1
|
Fabrizio-Stover E, Wu J, Lang H, Harris KC. Middle-aged CBA/CaJ mice exhibit auditory dysfunction in background noise. Hear Res 2025; 461:109259. [PMID: 40194356 DOI: 10.1016/j.heares.2025.109259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/12/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025]
Abstract
Aging is associated with deficits in auditory functioning. Characterization of auditory deficits that originate in middle-age is crucial for understanding the initial age-related functional impairments and the spatio-temporal progression of age-related auditory pathophysiology. Early age-related deficits in auditory processing are evident in difficult listening conditions, such as background noise, before becoming evident in quiet. To investigate the effect of noise on age-related auditory dysfunction, we collected suprathreshold auditory brainstem responses (ABRs) from young, middle-aged, and aged CBA/CaJ mice in quiet and broad-band background noise. We utilized multiple ABR metrics, including phase locking value (PLV), a measure of neural synchrony correlated to speech-in-noise understanding in humans. Despite no differences in auditory processing in quiet between young and middle-aged mice, middle-aged mice exhibited a distinct auditory phenotype from both young and aged mice in background noise conditions. We found that noise significantly decreased amplitude in middle-aged mice more than in young and aged mice. Noise significantly increased latencies for wave I and V in young mice, but only affected wave V in middle-aged mice and did not affect aged latencies. Noise significantly decreased PLV in middle-aged mice to a greater extent than in young mice, but to a lesser extent in aged mice. These results show that middle-aged mice have a distinct, auditory dysfunction phenotype evident in background noise. Our data show that suprathreshold auditory function in noise can identify early age-related hearing loss and can be used as a sensitive tool for detecting auditory dysfunction in normal hearing animal models.
Collapse
Affiliation(s)
- E Fabrizio-Stover
- Department of Otolaryngology - Head & Neck Surgery, Medical University of South Carolina, USA; Department of Pathology & Laboratory Medicine, Medical University of South Carolina, USA.
| | - J Wu
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, USA
| | - H Lang
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, USA
| | - K C Harris
- Department of Otolaryngology - Head & Neck Surgery, Medical University of South Carolina, USA
| |
Collapse
|
2
|
Guo S, Cao J, Hong G, Song Y, Xia M, Li P, Yuan W, Xiao Y, Sun G, Liu S, Cao S, Qi J, Bi X, Liu Z, Wu Y, Li W, Zhao X, Gao J, Chai R, Fu X. mRNA metabolism regulator human antigen R (HuR) regulates age-related hearing loss in aged mice. NATURE AGING 2025; 5:848-867. [PMID: 40394214 DOI: 10.1038/s43587-025-00860-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 03/31/2025] [Indexed: 05/22/2025]
Abstract
Age-related hearing loss (ARHL) is among the most prevalent and complex disorders in older adults. However, the pathogenesis of ARHL remains poorly understood. Using a single-cell transcriptomic landscape of mouse cochlea at five time points (1, 2, 5, 12 and 15 months), we found that the levels of human antigen R (HuR)-a classical RNA-binding protein-increase with age. Here we show that HuR is specifically transported from the nucleus to the cytoplasm in hair cells in both aging mice and nonhuman primates. HuR overexpression in cochlea could successfully alleviate ARHL in aged mice. Meanwhile, HuR deficiency led to premature hearing dysfunction characterized by degeneration of stereocilia and the subsequent loss of hair cells. RNA immunoprecipitation sequencing analysis revealed that HuR can bind to messenger RNAs that enable stereocilia maintenance, including Gnai3. Adeno-associated virus-mediated Gnai3 overexpression partially rescues the hearing defects in HuR-deficient mice. Taken together, these findings indicate that HuR is a potential therapeutic target for ARHL.
Collapse
Affiliation(s)
- Siwei Guo
- School of Life Science, Shandong University, Qingdao, China
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jieying Cao
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Guodong Hong
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yuning Song
- School of Life Science, Shandong University, Qingdao, China
| | - Ming Xia
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Peipei Li
- School of Life Science, Shandong University, Qingdao, China
| | - Wei Yuan
- Chongqing General Hospital, Chongqing, China
| | - Yu Xiao
- School of Life Science, Shandong University, Qingdao, China
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Guoqiang Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shuang Liu
- The Key Laboratory of Animal Resistant Biology of Shandong Province, College of Life Science, Shandong Normal University, Jinan, China
| | - Shengda Cao
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, China
| | - Jieyu Qi
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xiuli Bi
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ziyi Liu
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yunhao Wu
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wen Li
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaoxu Zhao
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jiangang Gao
- School of Life Science, Shandong University, Qingdao, China.
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- Southeast University Shenzhen Research Institute, Shenzhen, China.
| | - Xiaolong Fu
- Shandong Provincial Hospital, Medical Science and Technology Innovation Center, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
3
|
Kumar NA, Marouf A, Alagramam KN, Stepanyan R. The potential of mitochondrially-targeted tetrapeptide in protecting against noise-induced hearing impairment. Neuroreport 2025; 36:93-98. [PMID: 39661536 DOI: 10.1097/wnr.0000000000002124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Noise-induced hearing loss (NIHL) constitutes a significant global health issue for which there is no effective treatment. The loss of cochlear hair cells and associated synaptopathy are common causes of hearing impairment. One primary mechanism implicated in NIHL is the accumulation of reactive oxygen species (ROS), which ultimately overwhelms cochlear cells. ROS are detected in the cochlea immediately after noise exposure and persist for at least a week. Within cells, ROS are primarily generated in mitochondria as byproducts of cellular metabolism. Elamipretide is a synthetic tetrapeptide known to concentrate in mitochondria, improving mitochondrial function and reducing ROS production. To test the hypothesis that elamipretide treatment mitigates NIHL, 16-week-old male and female CBA/J mice were exposed to 8-16 kHz octave-band noise (OBN) at 98 dB SPL for 2 hours. Elamipretide was administered intraperitoneally immediately after noise exposure and continued for 2 weeks. Efficacy was evaluated based on auditory brainstem response (ABR) thresholds, wave amplitudes, and wave latencies in treated and control groups. Results showed that OBN-exposed mice exhibited an elevation in ABR thresholds at 16 and 32 kHz and a reduction in ABR wave-I amplitude at 32 kHz, although wave-I latencies were not affected at 16 or 32 kHz. Elamipretide treatment prevented the OBN-induced elevation of ABR thresholds and the attenuation of wave-I amplitude. These findings provide proof of concept that mitochondrial-targeted elamipretide can prevent NIHL in a mammalian model and highlight its potential to protect against NIHL in humans.
Collapse
Affiliation(s)
- Niranj A Kumar
- Department of Otolaryngology, Case Western Reserve University, University Hospitals Cleveland Medical Center
| | - Azmi Marouf
- Department of Otolaryngology, Case Western Reserve University, University Hospitals Cleveland Medical Center
| | - Kumar N Alagramam
- Department of Otolaryngology, Case Western Reserve University, University Hospitals Cleveland Medical Center
- Department of Neurosciences
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ruben Stepanyan
- Department of Otolaryngology, Case Western Reserve University, University Hospitals Cleveland Medical Center
- Department of Neurosciences
| |
Collapse
|
4
|
Brunelle DL, Park CR, Fawcett TJ, Walton JP. Signal-in-noise detection across the lifespan in a mouse model of presbycusis. Hear Res 2025; 455:109153. [PMID: 39637601 DOI: 10.1016/j.heares.2024.109153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
The auditory system is constantly tasked with detecting acoustic cues in complex auditory environments. Difficulty hearing speech in noise, largely a result of energetic masking, is a major communication complaint of the elderly, which impacts a third of the global population over 65. The neural mechanisms responsible for processing sound in background noise and subsequently achieving release from energetic masking remain obscure. Furthermore, the senescence of signal-in-noise detection is poorly understood, a phenomenon which could have a myriad of clinical implications. We tested over 300 CBA/CaJ mice aged 1-27 months on tone-in-noise detection ability utilizing prepulse inhibition of the acoustic startle response with a machine learning startle classifier. We found that mice developed profound tone-in-noise detection deficits throughout their lifespan as evidenced by Rd', a detection metric derived from signal detection theory. The most severe decline in Rd' corresponded to a 2.54-fold decrease in tone-in-noise detection across the lifespan. Our findings suggest that CBA/CaJ mice are an appropriate model to study the role of age-related hearing loss in the context of signal-in-noise masking.
Collapse
Affiliation(s)
- Dimitri L Brunelle
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA; Dept. of Communication Sciences & Disorders, University of South Florida, Tampa, FL 33612, USA; Research Computing, University of South Florida, Tampa, FL, USA
| | - Collin R Park
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA
| | - Timothy J Fawcett
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA; Dept. of Medical Engineering, University of South Florida, Tampa, FL 33620, USA; Dept. of Chemical, Biological and Materials Engineering, University of South Florida, Tampa, FL 33620, USA; Research Computing, University of South Florida, Tampa, FL, USA
| | - Joseph P Walton
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL 33612, USA; Dept. of Communication Sciences & Disorders, University of South Florida, Tampa, FL 33612, USA; Dept. of Medical Engineering, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
5
|
Li W, Xu B, Huang Y, Wang X, Yu D. Rodent models in sensorineural hearing loss research: A comprehensive review. Life Sci 2024; 358:123156. [PMID: 39442868 DOI: 10.1016/j.lfs.2024.123156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Sensorineural hearing loss (SNHL) constitutes a major global health challenge, affecting millions of individuals and substantially impairing social integration and quality of life. The complexity of the auditory system and the multifaceted nature of SNHL necessitate advanced methodologies to understand its etiology, progression, and potential therapeutic interventions. This review provides a comprehensive overview of the current animal models used in SNHL research, focusing on their selection based on specific characteristics and their contributions to elucidating pathophysiological mechanisms and evaluating novel treatment strategies. It discusses the most commonly used rodent models in hearing research, including mice, rats, guinea pigs, Mongolian gerbils, and chinchillas. Through a comparative analysis, this review underscores the importance of selecting models that align with specific research objectives in SNHL studies, discussing the advantages and limitations of each model. By advocating for a multidisciplinary approach that leverages the strengths of various animal models with technological advancements, this review aims to facilitate significant advancements in the prevention, diagnosis, and treatment of sensorineural hearing loss.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, PR China
| | - Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yuqi Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, PR China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
6
|
Li S, Jiang Y, Zhang L, Yan W, Wei D, Zhang M, Zhu B, Chen T, Wang X, Zhang Z, Su Y. A New Mouse Model for Usher Syndrome Crossing Kunming Mice with CBA/J Mice. Gene 2024; 922:148562. [PMID: 38754567 DOI: 10.1016/j.gene.2024.148562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/06/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Previously, we discovered a strain of Kunming mice, referred to as the KMush/ush strain, that exhibited notably abnormal electroretinogram (ERG) readings and elevated thresholds for auditory brainstem responses (ABRs), which resembled the characteristics of Usher Syndrome (USH). We successfully identified the pathogenic genes, Pde6b and Adgrv1, after KMush/ush crossbred with CBA/CaJ mice, referred to as CBA-1ush/ush, CBA-2ush/ush or CBA-2ush/ush. In this investigation, we crossbred KMush/ush and CBA/J mice to establish novel recombinant inbred lines and analysed their phenotypic and genotypic characteristics. METHODS ERG readings, ABR testing, fundus morphology, histological examination of the retina and inner ear, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis, western blotting, DNA sequence analysis and behavioural experiments were performed to assess the phenotypes and genotypes of the progeny lines. RESULTS No obvious waveforms in the ERG were detected in F1 hybrid mice while normal ABR results were recorded. The F2 hybrids, which were called J1ush/ush or J2ush/ush, exhibited segregated hearing-loss phenotypes. J1ush/ush mice had a retinitis pigmentosa (RP) phenotype with elevated ABR thresholds, whereas J2ush/ush mice exhibited only the RP phenotype. Interestingly, J1ush/ush mice showed significantly higher ABR thresholds than wild-type mice at 28 days post born (P28), and RT-qPCR and DNA-sequencing analysis showed that Adgrv1 gene expression was significantly altered in J1ush/ush mice, but histological analysis showed no significant structural changes in the organ of Corti or spiral ganglia. Further elevation of ABR-related hearing thresholds by P56 manifested only as a reduced density of spiral ganglion cells, which differed significantly from the previous pattern of cochlear alterations in CBA-2ush/ush mice. CONCLUSIONS We successfully introduced the hearing-loss phenotype of inbred mice with USH into CBA/J mice, which provides a good animal model for future studies on the important physiological roles of the Adgrv1 gene in inner-ear structure and for therapeutic studies targeting Adgrv1-mutated USH.
