyte-endothelial adhesion through the NF-κB pathway, which finally led to reduced inflammatory cells infiltration and decreased inflammatory factors expression. CONCLUSION PSGL-1 deficiency is protective against inflammatory cells migration and recruitment in the condition of AA through attenuation of leukocyte-endothelial adhesion. Inhibition of PSGL-1 may be a potential therapeutic target for the prevention and treatment of human AA.
Collapse
Affiliation(s)
- Xianxian Wu
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), 5 Pan Jia Yuan Nan Li Chaoyang District, Beijing, 100021, People's Republic of China
| | - Xing Liu
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), 5 Pan Jia Yuan Nan Li Chaoyang District, Beijing, 100021, People's Republic of China
| | - Hang Yang
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Qianlong Chen
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Na Zhang
- Institute of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan, 750001, Ningxia, China
| | - Yuhan Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xingchen Du
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xue Liu
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), 5 Pan Jia Yuan Nan Li Chaoyang District, Beijing, 100021, People's Republic of China
| | - Xiaoliang Jiang
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), 5 Pan Jia Yuan Nan Li Chaoyang District, Beijing, 100021, People's Republic of China
| | - Yideng Jiang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, Beijing Key Laboratory for Molecular Diagnostics of Cardiovascular Diseases, Diagnostic Laboratory Service, Center of Laboratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Zhiwei Yang
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Centre, Peking Union Medical College (PUMC), 5 Pan Jia Yuan Nan Li Chaoyang District, Beijing, 100021, People's Republic of China.
| |
Collapse
|
15
|
Zhang Y, Hao J, Ma X, Zhao Q, Gao X, Wang X, Xu Q. Huoxue Jiedu Huayu Recipe Ameliorates Mesangial Cell Pyroptosis in Contralateral Kidney of UUO Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:2530431. [PMID: 33456483 PMCID: PMC7785365 DOI: 10.1155/2020/2530431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/11/2020] [Accepted: 12/20/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To observe the effects of the Huoxue Jiedu Huayu Recipe (HJHR) on pyroptosis of glomerular mesangial cells in the contralateral unobstructed kidney (CK) of unilateral ureteral obstruction (UUO) rats. METHODS Sprague-Dawley rats were randomly divided into 4 groups: sham group, UUO group (10 days of left ureter ligation), UUO treated with eplerenone (EPL) (UUO + EPL) group, and UUO treated with HJHR (UUO + HJHR) group. The CKs of all rats were collected for studies. RESULTS Cell pyroptosis and macrophage infiltration was found in contralateral glomeruli, and nucleotide-binding oligomerization domain-like pyrin domain containing protein 3 (NLRP3) and interleukin (IL)-1β expression was upregulated in the CK of UUO rats. All of these changes were inhibited by HJHR and eplerenone. To determine how aldosterone (Aldo) activated the mineralocorticoid receptor (MR) and then induced mesangial cell pyroptosis with NLRP3-caspase-1-IL-1β pathway, human mesangial cells (HMCs) were treated with HJHR and eplerenone, which were examined to detect the expression of NLRP3 inflammasome-associated proteins following treatment with Aldo. CONCLUSION These results suggest that HJHR and eplerenone suppressed HMC pyroptosis via the MR/NLRP3 pathway.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Juan Hao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xuelian Ma
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qiyue Zhao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaomeng Gao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiangting Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Qingyou Xu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Hebei University of Chinese Medicine, Shijiazhuang, China
- Department of Internal Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
16
|
Spencer S, Wheeler‐Jones C, Elliott J. Aldosterone and the mineralocorticoid receptor in renal injury: A potential therapeutic target in feline chronic kidney disease. J Vet Pharmacol Ther 2020; 43:243-267. [PMID: 32128854 PMCID: PMC8614124 DOI: 10.1111/jvp.12848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/20/2020] [Accepted: 02/09/2020] [Indexed: 12/24/2022]
Abstract
There is a growing body of experimental and clinical evidence supporting mineralocorticoid receptor (MR) activation as a powerful mediator of renal damage in laboratory animals and humans. Multiple pathophysiological mechanisms are proposed, with the strongest evidence supporting aldosterone-induced vasculopathy, exacerbation of oxidative stress and inflammation, and increased growth factor signalling promoting fibroblast proliferation and deranged extracellular matrix homeostasis. Further involvement of the MR is supported by extensive animal model experiments where MR antagonists (such as spironolactone and eplerenone) abrogate renal injury, including ischaemia-induced damage. Additionally, clinical trials have shown MR antagonists to be beneficial in human chronic kidney disease (CKD) in terms of reducing proteinuria and cardiovascular events, though current studies have not evaluated primary end points which allow conclusions to made about whether MR antagonists reduce mortality or slow CKD progression. Although differences between human and feline CKD exist, feline CKD shares many characteristics with human disease including tubulointerstitial fibrosis. This review evaluates the evidence for the role of the MR in renal injury and summarizes the literature concerning aldosterone in feline CKD. MR antagonists may represent a promising therapeutic strategy in feline CKD.
Collapse
Affiliation(s)
- Sarah Spencer
- Comparative Biomedical SciencesThe Royal Veterinary CollegeLondonUK
| | | | - Jonathan Elliott
- Comparative Biomedical SciencesThe Royal Veterinary CollegeLondonUK
| |
Collapse
|
17
|
Wijenayake S, Rahman MF, Lum CMW, De Vega WC, Sasaki A, McGowan PO. Maternal high-fat diet induces sex-specific changes to glucocorticoid and inflammatory signaling in response to corticosterone and lipopolysaccharide challenge in adult rat offspring. J Neuroinflammation 2020; 17:116. [PMID: 32293490 PMCID: PMC7158103 DOI: 10.1186/s12974-020-01798-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/31/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Maternal obesity as a result of high levels of saturated fat (HFD) consumption leads to significant negative health outcomes in both mother and exposed offspring. Offspring exposed to maternal HFD show sex-specific alterations in metabolic, behavioral, and endocrine function, as well as increased levels of basal neuroinflammation that persists into adulthood. There is evidence that psychosocial stress or exogenous administration of corticosterone (CORT) potentiate inflammatory gene expression; however, the response to acute CORT or immune challenge in adult offspring exposed to maternal HFD during perinatal life is unknown. We hypothesize that adult rat offspring exposed to maternal HFD would show enhanced pro-inflammatory gene expression in response to acute administration of CORT and lipopolysaccharide (LPS) compared to control animals, as a result of elevated basal pro-inflammatory gene expression. To test this, we examined the effects of acute CORT and/or LPS exposure on pro and anti-inflammatory neural gene expression in adult offspring (male and female) with perinatal exposure to a HFD or a control house-chow diet (CHD). METHODS Rat dams consumed HFD or CHD for four weeks prior to mating, during gestation, and throughout lactation. All male and female offspring were weaned on to CHD. In adulthood, offspring were 'challenged' with administration of exogenous CORT and/or LPS, and quantitative PCR was used to measure transcript abundance of glucocorticoid receptors and downstream inflammatory markers in the amygdala, hippocampus, and prefrontal cortex. RESULTS In response to CORT alone, male HFD offspring showed increased levels of anti-inflammatory transcripts, whereas in response to LPS alone, female HFD offspring showed increased levels of pro-inflammatory transcripts. In addition, male HFD offspring showed greater pro-inflammatory gene expression and female HFD offspring exhibited increased anti-inflammatory gene expression in response to simultaneous CORT and LPS administration. CONCLUSIONS These findings suggest that exposure to maternal HFD leads to sex-specific changes that may alter inflammatory responses in the brain, possibly as an adaptive response to basal neuroinflammation.
Collapse
Affiliation(s)
- Sanoji Wijenayake
- Center for Environmental Epigenetics and Development, Department of Biological Sciences, University of Toronto, Scarborough, 1265 Military Trail, Toronto, ON, Canada
| | - Mouly F Rahman
- Center for Environmental Epigenetics and Development, Department of Biological Sciences, University of Toronto, Scarborough, 1265 Military Trail, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Christine M W Lum
- Center for Environmental Epigenetics and Development, Department of Biological Sciences, University of Toronto, Scarborough, 1265 Military Trail, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Wilfred C De Vega
- Center for Environmental Epigenetics and Development, Department of Biological Sciences, University of Toronto, Scarborough, 1265 Military Trail, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Aya Sasaki
- Center for Environmental Epigenetics and Development, Department of Biological Sciences, University of Toronto, Scarborough, 1265 Military Trail, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Patrick O McGowan
- Center for Environmental Epigenetics and Development, Department of Biological Sciences, University of Toronto, Scarborough, 1265 Military Trail, Toronto, ON, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada.
