1
|
Rolf-Pissarczyk M, Schussnig R, Fries TP, Fleischmann D, Elefteriades JA, Humphrey JD, Holzapfel GA. Mechanisms of aortic dissection: From pathological changes to experimental and in silico models. PROGRESS IN MATERIALS SCIENCE 2025; 150:101363. [PMID: 39830801 PMCID: PMC11737592 DOI: 10.1016/j.pmatsci.2024.101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Aortic dissection continues to be responsible for significant morbidity and mortality, although recent advances in medical data assimilation and in experimental and in silico models have improved our understanding of the initiation and progression of the accumulation of blood within the aortic wall. Hence, there remains a pressing necessity for innovative and enhanced models to more accurately characterize the associated pathological changes. Early on, experimental models were employed to uncover mechanisms in aortic dissection, such as hemodynamic changes and alterations in wall microstructure, and to assess the efficacy of medical implants. While experimental models were once the only option available, more recently they are also being used to validate in silico models. Based on an improved understanding of the deteriorated microstructure of the aortic wall, numerous multiscale material models have been proposed in recent decades to study the state of stress in dissected aortas, including the changes associated with damage and failure. Furthermore, when integrated with accessible patient-derived medical data, in silico models prove to be an invaluable tool for identifying correlations between hemodynamics, wall stresses, or thrombus formation in the deteriorated aortic wall. They are also advantageous for model-guided design of medical implants with the aim of evaluating the deployment and migration of implants in patients. Nonetheless, the utility of in silico models depends largely on patient-derived medical data, such as chosen boundary conditions or tissue properties. In this review article, our objective is to provide a thorough summary of medical data elucidating the pathological alterations associated with this disease. Concurrently, we aim to assess experimental models, as well as multiscale material and patient data-informed in silico models, that investigate various aspects of aortic dissection. In conclusion, we present a discourse on future perspectives, encompassing aspects of disease modeling, numerical challenges, and clinical applications, with a particular focus on aortic dissection. The aspiration is to inspire future studies, deepen our comprehension of the disease, and ultimately shape clinical care and treatment decisions.
Collapse
Affiliation(s)
| | - Richard Schussnig
- High-Performance Scientific Computing, University of Augsburg, Germany
- Institute of Structural Analysis, Graz University of Technology, Austria
| | - Thomas-Peter Fries
- Institute of Structural Analysis, Graz University of Technology, Austria
| | - Dominik Fleischmann
- 3D and Quantitative Imaging Laboratory, Department of Radiology, Stanford University, USA
| | | | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, USA
| | - Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
2
|
Sokolis DP. Variation in Layer-Specific Tear Properties of the Human Aorta Along Its Length and Circumference: Implications for Spatial Susceptibility to Dissection Initiation. J Biomech Eng 2025; 147:041008. [PMID: 39951248 DOI: 10.1115/1.4067912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Indexed: 03/06/2025]
Abstract
Hemodynamic variations influence the location of entry tears in aortic dissection. This study investigates whether variations in tear strength across the human aorta contribute to these clinical manifestations. Circumferential and axial strips were collected from nine axial and two circumferential sites along each autopsied aorta, yielding 1188 samples (11 aortas × 18 sites × 2 directions × 3 layers per site). These samples underwent tear testing to assess tear strength and tear energy, constituting resistance to tear propagation. Adventitial tear parameters were significantly higher than those of the intima and media, with no significant differences between the latter two, supporting the observation that entry tears typically occur in the inner wall. Tear propagation angles were approximately 15 and 75 deg for circumferential and axial medial strips, and 30 and 45 deg for circumferential and axial strips of the intima and adventitia, with minimal variation along the aorta. These findings indicate that the media, and to a lesser extent the other layers, have higher resistance to axial tearing compared to circumferential tearing, aligning with the clinical observation of circumferentially directed tears. Intimal and adventitial tear parameters increased modestly along the aorta, while medial parameters varied less, explaining why entry tears rarely originate in the abdominal aorta. Tear parameters in inner and outer quadrants were similar at most axial locations, except for dissimilar tear propagation angles of the intima and adventitia in the proximal aorta (especially the arch), explaining why entry tears seldom involve the entire circumference.
Collapse
Affiliation(s)
- Dimitrios P Sokolis
- Laboratory of Biomechanics, Center of Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephesiou Street, Athens 115, Greece
| |
Collapse
|
3
|
Rippe C, Bastrup JA, Holmberg J, Kawka K, Arévalo Martinez M, Albinsson S, Jepps TA, Swärd K. Declining activity of serum response factor in aging aorta in relation to aneurysm progression. J Biol Chem 2025; 301:108400. [PMID: 40081573 PMCID: PMC12002835 DOI: 10.1016/j.jbc.2025.108400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025] Open
Abstract
Age is a critical determinant of arterial disease, including aneurysm formation. Here, to understand the impact of aging on the arterial transcriptome, we leveraged RNA-sequencing data to define transcripts that change with advancing age in human arteries. Among the most repressed transcripts in aged individuals were those that are relevant for actomyosin structure and organization, including both myosin light chain kinase (MYLK) and smooth muscle γ-actin (ACTG2). This was associated with a reduction of serum response factor (SRF), which controls these transcripts via defined promoter elements. To determine the consequences of isolated Srf depletion, we conditionally deleted Srf in vascular smooth muscle of young mice (i8-SRF-KO mice). This led to a reduction of the SRF regulon, including Mylk and Actg2, and impaired arterial contractility, but left endothelial-dependent dilatation unaffected. Srf-depletion also increased aortic diameter and Alcian blue staining of the aortic media, which are cardinal features of aortopathy, such as aortic aneurysmal disease. Despite this, i8-SRF-KO mice were protected from aortic lesions elicited by angiotensin II (AngII). Proteomics demonstrated that Srf-depletion mimicked a protein signature of AngII treatment involving increases of the mechanoresponsive transcriptional coactivators YAP and TAZ and reduction of the Hippo kinase Lats2. Protection from aortopathy could be overcome by changing the order of KO induction and AngII administration resulting in advanced aneurysms in both i8-SRF-KO and control mice. Our work provides important insights into the molecular underpinnings of age-dependent changes in aortic function and mechanisms of adaptation in hypertension.
Collapse
Affiliation(s)
- Catarina Rippe
- Vascular Physiology Environment, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Joakim Armstrong Bastrup
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Johan Holmberg
- Vascular Physiology Environment, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Katarzyna Kawka
- Vascular Physiology Environment, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Sebastian Albinsson
- Vascular Physiology Environment, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Thomas A Jepps
- Vascular Biology Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karl Swärd
- Vascular Physiology Environment, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
4
|
Bhatt N, Seo H, Hanneman K, Burris N, Simmons CA, Chung JCY. Imaging-based biomechanical parameters for assessing risk of aortic dissection and rupture in thoracic aortic aneurysms. Eur J Cardiothorac Surg 2025; 67:ezaf128. [PMID: 40234250 DOI: 10.1093/ejcts/ezaf128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/23/2025] [Accepted: 04/13/2025] [Indexed: 04/17/2025] Open
Abstract
OBJECTIVES Imaging-based methods of measuring aortic biomechanics may provide superior and a more personalized in vivo risk assessment of patients with thoracic aortic aneurysms compared to traditional aortic size criteria such as maximal aortic diameter. We aim to summarize the data on in vivo imaging techniques for evaluation of aortic biomechanics. METHODS A thorough search of literature was conducted in MEDLINE, EMBASE and Google Scholar for evidence of various imaging-based biomechanics techniques. All imaging modalities were included. Data involving preclinical/animal models or exclusively focussed on abdominal aortic aneurysms were excluded. RESULTS The various imaging-based biomechanical parameters can be divided into categories of increasing complexity: strain-based, stiffness-based and computational modelling-derived. Strain-based and stiffness-based parameters are more simply calculated and can be derived using multiple imaging modalities. Initial studies are promising towards linking these parameters with clinically relevant end-points, including aortic dissection, though work is required for standardization. Computationally derived parameters provide detail of stress exerted on the aortic wall with great spatial resolution. However, they are highly dependent on the assumptions applied to the models, such as material properties of the aortic wall. CONCLUSIONS Imaging-based aortic biomechanics represent a major technical advancement for personalized in vivo risk stratification of patients with ascending thoracic aortic aneurysm. The next steps in clinical translation require large-scale validation of these markers towards predicting aortic dissections and comparison against the gold standard ex vivo aortic biomechanics as well as development of a user-friendly, low-cost algorithm that can be widely adopted.
Collapse
Affiliation(s)
- Nitish Bhatt
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Hijun Seo
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Kate Hanneman
- Department of Medical Imaging, University Medical Imaging Toronto, University of Toronto, Toronto, ON, Canada
| | - Nicholas Burris
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
| | - Craig A Simmons
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Jennifer C-Y Chung
- Division of Cardiovascular Surgery, University Health Network, Toronto, ON, Canada
| |
Collapse
|
5
|
Buja LM, Zhao B, Vela D, Segura A, Narula N. Pathobiology of Aortic Aneurysms and Dissections: Synthesis of Recent Investigations and Evolving Insights. JACC. ADVANCES 2025; 4:101682. [PMID: 40286354 DOI: 10.1016/j.jacadv.2025.101682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 04/29/2025]
Abstract
The pathobiology of aortic disease is linked to aortic region: atherosclerosis for abdominal aorta, primary medial degeneration or aortitis for ascending thoracic aorta, and all causes for descending thoracic aorta and thoracoabdominal lesions. The pathogenesis of aortic dissection involves damage of the outer media from impaired perfusion from dysfunctional vasa vasorum, formation of discrete foci of disrupted vascular smooth muscle cell-elastic fiber extension-contractile units, and imbalance of radial sheer stress across the aortic wall, thereby creating an intimal tear and linear dissection. Thoracic aortic aneurysms develop from the chronic progression of medial degeneration coupled with the weakening of the remodeled adventitia, allowing for aortic dilatation. Precipitating factors include hypertension and mutations of genes regulating the vascular smooth muscle cell-elastic fiber extension-contractile units. Criteria are presented for distinguishing genetic from acquired causes of thoracic aortic aneurysms and dissections, with important implications for therapeutic and surgical decisions in the care of these patients.