Collapse
Affiliation(s)
- Shaoheng Li
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China; Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Yihong Jiang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China
| | - Lei Zhang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710004, Shaanxi Province, China
| | - Weiming Yan
- The 900th Hospital of Joint Logistic Support Force, PLA, Fuzhou 350000, China
| | - Dongyu Wei
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China
| | - Min Zhang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China
| | - Bin Zhu
- Outpatient Department, General Hospital of Xizang Military Region, Lhasa 850007, China
| | - Tao Chen
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China; Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi'an 710032, China
| | - Xiaocheng Wang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China; Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi'an 710032, China.
| | - Zuoming Zhang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China.
| | - Yuting Su
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an 710032, China; Department of Aviation Medicine, Xijing Hospital, Air Force Medical University, Xi'an 710032, China.
| |
Collapse
|
7
|
Dörje NM, Shvachiy L, Kück F, Outeiro TF, Strenzke N, Beutner D, Setz C. Age-related alterations in efferent medial olivocochlear-outer hair cell and primary auditory ribbon synapses in CBA/J mice. Front Cell Neurosci 2024; 18:1412450. [PMID: 38988659 PMCID: PMC11234844 DOI: 10.3389/fncel.2024.1412450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/23/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Hearing decline stands as the most prevalent single sensory deficit associated with the aging process. Giving compelling evidence suggesting a protective effect associated with the efferent auditory system, the goal of our study was to characterize the age-related changes in the number of efferent medial olivocochlear (MOC) synapses regulating outer hair cell (OHC) activity compared with the number of afferent inner hair cell ribbon synapses in CBA/J mice over their lifespan. Methods Organs of Corti of 3-month-old CBA/J mice were compared with mice aged between 10 and 20 months, grouped at 2-month intervals. For each animal, one ear was used to characterize the synapses between the efferent MOC fibers and the outer hair cells (OHCs), while the contralateral ear was used to analyze the ribbon synapses between inner hair cells (IHCs) and type I afferent nerve fibers of spiral ganglion neurons (SGNs). Each cochlea was separated in apical, middle, and basal turns, respectively. Results The first significant age-related decline in afferent IHC-SGN ribbon synapses was observed in the basal cochlear turn at 14 months, the middle turn at 16 months, and the apical turn at 18 months of age. In contrast, efferent MOC-OHC synapses in CBA/J mice exhibited a less pronounced loss due to aging which only became significant in the basal and middle turns of the cochlea by 20 months of age. Discussion This study illustrates an age-related reduction on efferent MOC innervation of OHCs in CBA/J mice starting at 20 months of age. Our findings indicate that the morphological decline of efferent MOC-OHC synapses due to aging occurs notably later than the decline observed in afferent IHC-SGN ribbon synapses.
Collapse
Affiliation(s)
- Nele Marie Dörje
- University Medical Center Göttingen, Department of Otolaryngology-Head and Neck Surgery, InnerEarLab, Göttingen, Germany
- University Medical Center Göttingen, Institute for Auditory Neuroscience, Göttingen, Germany
| | - Liana Shvachiy
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Cardiovascular Centre, University of Lisbon, Lisbon, Portugal
| | - Fabian Kück
- University Medical Center Göttingen, Department of Medical Statistics, Core Facility Medical Biometry and Statistical Bioinformatics, Göttingen, Germany
| | - Tiago F Outeiro
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nicola Strenzke
- University Medical Center Göttingen, Institute for Auditory Neuroscience, Göttingen, Germany
| | - Dirk Beutner
- University Medical Center Göttingen, Department of Otolaryngology-Head and Neck Surgery, InnerEarLab, Göttingen, Germany
| | - Cristian Setz
- University Medical Center Göttingen, Department of Otolaryngology-Head and Neck Surgery, InnerEarLab, Göttingen, Germany
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| |
Collapse
|
8
|
Ding M, Nielsen K. Inbred Mouse Models in Cryptococcus neoformans Research. J Fungi (Basel) 2024; 10:426. [PMID: 38921412 PMCID: PMC11204852 DOI: 10.3390/jof10060426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/01/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Animal models are frequently used as surrogates to understand human disease. In the fungal pathogen Cryptococcus species complex, several variations of a mouse model of disease were developed that recapitulate different aspects of human disease. These mouse models have been implemented using various inbred and outbred mouse backgrounds, many of which have genetic differences that can influence host response and disease outcome. In this review, we will discuss the most commonly used inbred mouse backgrounds in C. neoformans infection models.
Collapse
Affiliation(s)
| | - Kirsten Nielsen
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Castaño-González K, Köppl C, Pyott SJ. The crucial role of diverse animal models to investigate cochlear aging and hearing loss. Hear Res 2024; 445:108989. [PMID: 38518394 DOI: 10.1016/j.heares.2024.108989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/18/2024] [Accepted: 03/04/2024] [Indexed: 03/24/2024]
Abstract
Age-related hearing loss affects a large and growing segment of the population, with profound impacts on quality of life. Age-related pathology of the cochlea-the mammalian hearing organ-underlies age-related hearing loss. Because investigating age-related changes in the cochlea in humans is challenging and often impossible, animal models are indispensable to investigate these mechanisms as well as the complex consequences of age-related hearing loss on the brain and behavior. In this review, we advocate for a comparative and interdisciplinary approach while also addressing the challenges of comparing age-related hearing loss across species with varying lifespans. We describe the experimental advantages and limitations as well as areas for future research in well-established models of age-related hearing loss, including mice, rats, gerbils, chinchillas, and birds. We also indicate the need to expand characterization of age-related hearing loss in other established animal models, especially guinea pigs, cats, and non-human primates, in which auditory function is well characterized but age-related cochlear pathology is understudied. Finally, we highlight the potential of emerging animal models for advancing our understanding of age-related hearing loss, including deer mice, with their notably extended lifespans and preserved hearing, naked mole rats, with their exceptional longevity and extensive vocal communications, as well as zebrafish, which offer genetic tractability and suitability for drug screening. Ultimately, a comparative and interdisciplinary approach in auditory research, combining insights from various animal models with human studies, is key to robust and reliable research outcomes that better advance our understanding and treatment of age-related hearing loss.
Collapse
Affiliation(s)
- Karen Castaño-González
- Department of Otorhinolaryngology, Head & Neck Surgery, University Medical Center Groningen; The Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands
| | - Christine Köppl
- Cluster of Excellence "Hearing4All", Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky Universität; Research Center Neurosensory Science, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Sonja J Pyott
- Department of Otorhinolaryngology, Head & Neck Surgery, University Medical Center Groningen; The Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
10
|
Ohlemiller KK, Dwyer N, Henson V, Fasman K, Hirose K. A critical evaluation of "leakage" at the cochlear blood-stria-barrier and its functional significance. Front Mol Neurosci 2024; 17:1368058. [PMID: 38486963 PMCID: PMC10937559 DOI: 10.3389/fnmol.2024.1368058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/16/2024] [Indexed: 03/17/2024] Open
Abstract
The blood-labyrinth-barrier (BLB) is a semipermeable boundary between the vasculature and three separate fluid spaces of the inner ear, the perilymph, the endolymph and the intrastrial space. An important component of the BLB is the blood-stria-barrier, which shepherds the passage of ions and metabolites from strial capillaries into the intrastrial space. Some investigators have reported increased "leakage" from these capillaries following certain experimental interventions, or in the presence of inflammation or genetic variants. This leakage is generally thought to be harmful to cochlear function, principally by lowering the endocochlear potential (EP). Here, we examine evidence for this dogma. We find that strial capillaries are not exclusive, and that the asserted detrimental influence of strial capillary leakage is often confounded by hair cell damage or intrinsic dysfunction of the stria. The vast majority of previous reports speculate about the influence of strial vascular barrier function on the EP without directly measuring the EP. We argue that strial capillary leakage is common across conditions and species, and does not significantly impact the EP or hearing thresholds, either on evidentiary or theoretical grounds. Instead, strial capillary endothelial cells and pericytes are dynamic and allow permeability of varying degrees in response to specific conditions. We present observations from mice and demonstrate that the mechanisms of strial capillary transport are heterogeneous and inconsistent among inbred strains.
Collapse
Affiliation(s)
- Kevin K. Ohlemiller
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Noël Dwyer
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Veronica Henson
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Kaela Fasman
- Program in Communication Sciences and Audiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Keiko Hirose
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
11
|
Park CR, Willott JF, Walton JP. Age-related changes of auditory sensitivity across the life span of CBA/CaJ mice. Hear Res 2024; 441:108921. [PMID: 38042127 PMCID: PMC10843596 DOI: 10.1016/j.heares.2023.108921] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/29/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023]
Abstract
The inbred mouse strain CBA/CaJ is a frequently used animal model of age-related hearing loss in humans. These mice display significant hearing loss at a relatively advanced age, similar to most humans, with progressive loss of hearing as the mouse continues to age. While important descriptions of hearing loss in this mouse strain at multiple ages have previously been published, shortcomings persist in the data for hearing over the lifespan of the mouse. Therefore, we analyzed auditory brainstem response threshold data from records maintained by our research group to yield an extensive database of thresholds over nearly the entire life span of the CBA/CaJ mouse (from 79 to 1085 days). Data was collected from in-house bred mice of CBA/CaJ stock, initially from The Jackson Laboratory. Data was collected using BiosigRZ software and TDT System III hardware. Thresholds were routinely measured in conjunction with behavioral and electrophysiological experiments; only responses from baseline or experimentally naïve animals were analyzed. The resulting data set comprised 376 female mice and 441 males. At the lowest and highest frequencies (8 & 32 kHz), initial thresholds were just under 30 dB SPL and increased slowly until they were significantly different at 16-18 months compared to 1-3 months age, with the difference increasing over subsequent ages. At the middle frequencies (12 & 16 kHz), initial thresholds were just under 20 dB SPL and increased until they became different from initial at 16-18 months. At 24 kHz, initial thresholds were just above 20 dB and became different from initial at 13-16 months of age. The rate of change of thresholds with age were similar for all frequencies until about 30 months of age, when 32 kHz threshold changes lagged behind other frequencies. Generally, CBA/CaJ mice in our colony display relatively low thresholds until approximately 16 months of age, depending on frequency. After 16-18 months, thresholds become significantly worse. After approximately 20-22 months thresholds increase linearly with age.
Collapse
Affiliation(s)
- Collin R Park
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, United States; Department of Communication Sciences and Disorders, University of South Florida, Tampa, FL, United States
| | - James F Willott
- Department of Communication Sciences and Disorders, University of South Florida, Tampa, FL, United States
| | - Joseph P Walton
- Global Center for Hearing and Speech Research, University of South Florida, Tampa, FL, United States; Department of Communication Sciences and Disorders, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
12
|
Lang H, Noble KV, Barth JL, Rumschlag JA, Jenkins TR, Storm SL, Eckert MA, Dubno JR, Schulte BA. The Stria Vascularis in Mice and Humans Is an Early Site of Age-Related Cochlear Degeneration, Macrophage Dysfunction, and Inflammation. J Neurosci 2023; 43:5057-5075. [PMID: 37268417 PMCID: PMC10324995 DOI: 10.1523/jneurosci.2234-22.2023] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/19/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023] Open
Abstract
Age-related hearing loss, or presbyacusis, is a common degenerative disorder affecting communication and quality of life for millions of older adults. Multiple pathophysiologic manifestations, along with many cellular and molecular alterations, have been linked to presbyacusis; however, the initial events and causal factors have not been clearly established. Comparisons of the transcriptome in the lateral wall (LW) with other cochlear regions in a mouse model (of both sexes) of "normal" age-related hearing loss revealed that early pathophysiological alterations in the stria vascularis (SV) are associated with increased macrophage activation and a molecular signature indicative of inflammaging, a common form of immune dysfunction. Structure-function correlation analyses in mice across the lifespan showed that the age-dependent increase in macrophage activation in the stria vascularis is associated with a decline in auditory sensitivity. High-resolution imaging analysis of macrophage activation in middle-aged and aged mouse and human cochleas, along with transcriptomic analysis of age-dependent changes in mouse cochlear macrophage gene expression, support the hypothesis that aberrant macrophage activity is an important contributor to age-dependent strial dysfunction, cochlear pathology, and hearing loss. Thus, this study highlights the SV as a primary site of age-related cochlear degeneration and aberrant macrophage activity and dysregulation of the immune system as early indicators of age-related cochlear pathology and hearing loss. Importantly, novel new imaging methods described here now provide a means to analyze human temporal bones in a way that had not previously been feasible and thereby represent a significant new tool for otopathological evaluation.SIGNIFICANCE STATEMENT Age-related hearing loss is a common neurodegenerative disorder affecting communication and quality of life. Current interventions (primarily hearing aids and cochlear implants) offer imperfect and often unsuccessful therapeutic outcomes. Identification of early pathology and causal factors is crucial for the development of new treatments and early diagnostic tests. Here, we find that the SV, a nonsensory component of the cochlea, is an early site of structural and functional pathology in mice and humans that is characterized by aberrant immune cell activity. We also establish a new technique for evaluating cochleas from human temporal bones, an important but understudied area of research because of a lack of well-preserved human specimens and difficult tissue preparation and processing approaches.