- Department of Psychology, Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
18
|
Osman W, Al Dohani H, Al Hinai AS, Hannawi S, M Shaheen FA, Al Salmi I. Aldosterone renin ratio and chronic kidney disease. SAUDI JOURNAL OF KIDNEY DISEASES AND TRANSPLANTATION 2020; 31:70-78. [PMID: 32129199 DOI: 10.4103/1319-2442.279963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
As a component of the metabolic syndrome, hypertension (HTN) is increasing throughout the world with variable percentages, but mostly among developing world. Aldosterone plays a role in the relationship between aldosterone and nephropathy. We aimed to evaluate the relationship between aldosterone renin ratio (ARR) and chronic kidney disease (CKD). Variables drawn from the computerized hospital information database were all patients who had an ARR above 35 (if aldosterone reading was above 300 pmol/L). A total of 1584 patients, of whom 777 were male and 807 were female, with a mean [standard deviation (SD)] of 43.3 (16.5) years were studied. The mean ARR was 210.1 (SD: 246.4) in males and 214.3 and 210.1 in females, P = 0.51. The mean estimated glomerular filtration rate (eGFR) was 50.2 (SD 12.6); in males, it was 49.99 (0.90) and in females, it was 50.48 (0.92), P = 0.70. The regression model revealed a negative relationship between ARR and GFR with a coefficient of -2.08, 95% confidence interval: -4.6, 0.21, P = 0.07. CKD population with HTN tends to have a very high level of ARR, and those with advanced CKD have higher ARR. However, high ARR could have low eGFR and kidney dysfunction on follow-up. In view of high prevalence of noncommunicable disease and high early CKD population, there is an important need to consider comprehensive management strategies that involve the blockage of high renin-angiotensin-aldosterone and the use of mineralocorticosteroid receptor blockers.
Collapse
Affiliation(s)
- Wessam Osman
- Department of Internal Medicine, The Royal Hospital, Muscat, Oman
| | - Hayam Al Dohani
- Department of Internal Medicine, The Royal Hospital, Muscat, Oman
| | | | - Suad Hannawi
- Department of Medicine, Ministry of Health and Prevention, Dubai, United Arab Emirates
| | | | - Issa Al Salmi
- Department of Renal Medicine, The Royal Hospital, Muscat, Oman
| |
Collapse
|
19
|
NLRP3 Inflammasome and Mineralocorticoid Receptors Are Associated with Vascular Dysfunction in Type 2 Diabetes Mellitus. Cells 2019; 8:cells8121595. [PMID: 31817997 PMCID: PMC6952964 DOI: 10.3390/cells8121595] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
Aldosterone excess aggravates endothelial dysfunction in diabetes and hypertension by promoting the increased generation of reactive oxygen species, inflammation, and insulin resistance. Aldosterone activates the molecular platform inflammasome in immune system cells and contributes to vascular dysfunction induced by the mineralocorticoid hormone. It is unclear as to whether the NLRP3 inflammasome associated with the mineralocorticoid receptor contributes to vascular dysfunction in diabetic conditions. Here, we tested the hypothesis that an excess of aldosterone induces vascular dysfunction in type 2 diabetes, via the activation of mineralocorticoid receptors (MR) and assembly of the NLRP3 inflammasome. Mesenteric resistance arteries from control (db/m) and diabetic (db/db) mice treated with vehicle, spironolactone (MR antagonist) or an NLRP3 selective inhibitor (MCC950) were used to determine whether NLRP3 contributes to diabetes-associated vascular dysfunction. Db/db mice exhibited increased vascular expression/activation of caspase-1 and IL-1β, increased plasma IL-1β levels, active caspase-1 in peritoneal macrophages, and reduced acetylcholine (ACh) vasodilation, compared to db/m mice. Treatment of db/db mice with spironolactone and MCC950 decreased plasma IL-1β and partly restored ACh vasodilation. Spironolactone also reduced active caspase-1-positive macrophages in db/db mice, events that contribute to diabetes-associated vascular changes. These data clearly indicate that MR and NLRP3 activation contribute to diabetes-associated vascular dysfunction and pro-inflammatory phenotype.
Collapse
|
20
|
Chen ZW, Tsai CH, Pan CT, Chou CH, Liao CW, Hung CS, Wu VC, Lin YH. Endothelial Dysfunction in Primary Aldosteronism. Int J Mol Sci 2019; 20:ijms20205214. [PMID: 31640178 PMCID: PMC6829211 DOI: 10.3390/ijms20205214] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
Primary aldosteronism (PA) is characterized by excess production of aldosterone from the adrenal glands and is the most common and treatable cause of secondary hypertension. Aldosterone is a mineralocorticoid hormone that participates in the regulation of electrolyte balance, blood pressure, and tissue remodeling. The excess of aldosterone caused by PA results in an increase in cardiovascular and cerebrovascular complications, including coronary artery disease, myocardial infarction, stroke, transient ischemic attack, and even arrhythmia and heart failure. Endothelial dysfunction is a well-established fundamental cause of cardiovascular diseases and also a predictor of worse clinical outcomes. Accumulating evidence indicates that aldosterone plays an important role in the initiation and progression of endothelial dysfunction. Several mechanisms have been shown to contribute to aldosterone-induced endothelial dysfunction, including aldosterone-mediated vascular tone dysfunction, aldosterone- and endothelium-mediated vascular inflammation, aldosterone-related atherosclerosis, and vascular remodeling. These mechanisms are activated by aldosterone through genomic and nongenomic pathways in mineralocorticoid receptor-dependent and independent manners. In addition, other cells have also been shown to participate in these mechanisms. The complex interactions among endothelium, inflammatory cells, vascular smooth muscle cells and fibroblasts are crucial for aldosterone-mediated endothelial dysregulation. In this review, we discuss the association between aldosterone and endothelial function and the complex mechanisms from a molecular aspect. Furthermore, we also review current clinical research of endothelial dysfunction in patients with PA.
Collapse
Affiliation(s)
- Zheng-Wei Chen
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
- Cardiovascular center, National Taiwan University Hospital, Taipei 10002, Taiwan.
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin 64041, Taiwan.
| | - Cheng-Hsuan Tsai
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
- Cardiovascular center, National Taiwan University Hospital, Taipei 10002, Taiwan.
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City 20844, Taiwan.
| | - Chien-Ting Pan
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
- Cardiovascular center, National Taiwan University Hospital, Taipei 10002, Taiwan.
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Yun-Lin Branch, Yun-Lin 64041, Taiwan.
| | - Chia-Hung Chou
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10041, Taiwan.
| | - Che-Wei Liao
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu 30059, Taiwan.
| | - Chi-Sheng Hung
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
- Cardiovascular center, National Taiwan University Hospital, Taipei 10002, Taiwan.
| | - Vin-Cent Wu
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
| | - Yen-Hung Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei 10002, Taiwan.