Collapse
Affiliation(s)
- L Maximilian Buja
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth-Houston), Houston, Texas, USA; Cardiovascular Pathology Research Department, The Texas Heart Institute, Baylor St. Luke's Hospital, Houston, Texas, USA.
| | - Bihong Zhao
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth-Houston), Houston, Texas, USA
| | - Deborah Vela
- Cardiovascular Pathology Research Department, The Texas Heart Institute, Baylor St. Luke's Hospital, Houston, Texas, USA
| | - Ana Segura
- Cardiovascular Pathology Research Department, The Texas Heart Institute, Baylor St. Luke's Hospital, Houston, Texas, USA
| | - Navneet Narula
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth-Houston), Houston, Texas, USA
| |
Collapse
|
6
|
Ghadie NM, St-Pierre JP, Labrosse MR. Finite Element Simulation of Opening Angle Response of Porcine Aortas Using Layer Specific GAG Distributions in One and Two Layered Solid Matrices. Cardiovasc Eng Technol 2025; 16:20-33. [PMID: 39358653 PMCID: PMC11821734 DOI: 10.1007/s13239-024-00754-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
PURPOSE Recent studies have identified an effect of glycosaminoglycans (GAG) on residual stresses in the aorta, underscoring the need to better understand their biomechanical roles. METHODS Aortic ring models for each of the ascending, arch and descending thoracic regions of the porcine thoracic aorta were created in FEBioStudio, using a framework that incorporates the Donnan osmotic swelling in a porous solid matrix. The distribution of fixed charge densities (FCD) through the thickness of the tissue was prescribed as calculated from experimentally quantified sulfated GAG mural distributions. Material parameters for the solid matrix, modeled using a Holmes-Mow constitutive law, were optimized using data from biaxial tensile tests. In addition to modelling the solid matrix as one layer, two layers were considered to capture the differences between the intima-media and the adventitia, for which various stiffness ratios were explored. RESULTS As the stiffness of the adventitia with respect to that of the media increased, the simulated opening angle increased. The opening angle also decreased from the ascending to the descending thoracic region in both one- and two-layered solid matrices models. The simulated results were compared against the experimental contribution of GAG to the opening angle, as previously quantified via enzymatic GAG-depletion. When using one layer for the solid matrix, the errors between the simulated opening angles and the experimental contribution of GAG to the opening angle were respectively 28%, 15% and 23% in the ascending, arch and descending thoracic regions. When using two layers for the solid matrix, the smallest errors in the ascending and arch regions were 21% and 5% when the intima-media was modelled as 10 times stiffer, and as twice stiffer than the adventitia, respectively, and 23% in the descending thoracic regions when the intima-media and adventitia shared similar mechanical properties. CONCLUSIONS Overall, this study demonstrates that GAG partially contribute to circumferential residual stress, and that GAG swelling is one of several regulators of the opening angle. The minor discrepancies between simulated and experimental opening angles imply that the contribution of GAG extends beyond mere swelling, aligning with previous experimental indications of their interaction with ECM fibers in determining the opening angle.
Collapse
Affiliation(s)
- Noor M Ghadie
- Department of Mechanical Engineering, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Jean-Philippe St-Pierre
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Michel R Labrosse
- Department of Mechanical Engineering, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
- Department of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y 4W7, Canada.
| |
Collapse
|
7
|
Shahbad R, Kamenskiy A, Razian SA, Jadidi M, Desyatova A. Effects of age, elastin density, and glycosaminoglycan accumulation on the delamination strength of human thoracic and abdominal aortas. Acta Biomater 2024; 189:413-426. [PMID: 39396627 DOI: 10.1016/j.actbio.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/19/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Aortic dissection is a life-threatening condition caused by layer separation. Despite extensive research, the relationship between the aortic wall's structural integrity and dissection risk remains unclear. Glycosaminoglycan (GAG) accumulation and elastin loss are suspected to play significant roles. We investigated how age-related changes in aortic structure affect dissection susceptibility. Peeling tests were performed on longitudinal and circumferential thoracic (TA) and abdominal aortic (AA) strips from 35 donors aged 13-76 years (mean 38 ± 15 years, 34 % female). GAG, elastin, collagen, and smooth muscle cell (SMC) contents were assessed using bidirectional histology. Young TAs resisted longitudinal peeling better than circumferential, with delamination strengths of 65.4 mN/mm and 44.2 mN/mm, respectively. Delamination strength decreased with age in both directions, more rapidly longitudinally, equalizing at ∼20-25 mN/mm in older TAs. Delamination strength in AAs was 22 % higher than in TAs. No sex differences were observed. GAG density increased, while elastin density decreased by 2.5 % and 4 % per decade, respectively. Collagen density did not change with age, while SMC density decreased circumferentially. GAGs partially mediated the reduction in longitudinal delamination strength due to aging, while circumferential strength reduction was not mediated by changes in either GAG or elastin densities. This study explains why aortic dissections are more common in TAs, especially in older individuals, and why they typically propagate spirally. TAs exhibit lower delamination strength compared to AAs and experience strength reduction with age, a phenomenon linked to increased GAG accumulation and elastin loss. These findings enhance our understanding of the pathophysiological mechanisms behind aortic dissection. STATEMENT OF SIGNIFICANCE: This work explores the age-dependent relationships between delamination strength in human aortas and wall structural content. We investigated 35 human aortas from donors aged 13 to 76 years, providing new insights into the biomechanical and histological factors that influence aortic dissection risk. Our findings elucidate how variations in elastin, glycosaminoglycan, collagen, and smooth muscle cell densities impact the structural integrity of the aorta, contributing significantly to the understanding of aortic dissection mechanisms.
Collapse
Affiliation(s)
- Ramin Shahbad
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | - Alexey Kamenskiy
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | | | - Majid Jadidi
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | | |
Collapse
|
8
|
Guo X, Yu H, Wang L, Zhai Y, Li J, Tang D, Sun H. Layer-specific biomechanical and histological properties of normal and dissected human ascending aortas. Heliyon 2024; 10:e34646. [PMID: 39816329 PMCID: PMC11734068 DOI: 10.1016/j.heliyon.2024.e34646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/22/2024] [Accepted: 07/12/2024] [Indexed: 01/18/2025] Open
Abstract
Recent studies have attempted to characterize the layer-specific mechanical and microstructural properties of the aortic tissues in either normal or pathological state to understand its structural-mechanical property relationships. However, layer-specific tissue mechanics and compositions of normal and dissected ascending aortas have not been thoroughly compared with a statistical conclusion obtained. Eighteen ascending aortic specimens were harvested from 13 patients with type A aortic dissection and 5 donors without aortic diseases, with each specimen further excised to obtain three tissue samples including an intact wall, an intima-media layer and an adventitia layer. For each tissue sample, biaxial tensile testing was performed to obtain the experimental stress-stretch ratio data, which were further fed into the Fung-type model to quantify the tissue stiffness, and Elastin Van Gieson stain and Masson's trichrome stain were employed to quantify the elastic and collagen fiber densities. Statistical analyses were performed to determine whether any significant differences exist in mechanical properties and compositions between diseased and normal aortic tissues. The tissue stiffness of intima-media samples was significant higher in diseased group than that of normal group in longitudinal direction at the stretch ratio 1.30 (p = 0.0068), while no significant differences were found in the other direction or other tissue types. Even though there was no significant difference in elastic or collagen fiber densities between two groups, the diseased group generally had lower elastic fiber density, but higher collagen fiber density for all three tissue layers. Compared to normal aortic tissues, the elastic fiber density of the intima-media layer in the dissected aortic tissue was lower, while its tissue stiffness was significantly higher, indicating the tissue stiffness of the intima-media layer could be a potential indicator for aortic dissection.
Collapse
Affiliation(s)
- Xiaoya Guo
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Han Yu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, 4000, Australia
| | - Liang Wang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China
| | - Yali Zhai
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Jiantao Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, 211166, China
| | - Dalin Tang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 211189, China
- Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - Haoliang Sun
- Department of Cardiovascular Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
9
|
Kazim M, Razian SA, Zamani E, Varandani D, Shahbad R, Zolfaghari Sichani A, Desyatova A, Jadidi M. Mechanical, structural, and morphological differences in the iliac arteries. J Mech Behav Biomed Mater 2024; 155:106535. [PMID: 38613875 PMCID: PMC11931871 DOI: 10.1016/j.jmbbm.2024.106535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/13/2024] [Accepted: 03/30/2024] [Indexed: 04/15/2024]
Abstract
Iliac arteries play a crucial role in peripheral blood circulation. They are susceptible to various diseases, including aneurysms and atherosclerosis. Structure, material properties, and biomechanical forces acting on different regions of the iliac vasculature may contribute to the localization and progression of these pathologies. We examined 33 arterial specimens from common iliac (CI), external iliac (EI), and internal iliac (II) arteries obtained from 11 human donors (62 ± 12 years). We conducted morphometric, mechanical, and structural analyses using planar biaxial tests, constitutive modeling, and bi-directional histology on transverse and axial sections. The iliac arteries exhibited increased tortuosity and varying disease distribution with age. CI and II arteries displayed non-uniform age-related disease progression around their circumference, while EI remained healthy even in older individuals. Trends in load-free and stress-free thickness varied along the iliac vasculature. Longitudinally, EI exhibited the highest compliance compared to other iliac vessels. In contrast, CI was stiffest longitudinally, and EI was the stiffest circumferentially. Material parameters for all iliac vessels are reported for four common constitutive relations. Elastin near the internal elastic lamina displayed greater waviness in EI and II compared to CI. Also, EI had the least glycosaminoglycans (GAGs) and the highest elastin content. Our findings highlight variations in the morphological, mechanical, and structural properties of iliac arteries along their length. This data can inform vascular disease development and computational studies, and guide the development of biomimetic repair materials and devices tailored to specific iliac locations, improving vascular repair strategies.
Collapse
Affiliation(s)
- Madihah Kazim
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | | | - Elham Zamani
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | - Dheeraj Varandani
- Department of Computer Science, University of Nebraska Omaha, Omaha, NE, USA
| | - Ramin Shahbad
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | | | | | - Majid Jadidi
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA.
| |
Collapse
|
10
|
Ganizada BH, Veltrop RJA, Akbulut AC, Koenen RR, Accord R, Lorusso R, Maessen JG, Reesink K, Bidar E, Schurgers LJ. Unveiling cellular and molecular aspects of ascending thoracic aortic aneurysms and dissections. Basic Res Cardiol 2024; 119:371-395. [PMID: 38700707 PMCID: PMC11143007 DOI: 10.1007/s00395-024-01053-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/03/2024] [Accepted: 04/26/2024] [Indexed: 06/01/2024]
Abstract
Ascending thoracic aortic aneurysm (ATAA) remains a significant medical concern, with its asymptomatic nature posing diagnostic and monitoring challenges, thereby increasing the risk of aortic wall dissection and rupture. Current management of aortic repair relies on an aortic diameter threshold. However, this approach underestimates the complexity of aortic wall disease due to important knowledge gaps in understanding its underlying pathologic mechanisms.Since traditional risk factors cannot explain the initiation and progression of ATAA leading to dissection, local vascular factors such as extracellular matrix (ECM) and vascular smooth muscle cells (VSMCs) might harbor targets for early diagnosis and intervention. Derived from diverse embryonic lineages, VSMCs exhibit varied responses to genetic abnormalities that regulate their contractility. The transition of VSMCs into different phenotypes is an adaptive response to stress stimuli such as hemodynamic changes resulting from cardiovascular disease, aging, lifestyle, and genetic predisposition. Upon longer exposure to stress stimuli, VSMC phenotypic switching can instigate pathologic remodeling that contributes to the pathogenesis of ATAA.This review aims to illuminate the current understanding of cellular and molecular characteristics associated with ATAA and dissection, emphasizing the need for a more nuanced comprehension of the impaired ECM-VSMC network.