Collapse
Affiliation(s)
- Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Kenyaria V Noble
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jeremy L Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jeffrey A Rumschlag
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Tyreek R Jenkins
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Shelby L Storm
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Mark A Eckert
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Judy R Dubno
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Bradley A Schulte
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
13
|
Krishnan PS, Lauer AM, Ward BK, Seal SM, Nieman CL, Andresen NS. Sex and Race Representation in Temporal Bone Histopathology Studies in the United States: A Systematic Review. Ear Hear 2023; 44:661-669. [PMID: 36763469 PMCID: PMC10331314 DOI: 10.1097/aud.0000000000001340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
OBJECTIVES The author's objective was to evaluate sex and race representation in temporal bone histopathology studies. DESIGN PubMed, Embase, Cochrane, Web of Science, and Scopus were searched for studies written in English examining temporal bone histopathology specimens from U.S.-based institutions from January 1, 1947, to September 1, 2021. Two authors then performed "snowballing" by reviewing references from the initial search and included the studies that fulfilled the inclusion criteria. For each study, the following information was collected: publication details, study design, funding, institution from where temporal bone specimens were procured, number of study specimens, and donor demographical information. RESULTS The authors found that out of 300 studies, 166 (55%) report sex while only 15 (5%) reported race information. Over the past 70 years, the ratio of studies reporting sex to those that do not has increased from 1.00 to 2.19 and the number of female temporal bone histopathology subjects relative to male has increased from 0.67 to 0.75. Over 90% of studies that do report this information feature participant racial compositions that do not reflect the diversity of the U.S. population. CONCLUSIONS Studies of temporal bone histopathology often do not report participant sex or race. The reporting of participant sex and the inclusion of specimens from female donors have both increased over time. However, temporal bone histopathology study cohorts are not representative of the racial diversity of the U.S. population. The otolaryngology community must strive to build temporal bone histopathology libraries that are representative of the diverse U.S. population.
Collapse
Affiliation(s)
- Pavan S. Krishnan
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Amanda M. Lauer
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bryan K. Ward
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stella M. Seal
- Welch Medical Library, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Carrie L. Nieman
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Cochlear Center for Hearing & Public Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Center for Innovative Care in Aging, Johns Hopkins University School of Nursing, Baltimore, Maryland
| | - Nicholas S. Andresen
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
14
|
Land R, Kral A. Stability of neural representations in the auditory midbrain across the lifespan despite age-related brainstem delays. Hear Res 2023; 433:108763. [PMID: 37104991 DOI: 10.1016/j.heares.2023.108763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/09/2023] [Accepted: 04/05/2023] [Indexed: 04/09/2023]
Abstract
The extent to which aging of the central auditory pathway impairs auditory perception in the elderly independent of peripheral cochlear decline is debated. To cause auditory deficits in normal hearing elderly, central aging needs to degrade neural sound representations at some point along the auditory pathway. However, inaccessible to psychophysical methods, the level of the auditory pathway at which aging starts to effectively degrade neural sound representations remains poorly differentiated. Here we tested how potential age-related changes in the auditory brainstem affect the stability of spatiotemporal multiunit complex speech-like sound representations in the auditory midbrain of old normal hearing CBA/J mice. Although brainstem conduction speed slowed down in old mice, the change was limited to the sub-millisecond range and only minimally affected temporal processing in the midbrain (i.e. gaps-in-noise sensitivity). Importantly, besides the small delay, multiunit complex temporal sound representations in the auditory midbrain did not differ between young and old mice. This shows that although small age-related neural effects in simple sound parameters in the lower brainstem may be present in aging they do not effectively deteriorate complex neural population representations at the level of the auditory midbrain when peripheral hearing remains normal. This result challenges the widespread belief of 'pure' central auditory decline as an automatic consequence of aging, at least up to the inferior colliculus. However, the stability of midbrain processing in aging emphasizes the role of undetected 'hidden' peripheral damage and accumulating effects in higher cortical auditory-cognitive processing explaining perception deficits in 'normal hearing' elderly.
Collapse
|
15
|
Zhang C, Adler HJ, Manohar S, Salvi R, Sun W, Ye M, Hu BH. Galectin-3 protects auditory function in female mice. Hear Res 2022; 424:108602. [PMID: 36103788 DOI: 10.1016/j.heares.2022.108602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/04/2022]
Abstract
Sex differences in the development of sensorineural hearing loss have been recognized in various inner ear disorders, but the molecular basis for such differences is poorly understood. Autosomal genes have been shown to cause sex differences in disease susceptibility, but many genes exerting sex-dependent effects on auditory function remain to be identified. Galectin-3 (Gal-3), a protein encoded by the autosomal gene Lgals3, is a member of the β-galactoside-binding protein family, and has been linked to multiple biological processes, including immune responses, apoptosis, and cell adhesion. Here, we investigated auditory function and hair cell integrity in Gal-3 knockout (KO, Lgals3-/-) and wild-type (WT, Lgals3+/+) mice from age 1 to 6 months. KO mice show a more rapid age-related increase in ABR thresholds compared to WT mice. Noticeably, the threshold deterioration in female KO mice is significantly greater than in the male KO and WT mice. The ABR threshold elevation manifests over a broad frequency range in female KO mice, whereas the threshold elevations are confined to high frequencies in the male KO and WT mice. Moreover, DPOAE input/output functions reveal a similar pattern of auditory dysfunction, with the female KO mice displaying a significantly greater reduction in DPOAE amplitudes than male KO mice and WT mice of both sexes. Finally, age-related outer hair cell loss is greater for female KO mice compared to male KO mice and WT mice of both sexes. Together, these results indicate that Gal-3 deficiency exacerbates age-related cochlear degeneration and auditory dysfunction in female mice. Our study identifies Gal-3 as a sex-dependent molecule for maintaining female cochlear integrity.
Collapse
Affiliation(s)
- Celia Zhang
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Henry J Adler
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Senthilvelan Manohar
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Wei Sun
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Mengxiao Ye
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Bo Hua Hu
- Center for Hearing and Deafness, University at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| |
Collapse
|
16
|
Molecular and cytological profiling of biological aging of mouse cochlear inner and outer hair cells. Cell Rep 2022; 39:110665. [PMID: 35417713 PMCID: PMC9069708 DOI: 10.1016/j.celrep.2022.110665] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/08/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Age-related hearing loss (ARHL) negatively impacts quality of life in the elderly population. The prevalent cause of ARHL is loss of mechanosensitive cochlear hair cells (HCs). The molecular and cellular mechanisms of HC degeneration remain poorly understood. Using RNA-seq transcriptomic analyses of inner and outer HCs isolated from young and aged mice, we show that HC aging is associated with changes in key molecular processes, including transcription, DNA damage, autophagy, and oxidative stress, as well as genes related to HC specialization. At the cellular level, HC aging is characterized by loss of stereocilia, shrinkage of HC soma, and reduction in outer HC mechanical properties, suggesting that functional decline in mechanotransduction and cochlear amplification precedes HC loss and contributes to ARHL. Our study reveals molecular and cytological profiles of aging HCs and identifies genes such as Sod1, Sirt6, Jund, and Cbx3 as biomarkers and potential therapeutic targets for ameliorating ARHL. Using RNA-seq, advanced imaging, and electrophysiology, Liu et al. reveal molecular and cytological profiles of aging cochlear hair cells. Their study also suggests that a functional decline in mechanotransduction and cochlear amplification precedes hair cell loss and contributes to age-related hearing loss.
Collapse
|
17
|
Fuentes-Santamaría V, Alvarado JC, Mellado S, Melgar-Rojas P, Gabaldón-Ull MC, Cabanes-Sanchis JJ, Juiz JM. Age-Related Inflammation and Oxidative Stress in the Cochlea Are Exacerbated by Long-Term, Short-Duration Noise Stimulation. Front Aging Neurosci 2022; 14:853320. [PMID: 35450058 PMCID: PMC9016828 DOI: 10.3389/fnagi.2022.853320] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/14/2022] [Indexed: 12/29/2022] Open
Abstract
We have previously reported that young adult rats exposed to daily, short-duration noise for extended time periods, develop accelerated presbycusis starting at 6 months of age. Auditory aging is associated with progressive hearing loss, cell deterioration, dysregulation of the antioxidant defense system, and chronic inflammation, among others. To further characterize cellular and molecular mechanisms at the crossroads between noise and age-related hearing loss (ARHL), 3-month-old rats were exposed to a noise-accelerated presbycusis (NAP) protocol and tested at 6 and 16 months of age, using auditory brainstem responses, Real-Time Reverse Transcription-Quantitative PCR (RT-qPCR) and immunocytochemistry. Chronic noise-exposure leading to permanent auditory threshold shifts in 6-month-old rats, resulted in impaired sodium/potassium activity, degenerative changes in the lateral wall and spiral ganglion, increased lipid peroxidation, and sustained cochlear inflammation with advancing age. Additionally, at 6 months, noise-exposed rats showed significant increases in the gene expression of antioxidant enzymes (superoxide dismutase 1/2, glutathione peroxidase 1, and catalase) and inflammation-associated molecules [ionized calcium binding adaptor molecule 1, interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha]. The levels of IL-1β were upregulated in the spiral ganglion and spiral ligament, particularly in type IV fibrocytes; these cells showed decreased levels of connective tissue growth factor and increased levels of 4-hydroxynonenal. These data provide functional, structural and molecular evidence that age-noise interaction contributes to exacerbating presbycusis in young rats by leading to progressive dysfunction and early degeneration of cochlear cells and structures. These findings contribute to a better understanding of NAP etiopathogenesis, which is essential as it affects the life quality of young adults worldwide.
Collapse
Affiliation(s)
- Verónica Fuentes-Santamaría
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Albacete, Spain
- Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Juan Carlos Alvarado
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Albacete, Spain
- Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Susana Mellado
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Albacete, Spain
- Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Pedro Melgar-Rojas
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Albacete, Spain
- Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - María Cruz Gabaldón-Ull
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Albacete, Spain
- Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - José J. Cabanes-Sanchis
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Albacete, Spain
- Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - José M. Juiz
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), Albacete, Spain
- Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
- Department of Otolaryngology, Hannover Medical School, NIFE-VIANNA, Cluster of Excellence Hearing4all-German Research Foundation, Hanover, Germany
| |
Collapse
|
18
|
Land R, Kral A. Temporal acuity is preserved in the auditory midbrain of aged mice. Neurobiol Aging 2022; 110:47-60. [PMID: 34852306 DOI: 10.1016/j.neurobiolaging.2021.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/16/2021] [Accepted: 10/10/2021] [Indexed: 11/17/2022]
Abstract
Impaired temporal resolution of the central auditory system has long been suggested to contribute to speech understanding deficits in the elderly. However, it has been difficult to differentiate between direct age-related central deficits and indirect effects of confounding peripheral age-related hearing loss on temporal resolution. To differentiate this, we measured temporal acuity in the inferior colliculus (IC) of aged CBA/J and C57BL/6 mice, as a model of aging with and without concomitant hearing loss. We used two common measures of auditory temporal processing: gap detection as a measure of temporal fine structure and amplitude-modulated noise as a measure of envelope sensitivity. Importantly, auditory temporal acuity remained precise in the IC of old CBA/J mice when no or only minimal age-related hearing loss was present. In contrast, temporal acuity was only indirectly reduced by the presence of age-related hearing loss in aged C57BL/6 mice, not by affecting the brainstem precision, but by affecting the signal-to-noise ratio of the neuronal activity in the IC. This demonstrates that indirect effects of age-related peripheral hearing loss likely remain an important factor for temporal processing in aging in comparison to 'pure' central auditory decline itself. It also draws attention to the issue that the threshold difference between 'nearly normal' or 'clinically normal' hearing aging subjects in comparison to normal hearing young subjects still can have indirect effects on central auditory neural representations of temporal processing.