- Cardiovascular center, National Taiwan University Hospital, Taipei 10002, Taiwan.
| |
Collapse
|
21
|
Abstract
Aldosterone is a mineralocorticoid hormone, as its main renal effect has been considered as electrolyte and water homeostasis in the distal tubule, thus maintaining blood pressure and extracellular fluid homeostasis through the activation of mineralocorticoid receptor (MR) in epithelial cells. However, over the past decade, numerous studies have documented the significant role of aldosterone in the progression of chronic kidney disease (CKD) which has become a subject of interest. It is being studied that aldosterone can affect cardiovascular and renal system, thereby contributing to tissue inflammation, injury, glomerulosclerosis, and interstitial fibrosis. Aldosterone acts on renal vessels, renal cells (glomerular mesangial cells, podocytes, vascular smooth muscle cells, tubular epithelial cells, and interstitial fibroblasts), and infiltrating inflammatory cells, inducing reactive oxygen species (ROS) production, upregulated epithelial growth factor receptor (EGFR), and type 1 angiotensin (AT1) receptor expressions, and activating nuclear factor kappa B (NF-κB), activator protein-1 (AP-1), and EGFR to further promote cell proliferation, apoptosis, and proliferation. Phenotypic transformation of epithelial cells stimulates the expression of transforming growth factor-β (TGF-β), connective tissue growth factor (CTGF), osteopontin (OPN), and plasminogen activator inhibitor-1 (PAI-1), eventually leading to renal fibrosis. MR antagonisms are related to inhibition of aldosterone-mediated pro-inflammatory and pro-fibrotic effect. In this review, we will summarize the important role of aldosterone in the pathogenesis of renal injury and fibrosis, emphasizing on its multiple underlying mechanisms and advances in aldosterone research along with the potential therapeutics for targeting MR in a renal fibrosis.
Collapse
|
22
|
Yang CT, Kor CT, Hsieh YP. Long-Term Effects of Spironolactone on Kidney Function and Hyperkalemia-Associated Hospitalization in Patients with Chronic Kidney Disease. J Clin Med 2018; 7:jcm7110459. [PMID: 30469400 PMCID: PMC6262621 DOI: 10.3390/jcm7110459] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 01/13/2023] Open
Abstract
Background: Spironolactone, a non-selective mineralocorticoid receptor antagonist, can protect against cardiac fibrosis and left ventricular dysfunction, and improve endothelial dysfunction and proteinuria. However, the safety and effects of spironolactone on patient-centered cardiovascular and renal endpoints remain unclear. Methods: We identified predialysis stage 3–4 chronic kidney disease (CKD) patients between 2000 and 2013 from the Longitudinal Health Insurance Database 2005 (LHID 2005). The outcomes of interest were end-stage renal disease (ESRD), major adverse cardiovascular events (MACE), hospitalization for heart failure (HHF), hyperkalemia-associated hospitalization (HKAH), all-cause mortality and cardiovascular mortality. The Fine and Gray sub-distribution hazards approach was adopted to adjust for the competing risk of death. Results: After the propensity score matching, 693 patients with stage 3–4 CKD were spironolactone users and 1386 were nonusers. During the follow-up period, spironolactone users had a lower incidence rate for ESRD than spironolactone non-users (39.2 vs. 53.69 per 1000 person-years) and a higher incidence rate for HKAH (54.79 vs. 18.57 per 1000 person-years). The adjusted hazard ratios for ESRD of spironolactone users versus non-users were 0.66 (95% CI, 0.51–0.84; p value < 0.001) and 3.17 (95% CI, 2.41–4.17; p value < 0.001) for HKAH. A dose-response relationship was found between spironolactone use and risk of ESRD and HKAH. There were no statistical differences in MACE, HHF, all-cause mortality and cardiovascular mortality between spironolactone users and non-users. Conclusion: Spironolactone represented a promising treatment option to retard CKD progression to ESRD amongst stage 3–4 CKD patients, but strategic treatments to prevent hyperkalemia should be enforced.
Collapse
Affiliation(s)
- Chen-Ta Yang
- Department of Internal Medicine, Changhua Christian Hospital, Changhua 50006, Taiwan.
| | - Chew-Teng Kor
- Department of Internal Medicine, Changhua Christian Hospital, Changhua 50006, Taiwan.
| | - Yao-Peng Hsieh
- Department of Internal Medicine, Changhua Christian Hospital, Changhua 50006, Taiwan.
- School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan.
| |
Collapse
|
23
|
Davel AP, Jaffe IZ, Tostes RC, Jaisser F, Belin de Chantemèle EJ. New roles of aldosterone and mineralocorticoid receptors in cardiovascular disease: translational and sex-specific effects. Am J Physiol Heart Circ Physiol 2018; 315:H989-H999. [PMID: 29957022 DOI: 10.1152/ajpheart.00073.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in the field of mineralocorticoid receptor (MR) and its ligand aldosterone expanded the role of this hormone and its receptor far beyond their initial function as a regulator of Na+ and K+ homeostasis in epithelial cells. The symposium "New Roles of Aldosterone and Mineralocorticoid Receptors in Cardiovascular Disease: Translational and Sex-Specific Effects" presented at the 38th World Congress of the International Union of Physiological Sciences (Rio de Janeiro, Brazil) highlighted the contribution of extrarenal MRs to cardiovascular disease. This symposium showcased how MRs expressed in endothelial, vascular smooth muscle, and immune cells plays a critical role in the development of vascular disease associated with aging, obesity, and chronic aldosterone stimulation and demonstrated that MR antagonism prevents the acute renal dysfunction and tubular injury induced by ischemia-reperfusion injury. It was also shown that the adipocyte-derived hormone leptin is a new direct regulator of aldosterone secretion and that leptin-mediated aldosterone production is a major contributor to obesity-associated hypertension in women. Sex differences in the role of aldosterone and of endothelial MR in the cardiovascular outcomes of obesity were highlighted. This review summarizes these important emerging concepts regarding the contribution of aldosterone and cell-specific MR to cardiovascular disease in male and female subjects and further supports sex-specific benefits of MR antagonist drugs to be tested in additional populations.
Collapse
Affiliation(s)
- Ana Paula Davel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas , Campinas, Sâo Paulo , Brazil
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute Tufts Medical Center , Boston, Massachusetts
| | - Rita C Tostes
- Departments of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo , Ribeirao Preto, Sâo Paulo , Brazil
| | - Frederic Jaisser
- Institut National de la Santé et de la Recherche Médicale, UMRS 1138, Centre de Recherche des Cordeliers, Pierre et Marie Curie University, Paris Descartes University , Paris , France
| | | |
Collapse
|
24
|
Santolla MF, Lappano R, Cirillo F, Rigiracciolo DC, Sebastiani A, Abonante S, Tassone P, Tagliaferri P, Di Martino MT, Maggiolini M, Vivacqua A. miR-221 stimulates breast cancer cells and cancer-associated fibroblasts (CAFs) through selective interference with the A20/c-Rel/CTGF signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:94. [PMID: 29716623 PMCID: PMC5930435 DOI: 10.1186/s13046-018-0767-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/20/2018] [Indexed: 01/19/2023]
Abstract
Background MicroRNA (miRNAs) are non-coding small RNA molecules that regulate gene expression by inhibiting the translation of target mRNAs. Among several dysregulated miRNAs in human cancer, the up-regulation of miR-221 has been associated with development of a variety of hematologic and solid malignancies. In this study, we investigated the involvement of miR-221 in breast cancer. Methods TaqMan microRNA assay was used to detect the miR-221 levels in normal cells and in MDA-MB 231 and SkBr3 breast cancer cells as well as in main players of the tumor microenvironment, namely cancer-associated fibroblasts (CAFs). miR-221 mimic sequence and locked nucleic acid (LNA)-i-miR-221 construct were used to induce or inhibit, respectively, the miR-221 expression in cells used. Quantitative PCR and western blotting analysis were performed to evaluate the levels of the miR-221 target gene A20 (TNFAIP3), as well as the member of the NF-kB complex namely c-Rel and the connective tissue growth factor (CTGF). Chromatin immunoprecipitation (ChIP) assay was performed to ascertain the recruitment of c-Rel to the CTFG promoter. Finally, the cell growth and migration in the presence of LNA-i-miR-221 or silencing c-Rel and CTGF by specific short hairpin were assessed by cell count, colony formation and boyden chambers assays. Statistical analysis was performed by ANOVA. Results We first demonstrated that LNA-i-miR-221 inhibits both endogenous and ectopic expression of miR-221 in our experimental models. Next, we found that the A20 down-regulation, as well as the up-regulation of c-Rel induced by miR-221 were no longer evident using LNA-i-miR-221. Moreover, we established that the miR-221 dependent recruitment of c-Rel to the NF-kB binding site located within the CTGF promoter region is prevented by using LNA-i-miR-221. Furthermore, we determined that the up-regulation of CTGF mRNA and protein levels by miR-221 is no longer evident using LNA-i-miR221 and silencing c-Rel. Finally, we assessed that cell growth and migration induced by miR-221 in MDA-MB 231 and SkBr3 breast cancer cells as well as in CAFs are abolished by LNAi-miR-221 and silencing c-Rel or CTGF. Conclusions Overall, these data provide novel insights into the stimulatory action of miR-221 in breast cancer cells and CAFs, suggesting that its inhibition may be considered toward targeted therapeutic approaches in breast cancer patients.