Collapse
MESH Headings
- Humans
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/physiopathology
- Aortic Dissection/pathology
- Aortic Dissection/genetics
- Aortic Dissection/metabolism
- Animals
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Vascular Remodeling
- Extracellular Matrix/pathology
- Extracellular Matrix/metabolism
- Phenotype
Collapse
Affiliation(s)
- Berta H Ganizada
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Rogier J A Veltrop
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Asim C Akbulut
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Ryan Accord
- Department of Cardiothoracic Surgery, Center for Congenital Heart Disease, University Medical Center Groningen, Groningen, The Netherlands
| | - Roberto Lorusso
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Jos G Maessen
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Koen Reesink
- Department of Biomedical Engineering, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Elham Bidar
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
- CARIM, Cardiovascular Research Institute Maastricht, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
11
|
Kazim M, Razian SA, Zamani E, Varandani D, Shahbad R, Desyatova A, Jadidi M. Variability in structure, morphology, and mechanical properties of the descending thoracic and infrarenal aorta around their circumference. J Mech Behav Biomed Mater 2024; 150:106332. [PMID: 38160644 DOI: 10.1016/j.jmbbm.2023.106332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Aortic diseases, such as aneurysms, atherosclerosis, and dissections, demonstrate a preferential development and progression around the aortic circumference, resulting in a highly heterogeneous disease state around the circumference. Differences in the aorta's structural composition and mechanical properties may be partly responsible for this phenomenon. Our goal in this study was to analyze the mechanical and structural properties of the human aorta at its lateral, anterior, posterior, and medial quadrants in two regions prone to circumferentially inhomogeneous diseases, descending Thoracic Aorta (TA) and Infrarenal Aorta (IFR). Human aortas were obtained from 10 donors (64 ± 11 years) and dissected from their loose surrounding tissue. Mechanical properties were determined in all four quadrants of TA and IFR using planar biaxial testing and fitted to three common constitutive models. The structure of tissues was assessed using Movat Pentachrome stained histology slides. We observed that the anterior quadrant exhibited the greatest thickness, followed by the lateral region, in both the TA and IFR. In TA, the posterior wall appeared as the stiffest location in most samples, while in IFR, the anterior wall was the stiffest. We observed a higher glycosaminoglycans content in the lateral and posterior regions of the IFR. We found elastin density to be similar in TA lateral, anterior, and posterior quadrants, while in IFR, the anterior region demonstrated the highest elastin density. Despite significant variations between subjects, this study highlights the distinct morphometrical, mechanical, and structural properties between the quadrants of both TA and IFR.
Collapse
Affiliation(s)
- Madihah Kazim
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | | | - Elham Zamani
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | - Dheeraj Varandani
- Department of Computer Science, University of Nebraska Omaha, Omaha, NE, USA
| | - Ramin Shahbad
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA
| | | | - Majid Jadidi
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA.
| |
Collapse
|
12
|
Wang M, Ching-Johnson JA, Yin H, O’Neil C, Li AX, Chu MWA, Bartha R, Pickering JG. Mapping microarchitectural degeneration in the dilated ascending aorta with ex vivo diffusion tensor imaging. EUROPEAN HEART JOURNAL OPEN 2024; 4:oead128. [PMID: 38162403 PMCID: PMC10755346 DOI: 10.1093/ehjopen/oead128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/26/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Aims Thoracic aortic aneurysms (TAAs) carry a risk of catastrophic dissection. Current strategies to evaluate this risk entail measuring aortic diameter but do not image medial degeneration, the cause of TAAs. We sought to determine if the advanced magnetic resonance imaging (MRI) acquisition strategy, diffusion tensor imaging (DTI), could delineate medial degeneration in the ascending thoracic aorta. Methods and results Porcine ascending aortas were subjected to enzyme microinjection, which yielded local aortic medial degeneration. These lesions were detected by DTI, using a 9.4 T MRI scanner, based on tensor disorientation, disrupted diffusion tracts, and altered DTI metrics. High-resolution spatial analysis revealed that fractional anisotropy positively correlated, and mean and radial diffusivity inversely correlated, with smooth muscle cell (SMC) and elastin content (P < 0.001 for all). Ten operatively harvested human ascending aorta samples (mean subject age 61.6 ± 13.3 years, diameter range 29-64 mm) showed medial pathology that was more diffuse and more complex. Nonetheless, DTI metrics within an aorta spatially correlated with SMC, elastin, and, especially, glycosaminoglycan (GAG) content. Moreover, there were inter-individual differences in slice-averaged DTI metrics. Glycosaminoglycan accumulation and elastin degradation were captured by reduced fractional anisotropy (R2 = 0.47, P = 0.043; R2 = 0.76, P = 0.002), with GAG accumulation also captured by increased mean diffusivity (R2 = 0.46, P = 0.045) and increased radial diffusivity (R2 = 0.60, P = 0.015). Conclusion Ex vivo high-field DTI can detect ascending aorta medial degeneration and can differentiate TAAs in accordance with their histopathology, especially elastin and GAG changes. This non-destructive window into aortic medial microstructure raises prospects for probing the risks of TAAs beyond lumen dimensions.
Collapse
Affiliation(s)
- Mofei Wang
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St. N. London, Canada, N6A 5B7
- Department of Biochemistry, Western University, 1151 Richmond St. N. London, Canada, N6A 3K7
| | - Justin A Ching-Johnson
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St. N. London, Canada, N6A 5B7
- Department of Medical Biophysics, Western University, 1151 Richmond St. N. London, Canada, N6A 3K7
| | - Hao Yin
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St. N. London, Canada, N6A 5B7
| | - Caroline O’Neil
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St. N. London, Canada, N6A 5B7
| | - Alex X Li
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St. N. London, Canada, N6A 5B7
| | - Michael W A Chu
- Department of Surgery, Western University, 1151 Richmond St. N. London, Canada, N6A 3K7
- London Health Sciences Centre, 339 Windermere Rd, London, Ontario, Canada, N6A 5A5
| | - Robert Bartha
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St. N. London, Canada, N6A 5B7
- Department of Medical Biophysics, Western University, 1151 Richmond St. N. London, Canada, N6A 3K7
| | - J Geoffrey Pickering
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St. N. London, Canada, N6A 5B7
- Department of Biochemistry, Western University, 1151 Richmond St. N. London, Canada, N6A 3K7
- Department of Medical Biophysics, Western University, 1151 Richmond St. N. London, Canada, N6A 3K7
- London Health Sciences Centre, 339 Windermere Rd, London, Ontario, Canada, N6A 5A5
- Department of Medicine, Western University, 1151 Richmond St. N. London, Canada N6A 3K7
| |
Collapse
|
13
|
Ruiz-Rodríguez MJ, Oller J, Martínez-Martínez S, Alarcón-Ruiz I, Toral M, Sun Y, Colmenar Á, Méndez-Olivares MJ, López-Maderuelo D, Kern CB, Nistal JF, Evangelista A, Teixido-Tura G, Campanero MR, Redondo JM. Versican accumulation drives Nos2 induction and aortic disease in Marfan syndrome via Akt activation. EMBO Mol Med 2024; 16:132-157. [PMID: 38177536 PMCID: PMC10897446 DOI: 10.1038/s44321-023-00009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 01/06/2024] Open
Abstract
Thoracic aortic aneurysm and dissection (TAAD) is a life-threatening condition associated with Marfan syndrome (MFS), a disease caused by fibrillin-1 gene mutations. While various conditions causing TAAD exhibit aortic accumulation of the proteoglycans versican (Vcan) and aggrecan (Acan), it is unclear whether these ECM proteins are involved in aortic disease. Here, we find that Vcan, but not Acan, accumulated in Fbn1C1041G/+ aortas, a mouse model of MFS. Vcan haploinsufficiency protected MFS mice against aortic dilation, and its silencing reverted aortic disease by reducing Nos2 protein expression. Our results suggest that Acan is not an essential contributor to MFS aortopathy. We further demonstrate that Vcan triggers Akt activation and that pharmacological Akt pathway inhibition rapidly regresses aortic dilation and Nos2 expression in MFS mice. Analysis of aortic tissue from MFS human patients revealed accumulation of VCAN and elevated pAKT-S473 staining. Together, these findings reveal that Vcan plays a causative role in MFS aortic disease in vivo by inducing Nos2 via Akt activation and identify Akt signaling pathway components as candidate therapeutic targets.
Collapse
Affiliation(s)
- María Jesús Ruiz-Rodríguez
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jorge Oller
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Laboratory of Vascular Pathology, Hospital IIS-Fundación Jiménez Díaz, 28040, Madrid, Spain
| | - Sara Martínez-Martínez
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Iván Alarcón-Ruiz
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Marta Toral
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Yilin Sun
- Cell-Cell Communication & Inflammation Unit, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Ángel Colmenar
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - María José Méndez-Olivares
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Dolores López-Maderuelo
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Christine B Kern
- Medical University of South Carolina (MUSC), Charleston, SC, 29425, USA
| | - J Francisco Nistal
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Cardiovascular Surgery, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Valdecilla (IDIVAL), Facultad de Medicina, Universidad de Cantabria, Santander, 39005, Spain
| | | | - Gisela Teixido-Tura
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Department of Cardiology, Hospital Universitari Vall d'Hebron (VHIR), Barcelona, 08035, Spain
| | - Miguel R Campanero
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Cell-Cell Communication & Inflammation Unit, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, 28049, Spain.
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Cell-Cell Communication & Inflammation Unit, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, 28049, Spain.
| |
Collapse
|
14
|
Soleimani M, Deo R, Hudobivnik B, Poyanmehr R, Haverich A, Wriggers P. Mathematical modeling and numerical simulation of arterial dissection based on a novel surgeon's view. Biomech Model Mechanobiol 2023; 22:2097-2116. [PMID: 37552344 PMCID: PMC10613153 DOI: 10.1007/s10237-023-01753-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/16/2023] [Indexed: 08/09/2023]
Abstract
This paper presents a mathematical model for arterial dissection based on a novel hypothesis proposed by a surgeon, Axel Haverich, see Haverich (Circulation 135(3):205-207, 2017. https://doi.org/10.1161/circulationaha.116.025407 ). In an attempt and based on clinical observations, he explained how three different arterial diseases, namely atherosclerosis, aneurysm and dissection have the same root in malfunctioning Vasa Vasorums (VVs) which are micro capillaries responsible for artery wall nourishment. The authors already proposed a mathematical framework for the modeling of atherosclerosis which is the thickening of the artery walls due to an inflammatory response to VVs dysfunction. A multiphysics model based on a phase-field approach coupled with mechanical deformation was proposed for this purpose. The kinematics of mechanical deformation was described using finite strain theory. The entire model is three-dimensional and fully based on a macroscopic continuum description. The objective here is to extend that model by incorporating a damage mechanism in order to capture the tearing (rupture) in the artery wall as a result of micro-injuries in VV. Unlike the existing damage-based model of the dissection in the literature, here the damage is driven by the internal bleeding (hematoma) rather than purely mechanical external loading. The numerical implementation is carried out using finite element method (FEM).