Collapse
Affiliation(s)
- Rüdiger Land
- Department of Experimental Otology, Institute for Audioneurotechnology, Hannover Medical School, Hannover, Lower Saxony, Germany.
| | - Andrej Kral
- Department of Experimental Otology, Institute for Audioneurotechnology, Hannover Medical School, Hannover, Lower Saxony, Germany; Department of Biomedical Sciences, School of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
19
|
Panganiban CH, Barth JL, Tan J, Noble KV, McClaskey CM, Howard BA, Jafri SH, Dias JW, Harris KC, Lang H. Two distinct types of nodes of Ranvier support auditory nerve function in the mouse cochlea. Glia 2021; 70:768-791. [DOI: 10.1002/glia.24138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/12/2021] [Accepted: 12/17/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Clarisse H. Panganiban
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
- Wolfson Centre for Age‐Related Diseases King's College London London UK
| | - Jeremy L. Barth
- Department of Regenerative Medicine and Cell Biology Medical University of South Carolina Charleston South Carolina USA
| | - Junying Tan
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| | - Kenyaria V. Noble
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| | - Carolyn M. McClaskey
- Department of Otolaryngology & Head and Neck Surgery Medical University of South Carolina Charleston South Carolina USA
| | - Blake A. Howard
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| | - Shabih H. Jafri
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| | - James W. Dias
- Department of Otolaryngology & Head and Neck Surgery Medical University of South Carolina Charleston South Carolina USA
| | - Kelly C. Harris
- Department of Otolaryngology & Head and Neck Surgery Medical University of South Carolina Charleston South Carolina USA
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine Medical University of South Carolina Charleston South Carolina USA
| |
Collapse
|
20
|
Shuster B, Casserly R, Lipford E, Olszewski R, Milon B, Viechweg S, Davidson K, Enoch J, McMurray M, Rutherford MA, Ohlemiller KK, Hoa M, Depireux DA, Mong JA, Hertzano R. Estradiol Protects against Noise-Induced Hearing Loss and Modulates Auditory Physiology in Female Mice. Int J Mol Sci 2021; 22:12208. [PMID: 34830090 PMCID: PMC8620009 DOI: 10.3390/ijms222212208] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Recent studies have identified sex-differences in auditory physiology and in the susceptibility to noise-induced hearing loss (NIHL). We hypothesize that 17β-estradiol (E2), a known modulator of auditory physiology, may underpin sex-differences in the response to noise trauma. Here, we gonadectomized B6CBAF1/J mice and used a combination of electrophysiological and histological techniques to study the effects of estrogen replacement on peripheral auditory physiology in the absence of noise exposure and on protection from NIHL. Functional analysis of auditory physiology in gonadectomized female mice revealed that E2-treatment modulated the peripheral response to sound in the absence of changes to the endocochlear potential compared to vehicle-treatment. E2-replacement in gonadectomized female mice protected against hearing loss following permanent threshold shift (PTS)- and temporary threshold shift (TTS)-inducing noise exposures. Histological analysis of the cochlear tissue revealed that E2-replacement mitigated outer hair cell loss and cochlear synaptopathy following noise exposure compared to vehicle-treatment. Lastly, using fluorescent in situ hybridization, we demonstrate co-localization of estrogen receptor-2 with type-1C, high threshold spiral ganglion neurons, suggesting that the observed protection from cochlear synaptopathy may occur through E2-mediated preservation of these neurons. Taken together, these data indicate the estrogen signaling pathways may be harnessed for the prevention and treatment of NIHL.
Collapse
Affiliation(s)
- Benjamin Shuster
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
| | - Ryan Casserly
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
| | - Erika Lipford
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
| | - Rafal Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA; (R.O.); (M.H.)
| | - Béatrice Milon
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
| | - Shaun Viechweg
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.V.); (K.D.); (J.E.); (J.A.M.)
| | - Kanisa Davidson
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.V.); (K.D.); (J.E.); (J.A.M.)
| | - Jennifer Enoch
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.V.); (K.D.); (J.E.); (J.A.M.)
| | - Mark McMurray
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
| | - Mark A. Rutherford
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA; (M.A.R.); (K.K.O.)
| | - Kevin K. Ohlemiller
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA; (M.A.R.); (K.K.O.)
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA; (R.O.); (M.H.)
| | | | - Jessica A. Mong
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.V.); (K.D.); (J.E.); (J.A.M.)
| | - Ronna Hertzano
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
21
|
Peixoto Pinheiro B, Adel Y, Knipper M, Müller M, Löwenheim H. Auditory Threshold Variability in the SAMP8 Mouse Model of Age-Related Hearing Loss: Functional Loss and Phenotypic Change Precede Outer Hair Cell Loss. Front Aging Neurosci 2021; 13:708190. [PMID: 34408646 PMCID: PMC8366269 DOI: 10.3389/fnagi.2021.708190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
Age-related hearing loss (ARHL) is the most common sensory deficit in aging society, which is accompanied by increased speech discrimination difficulties in noisy environments, social isolation, and cognitive decline. The audiometric degree of ARHL is largely correlated with sensory hair cell loss in addition to age-related factors not captured by histopathological analysis of the human cochlea. Previous studies have identified the senescence-accelerated mouse prone strain 8 (SAMP8) as a model for studying ARHL and age-related modifications of the cochlear redox environment. However, the SAMP8 population exhibits a large variability in auditory function decline over age, whose underlying cause remains unknown. In this study, we analyzed auditory function of SAMP8 mice by measuring auditory brainstem response (ABR) thresholds at the age of 6 weeks (juvenile), 12 weeks (young adult), and 24 weeks (adult). Consistent with previous studies, SAMP8 mice exhibit an early progressive, age-related decline of hearing acuity. However, a spatiotemporal cytohistological analysis showed that the significant increase in threshold variability was not concurrently reflected in outer hair cell (OHC) loss observed in the lower and upper quartiles of the ABR threshold distributions over age. This functional loss was found to precede OHC loss suggesting that age-related phenotypic changes may be contributing factors not represented in cytohistological analysis. The expression of potassium channels KCNQ4 (KV7.4), which mediates the current IK,n crucial for the maintenance of OHC membrane potential, and KCNQ1 (KV7.1), which is an essential component in potassium circulation and secretion into the endolymph generating the endocochlear potential, showed differences between these quartiles and age groups. This suggests that phenotypic changes in OHCs or the stria vascularis due to variable oxidative deficiencies in individual mice may be predictors of the observed threshold variability in SAMP8 mice and their progressive ARHL. In future studies, further phenotypic predictors affected by accumulated metabolic challenges over age need to be investigated as potentially underlying causes of ARHL preceding irreversible OHC loss in the SAMP8 mouse model.
Collapse
Affiliation(s)
- Barbara Peixoto Pinheiro
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Youssef Adel
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Marlies Knipper
- Molecular Physiology of Hearing, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Marcus Müller
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| | - Hubert Löwenheim
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany
| |
Collapse
|
22
|
Sex Differences in the Triad of Acquired Sensorineural Hearing Loss. Int J Mol Sci 2021; 22:ijms22158111. [PMID: 34360877 PMCID: PMC8348369 DOI: 10.3390/ijms22158111] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
The triad of noise-generated, drug-induced, and age-related hearing loss is the major cause of acquired sensorineural hearing loss (ASNHL) in modern society. Although these three forms of hearing loss display similar underlying mechanisms, detailed studies have revealed the presence of sex differences in the auditory system both in human and animal models of ASNHL. However, the sexual dimorphism of hearing varies among noise-induced hearing loss (NIHL), ototoxicity, and age-related hearing loss (ARHL). Importantly, estrogen may play an essential role in modulating the pathophysiological mechanisms in the cochlea and several reports have shown that the effects of hormone replacement therapy on hearing loss are complex. This review will summarize the clinical features of sex differences in ASNHL, compare the animal investigations of cochlear sexual dimorphism in response to the three insults, and address how estrogen affects the auditory organ at molecular levels.
Collapse
|
23
|
Llano DA, Ma C, Di Fabrizio U, Taheri A, Stebbings KA, Yudintsev G, Xiao G, Kenyon RV, Berger-Wolf TY. A novel dynamic network imaging analysis method reveals aging-related fragmentation of cortical networks in mouse. Netw Neurosci 2021; 5:569-590. [PMID: 34189378 PMCID: PMC8233117 DOI: 10.1162/netn_a_00191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Network analysis of large-scale neuroimaging data is a particularly challenging computational problem. Here, we adapt a novel analytical tool, the community dynamic inference method (CommDy), for brain imaging data from young and aged mice. CommDy, which was inspired by social network theory, has been successfully used in other domains in biology; this report represents its first use in neuroscience. We used CommDy to investigate aging-related changes in network metrics in the auditory and motor cortices by using flavoprotein autofluorescence imaging in brain slices and in vivo. We observed that auditory cortical networks in slices taken from aged brains were highly fragmented compared to networks observed in young animals. CommDy network metrics were then used to build a random-forests classifier based on NMDA receptor blockade data, which successfully reproduced the aging findings, suggesting that the excitatory cortical connections may be altered during aging. A similar aging-related decline in network connectivity was also observed in spontaneous activity in the awake motor cortex, suggesting that the findings in the auditory cortex reflect general mechanisms during aging. These data suggest that CommDy provides a new dynamic network analytical tool to study the brain and that aging is associated with fragmentation of intracortical networks.
Collapse
Affiliation(s)
- Daniel A. Llano
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Chihua Ma
- Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Umberto Di Fabrizio
- Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Aynaz Taheri
- Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Kevin A. Stebbings
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Georgiy Yudintsev
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Gang Xiao
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, Urbana, IL, USA
| | - Robert V. Kenyon
- Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Tanya Y. Berger-Wolf
- Department of Computer Science, University of Illinois at Chicago, Chicago, IL, USA
- Current affiliation: Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
24
|
Sex differences in the auditory functions of rodents. Hear Res 2021; 419:108271. [PMID: 34074560 DOI: 10.1016/j.heares.2021.108271] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/07/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND In humans, it is well known that females have better hearing than males. The mechanism of this influence of sex on auditory function in humans is not well understood. Testing the hypothesis of underlying mechanisms often relies on preclinical research, a field in which sex bias still exists unconsciously. Rodents are popular research models in hearing, thus it is crucial to understand the sex differences in these rodent models when studying health and disease in humans. OBJECTIVES This review aims to summarize the existing sex differences in the auditory functions of rodent species including mouse, rat, Guinea pig, Mongolian gerbil, and chinchilla. In addition, a concise summary of the hearing characteristics and the advantages and the drawbacks of conducting auditory experiments in each rodent species is provided. DESIGNS Manuscripts were identified in PubMed and Ovid Medline for the queries "Rodent", "Sex Characteristics", and "Hearing or Auditory Function". Manuscripts were included if they were original research, written in English, and use rodents. The content of each manuscript was screened for the sex of the rodents and the discussion of sex-based results. CONCLUSIONS The sex differences in auditory function of rodents are prevalent and influenced by multiple factors including physiological mechanisms, sex-based anatomical variations, and stimuli from the external environment. Such differences may play a role in understanding and explaining sex differences in hearing of humans and need to be taken into consideration for developing clinical therapies aim to improve auditory performances.