Collapse
Affiliation(s)
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | | | - Anna Sebastiani
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | | | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| | - Adele Vivacqua
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
25
|
Juszczak GR, Stankiewicz AM. Glucocorticoids, genes and brain function. Prog Neuropsychopharmacol Biol Psychiatry 2018; 82:136-168. [PMID: 29180230 DOI: 10.1016/j.pnpbp.2017.11.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/18/2017] [Accepted: 11/23/2017] [Indexed: 01/02/2023]
Abstract
The identification of key genes in transcriptomic data constitutes a huge challenge. Our review of microarray reports revealed 88 genes whose transcription is consistently regulated by glucocorticoids (GCs), such as cortisol, corticosterone and dexamethasone, in the brain. Replicable transcriptomic data were combined with biochemical and physiological data to create an integrated view of the effects induced by GCs. The most frequently reported genes were Errfi1 and Ddit4. Their up-regulation was associated with the altered transcription of genes regulating growth factor and mTORC1 signaling (Gab1, Tsc22d3, Dusp1, Ndrg2, Ppp5c and Sesn1) and progression of the cell cycle (Ccnd1, Cdkn1a and Cables1). The GC-induced reprogramming of cell function involves changes in the mRNA level of genes responsible for the regulation of transcription (Klf9, Bcl6, Klf15, Tle3, Cxxc5, Litaf, Tle4, Jun, Sox4, Sox2, Sox9, Irf1, Sall2, Nfkbia and Id1) and the selective degradation of mRNA (Tob2). Other genes are involved in the regulation of metabolism (Gpd1, Aldoc and Pdk4), actin cytoskeleton (Myh2, Nedd9, Mical2, Rhou, Arl4d, Osbpl3, Arhgef3, Sdc4, Rdx, Wipf3, Chst1 and Hepacam), autophagy (Eva1a and Plekhf1), vesicular transport (Rhob, Ehd3, Vps37b and Scamp2), gap junctions (Gjb6), immune response (Tiparp, Mertk, Lyve1 and Il6r), signaling mediated by thyroid hormones (Thra and Sult1a1), calcium (Calm2), adrenaline/noradrenaline (Adcy9 and Adra1d), neuropeptide Y (Npy1r) and histamine (Hdc). GCs also affected genes involved in the synthesis of polyamines (Azin1) and taurine (Cdo1). The actions of GCs are restrained by feedback mechanisms depending on the transcription of Sgk1, Fkbp5 and Nr3c1. A side effect induced by GCs is increased production of reactive oxygen species. Available data show that the brain's response to GCs is part of an emergency mode characterized by inactivation of non-core activities, restrained inflammation, restriction of investments (growth), improved efficiency of energy production and the removal of unnecessary or malfunctioning cellular components to conserve energy and maintain nutrient supply during the stress response.
Collapse
Affiliation(s)
- Grzegorz R Juszczak
- Department of Animal Behavior, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland.
| | - Adrian M Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, Jastrzebiec, ul. Postepu 36A, 05-552 Magdalenka, Poland
| |
Collapse
|
26
|
Belden Z, Deiuliis JA, Dobre M, Rajagopalan S. The Role of the Mineralocorticoid Receptor in Inflammation: Focus on Kidney and Vasculature. Am J Nephrol 2017; 46:298-314. [PMID: 29017166 PMCID: PMC6863172 DOI: 10.1159/000480652] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND The remarkable success of clinical trials in mineralocorticoid receptor (MR) inhibition in heart failure has driven research on the physiological and pathological role(s) of nonepithelial MR expression. MR is widely expressed in the cardiovascular system and is a major determinant of endothelial function, smooth muscle tone, vascular remodeling, fibrosis, and blood pressure. An important new dimension is the appreciation of the role MR plays in immune cells and target organ damage in the heart, kidney and vasculature, and in the development of insulin resistance. SUMMARY The mechanism for MR activation in tissue injury continues to evolve with the evidence to date suggesting that activation of MR results in a complex repertoire of effects involving both macrophages and T cells. MR is an important transcriptional regulator of macrophage phenotype and function. Another important feature of MR activation is that it can occur even with normal or low aldosterone levels in pathological conditions. Tissue-specific conditional models of MR expression in myeloid cells, endothelial cells, smooth muscle cells and cardiomyocytes have been very informative and have firmly demonstrated a critical role of MR as a key pathophysiologic variable in cardiac hypertrophy, transition to heart failure, adipose inflammation, and atherosclerosis. Finally, the central nervous system activation of MR in permeable regions of the blood-brain barrier may play a role in peripheral inflammation. Key Message: Ongoing clinical trials will help clarify the role of MR blockade in conditions, such as atherosclerosis and chronic kidney disease.
Collapse
Affiliation(s)
- Zachary Belden
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jeffrey A. Deiuliis
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Mirela Dobre
- Division of Nephrology and Hypertension, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sanjay Rajagopalan
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Harrington Heart and Vascular Institute, Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
27
|
Qu G, Shi H, Wang B, Li S, Zhang A, Gan W. Alterations in the long non‑coding RNA transcriptome in mesangial cells treated with aldosterone in vitro. Mol Med Rep 2017; 16:6004-6012. [PMID: 28849035 PMCID: PMC5865792 DOI: 10.3892/mmr.2017.7313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 06/23/2017] [Indexed: 12/14/2022] Open
Abstract
Clinical and experimental reports indicate that aldosterone (ALD) contributes to the progression of renal failure independent of its hemodynamic effects. However, the mechanisms remain to be completely elucidated. The aim of the present study was to investigate the alterations of long non-coding RNA (lncRNA) in mesangial cells (MCs) treated with ALD. The present study used MCs treated with 10−6 M ALD as experimental cells. Microarray techniques performed by Agilent Technologies were used to identify the profiles of differentially expressed lncRNAs between the ALD group and the control group. Pathway and gene ontology analysis were applied to determine the roles of the differentially expressed lncRNAs. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to quantify the differentially expressed lncRNAs. A total of 8,459 lncRNA and 13,214 mRNAs with differential expression between MCs treated with and without ALD were identified. The expression of lncRNAs was confirmed by RT-qPCR and the results were consistent with the lncRNA array. The biological functions of lncRNAs are associated with responding to external stimuli, positive regulation of biological and apoptotic processes, cell division, mitosis and nuclear division. The pathways include cell cycle and peroxisome proliferator-activated receptor signaling pathways. The present study revealed distinct sets of lncRNA expressed in MCs treated with ALD, suggesting that this class of transcripts may be involved in the pathogenesis of chronic kidney diseases.
Collapse
Affiliation(s)
- Gaoting Qu
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, P.R. China
| | - Huimin Shi
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, P.R. China
| | - Bin Wang
- Division of Nephrology, Huashan Hospital and Institute of Nephrology, Fudan University, Shanghai 200040, P.R. China
| | - Shanwen Li
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, P.R. China
| | - Aiqing Zhang
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, P.R. China
| | - Weihua Gan
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210003, P.R. China
| |
Collapse
|
28
|
Angiotensin II induces connective tissue growth factor expression in human hepatic stellate cells by a transforming growth factor β-independent mechanism. Sci Rep 2017; 7:7841. [PMID: 28798388 PMCID: PMC5552744 DOI: 10.1038/s41598-017-08334-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 07/11/2017] [Indexed: 02/06/2023] Open
Abstract
Angiotensin II (Ang II) promotes hepatic fibrosis by increasing extracellular matrix (ECM) synthesis. Connective tissue growth factor (CTGF) plays a crucial role in the pathogenesis of hepatic fibrosis and emerges as downstream of the profibrogenic cytokine transforming growth factor-β (TGF-β). We aimed to investigate the molecular events that lead from the Ang II receptor to CTGF upregulation in human hepatic stellate cells, a principal fibrogenic cell type. Ang II produced an early, AT1 receptor-dependent stimulation of CTGF expression and induced a rapid activation of PKC and its downstream p38 MAPK, thereby activating a nuclear factor-κB (NF-κB) and Smad2/3 cross-talk pathway. Chemical blockade of NF-κB and Smad2/3 signaling synergistically diminished Ang II-mediated CTGF induction and exhibited an additive effect in abrogating the ECM accumulation caused by Ang II. Furthermore, we demonstrated that CTGF expression was essential for Ang II-mediated ECM synthesis. Interestingly, the ability of dephosphorylated, but not phosphorylated JNK to activate Smad2/3 signaling revealed a novel role of JNK in Ang II-mediated CTGF overexpression. These results suggest that Ang II induces CTGF expression and ECM accumulation through a special TGF-β-independent interaction between the NF-κB and Smad2/3 signals elicited by the AT1/PKCα/p38 MAPK pathway.