Collapse
Affiliation(s)
- Meisam Soleimani
- Institute of Continuum Mechanics, Leibniz University, Hannover, Germany.
| | - Rohan Deo
- Institute of Continuum Mechanics, Leibniz University, Hannover, Germany
| | - Blaz Hudobivnik
- Institute of Continuum Mechanics, Leibniz University, Hannover, Germany
| | - Reza Poyanmehr
- Klinik für Herz-, Thorax-, Transplantations- und Gefäßchirurgie, Medical School, Hannover, Germany
| | - Axel Haverich
- Klinik für Herz-, Thorax-, Transplantations- und Gefäßchirurgie, Medical School, Hannover, Germany
| | - Peter Wriggers
- Institute of Continuum Mechanics, Leibniz University, Hannover, Germany
| |
Collapse
|
15
|
Kemberi M, Salmasi Y, Santamaria S. The Role of ADAMTS Proteoglycanases in Thoracic Aortic Disease. Int J Mol Sci 2023; 24:12135. [PMID: 37569511 PMCID: PMC10419162 DOI: 10.3390/ijms241512135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Thoracic aortic aneurysm and dissection (TAAD) are complex disease states with high morbidity and mortality that pose significant challenges to early diagnosis. Patients with an aneurysm are asymptomatic and typically present to the emergency department only after the development of a dissection. The extracellular matrix (ECM) plays a crucial role in regulating the aortic structure and function. The histopathologic hallmark termed medial degeneration is characterised by smooth muscle cell (SMC) loss, the degradation of elastic and collagen fibres and proteoglycan (PG) accumulation. Covalently attached to the protein core of PGs are a number of glycosaminoglycan chains, negatively charged molecules that provide flexibility, compressibility, and viscoelasticity to the aorta. PG pooling in the media can produce discontinuities in the aortic wall leading to increased local stress. The accumulation of PGs is likely due to an imbalance between their synthesis by SMCs and decreased proteolysis by A Disintegrin-like and Metalloproteinase with Thrombospondin motifs (ADAMTS) proteoglycanases in the ECM. Mouse models of TAAD indicated that these proteases exert a crucial, albeit complex and not fully elucidated, role in this disease. This has led to a mounting interest in utilising ADAMTS proteoglycanases as biomarkers of TAAD. In this review, we discuss the role of ADAMTSs in thoracic aortic disease and their potential use in facilitating the clinical diagnosis of TAAD and disease progression.
Collapse
Affiliation(s)
- Marsioleda Kemberi
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AD, UK;
| | - Yousuf Salmasi
- Department of Surgery and Cancer, Imperial College London, London W6 8RF, UK;
| | - Salvatore Santamaria
- Department of Biochemical and Physiological Sciences, School of Biosciences, Faculty of Health and Medical Sciences, Edward Jenner Building, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
16
|
Aggarwal A, Mortensen P, Hao J, Kaczmarczyk Ł, Cheung AT, Al Ghofaily L, Gorman RC, Desai ND, Bavaria JE, Pouch AM. Strain estimation in aortic roots from 4D echocardiographic images using medial modeling and deformable registration. Med Image Anal 2023; 87:102804. [PMID: 37060701 PMCID: PMC10358753 DOI: 10.1016/j.media.2023.102804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/30/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Even though the central role of mechanics in the cardiovascular system is widely recognized, estimating mechanical deformation and strains in-vivo remains an ongoing practical challenge. Herein, we present a semi-automated framework to estimate strains from four-dimensional (4D) echocardiographic images and apply it to the aortic roots of patients with normal trileaflet aortic valves (TAV) and congenital bicuspid aortic valves (BAV). The method is based on fully nonlinear shell-based kinematics, which divides the strains into in-plane (shear and dilatational) and out-of-plane components. The results indicate that, even for size-matched non-aneurysmal aortic roots, BAV patients experience larger regional shear strains in their aortic roots. This elevated strains might be a contributing factor to the higher risk of aneurysm development in BAV patients. The proposed framework is openly available and applicable to any tubular structures.
Collapse
Affiliation(s)
- Ankush Aggarwal
- Glasgow Computational Engineering Centre, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, Scotland, United Kingdom
| | - Peter Mortensen
- Glasgow Computational Engineering Centre, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, Scotland, United Kingdom
| | - Jilei Hao
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Łukasz Kaczmarczyk
- Glasgow Computational Engineering Centre, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, Scotland, United Kingdom
| | - Albert T Cheung
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Lourdes Al Ghofaily
- Department of Anesthesiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert C Gorman
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Nimesh D Desai
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph E Bavaria
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Alison M Pouch
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Tuttle T, McClintock D, Roccabianca S. Effects of swelling and anatomical location on the viscoelastic behavior of the porcine urinary bladder wall. J Mech Behav Biomed Mater 2023; 143:105926. [PMID: 37269604 DOI: 10.1016/j.jmbbm.2023.105926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 06/05/2023]
Abstract
The ability of the urinary bladder to perform its physiological function depends largely on its mechanical characteristics. Understanding the mechanics of this tissue is crucial to the development of accurate models of not just this specific organ, but of the pelvic floor overall. In this study, we tested porcine bladder to identify variations in the tissue's viscoelastic characteristics associated with anatomical locations and swelling. We investigated this relationship using a series of stress-relaxation experiments as well as a modified Maxwell-Wiechert model to aid in the interpretation of the experimental data. Our results highlight that tissue located near the neck of the bladder presents significantly different viscoelastic characteristics than the body of the organ. This supports what was previously observed and is a valuable contribution to the understanding of the location-specific properties of the bladder. We also tested the effect of swelling, revealing that the bladder's viscoelastic behavior is mostly independent of solution osmolarity in hypoosmotic solutions, but the use of a hyperosmotic solution can significantly affect its behavior. This is significant, since several urinary tract pathologies can lead to chronic inflammation and disrupt the urothelial barrier causing increased urothelial permeability, thus subjecting the bladder wall to non-physiologic osmotic challenge.
Collapse
Affiliation(s)
- Tyler Tuttle
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, 48823, USA
| | - Dillon McClintock
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, 48823, USA
| | - Sara Roccabianca
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, 48823, USA.
| |
Collapse
|
18
|
Crandall CL, Wu Y, Kailash KA, Bersi MR, Halabi CM, Wagenseil JE. Changes in transmural mass transport correlate with ascending thoracic aortic aneurysm diameter in a fibulin-4 E57K knockin mouse model. Am J Physiol Heart Circ Physiol 2023; 325:H113-H124. [PMID: 37267118 PMCID: PMC10292979 DOI: 10.1152/ajpheart.00036.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023]
Abstract
Thoracic aortic aneurysm is characterized by dilation of the aortic diameter by greater than 50%, which can lead to dissection or rupture. Common histopathology includes extracellular matrix remodeling that may affect transmural mass transport, defined as the movement of fluids and solutes across the wall. We measured in vitro ascending thoracic aorta mass transport in a mouse model with partial aneurysm phenotype penetration due to a mutation in the extracellular matrix protein fibulin-4 [Fbln4E57K/E57K, referred to as MU-A (aneurysm) or MU-NA (no aneurysm)]. To push the aneurysm phenotype, we also included MU mice with reduced levels of lysyl oxidase [Fbln4E57K/E57K;Lox+/-, referred to as MU-XA (extreme aneurysm)] and compared all groups to wild-type (WT) littermates. The phenotype variation allows investigation of how aneurysm severity correlates with mass transport parameters and extracellular matrix organization. We found that MU-NA ascending thoracic aortae have similar hydraulic conductance (Lp) to WT, but 397% higher solute permeability (ω) for 4 kDa FITC-dextran. In contrast, MU-A and MU-XA ascending thoracic aortae have 44-68% lower Lp and similar ω to WT. The results suggest that ascending thoracic aortic aneurysm progression involves an initial increase in ω, followed by a decrease in Lp after the aneurysm has formed. All MU ascending thoracic aortae are longer and have increased elastic fiber fragmentation in the extracellular matrix. There is a negative correlation between diameter and Lp or ω in MU ascending thoracic aortae. Changes in mass transport due to elastic fiber fragmentation could contribute to aneurysm progression or be leveraged for treatment.NEW & NOTEWORTHY Transmural mass transport is quantified in the ascending thoracic aorta of mice with a mutation in fibulin-4 that is associated with thoracic aortic aneurysms. Fluid and solute transport depend on aneurysm severity, correlate with elastic fiber fragmentation, and may be affected by proteoglycan deposition. Transport properties of the ascending thoracic aorta are provided and can be used in computational models. The changes in mass transport may contribute to aneurysm progression or be leveraged for aneurysm treatment.
Collapse
Affiliation(s)
- Christie L Crandall
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri, United States
| | - Yufan Wu
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri, United States
| | - Keshav A Kailash
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States
| | - Mathew R Bersi
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri, United States
| | - Carmen M Halabi
- Pediatric Nephrology, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri, United States
| |
Collapse
|
19
|
Yang X, Xu C, Yao F, Ding Q, Liu H, Luo C, Wang D, Huang J, Li Z, Shen Y, Yang W, Li Z, Yu F, Fu Y, Wang L, Ma Q, Zhu J, Xu F, Cong X, Kong W. Targeting endothelial tight junctions to predict and protect thoracic aortic aneurysm and dissection. Eur Heart J 2023; 44:1248-1261. [PMID: 36638776 DOI: 10.1093/eurheartj/ehac823] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 11/16/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
AIMS Whether changes in endothelial tight junctions (TJs) lead to the formation of thoracic aortic aneurysm and dissection (TAAD) and serve as an early indicator and therapeutic target remains elusive. METHODS AND RESULTS Single-cell RNA sequencing analysis showed aberrant endothelial TJ expressions in the thoracic aortas of patients with TAAD. In a β-aminopropionitrile (BAPN)-induced TAAD mouse model, endothelial TJ function was disrupted in the thoracic aortas at an early stage (5 and 10 days) as observed by a vascular permeability assay, while the intercellular distribution of crucial TJ components was significantly decreased by en face staining. For the non-invasive detection of endothelial TJ function, two dextrans of molecular weights 4 and 70 kDa were conjugated with the magnetic resonance imaging (MRI) contrast agent Gd-DOTA to synthesize FITC-dextran-DOTA-Gd and rhodamine B-dextran-DOTA-Gd. MRI images showed that both probes accumulated in the thoracic aortas of the BAPN-fed mice. Particularly, the mice with increased accumulated signals from 5 to 10 days developed TAAD at 14 days, whereas the mice with similar signals between the two time points did not. Furthermore, the protease-activated receptor 2 inhibitor AT-1001, which seals TJs, alleviated the BAPN-induced impairment of endothelial TJ function and expression and subsequently reduced TAAD incidence. Notably, endothelial-targeted ZO-1 conditional knockout increased TAAD incidence. Mechanistically, vascular inflammation and edema were observed in the thoracic aortas of the BAPN-fed mice, whereas these phenomena were attenuated by AT-1001. CONCLUSION The disruption of endothelial TJ function is an early event prior to TAAD formation, herein serving as a potential indicator and a promising target for TAAD.