Collapse
|
25
|
Sex-based Differences in Hearing Loss: Perspectives From Non-clinical Research to Clinical Outcomess. Otol Neurotol 2021; 41:290-298. [PMID: 31789968 DOI: 10.1097/mao.0000000000002507] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION It is estimated over 466 million people worldwide have disabling hearing loss, and untreated hearing loss is associated with poorer health outcomes. The influence of sex as a biological variable on hearing loss is not well understood, especially for differences in underlying mechanisms which are typically elucidated through non-clinical research. Although the inclusion of sex as a biological variable in clinical studies has been required since 1993, sex reporting has only been recently mandated in National Institutes of Health funded non-clinical studies. OBJECTIVE This article reviews the literature on recent non-clinical and clinical research concerning sex-based differences in hearing loss primarily since 1993, and discusses implications for knowledge gaps in the translation from non-clinical to clinical realms. CONCLUSIONS The disparity between sex-based requirements for non-clinical versus clinical research may inhibit a comprehensive understanding of sex-based mechanistic differences. Such disparities may play a role in understanding and explaining clinically significant sex differences and are likely necessary for developing robust clinical treatment options.
Collapse
|
26
|
Cerrah Gunes M, Gunes MS, Vural A, Aybuga F, Bayram A, Bayram KK, Sahin MI, Dogan ME, Ozdemir SY, Ozkul Y. Change in gene expression levels of GABA, glutamate and neurosteroid pathways due to acoustic trauma in the cochlea. J Neurogenet 2021; 35:45-57. [PMID: 33825593 DOI: 10.1080/01677063.2021.1904922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The characteristic feature of noise-induced hearing loss (NIHL) is the loss or malfunction of the outer hair cells (OHC) and the inner hair cells (IHC) of the cochlea. 90-95% of the spiral ganglion neurons, forming the cell bodies of cochlear nerve, synapse with the IHCs. Glutamate is the most potent excitatory neurotransmitter for IHC-auditory nerve synapses. Excessive release of glutamate in response to acoustic trauma (AT), may cause excitotoxicity by causing damage to the spiral ganglion neurons (SGN) or loss of the spiral ganglion dendrites, post-synaptic to the IHCs. Another neurotransmitter, GABA, plays an important role in the processing of acoustic stimuli and central regulation after peripheral injury, so it is potentially related to the regulation of hearing function and sensitivity after noise. The aim of this study is to evaluate the effect of AT on the expressions of glutamate excitotoxicity, GABA inhibition and neurosteroid synthesis genes.We exposed 24 BALB/c mice to AT. Controls were sacrificed without exposure to noise, Post-AT(1) and Post-AT(15) were sacrificed on the 1st and 15th day, respectively, after noise exposure. The expressions of various genes playing roles in glutamate, GABA and neurosteroid pathways were compared between groups by real-time PCR.Expressions of Cyp11a1, Gls, Gabra1, Grin2b, Sult1a1, Gad1, and Slc1a2 genes in Post-AT(15) mice were significantly decreased in comparison to control and Post-AT(1) mice. No significant differences in the expression of Slc6a1 and Slc17a8 genes was detected.These findings support the possible role of balance between glutamate excitotoxicity and GABA inhibition is disturbed during the post AT days and also the synthesis of some neurosteroids such as pregnenolone sulfate may be important in this balance.
Collapse
Affiliation(s)
- Meltem Cerrah Gunes
- Department of Medical Genetics, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Murat Salih Gunes
- Department of Otolaryngology, Izmit Seka State Hospital, Kocaeli, Turkey
| | - Alperen Vural
- Department of Otolaryngology, School of Medicine, Erciyes University, Kayseri, Turkey
| | | | - Arslan Bayram
- Etlik Zübeyde Hanım Women's Diseases Education and Research Hospital, Health Sciences University, T.R. Ministry of Health, Ankara, Turkey
| | - Keziban Korkmaz Bayram
- Department of Medical Genetics, School of Medicine, Yıldirim Beyazit University, Ankara, Turkey
| | - Mehmet Ilhan Sahin
- Department of Otolaryngology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Muhammet Ensar Dogan
- Department of Medical Genetics, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Sevda Yesim Ozdemir
- Department of Medical Genetics, School of Medicine, Uskudar University, Istanbul, Turkey
| | - Yusuf Ozkul
- Department of Medical Genetics, School of Medicine, Erciyes University, Kayseri, Turkey.,Center of Genome and Stem Cell, Kayseri, Turkey
| |
Collapse
|
27
|
Age-related and noise-induced hearing loss alters grasshopper mouse (Onychomys) vocalizations. Hear Res 2021; 404:108210. [PMID: 33713993 DOI: 10.1016/j.heares.2021.108210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 01/27/2021] [Accepted: 02/10/2021] [Indexed: 11/23/2022]
Abstract
Age-related and noise-induced hearing loss disorders are among the most common pathologies affecting Americans across their lifespans. Loss of auditory feedback due to hearing disorders is correlated with changes in voice and speech-motor control in humans. Although rodents are increasingly used to model human age- and noise-induced hearing loss, few studies have assessed vocal changes after acoustic trauma. Northern grasshopper mice (Onychomys leucogaster) represent a candidate model because their hearing sensitivity is matched to the frequencies of long-distance vocalizations that are produced using vocal fold vibrations similar to human speech. In this study, we quantified changes in auditory brainstem responses (ABRs) and vocalizations related to aging and noise-induced acoustic trauma. Mice showed a progressive decrease in hearing sensitivity across 4-32 kHz, with males losing hearing more rapidly than females. In addition, noise-exposed mice had a 61.55 dB SPL decrease in ABR sensitivity following a noise exposure, with some individuals exhibiting a 21.25 dB recovery 300-330 days after noise exposure. We also found that older grasshopper mice produced calls with lower fundamental frequency. Sex differences were measured in duration of calls with females producing longer calls with age. Our findings indicate that grasshopper mice experience age- and noise- induced hearing loss and concomitant changes in vocal output, making them a promising model for hearing and communication disorders.
Collapse
|
28
|
Long term changes to auditory sensitivity following blast trauma in mice. Hear Res 2021; 403:108201. [PMID: 33636682 DOI: 10.1016/j.heares.2021.108201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/21/2021] [Accepted: 02/06/2021] [Indexed: 11/21/2022]
Abstract
Blast trauma is a common acoustic/physical insult occurring in modern warfare. Twenty percent of active duty military come into close proximity to explosions and experience mild to severe sensory deficits. The prevalence of such injuries is high but correlating auditory sensitivity changes with the initial insult is difficult because injury and evaluations are often separated by long time periods. Here, auditory sensitivity was measured before and after a traumatic blast in adult CBA/CaJ mice using auditory brainstem responses, distortion production otoacoustic emissions, and behavioral detection of pure tones. These measurements included baseline auditory sensitivity prior to injury in all mice, and again at 3, 30, and 90 days after the blast in the two physiological groups, and daily for up to 90 days in the behavioral group. Mice in all groups experienced an initial deterioration in auditory sensitivity, though physiological measurements showed evidence of recovery that behavioral measurements did not. Amplitudes and latencies of ABR waves may reflect additional changes beyond the peripheral damage shown by the threshold changes and should be explored further. The present work addresses a major gap in the current acoustic trauma literature both in terms of comparing physiological and behavioral methods, as well as measuring the time course of recovery.
Collapse
|
29
|
Zeng R, Brown AD, Rogers LS, Lawrence OT, Clark JI, Sisneros JA. Age-related loss of auditory sensitivity in the zebrafish (Danio rerio). Hear Res 2021; 403:108189. [PMID: 33556775 DOI: 10.1016/j.heares.2021.108189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/10/2021] [Accepted: 01/22/2021] [Indexed: 11/27/2022]
Abstract
Age-related hearing loss (ARHL), also known as presbycusis, is a widespread and debilitating condition impacting many older adults. Conventionally, researchers utilize mammalian model systems or human cadaveric tissue to study ARHL pathology. Recently, the zebrafish has become an effective and tractable model system for a wide variety of genetic and environmental auditory insults, but little is known about the incidence or extent of ARHL in zebrafish and other non-mammalian models. Here, we evaluated whether zebrafish exhibit age-related loss in auditory sensitivity. The auditory sensitivity of adult wild-type zebrafish (AB/WIK strain) from three adult age subgroups (13-month, 20-month, and 37-month) was characterized using the auditory evoked potential (AEP) recording technique. AEPs were elicited using pure tone stimuli (115-4500 Hz) presented via an underwater loudspeaker and recorded using shielded subdermal metal electrodes. Based on measures of sound pressure and particle acceleration, the mean AEP thresholds of 37-month-old fish [mean sound pressure level (SPL) = 122.2 dB ± 2.2 dB SE re: 1 μPa; mean particle acceleration level (PAL) = -27.5 ± 2.3 dB SE re: 1 ms-2] were approximately 9 dB higher than that of 20-month-old fish [(mean SPL = 113.1 ± 2.7 dB SE re: 1 μPa; mean PAL = -37.2 ± 2.8 dB re: 1 ms-2; p = 0.007)] and 6 dB higher than that of 13-month-old fish [(mean SPL = 116.3 ± 2.5 dB SE re: 1 μPa; mean PAL = -34.1 ± 2.6 dB SE re: 1 ms-2; p = 0.052)]. Lowest AEP thresholds for all three age groups were generally between 800 Hz and 1850 Hz, with no evidence for frequency-specific age-related loss. Our results suggest that zebrafish undergo age-related loss in auditory sensitivity, but the form and magnitude of loss is markedly different than in mammals, including humans. Future work is needed to further describe the incidence and extent of ARHL across vertebrate groups and to determine which, if any, ARHL mechanisms may be conserved across vertebrates to support meaningful comparative/translational studies.
Collapse
Affiliation(s)
- Ruiyu Zeng
- Department of Psychology, University of Washington, 413 Guthrie Hall, Box 351525, Seattle, WA 98195, United States.
| | - Andrew D Brown
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA 98105, United States; Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, United States
| | - Loranzie S Rogers
- Department of Psychology, University of Washington, 413 Guthrie Hall, Box 351525, Seattle, WA 98195, United States
| | - Owen T Lawrence
- Department of Biological Structure, University of Washington, Seattle, 98195, United States
| | - John I Clark
- Department of Biological Structure, University of Washington, Seattle, 98195, United States; Department of Ophthalmology, University of Washington, Seattle, 98195, United States
| | - Joseph A Sisneros
- Department of Psychology, University of Washington, 413 Guthrie Hall, Box 351525, Seattle, WA 98195, United States; Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, United States; Department of Biology, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
30
|
Luque M, Schrott-Fischer A, Dudas J, Pechriggl E, Brenner E, Rask-Andersen H, Liu W, Glueckert R. HCN channels in the mammalian cochlea: Expression pattern, subcellular location, and age-dependent changes. J Neurosci Res 2020; 99:699-728. [PMID: 33181864 PMCID: PMC7839784 DOI: 10.1002/jnr.24754] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/03/2023]
Abstract
Neuronal diversity in the cochlea is largely determined by ion channels. Among voltage‐gated channels, hyperpolarization‐activated cyclic nucleotide‐gated (HCN) channels open with hyperpolarization and depolarize the cell until the resting membrane potential. The functions for hearing are not well elucidated and knowledge about localization is controversial. We created a detailed map of subcellular location and co‐expression of all four HCN subunits across different mammalian species including CBA/J, C57Bl/6N, Ly5.1 mice, guinea pigs, cats, and human subjects. We correlated age‐related hearing deterioration in CBA/J and C57Bl/6N with expression levels of HCN1, −2, and −4 in individual auditory neurons from the same cohort. Spatiotemporal expression during murine postnatal development exposed HCN2 and HCN4 involvement in a critical phase of hair cell innervation. The huge diversity of subunit composition, but lack of relevant heteromeric pairing along the perisomatic membrane and axon initial segments, highlighted an active role for auditory neurons. Neuron clusters were found to be the hot spots of HCN1, −2, and −4 immunostaining. HCN channels were also located in afferent and efferent fibers of the sensory epithelium. Age‐related changes on HCN subtype expression were not uniform among mice and could not be directly correlated with audiometric data. The oldest mice groups revealed HCN channel up‐ or downregulation, depending on the mouse strain. The unexpected involvement of HCN channels in outer hair cell function where HCN3 overlaps prestin location emphasized the importance for auditory function. A better understanding may open up new possibilities to tune neuronal responses evoked through electrical stimulation by cochlear implants.