Collapse
|
29
|
Tesch GH, Young MJ. Mineralocorticoid Receptor Signaling as a Therapeutic Target for Renal and Cardiac Fibrosis. Front Pharmacol 2017; 8:313. [PMID: 28611666 PMCID: PMC5447060 DOI: 10.3389/fphar.2017.00313] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 05/12/2017] [Indexed: 12/11/2022] Open
Abstract
Activation of the mineralocorticoid receptor (MR) plays important roles in both physiological and pathological events. Blockade of MR signaling with MR antagonists (MRAs) has been used clinically to treat kidney and cardiac disease associated with hypertension and other chronic diseases, resulting in suppression of fibrosis in these organs. However, the current use of steroidal MRAs has been limited by off target effects on other hormone receptors or adverse effects on kidney tubular function. In this review, we summarize recent insights into the profibrotic roles of MR signaling in kidney and cardiovascular disease. We review experimental in vitro data identifying the pathological mechanisms associated with MR signaling in cell types found in the kidney (mesangial cells, podocytes, tubular cells, macrophages, interstitial fibroblasts) and heart (cardiomyocytes, endothelial cells, vascular smooth muscle cells, macrophages). In addition, we demonstrate the in vivo importance of MR signaling in specific kidney and cardiac cell types by reporting the outcomes of cell type selective MR gene deletion in animal models of kidney and cardiac disease and comparing these findings to those obtained with MRAs treatment. This review also includes a discussion of the potential benefits of novel non-steroidal MRAs for targeting kidney and cardiac fibrosis compared to existing steroidal MRAs, as well as the possibility of novel combination therapies and cell selective delivery of MRAs.
Collapse
Affiliation(s)
- Greg H Tesch
- Department of Nephrology, Monash Health, ClaytonVIC, Australia.,Monash University Department of Medicine, Monash Health, ClaytonVIC, Australia.,Centre for Inflammatory Diseases, Monash Health, ClaytonVIC, Australia
| | - Morag J Young
- Hudson Institute of Medical Research, ClaytonVIC, Australia
| |
Collapse
|
30
|
Kluft C, Zimmerman Y, Mawet M, Klipping C, Duijkers IJ, Neuteboom J, Foidart JM, Bennink HC. Reduced hemostatic effects with drospirenone-based oral contraceptives containing estetrol vs. ethinyl estradiol. Contraception 2017; 95:140-147. [DOI: 10.1016/j.contraception.2016.08.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/28/2016] [Accepted: 08/29/2016] [Indexed: 10/21/2022]
|
31
|
Marzolla V, Armani A, Mammi C, Moss ME, Pagliarini V, Pontecorvo L, Antelmi A, Fabbri A, Rosano G, Jaffe IZ, Caprio M. Essential role of ICAM-1 in aldosterone-induced atherosclerosis. Int J Cardiol 2017; 232:233-242. [PMID: 28089144 DOI: 10.1016/j.ijcard.2017.01.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/25/2016] [Accepted: 01/03/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Elevated aldosterone is associated with increased risk of atherosclerosis complications, whereas treatment with mineralocorticoid receptor (MR) antagonists decreases the rate of cardiovascular events. Here we test the hypothesis that aldosterone promotes early atherosclerosis by modulating intercellular adhesion molecule-1 (ICAM-1) expression and investigate the molecular mechanisms by which aldosterone regulates ICAM-1 expression. METHODS AND RESULTS Apolipoprotein-E (ApoE)-/- mice fed an atherogenic diet and treated with aldosterone for 4weeks showed increased vascular expression of ICAM-1, paralleled by enhanced atherosclerotic plaque size in the aortic root. Moreover, aldosterone treatment resulted in increased plaque lipid and inflammatory cell content, consistent with an unstable plaque phenotype. ApoE/ICAM-1 double knockout (ApoE-/-/ICAM-1-/-) littermates were protected from the aldosterone-induced increase in plaque size, lipid content and macrophage infiltration. Since aldosterone is known to regulate ICAM-1 transcription via MR in human endothelial cells, we explored MR regulation of the ICAM-1 promoter. Luciferase reporter assays performed in HUVECs using deletion constructs of the human ICAM-1 gene promoter showed that a region containing a predicted MR-responsive element (MRE) is required for MR-dependent transcriptional regulation of ICAM-1. CONCLUSIONS Pro-atherogenic effects of aldosterone are mediated by increased ICAM-1 expression, through transcriptional regulation by endothelial MR. These data enhance our understanding of the molecular mechanism by which MR activation promotes atherosclerosis complications.
Collapse
Affiliation(s)
- Vincenzo Marzolla
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Andrea Armani
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Caterina Mammi
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Mary E Moss
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Vittoria Pagliarini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; Laboratory of Neuroembryology, Fondazione Santa Lucia, 00143 Rome, Italy
| | - Laura Pontecorvo
- Laboratory of Pathophysiology of Cachexia and Metabolism of Skeletal Muscle, IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Antonella Antelmi
- Interinstitutional Multidisciplinary Biobank (BioBIM), IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Andrea Fabbri
- Department of Systems Medicine, Endocrinology Unit, S. Eugenio & CTO A. Alesini Hospitals-ASL RM2, University Tor Vergata, Rome, Italy
| | - Giuseppe Rosano
- Cardiovascular & Cell Science Institute, St George's Hospital NHS Trust, University of London, London, United Kingdom; Department of Medical Sciences, IRCCS San Raffaele, Rome, Italy
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Massimiliano Caprio
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele Pisana, 00166 Rome, Italy; Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy.
| |
Collapse
|
32
|
Ong GSY, Young MJ. Mineralocorticoid regulation of cell function: the role of rapid signalling and gene transcription pathways. J Mol Endocrinol 2017; 58:R33-R57. [PMID: 27821439 DOI: 10.1530/jme-15-0318] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/06/2016] [Indexed: 12/22/2022]
Abstract
The mineralocorticoid receptor (MR) and mineralocorticoids regulate epithelial handling of electrolytes, and induces diverse effects on other tissues. Traditionally, the effects of MR were ascribed to ligand-receptor binding and activation of gene transcription. However, the MR also utilises a number of intracellular signalling cascades, often by transactivating unrelated receptors, to change cell function more rapidly. Although aldosterone is the physiological mineralocorticoid, it is not the sole ligand for MR. Tissue-selective and mineralocorticoid-specific effects are conferred through the enzyme 11β-hydroxysteroid dehydrogenase 2, cellular redox status and properties of the MR itself. Furthermore, not all aldosterone effects are mediated via MR, with implication of the involvement of other membrane-bound receptors such as GPER. This review will describe the ligands, receptors and intracellular mechanisms available for mineralocorticoid hormone and receptor signalling and illustrate their complex interactions in physiology and disease.