Collapse
Affiliation(s)
- Xueyuan Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Chen Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fang Yao
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.,Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Qianhui Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Hao Liu
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Center of Vascular Prostheses, Beijing 100029, China
| | - Congcong Luo
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Center of Vascular Prostheses, Beijing 100029, China
| | - Daidai Wang
- Department of Emergency, Peking University Third Hospital, Beijing 100191, China
| | - Jiaqi Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Zhiqing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Yicong Shen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Weijie Yang
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhuofan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Fang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Li Wang
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China.,State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China.,Key Laboratory of Pluripotent Stem Cells in Cardiac Repair and Regeneration, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Qingbian Ma
- Department of Emergency, Peking University Third Hospital, Beijing 100191, China
| | - Junming Zhu
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital of Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Engineering Research Center of Vascular Prostheses, Beijing 100029, China
| | - Fujian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Cong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
| |
Collapse
|
20
|
van der Have O, Mead TJ, Westöö C, Peruzzi N, Mutgan AC, Norvik C, Bech M, Struglics A, Hoetzenecker K, Brunnström H, Westergren‐Thorsson G, Kwapiszewska G, Apte SS, Tran‐Lundmark K. Aggrecan accumulates at sites of increased pulmonary arterial pressure in idiopathic pulmonary arterial hypertension. Pulm Circ 2023; 13:e12200. [PMID: 36824691 PMCID: PMC9941846 DOI: 10.1002/pul2.12200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Expansion of extracellular matrix occurs in all stages of pulmonary angiopathy associated with pulmonary arterial hypertension (PAH). In systemic arteries, dysregulation and accumulation of the large chondroitin-sulfate proteoglycan aggrecan is associated with swelling and disruption of vessel wall homeostasis. Whether aggrecan is present in pulmonary arteries, and its potential roles in PAH, has not been thoroughly investigated. Here, lung tissue from 11 patients with idiopathic PAH was imaged using synchrotron radiation phase-contrast microcomputed tomography (TOMCAT beamline, Swiss Light Source). Immunohistochemistry for aggrecan core protein in subsequently sectioned lung tissue demonstrated accumulation in PAH compared with failed donor lung controls. RNAscope in situ hybridization indicated ACAN expression in vascular endothelium and smooth muscle cells. Based on qualitative histological analysis, aggrecan localizes to cellular, rather than fibrotic or collagenous, lesions. Interestingly, ADAMTS15, a potential aggrecanase, was upregulated in pulmonary arteries in PAH. Aligning traditional histological analysis with three-dimensional renderings of pulmonary arteries from synchrotron imaging identified aggrecan in lumen-reducing lesions containing loose, cell-rich connective tissue, at sites of intrapulmonary bronchopulmonary shunting, and at sites of presumed elevated pulmonary blood pressure. Our findings suggest that ACAN expression may be an early response to injury in pulmonary angiopathy and supports recent work showing that dysregulation of aggrecan turnover is a hallmark of arterial adaptations to altered hemodynamics. Whether cause or effect, aggrecan and aggrecanase regulation in PAH are potential therapeutic targets.
Collapse
Affiliation(s)
- Oscar van der Have
- Department of Experimental Medical Science, Faculty of MedicineLund UniversityLundSweden
| | - Timothy J. Mead
- Department of Biomedical EngineeringCleveland Clinic Lerner Research InstituteClevelandOhioUSA
| | - Christian Westöö
- Department of Experimental Medical Science, Faculty of MedicineLund UniversityLundSweden
| | - Niccolò Peruzzi
- Department of Experimental Medical Science, Faculty of MedicineLund UniversityLundSweden
- Department of Medical Radiation Physics, Clinical Sciences LundLund UniversityLundSweden
| | - Ayse C. Mutgan
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
- Division of Physiology, Otto Loewi Research CenterMedical University GrazGrazAustria
| | - Christian Norvik
- Department of Experimental Medical Science, Faculty of MedicineLund UniversityLundSweden
| | - Martin Bech
- Department of Medical Radiation Physics, Clinical Sciences LundLund UniversityLundSweden
| | - André Struglics
- Department of Clinical Sciences Lund, Orthopaedics, Faculty of MedicineLund UniversityLundSweden
| | | | - Hans Brunnström
- Department of Clinical Sciences Lund, Division of Pathology, Faculty of MedicineLund UniversityLundSweden
- Department of Genetics and PathologyDivision of Laboratory MedicineLundSweden
| | - Gunilla Westergren‐Thorsson
- Department of Experimental Medical Science, Faculty of MedicineLund UniversityLundSweden
- Wallenberg Center for Molecular MedicineLund UniversityLundSweden
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular ResearchGrazAustria
- Division of Physiology, Otto Loewi Research CenterMedical University GrazGrazAustria
- Institute for Lung HealthJustus Liebig UniversityGiessenGermany
| | - Suneel S. Apte
- Department of Biomedical EngineeringCleveland Clinic Lerner Research InstituteClevelandOhioUSA
| | - Karin Tran‐Lundmark
- Department of Experimental Medical Science, Faculty of MedicineLund UniversityLundSweden
- Wallenberg Center for Molecular MedicineLund UniversityLundSweden
- The Pediatric Heart CenterSkåne University HospitalLundSweden
| |
Collapse
|
21
|
Crandall CL, Kim SY, Rother J, Lee VS, Mecham RP, Wagenseil JE. Increases in hydraulic conductance and solute permeability in a mouse model of ascending thoracic aortic aneurysm. J Biomech 2022; 145:111360. [PMID: 36334323 PMCID: PMC9808669 DOI: 10.1016/j.jbiomech.2022.111360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 09/22/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Large elastic arteries, such as the aorta, contain concentric layers of elastic laminae composed mainly of the extracellular matrix protein elastin. The structure of the elastic laminae could affect transmural mass transport and contribute to aortic disease progression. We studied the effects of a genetic mutation (LoxM292R/+, referred to as MU) in mice associated with ascending thoracic aortic aneurysm (TAA) on the mass transport and elastic laminae structure. Solute absent fluid flux and hydraulic conductance through the ascending aortic wall were not significantly different between groups, however solute present fluid flux, hydraulic conductance, solute flux, and solute permeability of 4 kDa FITC-dextran were significantly increased in the MU group, indicating that movement of small molecules into the aortic wall is facilitated in MU mice. Quantification from light microscopy images of the ascending aorta showed no significant differences in wall thickness, or inner elastic lamina fenestration size and density, but an increase in the number of elastic laminae breaks in the MU group. Ultrastructural comparisons from transmission electron micrographs suggest less dense and disorganized elastic laminae in MU aorta that may also contribute to the transport differences. Our results provide an initial investigation into the connections between mass transport and elastic laminae structure, specifically in a genetic mouse aneurysm model, which can be further used to understand TAA pathology and develop treatment strategies.
Collapse
Affiliation(s)
- Christie L Crandall
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, United States
| | - Sean Y Kim
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO, United States
| | - Jacob Rother
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, United States
| | - Vivian S Lee
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO, United States
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO, United States
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, United States.
| |
Collapse
|
22
|
Tokgoz A, Wang S, Sastry P, Sun C, Figg NL, Huang Y, Bennett MR, Sinha S, Gillard JH, Sutcliffe MPF, Teng Z. Association of Collagen, Elastin, Glycosaminoglycans, and Macrophages With Tissue Ultimate Material Strength and Stretch in Human Thoracic Aortic Aneurysms: A Uniaxial Tension Study. J Biomech Eng 2022; 144:101001. [PMID: 35274123 DOI: 10.1115/1.4054060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Indexed: 11/08/2022]
Abstract
Fiber structures and pathological features, e.g., inflammation and glycosaminoglycan (GAG) deposition, are the primary determinants of aortic mechanical properties which are associated with the development of an aneurysm. This study is designed to quantify the association of tissue ultimate strength and extensibility with the structural percentage of different components, in particular, GAG, and local fiber orientation. Thoracic aortic aneurysm (TAA) tissues from eight patients were collected. Ninety-six tissue strips of thickened intima, media, and adventitia were prepared for uni-extension tests and histopathological examination. Area ratios of collagen, elastin, macrophage and GAG, and collagen fiber dispersion were quantified. Collagen, elastin, and GAG were layer-dependent and the inflammatory burden in all layers was low. The local GAG ratio was negatively associated with the collagen ratio (r2 = 0.173, p < 0.05), but positively with elastin (r2 = 0.037, p < 0.05). Higher GAG deposition resulted in larger local collagen fiber dispersion in the media and adventitia, but not in the intima. The ultimate stretch in both axial and circumferential directions was exclusively associated with elastin ratio (axial: r2 = 0.186, p = 0.04; circumferential: r2 = 0.175, p = 0.04). Multivariate analysis showed that collagen and GAG contents were both associated with ultimate strength in the circumferential direction, but not with the axial direction (collagen: slope = 27.3, GAG: slope = -18.4, r2 = 0.438, p = 0.002). GAG may play important roles in TAA material strength. Their deposition was found to be associated positively with the local collagen fiber dispersion and negatively with ultimate strength in the circumferential direction.
Collapse
Affiliation(s)
- Aziz Tokgoz
- Department of Engineering, University of Cambridge, Cambridge CB2 1TN, UK
| | - Shuo Wang
- Department of Radiology, University of Cambridge, Cambridge CB2 1TN, UK; Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai 200437, China; Shanghai Key Laboratory of MICCAI, Shanghai, China
| | - Priya Sastry
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge CB2 1TN, UK
| | - Chang Sun
- Department of Radiology, University of Cambridge, Cambridge CB2 1TN, UK
| | - Nichola L Figg
- Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai 200437, China
| | - Yuan Huang
- Department of Radiology, University of Cambridge, Cambridge CB2 1TN, UK; Centre for Mathematical and Statistical Analysis of Multimodal Clinical Imaging, University of Cambridge, Cambridge CB2 1TN, UK
| | - Martin R Bennett
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge CB2 1TN, UK
| | - Sanjay Sinha
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge CB2 1TN, UK
| | | | - Michael P F Sutcliffe
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK
| | - Zhongzhao Teng
- Department of Engineering, University of Cambridge, Cambridge CB2 1TN, UK; Department of Radiology, University of Cambridge, Level 5, Box 218, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100083, China; Nanjing Jingsan Medical Science and Technology, Ltd., Jiangsu, China
| |
Collapse
|
23
|
Is There Enough Evidence to Support the Role of Glycosaminoglycans and Proteoglycans in Thoracic Aortic Aneurysm and Dissection?—A Systematic Review. Int J Mol Sci 2022; 23:ijms23169200. [PMID: 36012466 PMCID: PMC9408983 DOI: 10.3390/ijms23169200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/25/2022] Open
Abstract
Altered proteoglycan (PG) and glycosaminoglycan (GAG) distribution within the aortic wall has been implicated in thoracic aortic aneurysm and dissection (TAAD). This review was conducted to identify literature reporting the presence, distribution and role of PGs and GAGs in the normal aorta and differences associated with sporadic TAAD to address the question; is there enough evidence to establish the role of GAGs/PGs in TAAD? 75 studies were included, divided into normal aorta (n = 51) and TAAD (n = 24). There is contradictory data regarding changes in GAGs upon ageing; most studies reported an increase in GAG sub-types, often followed by a decrease upon further ageing. Fourteen studies reported changes in PG/GAG or associated degradation enzyme levels in TAAD, with most increased in disease tissue or serum. We conclude that despite being present at relatively low abundance in the aortic wall, PGs and GAGs play an important role in extracellular matrix maintenance, with differences observed upon ageing and in association with TAAD. However, there is currently insufficient information to establish a cause-effect relationship with an underlying mechanistic understanding of these changes requiring further investigation. Increased PG presence in serum associated with aortic disease highlights the future potential of these biomolecules as diagnostic or prognostic biomarkers.