Collapse
Affiliation(s)
- Maria Luque
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Jozsef Dudas
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elisabeth Pechriggl
- Department of Anatomy, Histology & Embryology, Division of Clinical & Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Erich Brenner
- Department of Anatomy, Histology & Embryology, Division of Clinical & Functional Anatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden
| | - Wei Liu
- Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Uppsala University Hospital, Uppsala, Sweden
| | - Rudolf Glueckert
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria.,Tirol Kliniken, University Clinics Innsbruck, Innsbruck, Austria
| |
Collapse
|
31
|
Keithley EM. Pathology and mechanisms of cochlear aging. J Neurosci Res 2020; 98:1674-1684. [PMID: 31066107 PMCID: PMC7496655 DOI: 10.1002/jnr.24439] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/22/2019] [Accepted: 04/23/2019] [Indexed: 12/21/2022]
Abstract
Presbycusis, or age-related hearing loss (ARHL), occurs in most mammals with variations in the age of onset, rate of decline, and magnitude of degeneration in the central nervous system and inner ear. The affected cochlear structures include the stria vascularis and its vasculature, spiral ligament, sensory hair cells and auditory neurons. Dysfunction of the stria vascularis results in a reduced endocochlear potential. Without this potential, the cochlear amplification provided by the electro-motility of the outer hair cells is insufficient, and a high-frequency hearing-loss results. Degeneration of the sensory cells, especially the outer hair cells also leads to hearing loss due to lack of amplification. Neuronal degeneration, another hallmark of ARHL, most likely underlies difficulties with speech discrimination, especially in noisy environments. Noise exposure is a major cause of ARHL. It is well-known to cause sensory cell degeneration, especially the outer hair cells at the high frequency end of the cochlea. Even loud, but not uncomfortable, sound levels can lead to synaptopathy and ultimately neuronal degeneration. Even in the absence of a noisy environment, aged cells degenerate. This pathology most likely results from damage to mitochondria and contributes to degenerative changes in the stria vascularis, hair cells, and neurons. The genetic underpinnings of ARHL are still unknown and most likely involve various combinations of genes. At present, the only effective strategy for reducing ARHL is prevention of noise exposure. If future strategies can improve mitochondrial activity and reduce oxidative damage in old age, these should also bring relief.
Collapse
Affiliation(s)
- Elizabeth M. Keithley
- Division of Otolaryngology ‐ Head and Neck SurgeryUniversity of CaliforniaSan DiegoCalifornia
| |
Collapse
|
32
|
Jeng JY, Johnson SL, Carlton AJ, DeTomasi L, Goodyear R, DeFaveri F, Furness DN, Wells S, Brown SDM, Holley MC, Richardson GP, Mustapha M, Bowl MR, Marcotti W. Age-related changes in the biophysical and morphological characteristics of mouse cochlear outer hair cells. J Physiol 2020; 598:3891-3910. [PMID: 32608086 PMCID: PMC7612122 DOI: 10.1113/jp279795] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/25/2020] [Indexed: 09/01/2023] Open
Abstract
KEY POINTS Age-related hearing loss (ARHL) is a very heterogeneous disease, resulting from cellular senescence, genetic predisposition and environmental factors (e.g. noise exposure). Currently, we know very little about age-related changes occurring in the auditory sensory cells, including those associated with the outer hair cells (OHCs). Using different mouse strains, we show that OHCs undergo several morphological and biophysical changes in the ageing cochlea. Ageing OHCs also exhibited the progressive loss of afferent and efferent synapses. We also provide evidence that the size of the mechanoelectrical transducer current is reduced in ageing OHCs, highlighting its possible contribution in cochlear ageing. ABSTRACT Outer hair cells (OHCs) are electromotile sensory receptors that provide sound amplification within the mammalian cochlea. Although OHCs appear susceptible to ageing, the progression of the pathophysiological changes in these cells is still poorly understood. By using mouse strains with a different progression of hearing loss (C57BL/6J, C57BL/6NTac, C57BL/6NTacCdh23+ , C3H/HeJ), we have identified morphological, physiological and molecular changes in ageing OHCs (9-12 kHz cochlear region). We show that by 6 months of age, OHCs from all strains underwent a reduction in surface area, which was not a sign of degeneration. Although the ageing OHCs retained a normal basolateral membrane protein profile, they showed a reduction in the size of the K+ current and non-linear capacitance, a readout of prestin-dependent electromotility. Despite these changes, OHCs have a normal Vm and retain the ability to amplify sound, as distortion product otoacoustic emission thresholds were not affected in aged, good-hearing mice (C3H/HeJ, C57BL/6NTacCdh23+ ). The loss of afferent synapses was present in all strains at 15 months. The number of efferent synapses per OHCs, defined as postsynaptic SK2 puncta, was reduced in aged OHCs of all strains apart from C3H mice. Several of the identified changes occurred in aged OHCs from all mouse strains, thus representing a general trait in the pathophysiological progression of age-related hearing loss, possibly aimed at preserving functionality. We have also shown that the mechanoelectrical transduction (MET) current from OHCs of mice harbouring the Cdh23ahl allele is reduced with age, highlighting the possibility that changes in the MET apparatus could play a role in cochlear ageing.
Collapse
Affiliation(s)
- Jing-Yi Jeng
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Stuart L. Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Adam J Carlton
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Lara DeTomasi
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Richard Goodyear
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Francesca DeFaveri
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | | | - Sara Wells
- Mary Lyon Centre, MRC Harwell Institute, Oxfordshire, UK
| | | | - Matthew C. Holley
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Guy P. Richardson
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Mirna Mustapha
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Michael R. Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, UK
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
33
|
Niemczura AC, Grimsley JM, Kim C, Alkhawaga A, Poth A, Carvalho A, Wenstrup JJ. Physiological and Behavioral Responses to Vocalization Playback in Mice. Front Behav Neurosci 2020; 14:155. [PMID: 33033474 PMCID: PMC7490332 DOI: 10.3389/fnbeh.2020.00155] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/04/2020] [Indexed: 01/06/2023] Open
Abstract
In mice, the caller’s production of social vocalizations has been extensively studied but the effect of these vocalizations on the listener is less understood, with playback studies to date utilizing one vocalization category or listeners of one sex. This study examines how several categories of mouse vocalizations affect listeners of both sexes to better understand the communicative functions of these vocal categories. We examined physiological and behavioral responses of male and female CBA/CaJ mice to playback of four social vocalization categories: ultrasonic vocalizations (USVs), low-frequency harmonic calls, mid-frequency vocalizations, and noisy calls. Based on the conditions under which these calls are emitted, we hypothesized that playback of these vocal categories would have differential effects on the listeners. In females, playback of all four vocalization categories increased stress hormone levels (corticosterone), but only the non-USV categories increased corticosterone in males. The magnitude of corticosterone increase in non-USV trials was greater in females than in males. In open field tests, all four vocal categories decreased central ambulation in males and females, indicating an increase in anxiety-related behavior. Further, we found that the proportions of USVs emitted by subjects, but not their overall calling rates, were affected by playback of some vocal categories, suggesting that vocalization categories have different communication content. These results show that, even in the absence of behavioral and acoustic contextual features, each vocal category evokes physiological and behavioral responses in mice, with some differences in responses as a function of the listener’s sex and playback signal. These findings suggest that at least some of the vocal categories have distinct communicative functions.
Collapse
Affiliation(s)
- Alexandra C Niemczura
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States.,School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Jasmine M Grimsley
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States.,School of Biomedical Sciences, Kent State University, Kent, OH, United States
| | - Chae Kim
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Ahmad Alkhawaga
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Austin Poth
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Alyssa Carvalho
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Jeffrey J Wenstrup
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States.,School of Biomedical Sciences, Kent State University, Kent, OH, United States.,Brain Health Research Institute, Kent State University, Kent, OH, United States
| |
Collapse
|
34
|
Kobrina A, Schrode KM, Screven LA, Javaid H, Weinberg MM, Brown G, Board R, Villavisanis DF, Dent ML, Lauer AM. Linking anatomical and physiological markers of auditory system degeneration with behavioral hearing assessments in a mouse (Mus musculus) model of age-related hearing loss. Neurobiol Aging 2020; 96:87-103. [PMID: 32950782 DOI: 10.1016/j.neurobiolaging.2020.08.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 08/03/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022]
Abstract
Age-related hearing loss is a very common sensory disability, affecting one in three older adults. Establishing a link between anatomical, physiological, and behavioral markers of presbycusis in a mouse model can improve the understanding of this disorder in humans. We measured age-related hearing loss for a variety of acoustic signals in quiet and noisy environments using an operant conditioning procedure and investigated the status of peripheral structures in CBA/CaJ mice. Mice showed the greatest degree of hearing loss in the last third of their lifespan, with higher thresholds in noisy than in quiet conditions. Changes in auditory brainstem response thresholds and waveform morphology preceded behavioral hearing loss onset. Loss of hair cells, auditory nerve fibers, and signs of stria vascularis degeneration were observed in old mice. The present work underscores the difficulty in ascribing the primary cause of age-related hearing loss to any particular type of cellular degeneration. Revealing these complex structure-function relationships is critical for establishing successful intervention strategies to restore hearing or prevent presbycusis.
Collapse
Affiliation(s)
| | - Katrina M Schrode
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, USA
| | - Laurel A Screven
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, USA
| | - Hamad Javaid
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, USA
| | - Madison M Weinberg
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, USA
| | - Garrett Brown
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, USA
| | - Ryleigh Board
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, USA
| | - Dillan F Villavisanis
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, USA
| | - Micheal L Dent
- Department of Psychology, University at Buffalo SUNY, Buffalo, NY, USA
| | - Amanda M Lauer
- Department of Otolaryngology-Head and Neck Surgery and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
35
|
Jeng JY, Ceriani F, Olt J, Brown SDM, Holley MC, Bowl MR, Johnson SL, Marcotti W. Pathophysiological changes in inner hair cell ribbon synapses in the ageing mammalian cochlea. J Physiol 2020; 598:4339-4355. [PMID: 32710572 DOI: 10.1113/jp280018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Age-related hearing loss (ARHL) is associated with the loss of inner hair cell (IHC) ribbon synapses, lower hearing sensitivity and decreased ability to understand speech, especially in a noisy environment. Little is known about the age-related physiological and morphological changes that occur at ribbon synapses. We show that the differing degrees of ARHL in four selected mouse stains is correlated with the loss of ribbon synapses, being most severe for the strains C57BL/6NTac and C57BL/6J, less so for C57BL/6NTacCdh23+ -Repaired and lowest for C3H/HeJ. Despite the loss of ribbon synapses with age, the volume of the remaining ribbons increased and the size and kinetics of Ca2+ -dependent exocytosis in IHCs was unaffected, indicating the presence of a previously unknown degree of functional compensation at ribbon synapses. Although the age-related morphological changes at IHC ribbon synapses contribute to the different progression of ARHL, without the observed functional compensation hearing loss could be greater. ABSTRACT Mammalian cochlear inner hair cells (IHCs) are specialized sensory receptors able to provide dynamic coding of sound signals. This ability is largely conferred by their ribbon synapses, which tether a large number of vesicles at the IHC's presynaptic active zones, allowing high rates of sustained synaptic transmission onto the afferent fibres. How the physiological and morphological properties of ribbon synapses change with age remains largely unknown. Here, we have investigated the biophysical and morphological properties of IHC ribbon synapses in the ageing cochlea (9-12 kHz region) of four mouse strains commonly used in hearing research: early-onset progressive hearing loss (C57BL/6J and C57BL/6NTac) and 'good hearing' strains (C57BL/6NTacCdh23+ and C3H/HeJ). We found that with age, both modiolar and pillar sides of the IHC exhibited a loss of ribbons, but there was an increased volume of those that remained. These morphological changes, which only occurred after 6 months of age, were correlated with the level of hearing loss in the different mouse strains, being most severe for C57BL/6NTac and C57BL/6J, less so for C57BL/6NTacCdh23+ and absent for C3H/HeJ strains. Despite the age-related reduction in ribbon number in three of the four strains, the size and kinetics of Ca2+ -dependent exocytosis, as well as the replenishment of synaptic vesicles, in IHCs was not affected. The degree of vesicle release at the fewer, but larger, individual remaining ribbon synapses colocalized with the post-synaptic afferent terminals is likely to increase, indicating the presence of a previously unknown degree of functional compensation in the ageing mouse cochlea.