Collapse
Affiliation(s)
- Gregory S Y Ong
- Cardiovascular Endocrinology LaboratoryCentre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of MedicineSchool of Clinical Sciences, Monash University, Clayton, Victoria, Australia
| | - Morag J Young
- Cardiovascular Endocrinology LaboratoryCentre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of PhysiologySchool of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
33
|
Dougherty EJ, Elinoff JM, Ferreyra GA, Hou A, Cai R, Sun J, Blaine KP, Wang S, Danner RL. Mineralocorticoid Receptor (MR) trans-Activation of Inflammatory AP-1 Signaling: DEPENDENCE ON DNA SEQUENCE, MR CONFORMATION, AND AP-1 FAMILY MEMBER EXPRESSION. J Biol Chem 2016; 291:23628-23644. [PMID: 27650495 DOI: 10.1074/jbc.m116.732248] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Indexed: 01/21/2023] Open
Abstract
Glucocorticoids are commonly used to treat inflammatory disorders. The glucocorticoid receptor (GR) can tether to inflammatory transcription factor complexes, such as NFκB and AP-1, and trans-repress the transcription of cytokines, chemokines, and adhesion molecules. In contrast, aldosterone and the mineralocorticoid receptor (MR) primarily promote cardiovascular inflammation by incompletely understood mechanisms. Although MR has been shown to weakly repress NFκB, its role in modulating AP-1 has not been established. Here, the effects of GR and MR on NFκB and AP-1 signaling were directly compared using a variety of ligands, two different AP-1 consensus sequences, GR and MR DNA-binding domain mutants, and siRNA knockdown or overexpression of core AP-1 family members. Both GR and MR repressed an NFκB reporter without influencing p65 or p50 binding to DNA. Likewise, neither GR nor MR affected AP-1 binding, but repression or activation of AP-1 reporters occurred in a ligand-, AP-1 consensus sequence-, and AP-1 family member-specific manner. Notably, aldosterone interactions with both GR and MR demonstrated a potential to activate AP-1. DNA-binding domain mutations that eliminated the ability of GR and MR to cis-activate a hormone response element-driven reporter variably affected the strength and polarity of these responses. Importantly, MR modulation of NFκB and AP-1 signaling was consistent with a trans-mechanism, and AP-1 effects were confirmed for specific gene targets in primary human cells. Steroid nuclear receptor trans-effects on inflammatory signaling are context-dependent and influenced by nuclear receptor conformation, DNA sequence, and the expression of heterologous binding partners. Aldosterone activation of AP-1 may contribute to its proinflammatory effects in the vasculature.
Collapse
Affiliation(s)
- Edward J Dougherty
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Jason M Elinoff
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Gabriela A Ferreyra
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Angela Hou
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Rongman Cai
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Junfeng Sun
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Kevin P Blaine
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Shuibang Wang
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Robert L Danner
- From the Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
34
|
Zhang Y, Pan Y, Bian Z, Chen P, Zhu S, Gu H, Guo L, Hu C. Ceramide Production Mediates Aldosterone-Induced Human Umbilical Vein Endothelial Cell (HUVEC) Damages. PLoS One 2016; 11:e0146944. [PMID: 26788916 PMCID: PMC4720365 DOI: 10.1371/journal.pone.0146944] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/23/2015] [Indexed: 01/09/2023] Open
Abstract
Here, we studied the underlying mechanism of aldosterone (Aldo)-induced vascular endothelial cell damages by focusing on ceramide. We confirmed that Aldo (at nmol/L) inhibited human umbilical vein endothelial cells (HUVEC) survival, and induced considerable cell apoptosis. We propose that ceramide (mainly C18) production might be responsible for Aldo-mediated damages in HUVECs. Sphingosine-1-phosphate (S1P), an anti-ceramide lipid, attenuated Aldo-induced ceramide production and following HUVEC damages. On the other hand, the glucosylceramide synthase (GCS) inhibitor PDMP or the ceramide (C6) potentiated Aldo-induced HUVEC apoptosis. Eplerenone, a mineralocorticoid receptor (MR) antagonist, almost completely blocked Aldo-induced C18 ceramide production and HUVEC damages. Molecularly, ceramide synthase 1 (CerS-1) is required for C18 ceramide production by Aldo. Knockdown of CerS-1 by targeted-shRNA inhibited Aldo-induced C18 ceramide production, and protected HUVECs from Aldo. Reversely, CerS-1 overexpression facilitated Aldo-induced C18 ceramide production, and potentiated HUVEC damages. Together, these results suggest that C18 ceramide production mediates Aldo-mediated HUVEC damages. MR and CerS-1 could be the two signaling molecule regulating C18 ceramide production by Aldo.
Collapse
Affiliation(s)
- Yumei Zhang
- Division of Nephrology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Yu Pan
- Division of Nephrology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Zhixiang Bian
- Division of Nephrology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Peihua Chen
- Division of Nephrology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Shijian Zhu
- Division of Nephrology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Huiyi Gu
- Division of Nephrology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Liping Guo
- Division of Nephrology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
| | - Chun Hu
- Division of Nephrology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 201999, China
- * E-mail:
| |
Collapse
|
35
|
Up-regulation of FGF23 release by aldosterone. Biochem Biophys Res Commun 2016; 470:384-390. [PMID: 26773502 DOI: 10.1016/j.bbrc.2016.01.034] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/06/2016] [Indexed: 12/25/2022]
Abstract
The fibroblast growth factor (FGF23) plasma level is high in cardiac and renal failure and is associated with poor clinical prognosis of these disorders. Both diseases are paralleled by hyperaldosteronism. Excessive FGF23 levels and hyperaldosteronism are further observed in Klotho-deficient mice. The present study explored a putative aldosterone sensitivity of Fgf23 transcription and secretion the putative involvement of the aldosterone sensitive serum & glucocorticoid inducible kinase SGK1, SGK1 sensitive transcription factor NFκB and store operated Ca(2+) entry (SOCE). Serum FGF23 levels were determined by ELISA in mice following sham treatment or exposure to deoxycorticosterone acetate (DOCA) or salt depletion. In osteoblastic UMR106 cells transcript levels were quantified by qRT-PCR, cytosolic Ca(2+) concentration utilizing Fura-2-fluorescence, and SOCE from Ca(2+) entry following store depletion by thapsigargin. As a result, DOCA treatment and salt depletion of mice elevated the serum C-terminal FGF23 concentration. In UMR106 cells aldosterone enhanced and spironolactone decreased SOCE. Aldosterone further increased Fgf23 transcript levels in UMR106 cells, an effect reversed by mineralocorticoid receptor blockers spironolactone and eplerenone, SGK1 inhibitor EMD638683, NFκB-inhibitor withaferin A, and Ca(2+) channel blocker YM58483. In conclusion, Fgf23 expression is up-regulated by aldosterone, an effect sensitive to SGK1, NFκB and store-operated Ca(2+) entry.
Collapse
|
36
|
Fuller PJ. Novel interactions of the mineralocorticoid receptor. Mol Cell Endocrinol 2015; 408:33-7. [PMID: 25662276 DOI: 10.1016/j.mce.2015.01.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/17/2015] [Accepted: 01/18/2015] [Indexed: 02/06/2023]
Abstract
The mineralocorticoid receptor (MR) differs from the other steroid receptors in that it responds to two physiological ligands, aldosterone and cortisol. In epithelial tissues, aldosterone selectivity is determined by 11β-hydroxysteroid dehydrogenase type II. In other tissues cortisol is the primary ligand; in some tissues cortisol may act as an antagonist. To better target MR, an understanding of the structural determinants of tissue and ligand-specific MR activation is required. Our focus is on interactions of the ligand-binding domain (LBD) with ligand, the N-terminal domain and putative co-regulatory molecules. Molecular modelling has identified a region in the LBD of the MR and indeed other steroid receptors that critically defines ligand-specificity for aldosterone and cortisol, yet is not part of the ligand-binding pocket. An interaction between the N-terminus and LBD observed in the MR is aldosterone-dependent but is unexpectedly antagonised by cortisol. The structural basis of this interaction has been defined. We have identified proteins which interact in the presence of either aldosterone or cortisol but not both. These have been confirmed as coactivators of the full-length hMR. The structural basis of this interaction has been determined for tesmin, a ligand-discriminant coactivator of the MR. The successful identification of the structural basis of antagonism and of ligand-specific interactions of the MR may provide the basis for the development of novel MR ligands with tissue specificity.