Collapse
|
24
|
Salmasi MY, Sasidharan S, Frattolin J, Edgar L, Stock U, Athanasiou T, Moore Jr J. Regional variation in biomechanical properties of ascending thoracic aortic aneurysms. Eur J Cardiothorac Surg 2022; 62:6650693. [PMID: 35894942 PMCID: PMC9731372 DOI: 10.1093/ejcts/ezac392] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/30/2022] [Accepted: 07/22/2022] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES This study aims to characterize the material properties of ascending thoracic aortic aneurysmal tissue, using regional biomechanical assessment of both tensile and dissection propagation peel strength. METHODS Thirty-four aneurysm specimens (proximal thoracic aorta) were harvested en-bloc from patients undergoing surgery for aneurysm replacement. Specimens were processed into regional samples of similar shapes covering the whole aneurysm isosurface, according to a structured protocol, in both orientations (longitudinal and circumferential). Thickness mapping, uniaxial tensile and peel tests were conducted, enabling calculation of the following parameters: true stress/strain, tangential modulus, tensile strength, peeling force and dissection energy. Two constitutive material models were used (hyperelastic models of Delfino and Ogden) to fit the data. A circumferential strip of tissue was also obtained for computational histology [regional quantification of (i) elastin, (ii) collagen and (iii) smooth muscle cells]. RESULTS The aortic wall was thinner on the outer curve (2.21, standard deviation (SD) 0.4 mm vs inner curve 2.50, SD 0.12 mm). Advanced patient age and higher pulse wave velocity (externally measured) were predictors of increased aortic wall thickness. Tensile strength was higher in the circumferential versus longitudinal direction when analysed according to anatomical regions. Both peel force (35.5, 22 N/m) and dissection energy (88.5, 69 J/m2) were on average lowest at the outer curve of the aneurysm in the longitudinal orientation. Delfino and Ogden model constants varied throughout anatomical regions, with the outer curve being associated a higher ɑ constant (Delfino) and lower µ1 constant (Ogden) (P < 0.05) indicating increased stiffness. Histologically, collagen abundance was significantly related to circumferential and longitudinal strength (P= 0.010), whilst smooth muscle cell count had no relation with any mechanical property (P > 0.05). CONCLUSIONS Our results suggest that the outer aortic curve is more prone to dissection propagation and perhaps less prone to rupture than the inner aortic curve. This strengthens the notion of disease heterogeneity in ascending thoracic aortic aneurysms and has implications for the pathogenesis of aortic dissection.
Collapse
Affiliation(s)
- M Yousuf Salmasi
- Corresponding author. Imperial College London, 10th Floor, QEQM Building, St Mary’s Campus, South Wharf Road, London W2 1NY, UK. e-mail: (M.Y. Salmasi)
| | | | - Jennifer Frattolin
- Department of Bioengineering, Faculty of Engineering, Imperial College London, London, UK
| | - Lowell Edgar
- Department of Bioengineering, Faculty of Engineering, Imperial College London, London, UK
| | - Ulrich Stock
- Department of Cardiac Surgery and Transplantation, Royal Brompton and Harefield Foundation Trust, London, UK
| | - Thanos Athanasiou
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - James Moore Jr
- Department of Bioengineering, Faculty of Engineering, Imperial College London, London, UK
| |
Collapse
|
25
|
Tsang KM, Knutsen RH, Billington CJ, Lindberg E, Steenbock H, Fu YP, Wardlaw-Pickett A, Liu D, Malide D, Yu ZX, Bleck CKE, Brinckmann J, Kozel BA. Copper-Binding Domain Variation in a Novel Murine Lysyl Oxidase Model Produces Structurally Inferior Aortic Elastic Fibers Whose Failure Is Modified by Age, Sex, and Blood Pressure. Int J Mol Sci 2022; 23:6749. [PMID: 35743192 PMCID: PMC9223555 DOI: 10.3390/ijms23126749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 12/23/2022] Open
Abstract
Lysyl oxidase (LOX) is a copper-binding enzyme that cross-links elastin and collagen. The dominant LOX variation contributes to familial thoracic aortic aneurysm. Previously reported murine Lox mutants had a mild phenotype and did not dilate without drug-induced provocation. Here, we present a new, more severe mutant, Loxb2b370.2Clo (c.G854T; p.Cys285Phe), whose mutation falls just N-terminal to the copper-binding domain. Unlike the other mutants, the C285F Lox protein was stably produced/secreted, and male C57Bl/6J Lox+/C285F mice exhibit increased systolic blood pressure (BP; p < 0.05) and reduced caliber aortas (p < 0.01 at 100mmHg) at 3 months that independently dilate by 6 months (p < 0.0001). Multimodal imaging reveals markedly irregular elastic sheets in the mutant (p = 2.8 × 10−8 for breaks by histology) that become increasingly disrupted with age (p < 0.05) and breeding into a high BP background (p = 6.8 × 10−4). Aortic dilation was amplified in males vs. females (p < 0.0001 at 100mmHg) and ameliorated by castration. The transcriptome of young Lox mutants showed alteration in dexamethasone (p = 9.83 × 10−30) and TGFβ-responsive genes (p = 7.42 × 10−29), and aortas from older C57Bl/6J Lox+/C285F mice showed both enhanced susceptibility to elastase (p < 0.01 by ANOVA) and increased deposition of aggrecan (p < 0.05). These findings suggest that the secreted Lox+/C285F mutants produce dysfunctional elastic fibers that show increased susceptibility to proteolytic damage. Over time, the progressive weakening of the connective tissue, modified by sex and blood pressure, leads to worsening aortic disease.
Collapse
Affiliation(s)
- Kit Man Tsang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.M.T.); (R.H.K.); (C.J.B.J.); (E.L.); (Y.-P.F.); (A.W.-P.); (D.L.); (D.M.); (Z.-X.Y.); (C.K.E.B.)
| | - Russell H. Knutsen
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.M.T.); (R.H.K.); (C.J.B.J.); (E.L.); (Y.-P.F.); (A.W.-P.); (D.L.); (D.M.); (Z.-X.Y.); (C.K.E.B.)
| | - Charles J. Billington
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.M.T.); (R.H.K.); (C.J.B.J.); (E.L.); (Y.-P.F.); (A.W.-P.); (D.L.); (D.M.); (Z.-X.Y.); (C.K.E.B.)
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eric Lindberg
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.M.T.); (R.H.K.); (C.J.B.J.); (E.L.); (Y.-P.F.); (A.W.-P.); (D.L.); (D.M.); (Z.-X.Y.); (C.K.E.B.)
| | - Heiko Steenbock
- Institute of Virology and Cell Biology, University of Lübeck, 23562 Lübeck, Germany; (H.S.); (J.B.)
| | - Yi-Ping Fu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.M.T.); (R.H.K.); (C.J.B.J.); (E.L.); (Y.-P.F.); (A.W.-P.); (D.L.); (D.M.); (Z.-X.Y.); (C.K.E.B.)
| | - Amanda Wardlaw-Pickett
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.M.T.); (R.H.K.); (C.J.B.J.); (E.L.); (Y.-P.F.); (A.W.-P.); (D.L.); (D.M.); (Z.-X.Y.); (C.K.E.B.)
- Johns Hopkins University Applied Physics Lab, Laurel, MD 20724, USA
| | - Delong Liu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.M.T.); (R.H.K.); (C.J.B.J.); (E.L.); (Y.-P.F.); (A.W.-P.); (D.L.); (D.M.); (Z.-X.Y.); (C.K.E.B.)
| | - Daniela Malide
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.M.T.); (R.H.K.); (C.J.B.J.); (E.L.); (Y.-P.F.); (A.W.-P.); (D.L.); (D.M.); (Z.-X.Y.); (C.K.E.B.)
| | - Zu-Xi Yu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.M.T.); (R.H.K.); (C.J.B.J.); (E.L.); (Y.-P.F.); (A.W.-P.); (D.L.); (D.M.); (Z.-X.Y.); (C.K.E.B.)
| | - Christopher K. E. Bleck
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.M.T.); (R.H.K.); (C.J.B.J.); (E.L.); (Y.-P.F.); (A.W.-P.); (D.L.); (D.M.); (Z.-X.Y.); (C.K.E.B.)
| | - Jürgen Brinckmann
- Institute of Virology and Cell Biology, University of Lübeck, 23562 Lübeck, Germany; (H.S.); (J.B.)
- Department of Dermatology, University of Lübeck, 23562 Lübeck, Germany
| | - Beth A. Kozel
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (K.M.T.); (R.H.K.); (C.J.B.J.); (E.L.); (Y.-P.F.); (A.W.-P.); (D.L.); (D.M.); (Z.-X.Y.); (C.K.E.B.)
| |
Collapse
|
26
|
Meester JAN, De Kinderen P, Verstraeten A, Loeys BL. The role of biglycan in the healthy and thoracic aneurysmal aorta. Am J Physiol Cell Physiol 2022; 322:C1214-C1222. [PMID: 35476501 DOI: 10.1152/ajpcell.00036.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The class I small leucine-rich proteoglycan biglycan is a crucial structural extracellular matrix component that interacts with a wide range of extracellular matrix molecules. In addition, biglycan is involved in sequestering growth factors such as TGF-β and BMPs and thereby regulating pathway activity. Biglycan consists of a 42-kDa core protein linked to two glycosaminoglycan side chains and both are involved in protein interactions. Biglycan is encoded by the BGN gene located on the X-chromosome and is expressed in various tissues, including vascular tissue, skin, brain, kidney lung, the immune system and the musculoskeletal system. Although an increasing amount of data on the biological function of biglycan in the vasculature has been produced, its role in thoracic aortic aneurysms is still not fully elucidated. This review focusses on the role of biglycan in the healthy thoracic aorta and the development of thoracic aortic aneurysm and dissections in both mice and humans.
Collapse
Affiliation(s)
- Josephina A N Meester
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Pauline De Kinderen
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Aline Verstraeten
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Bart L Loeys
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.,Department of Clinical Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
27
|
Zalghout S, Vo S, Arocas V, Jadoui S, Hamade E, Badran B, Oudar O, Charnaux N, Longrois D, Boulaftali Y, Bouton MC, Richard B. Syndecan-1 Is Overexpressed in Human Thoracic Aneurysm but Is Dispensable for the Disease Progression in a Mouse Model. Front Cardiovasc Med 2022; 9:839743. [PMID: 35548440 PMCID: PMC9082175 DOI: 10.3389/fcvm.2022.839743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Glycosaminoglycans (GAGs) pooling has long been considered as one of the histopathological characteristics defining thoracic aortic aneurysm (TAA) together with smooth muscle cells (SMCs) apoptosis and elastin fibers degradation. However, little information is known about GAGs composition or their potential implication in TAA pathology. Syndecan-1 (SDC-1) is a heparan sulfate proteoglycan that is implicated in extracellular matrix (ECM) interaction and assembly, regulation of SMCs phenotype, and various aspects of inflammation in the vascular wall. Therefore, the aim of this study was to determine whether SDC-1 expression was regulated in human TAA and to analyze its role in a mouse model of this disease. In the current work, the regulation of SDC-1 was examined in human biopsies by RT-qPCR, ELISA, and immunohistochemistry. In addition, the role of SDC-1 was evaluated in descending TAA in vivo using a mouse model combining both aortic wall weakening and hypertension. Our results showed that both SDC-1 mRNA and protein are overexpressed in the media layer of human TAA specimens. RT-qPCR experiments revealed a 3.6-fold overexpression of SDC-1 mRNA (p = 0.0024) and ELISA assays showed that SDC-1 protein was increased 2.3 times in TAA samples compared with healthy counterparts (221 ± 24 vs. 96 ± 33 pg/mg of tissue, respectively, p = 0.0012). Immunofluorescence imaging provided evidence that SMCs are the major cell type expressing SDC-1 in TAA media. Similarly, in the mouse model used, SDC-1 expression was increased in TAA specimens compared to healthy samples. Although its protective role against abdominal aneurysm has been reported, we observed that SDC-1 was dispensable for TAA prevalence or rupture. In addition, SDC-1 deficiency did not alter the extent of aortic wall dilatation, elastin degradation, collagen deposition, or leukocyte recruitment in our TAA model. These findings suggest that SDC-1 could be a biomarker revealing TAA pathology. Future investigations could uncover the underlying mechanisms leading to regulation of SDC-1 expression in TAA.