Collapse
Affiliation(s)
- Jing-Yi Jeng
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.,Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Federico Ceriani
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.,Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jennifer Olt
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Steve D M Brown
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, UK
| | - Matthew C Holley
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Michael R Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, UK
| | - Stuart L Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.,Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.,Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
36
|
Tam WY, Cheung KK. Phenotypic characteristics of commonly used inbred mouse strains. J Mol Med (Berl) 2020; 98:1215-1234. [PMID: 32712726 DOI: 10.1007/s00109-020-01953-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022]
Abstract
The laboratory mouse is the most commonly used mammalian model for biomedical research. An enormous number of mouse models, such as gene knockout, knockin, and overexpression transgenic mice, have been created over the years. A common practice to maintain a genetically modified mouse line is backcrossing with standard inbred mice over several generations. However, the choice of inbred mouse for backcrossing is critical to phenotypic characterization because phenotypic variabilities are often observed between mice with different genetic backgrounds. In this review, the major features of commonly used inbred mouse lines are discussed. The aim is to provide information for appropriate selection of inbred mouse lines for genetic and behavioral studies.
Collapse
Affiliation(s)
- Wing Yip Tam
- University Research Facility in Behavioral and Systems Neuroscience, The Hong Kong Polytechnic University, Hong Kong, SAR, China
| | - Kwok-Kuen Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, SAR, China.
| |
Collapse
|
37
|
Age-Related Hearing Loss Is Dominated by Damage to Inner Ear Sensory Cells, Not the Cellular Battery That Powers Them. J Neurosci 2020; 40:6357-6366. [PMID: 32690619 DOI: 10.1523/jneurosci.0937-20.2020] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 11/21/2022] Open
Abstract
Age-related hearing loss arises from irreversible damage in the inner ear, where sound is transduced into electrical signals. Prior human studies suggested that sensory-cell loss is rarely the cause; correspondingly, animal work has implicated the stria vascularis, the cellular "battery" driving the amplification of sound by hair cell "motors." Here, quantitative microscopic analysis of hair cells, auditory nerve fibers, and strial tissues in 120 human inner ears obtained at autopsy, most of whom had recent audiograms in their medical records, shows that the degree of hearing loss is well predicted from the amount of hair cell loss and that inclusion of strial damage does not improve the prediction. Although many aging ears showed significant strial degeneration throughout the cochlea, our statistical models suggest that, by the time strial tissues are lost, hair cell death is so extensive that the loss of battery is no longer important to pure-tone thresholds and that audiogram slope is not diagnostic for strial degeneration. These data comprise the first quantitative survey of hair cell death in normal-aging human cochleas, and reveal unexpectedly severe hair cell loss in low-frequency cochlear regions, and dramatically greater loss in high-frequency regions than seen in any aging animal model. Comparison of normal-aging ears to an age-matched group with acoustic-overexposure history suggests that a lifetime of acoustic overexposure is to blame.SIGNIFICANCE STATEMENT This report upends dogma about the causes of age-related hearing loss. Our analysis of over 120 autopsy specimens shows that inner-ear sensory cell loss can largely explain the audiometric patterns in aging, with minimal contribution from the stria vascularis, the "battery" that powers the inner ear, previously viewed as the major locus of age-related hearing dysfunction. Predicting inner ear damage from the audiogram is critical, now that clinical trials of therapeutics designed to regrow hair cells are underway. Our data also show that hair cell degeneration in aging humans is dramatically worse than that in aging animals, suggesting that the high-frequency hearing losses that define human presbycusis reflect avoidable contributions of chronic ear abuse to which aging animals are not exposed.
Collapse
|
38
|
Nolan LS. Age-related hearing loss: Why we need to think about sex as a biological variable. J Neurosci Res 2020; 98:1705-1720. [PMID: 32557661 DOI: 10.1002/jnr.24647] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
It has long been known that age-related hearing loss (ARHL) is more common, more severe, and with an earlier onset in men compared to women. Even in the absence of confounding factors such as noise exposure, these sexdifferences in susceptibility to ARHL remain. In the last decade, insight into the pleiotrophic nature by which estrogen signaling can impact multiple signaling mechanisms to mediate downstream changes in gene expression and/or elicit rapid changes in cellular function has rapidly gathered pace, and a role for estrogen signaling in the biological pathways that confer neuroprotection is becoming undeniable. Here I review the evidence why we need to consider sex as a biological variable (SABV) when investigating the etiology of ARHL. Loss of auditory function with aging is frequency-specific and modulated by SABV. Evidence also suggests that differences in cochlear physiology between women and men are already present from birth. Understanding the molecular basis of these sex differences in ARHL will accelerate the development of precision medicine therapies for ARHL.
Collapse
Affiliation(s)
- Lisa S Nolan
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
39
|
Preventing presbycusis in mice with enhanced medial olivocochlear feedback. Proc Natl Acad Sci U S A 2020; 117:11811-11819. [PMID: 32393641 DOI: 10.1073/pnas.2000760117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
"Growing old" is the most common cause of hearing loss. Age-related hearing loss (ARHL) (presbycusis) first affects the ability to understand speech in background noise, even when auditory thresholds in quiet are normal. It has been suggested that cochlear denervation ("synaptopathy") is an early contributor to age-related auditory decline. In the present work, we characterized age-related cochlear synaptic degeneration and hair cell loss in mice with enhanced α9α10 cholinergic nicotinic receptors gating kinetics ("gain of function" nAChRs). These mediate inhibitory olivocochlear feedback through the activation of associated calcium-gated potassium channels. Cochlear function was assessed via distortion product otoacoustic emissions and auditory brainstem responses. Cochlear structure was characterized in immunolabeled organ of Corti whole mounts using confocal microscopy to quantify hair cells, auditory neurons, presynaptic ribbons, and postsynaptic glutamate receptors. Aged wild-type mice had elevated acoustic thresholds and synaptic loss. Afferent synapses were lost from inner hair cells throughout the aged cochlea, together with some loss of outer hair cells. In contrast, cochlear structure and function were preserved in aged mice with gain-of-function nAChRs that provide enhanced olivocochlear inhibition, suggesting that efferent feedback is important for long-term maintenance of inner ear function. Our work provides evidence that olivocochlear-mediated resistance to presbycusis-ARHL occurs via the α9α10 nAChR complexes on outer hair cells. Thus, enhancement of the medial olivocochlear system could be a viable strategy to prevent age-related hearing loss.
Collapse
|
40
|
D-Galactose-induced oxidative stress and mitochondrial dysfunction in the cochlear basilar membrane: an in vitro aging model. Biogerontology 2020; 21:311-323. [PMID: 32026209 PMCID: PMC7196095 DOI: 10.1007/s10522-020-09859-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/29/2020] [Indexed: 12/15/2022]
Abstract
The cochlear basilar membrane (CBM) contains inner hair cells and outer hair cells that convert sound waves into electrical signals and transmit them to the central auditory system. Cochlear aging, the primary reason of age-related hearing loss, can reduce the signal transmission capacity. There is no ideal in vitro aging model of the CBM. In this study, we cultured the CBM, which was dissected from the cochlea of the C57BL/6 mice 5 days after birth, in a medium containing 20 mg/mL, 40 mg/mL, or 60 mg/mL D-galactose (D-gal). Compared with the control group, the levels of senescence-associated β-galactosidase were increased in a concentration-dependent manner in the CBM of the D-gal groups. In addition, levels of the mitochondrial superoxide and patterns of an age-related mitochondrial DNA3860-bp deletion were significantly increased. The ATP levels and the membrane potential of the mitochondrial were significantly decreased in the CBM of the D-gal groups compared with the control group. Furthermore, in comparison with the control group, damaged hair cell stereocilia and a loss of inner hair cell ribbon synapses were observed in the CBM of the D-gal groups. A loss of hair cells and activation of caspase-3-mediated outer hair cell apoptosis were also observed in the CBM of the high-dose D-gal group. These insults induced by D-gal in the CBM in vitro were similar to the ones that occur in cochlear natural aging in vivo. Thus, we believe that this is a successful in vitro aging model using cultured CBM. These results demonstrate the effects of mitochondrial oxidative damage on presbycusis and provide a reliable aging model to study the mechanisms of presbycusis in vitro.
Collapse
|
41
|
Gourévitch B, Mahrt EJ, Bakay W, Elde C, Portfors CV. GABA A receptors contribute more to rate than temporal coding in the IC of awake mice. J Neurophysiol 2020; 123:134-148. [PMID: 31721644 DOI: 10.1152/jn.00377.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Speech is our most important form of communication, yet we have a poor understanding of how communication sounds are processed by the brain. Mice make great model organisms to study neural processing of communication sounds because of their rich repertoire of social vocalizations and because they have brain structures analogous to humans, such as the auditory midbrain nucleus inferior colliculus (IC). Although the combined roles of GABAergic and glycinergic inhibition on vocalization selectivity in the IC have been studied to a limited degree, the discrete contributions of GABAergic inhibition have only rarely been examined. In this study, we examined how GABAergic inhibition contributes to shaping responses to pure tones as well as selectivity to complex sounds in the IC of awake mice. In our set of long-latency neurons, we found that GABAergic inhibition extends the evoked firing rate range of IC neurons by lowering the baseline firing rate but maintaining the highest probability of firing rate. GABAergic inhibition also prevented IC neurons from bursting in a spontaneous state. Finally, we found that although GABAergic inhibition shaped the spectrotemporal response to vocalizations in a nonlinear fashion, it did not affect the neural code needed to discriminate vocalizations, based either on spiking patterns or on firing rate. Overall, our results emphasize that even if GABAergic inhibition generally decreases the firing rate, it does so while maintaining or extending the abilities of neurons in the IC to code the wide variety of sounds that mammals are exposed to in their daily lives.NEW & NOTEWORTHY GABAergic inhibition adds nonlinearity to neuronal response curves. This increases the neuronal range of evoked firing rate by reducing baseline firing. GABAergic inhibition prevents bursting responses from neurons in a spontaneous state, reducing noise in the temporal coding of the neuron. This could result in improved signal transmission to the cortex.
Collapse
Affiliation(s)
- Boris Gourévitch
- Institut de l'Audition, Institut Pasteur, INSERM, Sorbonne Université, F-75012 Paris, France.,CNRS, France
| | - Elena J Mahrt
- School of Biological Sciences, Washington State University, Vancouver, Washington
| | - Warren Bakay
- Institut de l'Audition, Institut Pasteur, INSERM, Sorbonne Université, F-75012 Paris, France
| | - Cameron Elde
- School of Biological Sciences, Washington State University, Vancouver, Washington
| | - Christine V Portfors
- School of Biological Sciences, Washington State University, Vancouver, Washington
| |
Collapse
|
42
|
Ohlemiller KK. Mouse methods and models for studies in hearing. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:3668. [PMID: 31795658 DOI: 10.1121/1.5132550] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Laboratory mice have become the dominant animal model for hearing research. The mouse cochlea operates according to standard "mammalian" principles, uses the same cochlear cell types, and exhibits the same types of injury as found in other mammals. The typical mouse lifespan is less than 3 years, yet the age-associated pathologies that may be found are quite similar to longer-lived mammals. All Schuknecht's types of presbycusis have been identified in existing mouse lines, some favoring hair cell loss while others favor strial degeneration. Although noise exposure generally affects the mouse cochlea in a manner similar to other mammals, mice appear more prone to permanent alterations to hair cells or the organ of Corti than to hair cell loss. Therapeutic compounds may be applied systemically or locally through the tympanic membrane or onto (or through) the round window membrane. The thinness of the mouse cochlear capsule and annular ligament may promote drug entry from the middle ear, although an extremely active middle ear lining may quickly remove most drugs. Preclinical testing of any therapeutic will always require tests in multiple animal models. Mice constitute one model providing supporting evidence for any therapeutic, while genetically engineered mice can test hypotheses about mechanisms.