Collapse
Affiliation(s)
- Peter J Fuller
- MIMR-PHI Institute (formerly Prince Henry's Institute of Medical Research), Clayton, Victoria, Australia.
| |
Collapse
|
37
|
Xiao J, Chen W, Lu Y, Zhang X, Fu C, Yan Z, Zhang Z, Ye Z. Crosstalk between peroxisome proliferator-activated receptor-γ and mineralcorticoid receptor in TNF-α activated renal tubular cell. Inflamm Res 2015; 64:603-14. [PMID: 26072064 DOI: 10.1007/s00011-015-0838-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/31/2015] [Accepted: 06/02/2015] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION In our previous study, we observed the crosstalk between peroxisome proliferator-activated receptor-γ (PPAR-γ) and angiotensin II in activated renal tubular cells. The present study is aimed to further explore the crosstalk between PPAR-γ and mineralocorticoid receptor (MR) in tumor necrosis factor (TNF)-α activated renal tubular cells. METHODS Human proximal renal tubular epithelial cells HK-2 were cultured with the pre-treatment of PPAR-γ agonist, pioglitazone (5 μM), MR antagonist, eplerenone (5 μM), or their combined treatment, followed by activation with TNF-α (20 ng/ml). In the parallel experiment, PPAR-γ inhibitor GW9662 (25 µM) was used to study the independence of PPAR-γ. Gene expression and protein synthesis of intercellular adhesion molecule-1 (ICAM-1), interleukin-6 (IL-6), MR and PPAR-γ were measured by RT-PCR, ELISA and Western blot, respectively; nuclear factor κB (NF-κB) nuclear translocation activity in the nucleus was examined by EMSA assay. RESULTS TNF-α effectively activated HK-2 cells by up-regulating gene expression and protein synthesis of ICAM-1, IL-6 and MR and down-regulating PPAR-γ in a dose-dependent manner. TNF-α also significantly induced NF-κB nuclear translocation in HK-2 cells. Dual treatment of pioglitazone and eplerenone demonstrated synergistic effect on reducing ICAM-1 and IL-6 expression and alleviating NF-κB activation when compared with their monotherapies in TNF-α activated renal tubular cells. PPAR-γ antagonist, GW9662, significantly attenuated protective effect on ICAM-1, IL-6 and PPAR-γ expression by pioglitazone, eplerenone and their combined treatment. CONCLUSIONS Our data suggest that pioglitazone, in a PPAR-γ-dependent manner, trans-represses MR signaling by suppressing NF-κB activation. MR antagonist also restored PPAR-γ expression. Dual treatment of pioglitazone and eplerenone present better efficacy in attenuating excessive inflammatory response in activated renal tubular cells under stimulation of TNF-α than single treatment.
Collapse
Affiliation(s)
- Jing Xiao
- Department of Nephrology, Huadong Hospital Affiliated to Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Therapeutic targeting of aldosterone: a novel approach to the treatment of glomerular disease. Clin Sci (Lond) 2015; 128:527-35. [PMID: 25671776 DOI: 10.1042/cs20140432] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Numerous studies have established a role for mineralocorticoids in the development of renal fibrosis. Originally, the research focus for mineralocorticoid-induced fibrosis was on the collecting duct, where 'classical' mineralocorticoid receptors (MRs) involved with electrolyte transport are present. Epithelial cells in this segment can, under selected circumstances, also respond to MR activation by initiating pro-fibrotic pathways. More recently, 'non-classical' MRs have been described in kidney cells not associated with electrolyte transport, including mesangial cells and podocytes within the glomerulus. Activation of MRs in these cells appears to lead to glomerular sclerosis. Mechanistically, aldosterone induces excess production of reactive oxygen species (ROS) and oxidative stress in glomerular cells through activation of NADPH oxidase. In mesangial cells, aldosterone also has pro-apoptotic, mitogenic and pro-fibrogenic effects, all of which potentially promote active remodelling and expansion of the mesangium. Although mitochondrial dysfunction seems to mediate the aldosterone-induced mesangial apoptosis, the ROS dependent epithelial growth factor receptor (EGFR) transactivation is probably responsible for aldosterone-induced mesangial mitosis and proliferation. In podocytes, mitochondrial dysfunction elicited by oxidative stress is an early event associated with aldosterone-induced podocyte injury. Both the p38 MAPK (p38 mitogen-activated protein kinase) signalling and the redox-sensitive glycogen synthase kinase (GSK)3β pathways are centrally implicated in aldosterone-induced podocyte death. Aldosterone-induced GSK3β over-activity could potentially cause hyperphosphorylation and over-activation of putative GSK3β substrates, including structural components of the mitochondrial permeability transition (MPT) pore, all of which lead to cell injury and death. Clinically, proteinuria significantly decreases when aldosterone inhibitors are included in the treatment of many glomerular diseases further supporting the view that mineralocorticoids are important players in glomerular pathology.
Collapse
|
39
|
Akyol M, Erol MK, Ozdemir O, Coban DT, Bilgin AB, Sari ES, Turkoglu EB. A novel mutation of sgk-1 gene in central serous chorioretinopathy. Int J Ophthalmol 2015; 8:23-8. [PMID: 25709902 DOI: 10.3980/j.issn.2222-3959.2015.01.04] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 09/12/2014] [Indexed: 11/02/2022] Open
Abstract
AIM To investigate the association of serum glucocorticoid kinase gene-1 (SGK-1) DNA variants with chronic central serous chorioretinopathy (CSC). METHODS We enrolled 32 eyes of 32 patients who were diagnosed with chronic CSC and composed 32 normal eyes as a control group. Peripheral blood was used for DNA extraction and polymerase chain reaction (PCR) amplification. SGK1 gene was sequenced by using BigDye(®) Terminator v3.1 cycle sequencing KIT (Applied Biosystems, Foster City, CA, USA). The SGK1 gene and its variants were investigated in CSC patient group and control group. RESULTS We identified a new polymorphism M32V in two person in the patient group (Minor allele frequency (MAF)=0.009) on the region of 1-60 amino acids. The rs1057293 was located in the encoder region of the SGK 1 gene but not associated with CSC (P=0.68). An intrinsic rs1743966 is also not associated (P=0.28). CONCLUSIONS The new polymorphism M32V is located on the region of 1-60 amino acids which is necessary for localization to the mitochondria in CSC patient. This mutation is probably important for the energy metabolism and plays an important role in the cellular response to hyperosmotic stress and other stress stimuli. Both rs1057293 and rs1743966 are not associated with CSC.
Collapse
Affiliation(s)
- Mahmut Akyol
- Human Gene and Cell Therapy Centre, Akdeniz University Faculty of Medicine, 07070, Antalya, Turkey
| | - Muhammet Kazım Erol
- Department of Ophthalmology, Antalya Education and Research Hospital, Antalya 07125, Turkey
| | - Ozdemir Ozdemir
- Department of Ophthalmology, Zekai Tahir Burak Women's Health Education and Research Hospital, Ankara 06100, Turkey
| | - Deniz Turgut Coban
- Department of Ophthalmology, Antalya Education and Research Hospital, Antalya 07125, Turkey
| | - Ahmet Burak Bilgin
- Department of Ophthalmology, Akdeniz University Faculty of Medicine, Antalya 07070, Turkey
| | - Esin Sogutlu Sari
- Department of Ophthalmology, Balıkesir University Faculty of Medicine, Balıkesir 10145, Turkey
| | - Elif Betul Turkoglu
- Department of Ophthalmology, Akdeniz University Faculty of Medicine, Antalya 07070, Turkey
| |
Collapse
|
40
|
Moss ME, Jaffe IZ. Mineralocorticoid Receptors in the Pathophysiology of Vascular Inflammation and Atherosclerosis. Front Endocrinol (Lausanne) 2015; 6:153. [PMID: 26441842 PMCID: PMC4585008 DOI: 10.3389/fendo.2015.00153] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/14/2015] [Indexed: 01/25/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease of the vasculature that causes significant morbidity and mortality from myocardial infarction, stroke, and peripheral vascular disease. Landmark clinical trials revealed that mineralocorticoid receptor (MR) antagonists improve outcomes in cardiovascular patients. Conversely, enhanced MR activation by the hormone aldosterone is associated with increased risk of MI, stroke, and cardiovascular death. This review summarizes recent advances in our understanding of the role of aldosterone and the MR in the pathogenesis of vascular inflammation and atherosclerosis as it proceeds from risk factor-induced endothelial dysfunction and inflammation to plaque formation, progression, and ultimately rupture with thrombosis, the cause of acute ischemia. The role of the MR in converting cardiac risk factors into endothelial dysfunction, in enhancing leukocyte adhesion and infiltration into the vasculature, in promoting systemic inflammation and vascular oxidative stress, and in plaque destabilization and thrombosis are discussed. A greater understanding of the mechanisms by which the MR promotes atherosclerosis has substantial potential to identify novel treatment targets to improve cardiovascular health and decrease mortality.