Collapse
Affiliation(s)
- Sara Zalghout
- LVTS, INSERM, U1148, Paris, France
- Université Sorbonne Paris Nord, Villetaneuse, France
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Sophie Vo
- LVTS, INSERM, U1148, Paris, France
- Université Sorbonne Paris Nord, Bobigny, France
| | - Véronique Arocas
- LVTS, INSERM, U1148, Paris, France
- Université de Paris, Paris, France
| | - Soumaya Jadoui
- LVTS, INSERM, U1148, Paris, France
- Université Sorbonne Paris Nord, Bobigny, France
| | - Eva Hamade
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Olivier Oudar
- LVTS, INSERM, U1148, Paris, France
- Université Sorbonne Paris Nord, Bobigny, France
| | - Nathalie Charnaux
- LVTS, INSERM, U1148, Paris, France
- Université Sorbonne Paris Nord, Bobigny, France
| | - Dan Longrois
- LVTS, INSERM, U1148, Paris, France
- Université de Paris, Paris, France
| | - Yacine Boulaftali
- LVTS, INSERM, U1148, Paris, France
- Université de Paris, Paris, France
| | | | - Benjamin Richard
- LVTS, INSERM, U1148, Paris, France
- Université Sorbonne Paris Nord, Bobigny, France
- *Correspondence: Benjamin Richard
| |
Collapse
|
28
|
Tucker NJ, Eitan T, Yoon JG, Rosinski BF, Rodriguez ER, Tan CD, Svensson LG. Differences in Aortic Histopathology in Patients Undergoing Valve Reimplantation Surgery for Various Clinical Syndromes. AORTA 2022; 10:69-76. [PMID: 35933987 PMCID: PMC9357507 DOI: 10.1055/s-0042-1743536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Objectives
The study aims to investigate aortic histopathologic differences among patients undergoing aortic valve reimplantation, suggest different mechanisms of aortic root aneurysm pathogenesis, and identify factors associated with long-term success of reimplantation.
Methods
From 2006 to 2017, 568 adults who underwent reimplantation for repair of aortic root aneurysm, including patients with tricuspid aortic valves with no connective tissue disease (TAV/NoCTD,
n
= 314/568; 55.3%), bicuspid aortic valves (BAVs,
n
= 86/568; 15.1%), or connective tissue disease (CTD,
n
= 177/568; 31.2%), were compiled into three comparison groups. Patients with both BAV and CTD (
n
= 9/568; 1.6%) were omitted to increase study power. Patient records were analyzed retrospectively, focusing on pathology reports, which were available for 98.42% of patients, and were classified based on their descriptions of aortic tissue samples, primarily from the noncoronary sinus. Mean follow-up time available for patients was 2.97 years.
Results
Aortitis, medial fibrosis, and smooth muscle loss were more common histopathologic findings in patients with TAV/NoCTD than in patients with BAV and CTD (
p
< 0.05). Cystic medial degeneration was most often found in patients with CTD, then TAV/NoCTD, and least in BAV (
p
< 0.01). Increases in mucopolysaccharides were found more often in the BAV group than in the TAV/NoCTD and CTD groups (
p
< 0.01). There were no differences in the frequency of elastic laminae fragmentation/loss across these three groups. Among all patients, 1.97% (
n
= 11/559) had an unplanned reintervention on the aortic valve after reimplantation, but no significant demographic or histopathologic differences were identified.
Conclusion
Despite some common histopathologic features among patients undergoing aortic valve reimplantation, there were enough distinguishing features among aortic tissue samples of TAV/NoCTD, BAV, and CTD patients to suggest that these groups develop root aneurysms by different mechanisms. No histopathologic features were able to predict the need for late reintervention on the aortic valve.
Collapse
Affiliation(s)
| | - Tal Eitan
- Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Justin G. Yoon
- Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Bradley F. Rosinski
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio
| | | | - Carmela D. Tan
- Department of Pathology, Cleveland Clinic, Cleveland, Ohio
| | - Lars G. Svensson
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
29
|
Cikach FS, Germano E, Roselli EE, Svensson LG. Ascending aorta mechanics and dimensions in aortopathy – from science to application. Indian J Thorac Cardiovasc Surg 2022; 38:7-13. [PMID: 35463697 PMCID: PMC8980982 DOI: 10.1007/s12055-020-01092-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/04/2020] [Indexed: 10/22/2022] Open
Abstract
The ascending aorta has a unique microstructure and biomechanical properties that allow it to absorb energy during systole and return energy during diastole (Windkessel effect). Derangements in aortic architecture can result in changes to biomechanics and inefficiencies in function. Ultimately biomechanical failure may occur resulting in aortic dissection or rupture. By measuring aortic biomechanics with either in vivo or ex vivo methods, one may be able to predict tissue failure in patients with aortic disease such as aneurysms. An understanding of the biomechanical changes that lead to these tissue-level failures may help guide therapy, disease surveillance, surgical intervention, and aid in the development of new treatments for this deadly condition.
Collapse
|
30
|
Critical Pressure of Intramural Delamination in Aortic Dissection. Ann Biomed Eng 2022; 50:183-194. [PMID: 35044571 PMCID: PMC8957392 DOI: 10.1007/s10439-022-02906-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/01/2022] [Indexed: 02/03/2023]
Abstract
Computational models of aortic dissection can examine mechanisms by which this potentially lethal condition develops and propagates. We present results from phase-field finite element simulations that are motivated by a classical but seldom repeated experiment. Initial simulations agreed qualitatively and quantitatively with data, yet because of the complexity of the problem it was difficult to discern trends. Simplified analytical models were used to gain further insight. Together, simplified and phase-field models reveal power-law-based relationships between the pressure that initiates an intramural tear and key geometric and mechanical factors-insult surface area, wall stiffness, and tearing energy. The degree of axial stretch and luminal pressure similarly influence the pressure of tearing, which was ~88 kPa for healthy and diseased human aortas having sub-millimeter-sized initial insults, but lower for larger tear sizes. Finally, simulations show that the direction a tear propagates is influenced by focal regions of weakening or strengthening, which can drive the tear towards the lumen (dissection) or adventitia (rupture). Additional data on human aortas having different predisposing disease conditions will be needed to extend these results further, but the present findings show that physiologic pressures can propagate initial medial defects into delaminations that can serve as precursors to dissection.
Collapse
|
31
|
Yin M, Ban E, Rego BV, Zhang E, Cavinato C, Humphrey JD, Em Karniadakis G. Simulating progressive intramural damage leading to aortic dissection using DeepONet: an operator-regression neural network. J R Soc Interface 2022; 19:20210670. [PMID: 35135299 PMCID: PMC8826120 DOI: 10.1098/rsif.2021.0670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/23/2021] [Indexed: 12/28/2022] Open
Abstract
Aortic dissection progresses mainly via delamination of the medial layer of the wall. Notwithstanding the complexity of this process, insight has been gleaned by studying in vitro and in silico the progression of dissection driven by quasi-static pressurization of the intramural space by fluid injection, which demonstrates that the differential propensity of dissection along the aorta can be affected by spatial distributions of structurally significant interlamellar struts that connect adjacent elastic lamellae. In particular, diverse histological microstructures may lead to differential mechanical behaviour during dissection, including the pressure-volume relationship of the injected fluid and the displacement field between adjacent lamellae. In this study, we develop a data-driven surrogate model of the delamination process for differential strut distributions using DeepONet, a new operator-regression neural network. This surrogate model is trained to predict the pressure-volume curve of the injected fluid and the damage progression within the wall given a spatial distribution of struts, with in silico data generated using a phase-field finite-element model. The results show that DeepONet can provide accurate predictions for diverse strut distributions, indicating that this composite branch-trunk neural network can effectively extract the underlying functional relationship between distinctive microstructures and their mechanical properties. More broadly, DeepONet can facilitate surrogate model-based analyses to quantify biological variability, improve inverse design and predict mechanical properties based on multi-modality experimental data.
Collapse
Affiliation(s)
- Minglang Yin
- Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Ehsan Ban
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Bruno V. Rego
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Enrui Zhang
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - George Em Karniadakis
- School of Engineering, Brown University, Providence, RI 02912, USA
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| |
Collapse
|
32
|
Uimonen M. Synthesis of multidimensional pathophysiological process leading to type A aortic dissection: a narrative review. J Thorac Dis 2021; 13:6026-6036. [PMID: 34795949 PMCID: PMC8575841 DOI: 10.21037/jtd-21-829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/06/2021] [Indexed: 11/06/2022]
Abstract
Objective This review aims to synthesize the existing knowledge on the etiological process leading to type A aortic dissection (TAAD) and to clarify the relationship between mechanical, biochemical, and histopathological processes behind the aortic disease. Background Extensive research has previously identified several risk factors for TAAD as well as pathological mechanisms leading to TAAD. However, due to the complexity of the pathological process and limited knowledge on the relationships between distinct pathomechanisms leading to TAAD, the ability to identify the patients at high risk for TAAD has been poor. Methods PubMed (National Library of Medicine) database was searched for suitable literature. The most relevant articles focusing on anatomy, histopathology, physiology, and mechanics of ascending aorta and aortic diseases were reviewed. Conclusions Pathophysiology of the TAAD is related to biochemical and histological as well as mechanical and hemodynamic alterations leading to a degeneration of the aortic wall via inflammatory response. The degradative mechanisms of aortic wall structures and the mechanical forces, to which the wall is predisposed, are interrelated and influence one another. The relativity between the factors influencing aortic wall strength and healing capacity, and factors influencing mechanical stress on the aortic wall suggest that the risk of TAAD is not a linear but rather a dynamic phenomenon. Accounting for the dynamical property of the aortic disease in assessing the need for preventive surgical aortic reconstruction may provide a wider perspective in identifying patients at risk of TAAD and in planning preventive medical therapies.
Collapse
Affiliation(s)
- Mikko Uimonen
- Department of Surgery, Central Finland Hospital Nova, Jyväskylä, Finland
| |
Collapse
|
33
|
Ban E, Cavinato C, Humphrey JD. Differential propensity of dissection along the aorta. Biomech Model Mechanobiol 2021; 20:895-907. [PMID: 33464476 PMCID: PMC8159901 DOI: 10.1007/s10237-021-01418-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022]
Abstract
Aortic dissections progress, in part, by delamination of the wall. Previous experiments on cut-open segments of aorta demonstrated that fluid injected within the wall delaminates the aorta in two distinct modes: stepwise progressive tearing in the abdominal aorta and a more prevalent sudden mode of tearing in the thoracic aorta that can also manifest in other regions. A microstructural understanding that delineates these two modes of tearing has remained wanting. We implemented a phase-field finite-element model of the aortic wall, motivated in part by two-photon imaging, and found correlative relations for the maximum pressure prior to tearing as a function of local geometry and material properties. Specifically, the square of the pressure of tearing relates directly to both tissue stiffness and the critical energy of tearing and inversely to the square root of the torn area; this correlation explains the sudden mode of tearing and, with the microscopy, suggests a mechanism for progressive tearing. Microscopy also confirmed that thick interlamellar radial struts are more abundant in the abdominal region of the aorta, where progressive tearing was observed previously. The computational results suggest that structurally significant radial struts increase tearing pressure by two mechanisms: confining the fluid by acting as barriers to flow and increasing tissue stiffness by holding the adjacent lamellae together. Collectively, these two phase-field models provide new insights into the mechanical factors that can influence intramural delaminations that promote aortic dissection.