Collapse
Affiliation(s)
- Kevin K Ohlemiller
- Department of Otolaryngology, Central Institute for the Deaf at Washington University School of Medicine, Washington University School of Medicine, Fay and Carl Simons Center for Hearing and Deafness, Saint Louis, Missouri 63110, USA
| |
Collapse
|
43
|
Quraishe S, Newman T, Anderson L. Auditory temporal acuity improves with age in the male mouse auditory thalamus: A role for perineuronal nets? J Neurosci Res 2019; 98:1780-1799. [PMID: 31562661 DOI: 10.1002/jnr.24537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 11/09/2022]
Abstract
The ability to perceive and interpret environmental sound accurately is conserved across many species and is fundamental for understanding communication via vocalizations. Auditory acuity and temporally controlled neuronal firing underpin this ability. Deterioration in neuronal firing precision likely contributes to poorer hearing performance, yet the role of neural processing by key nuclei in the central auditory pathways is not fully understood. Here, we record from the auditory thalamus (medial geniculate body [MGB]) of young and middle-aged, normally hearing male CBA/Ca mice. We report changes in temporal processing of auditory stimuli, with neurons recorded from ventral and medial MGB subdivisions of older animals more likely to synchronize to rapid temporally varying stimuli. MGB subdivisions also showed increased probability of neuronal firing and shorter response latencies to clicks in older animals. Histological investigation of neuronal extracellular specializations, perineuronal nets (PNNs) and axonal coats, in the MGB identified greater organization of PNNs around MGB neurons and the presence of axonal coats within older animals. This supports the observation that neural responses recorded from ventral and medial MGB of older mice were more likely to synchronize to temporally varying stimuli presented at faster repetition rates than those recorded from young adult animals. These changes are observed in animals with normal hearing thresholds, confirming that neural processing differs between the MGB subdivisions and such processing is associated with age-related changes to PNNs. Understanding these age-related changes and how they occur have important implications for the design of effective therapeutic interventions to improve speech intelligibility into later life.
Collapse
Affiliation(s)
- Shmma Quraishe
- School of Biological Sciences, B85, University of Southampton, Southampton, UK
| | - Tracey Newman
- Clinical and Experimental Sciences, B85, University of Southampton, Southampton, UK
| | | |
Collapse
|
44
|
Liu T, Li G, Noble KV, Li Y, Barth JL, Schulte BA, Lang H. Age-dependent alterations of Kir4.1 expression in neural crest-derived cells of the mouse and human cochlea. Neurobiol Aging 2019; 80:210-222. [PMID: 31220650 PMCID: PMC6679794 DOI: 10.1016/j.neurobiolaging.2019.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/02/2019] [Accepted: 04/11/2019] [Indexed: 11/18/2022]
Abstract
Age-related hearing loss (or presbyacusis) is a progressive pathophysiological process. This study addressed the hypothesis that degeneration/dysfunction of multiple nonsensory cell types contributes to presbyacusis by evaluating tissues obtained from young and aged CBA/CaJ mouse ears and human temporal bones. Ultrastructural examination and transcriptomic analysis of mouse cochleas revealed age-dependent pathophysiological alterations in 3 types of neural crest-derived cells, namely intermediate cells in the stria vascularis, outer sulcus cells in the cochlear lateral wall, and satellite cells in the spiral ganglion. A significant decline in immunoreactivity for Kir4.1, an inwardly rectifying potassium channel, was seen in strial intermediate cells and outer sulcus cells in the ears of older mice. Age-dependent alterations in Kir4.1 immunostaining also were observed in satellite cells ensheathing spiral ganglion neurons. Expression alterations of Kir4.1 were observed in these same cell populations in the aged human cochlea. These results suggest that degeneration/dysfunction of neural crest-derived cells maybe an important contributing factor to both metabolic and neural forms of presbyacusis.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Gang Li
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Department of Otolaryngology, Tinnitus and Hyperacusis Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kenyaria V Noble
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Yongxi Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Beijing, China
| | - Jeremy L Barth
- Department of Regenerative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Bradley A Schulte
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA; Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
45
|
Increased burden of mitochondrial DNA deletions and point mutations in early-onset age-related hearing loss in mitochondrial mutator mice. Exp Gerontol 2019; 125:110675. [PMID: 31344454 DOI: 10.1016/j.exger.2019.110675] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 07/14/2019] [Accepted: 07/20/2019] [Indexed: 11/20/2022]
Abstract
Mitochondrial DNA (mtDNA) mutations are thought to have a causal role in a variety of age-related neurodegenerative diseases, including age-related hearing loss (AHL). In the current study, we investigated the roles of mtDNA deletions and point mutations in AHL in mitochondrial mutator mice (Polgmut/mut) that were backcrossed onto CBA/CaJ mice, a well-established model of late-onset AHL. mtDNA deletions accumulated significantly with age in the inner ears of Polgmut/mut mice, while there were no differences in mtDNA deletion frequencies in the inner ears between 5 and 17 months old Polg+/+ mice or 5 months old Polg+/+ and Polgmut/mut mice. mtDNA deletions also accumulated significantly in the inner ears of CBA/CaJ mice during normal aging. In contrast, 5 months old Polgmut/mut mice displayed a 238-fold increase in mtDNA point mutation frequencies in the inner ears compared to age-matched Polg+/+ mice, but there were no differences in mtDNA point mutation frequencies in the inner ears between 5 and 17 months old Polgmut/mut mice. Seventeen-month-old Polgmut/mut mice also displayed early-onset severe hearing loss associated with a significant reduction in neural output of the cochlea, while age-matched Polg+/+ mice displayed little or no hearing impairment. Consistent with the physiological and mtDNA deletion test result, 17-month-old Polgmut/mut mice displayed a profound loss of spiral ganglion neurons in the cochlea. Thus, our data suggest that a higher burden of mtDNA point mutations from a young age and age-related accumulation of mtDNA deletions likely contribute to early-onset AHL in mitochondrial mutator mice.
Collapse
|
46
|
Kobrina A, Dent ML. The effects of age and sex on the detection of pure tones by adult CBA/CaJ mice (Mus musculus). J Neurosci Res 2019; 98:1731-1744. [PMID: 31304616 DOI: 10.1002/jnr.24496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/23/2019] [Accepted: 06/28/2019] [Indexed: 12/28/2022]
Abstract
Age-related hearing loss (ARHL) is a neurodegenerative disorder characterized by a gradual decrease in hearing sensitivity. Previous electrophysiological and behavioral studies have demonstrated that the CBA/CaJ mouse strain is an appropriate model for the late-onset hearing loss found in humans. However, few studies have characterized hearing in these mice behaviorally using longitudinal methodologies. The goal of this research was to utilize a longitudinal design and operant conditioning procedures with positive reinforcement to construct audiograms and temporal integration functions in aging CBA/CaJ mice. In the first experiment, thresholds were collected for 8, 16, 24, 42, and 64 kHz pure tones in 30 male and 35 female CBA/CaJ mice. Similar to humans, mice had higher thresholds for high frequency tones than for low frequency pure tones across the lifespan. Female mice had better hearing acuity than males after 645 days of age. In the second experiment, temporal integration functions were constructed for 18 male and 18 female mice for 16 and 64 kHz tones varying in duration. Mice showed an increase in thresholds for tones shorter than 200 ms, reaching peak performance at shorter durations than other rodent species. Overall, CBA/CaJ mice experience ARHL for pure tones of different frequencies and durations, making them a good model for studies on hearing loss. These findings highlight the importance of using a wide range of stimuli and a longitudinal design when comparing presbycusis across different species.
Collapse
Affiliation(s)
| | - Micheal L Dent
- Department of Psychology, University at Buffalo SUNY, Buffalo, New York
| |
Collapse
|
47
|
A broad filter between call frequency and peripheral auditory sensitivity in northern grasshopper mice (Onychomys leucogaster). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:481-489. [DOI: 10.1007/s00359-019-01338-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/18/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022]
|
48
|
Celaya AM, Sánchez-Pérez I, Bermúdez-Muñoz JM, Rodríguez-de la Rosa L, Pintado-Berninches L, Perona R, Murillo-Cuesta S, Varela-Nieto I. Deficit of mitogen-activated protein kinase phosphatase 1 (DUSP1) accelerates progressive hearing loss. eLife 2019; 8:39159. [PMID: 30938680 PMCID: PMC6464786 DOI: 10.7554/elife.39159] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 04/01/2019] [Indexed: 12/12/2022] Open
Abstract
Mitogen-activated protein kinases (MAPK) such as p38 and the c-Jun N-terminal kinases (JNKs) are activated during the cellular response to stress signals. Their activity is regulated by the MAPK-phosphatase 1 (DUSP1), a key component of the anti-inflammatory response. Stress kinases are well-described elements of the response to otic injury and the otoprotective potential of JNK inhibitors is being tested in clinical trials. By contrast, there are no studies exploring the role of DUSP1 in hearing and hearing loss. Here we show that Dusp1 expression is age-regulated in the mouse cochlea. Dusp1 gene knock-out caused premature progressive hearing loss, as confirmed by auditory evoked responses in Dusp1-/- mice. Hearing loss correlated with cell death in hair cells, degeneration of spiral neurons and increased macrophage infiltration. Dusp1-/- mouse cochleae showed imbalanced redox status and dysregulated expression of cytokines. These data suggest that DUSP1 is essential for cochlear homeostasis in the response to stress during ageing.
Collapse
Affiliation(s)
- Adelaida M Celaya
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain
| | - Isabel Sánchez-Pérez
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain.,Biochemistry Department, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain.,Biomedicine Unit UCLM-CSIC, Madrid, Spain
| | - Jose M Bermúdez-Muñoz
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain
| | - Lourdes Rodríguez-de la Rosa
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Laura Pintado-Berninches
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Rosario Perona
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Silvia Murillo-Cuesta
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain
| | - Isabel Varela-Nieto
- Institute for Biomedical Research "Alberto Sols" (IIBM), Spanish National Research Council-Autonomous University of Madrid (CSIC-UAM), Madrid, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, Madrid, Spain
| |
Collapse
|
49
|
Translating animal models to human therapeutics in noise-induced and age-related hearing loss. Hear Res 2019; 377:44-52. [PMID: 30903954 DOI: 10.1016/j.heares.2019.03.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/15/2019] [Accepted: 03/05/2019] [Indexed: 11/20/2022]
Abstract
Acquired sensorineural hearing loss is one of the most prevalent chronic diseases, and aging and acoustic overexposure are common contributors. Decades of study in animals and humans have clarified the cellular targets and perceptual consequences of these forms of hearing loss, and preclinical studies have led to the development of therapeutics designed to slow, prevent or reverse them. Here, we review the histopathological changes underlying age-related and noise-induced hearing loss and the functional consequences of these pathologies. Based on these relations, we consider the ambiguities that arise in diagnosing underlying pathology from minimally invasive tests of auditory function, and how those ambiguities present challenges in the design and interpretation of clinical trials.
Collapse
|
50
|
Heeringa AN, Köppl C. The aging cochlea: Towards unraveling the functional contributions of strial dysfunction and synaptopathy. Hear Res 2019; 376:111-124. [PMID: 30862414 DOI: 10.1016/j.heares.2019.02.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/01/2019] [Accepted: 02/26/2019] [Indexed: 10/27/2022]
Abstract
Strial dysfunction is commonly observed as a key consequence of aging in the cochlea. A large body of animal research, especially in the quiet-aged Mongolian gerbil, shows specific histopathological changes in the cochlear stria vascularis and the putatively corresponding effects on endocochlear potential and auditory nerve responses. However, recent work suggests that synaptopathy, or the loss of inner hair cell-auditory nerve fiber synapses, also presents as a consequence of aging. It is now believed that the loss of synapses is the earliest age-related degenerative event. The present review aims to integrate classic and novel research on age-related pathologies of the inner ear. First, we summarize current knowledge on age-related strial dysfunction and synaptopathy. We describe how these cochlear pathologies fit into the categories for presbyacusis, as first defined by Schuknecht in the '70s. Further, we discuss how strial dysfunction and synaptopathy affect sound coding by the auditory nerve and how they can be experimentally induced to study their specific contributions to age-related hearing deficits. As such, we aim to give an overview of the current literature on age-related cochlear pathologies and hope to inspire further research on the role of cochlear aging in age-related hearing deficits.
Collapse
Affiliation(s)
- Amarins N Heeringa
- Cluster of Excellence 'Hearing4all' and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Christine Köppl
- Cluster of Excellence 'Hearing4all' and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany.
| |
Collapse
|