Collapse
Affiliation(s)
- Mary E. Moss
- Tufts Medical Center, Molecular Cardiology Research Institute, Boston, MA, USA
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Iris Z. Jaffe
- Tufts Medical Center, Molecular Cardiology Research Institute, Boston, MA, USA
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
- *Correspondence: Iris Z. Jaffe, Tufts Medical Center, Molecular Cardiology Research Institute, 800 Washington Street, Box 80, Boston, MA 02111, USA,
| |
Collapse
|
41
|
Bauersachs J, Jaisser F, Toto R. Mineralocorticoid receptor activation and mineralocorticoid receptor antagonist treatment in cardiac and renal diseases. Hypertension 2014; 65:257-63. [PMID: 25368026 DOI: 10.1161/hypertensionaha.114.04488] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Johann Bauersachs
- From the Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany (J.B.); Centre de Recherche des Cordeliers, Inserm U1138, Université Pierre et Marie Curie, Paris, France (F.J.); and Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas (R.T.).
| | - Frédéric Jaisser
- From the Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany (J.B.); Centre de Recherche des Cordeliers, Inserm U1138, Université Pierre et Marie Curie, Paris, France (F.J.); and Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas (R.T.)
| | - Robert Toto
- From the Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany (J.B.); Centre de Recherche des Cordeliers, Inserm U1138, Université Pierre et Marie Curie, Paris, France (F.J.); and Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas (R.T.)
| |
Collapse
|
42
|
Lu W, Liu S, Zhao Z, Liu Y, Li T. The effect of connective tissue growth factor on renal fibrosis and podocyte injury in hypertensive rats. Ren Fail 2014; 36:1420-7. [DOI: 10.3109/0886022x.2014.934692] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
43
|
Doi T, Doi S, Nakashima A, Ueno T, Yokoyama Y, Kohno N, Masaki T. Mizoribine ameliorates renal injury and hypertension along with the attenuation of renal caspase-1 expression in aldosterone-salt-treated rats. PLoS One 2014; 9:e93513. [PMID: 24695748 PMCID: PMC3973594 DOI: 10.1371/journal.pone.0093513] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 03/07/2014] [Indexed: 12/01/2022] Open
Abstract
Aldosterone-salt treatment induces not only hypertension but also extensive inflammation that contributes to fibrosis in the rat kidney. However, the mechanism underlying aldosterone-salt-induced renal inflammation remains unclear. Pyroptosis has recently been identified as a new type of cell death that is accompanied by the activation of inflammatory cytokines. We hypothesized that aldosterone-salt treatment could induce inflammation through pyroptosis and that mizoribine, an effective immunosuppressant, would ameliorate the renal inflammation that would otherwise cause renal fibrosis. Ten days after recovery from left uninephrectomy, rats were given drinking water with 1% sodium chloride. The animals were divided into three groups (n = 7 per group): (1) vehicle infusion group, (2) aldosterone infusion group, or (3) aldosterone infusion plus oral mizoribine group. Aldosterone-salt treatment increased the expression of the nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing 3 and caspase-1, and also increased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells. However, the oral administration of mizoribine attenuated these alterations. Furthermore, mizoribine inhibited hypertension and renal fibrosis, and also attenuated the aldosterone-induced expression of serum/glucocorticoid-regulated kinase and α epithelial sodium channel. These results suggest that caspase-1 activation plays an important role in the development of inflammation induced by aldosterone-salt treatment and that it functions as an anti-inflammatory strategy that protects against renal injury and hypertension.
Collapse
Affiliation(s)
- Toshiki Doi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Shigehiro Doi
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Ayumu Nakashima
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Toshinori Ueno
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Yukio Yokoyama
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Nobuoki Kohno
- Department of Molecular and Internal Medicine, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Takao Masaki
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
44
|
Ritz E, Tomaschitz A. Aldosterone and the kidney: a rapidly moving frontier (an update). Nephrol Dial Transplant 2013; 29:2012-9. [PMID: 24194611 DOI: 10.1093/ndt/gft035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Beyond the classical effect of aldosterone on sodium reabsorption in the distal nephron, the spectrum of aldosterone-induced effects on the kidney (and the cardiovascular system) continues to expand at a rapid pace. Blockade of this system has become an attractive target for intervention. Major contributions have been reported in the past 2-3 years. By necessity this brief summary addresses only some of the emerging issues of nephrological relevance. In this fast moving field, we try to give a concise discussion of papers with potential nephrological relevance in the past 2-3 years.
Collapse
Affiliation(s)
- Eberhard Ritz
- Nierenzentrum, Im Neuenheimer Feld 162, Heidelberg, Germany
| | - Andreas Tomaschitz
- Department of Cardiology, Medical University Graz, Graz, Austria Specialist Clinic for Rehabilitation PV Bad Aussee, Bad Aussee, Austria
| |
Collapse
|
45
|
Mayyas F, Alzoubi KH, Van Wagoner DR. Impact of aldosterone antagonists on the substrate for atrial fibrillation: aldosterone promotes oxidative stress and atrial structural/electrical remodeling. Int J Cardiol 2013; 168:5135-42. [PMID: 23993726 DOI: 10.1016/j.ijcard.2013.08.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/03/2013] [Indexed: 12/31/2022]
Abstract
Atrial fibrillation (AF), the most common cardiac arrhythmia, is an electrocardiographic description of a condition with multiple and complex underlying mechanisms. Oxidative stress is an important driver of structural remodeling that creates a substrate for AF. Oxidant radicals may promote increase of atrial oxidative damage, electrical and structural remodeling, and atrial inflammation. AF and other cardiovascular morbidities activate angiotensin (Ang-II)-dependent and independent cascades. A key component of the renin-angiotensin-aldosterone system (RAAS) is the mineralocorticoid aldosterone. Recent studies provide evidence of myocardial aldosterone synthesis. Aldosterone promotes cardiac oxidative stress, inflammation and structural/electrical remodeling via multiple mechanisms. In HF patients, aldosterone production is enhanced. In patients and in experimental HF and AF models, aldosterone receptor antagonists have favorable influences on cardiac remodeling and oxidative stress. Therapeutic approaches that seek to reduce AF burden by modulating the aldosterone system are likely beneficial but underutilized.
Collapse
Affiliation(s)
- Fadia Mayyas
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Jordan.
| | | | | |
Collapse
|
46
|
Abstract
The steroid hormone aldosterone regulates sodium and potassium homeostasis. Aldosterone and activation of the mineralocorticoid receptor also causes inflammation and fibrosis of the heart, fibrosis and remodelling of blood vessels and tubulointerstitial fibrosis and glomerular injury in the kidney. Aldosterone and mineralocorticoid-receptor activation initiate an inflammatory response by increasing the generation of reactive oxygen species by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondria. High salt intake potentiates these effects, in part by activating the Rho family member Rac1, a regulatory subunit of reduced NADPH oxidase that activates the mineralocorticoid receptor. Studies in mice in which the mineralocorticoid receptor has been deleted from specific cell types suggest a key role for macrophages in promoting inflammation and fibrosis. Aldosterone can exert mineralocorticoid-receptor-independent effects via the angiotensin II receptor and via G-protein-coupled receptor 30. Mineralocorticoid-receptor antagonists are associated with decreased mortality in patients with heart disease and show promise in patients with kidney injury, but can elevate serum potassium concentration. Studies in rodents genetically deficient in aldosterone synthase or treated with a pharmacological aldosterone-synthase inhibitor are providing insight into the relative contribution of aldosterone compared with the contribution of mineralocorticoid-receptor activation in inflammation, fibrosis, and injury. Aldosterone-synthase inhibitors are under development in humans.
Collapse
|