Collapse
Affiliation(s)
- Ehsan Ban
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA.
| | - Cristina Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
34
|
Aortic disease in Marfan syndrome is caused by overactivation of sGC-PRKG signaling by NO. Nat Commun 2021; 12:2628. [PMID: 33976159 PMCID: PMC8113458 DOI: 10.1038/s41467-021-22933-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
Thoracic aortic aneurysm, as occurs in Marfan syndrome, is generally asymptomatic until dissection or rupture, requiring surgical intervention as the only available treatment. Here, we show that nitric oxide (NO) signaling dysregulates actin cytoskeleton dynamics in Marfan Syndrome smooth muscle cells and that NO-donors induce Marfan-like aortopathy in wild-type mice, indicating that a marked increase in NO suffices to induce aortopathy. Levels of nitrated proteins are higher in plasma from Marfan patients and mice and in aortic tissue from Marfan mice than in control samples, indicating elevated circulating and tissue NO. Soluble guanylate cyclase and cGMP-dependent protein kinase are both activated in Marfan patients and mice and in wild-type mice treated with NO-donors, as shown by increased plasma cGMP and pVASP-S239 staining in aortic tissue. Marfan aortopathy in mice is reverted by pharmacological inhibition of soluble guanylate cyclase and cGMP-dependent protein kinase and lentiviral-mediated Prkg1 silencing. These findings identify potential biomarkers for monitoring Marfan Syndrome in patients and urge evaluation of cGMP-dependent protein kinase and soluble guanylate cyclase as therapeutic targets. Aortic aneurysm and dissection, the major problem linked to Marfan syndrome (MFS), lacks effective pharmacological treatment. Here, the authors show that the NO pathway is overactivated in MFS and that inhibition of guanylate cyclase and cGMP-dependent protein kinase reverts MFS aortopathy in mice.
Collapse
|
35
|
Ghadie NM, St-Pierre JP, Labrosse MR. The Contribution of Glycosaminoglycans/Proteoglycans to Aortic Mechanics in Health and Disease: A Critical Review. IEEE Trans Biomed Eng 2021; 68:3491-3500. [PMID: 33872141 DOI: 10.1109/tbme.2021.3074053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While elastin and collagen have received a lot of attention as major contributors to aortic biomechanics, glycosaminoglycans (GAGs) and proteoglycans (PGs) recently emerged as additional key players whose roles must be better elucidated if one hopes to predict aortic ruptures caused by aneurysms and dissections more reliably. GAGs are highly negatively charged polysaccharide molecules that exist in the extracellular matrix (ECM) of the arterial wall. In this critical review, we summarize the current understanding of the contributions of GAGs/PGs to the biomechanics of the normal aortic wall, as well as in the case of aortic diseases such as aneurysms and dissections. Specifically, we describe the fundamental swelling behavior of GAGs/PGs and discuss their contributions to residual stresses and aortic stiffness, thereby highlighting the importance of taking these polyanionic molecules into account in mathematical and numerical models of the aorta. We suggest specific lines of investigation to further the acquisition of experimental data to complement simulations and solidify our current understanding. We underscore different potential roles of GAGs/PGs in thoracic aortic aneurysm (TAAD) and abdominal aortic aneurysm (AAA). Namely, we report findings according to which the accumulation of GAGs/PGs in TAAD causes stress concentrations which may be sufficient to initiate and propagate delamination. On the other hand, there seems to be no clear indication of a relationship between the marked reduction in GAG/PG content and the stiffening and weakening of the aortic wall in AAA.
Collapse
|
36
|
Vinpocetine protects against the development of experimental abdominal aortic aneurysms. Clin Sci (Lond) 2021; 134:2959-2976. [PMID: 33111936 DOI: 10.1042/cs20201057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
Abdominal aortic aneurysm (AAA), commonly occurring in the aged population, is a degenerative disease that dilate and weaken infrarenal aorta due to progressive degeneration of aortic wall integrity. Vinpocetine, a derivative of alkaloid vincamine, has long been used for cerebrovascular disorders and cognitive impairment in the aged population. Recent studies have indicated that vinpocetine antagonizes occlusive vascular disorders such as intimal hyperplasia and atherosclerosis. However, its role in vascular degenerative disease AAA remains unexplored. Herein, we determined the effect of vinpocetine on the formation of AAA as well as the intervention of pre-existing moderate AAA. AAA was induced by periaortic elastase application in C57BL/6J mice. Systemic vinpocetine treatment was applied daily via intraperitoneal injection. We showed that vinpocetine pre-treatment remarkably attenuated aneurysmal dilation assessed by diameter and volume. More importantly, vinpocetine also significantly suppressed the progression of pre-existing moderate AAA in a post-intervention model. Vinpocetine improved multiple cellular and molecular changes associated with AAA, such as elastin degradation, media smooth muscle cell depletion, collagen fibers remodeling and macrophage infiltration in aneurysmal tissues. Vinpocetine potently suppressed tumor necrosis factor-α-induced nuclear factor kappa-light-chain-enhancer of activated B cells activation and proinflammatory mediator expression in primary cultured macrophages in vitro, as well as in the aorta wall in vivo, suggesting vinpocetine conferred anti-AAA effect at least partially via the inhibition of inflammation. Taken together, our findings reveal a novel role of vinpocetine in AAA formation, development and progression. Given the excellent safety profile of vinpocetine, the present study suggests vinpocetine may be a novel therapeutic agent for AAA prevention and treatment.
Collapse
|
37
|
Rare Causes of Arterial Hypertension and Thoracic Aortic Aneurysms-A Case-Based Review. Diagnostics (Basel) 2021; 11:diagnostics11030446. [PMID: 33807627 PMCID: PMC8001303 DOI: 10.3390/diagnostics11030446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022] Open
Abstract
Thoracic aortic aneurysms may result in dissection with fatal consequences if undetected. A young male patient with no relevant familial history, after having been investigated for hypertension, was diagnosed with an ascending aortic aneurysm involving the aortic root and the proximal tubular segment, associated with a septal atrial defect. The patient underwent a Bentall surgery protocol without complications. Clinical examination revealed dorso-lumbar scoliosis and no other signs of underlying connective tissue disease. Microscopic examination revealed strikingly severe medial degeneration of the aorta, with areas of deep disorganization of the medial musculo-elastic structural units and mucoid material deposition. Genetic testing found a variant of unknown significance the PRKG1 gene encoding the protein kinase cGMP-dependent 1, which is important in blood pressure regulation. There may be genetic links between high blood pressure and thoracic aortic aneurysm determinants. Hypertension was found in FBN1 gene mutations encoding fibrillin and in PRKG1 mutations. Possible mechanisms involving the renin-angiotensin system, the role of oxidative stress, osteopontin, epigenetic modifications and other genes are reviewed. Close follow-up and strict hypertension control are required to reduce the risk of dissection. Hypertension, scoliosis and other extra-aortic signs suggesting a connective tissue disease are possible clues for diagnosis.
Collapse
|
38
|
Brunet J, Pierrat B, Badel P. A Parametric Study on Factors Influencing the Onset and Propagation of Aortic Dissection Using the Extended Finite Element Method. IEEE Trans Biomed Eng 2021; 68:2918-2929. [PMID: 33523804 DOI: 10.1109/tbme.2021.3056022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Aortic dissection is a life-threatening event which starts most of the time with an intimal tear propagating along the aortic wall, while blood enters the medial layer and delaminates the medial lamellar units. Studies investigating the mechanisms underlying the initiation sequence of aortic dissection are rare in the literature, the majority of studies being focused on the propagation event. Numerical models can provide a deeper understanding of the phenomena involved during the initiation and the propagation of the initial tear, and how geometrical and mechanical parameters affect this event. In the present paper, we investigated the primary factors contributing to aortic dissection. METHODS A two-layer arterial model with an initial tear was developed, representing three different possible configurations depending on the initial direction of the tear. Anisotropic damage initiation criteria were developed based on uniaxial and shear experiments from the literature to predict the onset and the direction of crack propagation. We used the XFEM-based cohesive segment method to model the initiation and the early propagation of the tear along the aorta. A design of experiment was used to quantify the influence of 7 parameters reflecting crack geometry and mechanics of the wall on the critical pressure triggering the dissection and the directions of propagation of the tear. RESULTS The results showed that the obtained critical pressures (mean range from 206 to 251 mmHg) are in line with measurement from the literature. The medial tensile strength was found to be the most influential factor, suggesting that a medial degeneration is needed to reach a physiological critical pressure and to propagate a tear in an aortic dissection. The geometry of the tear and its location inside the aortic wall were also found to have an important role not only in the triggering of tear propagation, but also in the evolution of the tear into either aortic rupture or aortic dissection. A larger and deeper initial tear increases the risk of aortic dissection. CONCLUSION The numerical model was able to reproduce the behaviour of the aorta during the initiation and propagation of an aortic dissection. In addition to confirm multiple results from the literature, different types of tears were compared and the influence of several geometrical and mechanical parameters on the critical pressure and direction of propagation was evaluated with a parametric study for each tear configuration. SIGNIFICANCE Although these results should be experimentally validated, they allow a better understanding of the phenomena behind aortic dissection and can help in improving the diagnosis and treatment of this disease.
Collapse
|
39
|
Creamer TJ, Bramel EE, MacFarlane EG. Insights on the Pathogenesis of Aneurysm through the Study of Hereditary Aortopathies. Genes (Basel) 2021; 12:183. [PMID: 33514025 PMCID: PMC7912671 DOI: 10.3390/genes12020183] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Thoracic aortic aneurysms (TAA) are permanent and localized dilations of the aorta that predispose patients to a life-threatening risk of aortic dissection or rupture. The identification of pathogenic variants that cause hereditary forms of TAA has delineated fundamental molecular processes required to maintain aortic homeostasis. Vascular smooth muscle cells (VSMCs) elaborate and remodel the extracellular matrix (ECM) in response to mechanical and biochemical cues from their environment. Causal variants for hereditary forms of aneurysm compromise the function of gene products involved in the transmission or interpretation of these signals, initiating processes that eventually lead to degeneration and mechanical failure of the vessel. These include mutations that interfere with transduction of stimuli from the matrix to the actin-myosin cytoskeleton through integrins, and those that impair signaling pathways activated by transforming growth factor-β (TGF-β). In this review, we summarize the features of the healthy aortic wall, the major pathways involved in the modulation of VSMC phenotypes, and the basic molecular functions impaired by TAA-associated mutations. We also discuss how the heterogeneity and balance of adaptive and maladaptive responses to the initial genetic insult might contribute to disease.
Collapse
Affiliation(s)
- Tyler J. Creamer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily E. Bramel
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Predoctoral Training in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elena Gallo MacFarlane
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
40
|
Brunet J, Pierrat B, Badel P. Review of Current Advances in the Mechanical Description and Quantification of Aortic Dissection Mechanisms. IEEE Rev Biomed Eng 2021; 14:240-255. [PMID: 31905148 DOI: 10.1109/rbme.2019.2950140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Aortic dissection is a life-threatening event associated with a very poor outcome. A number of complex phenomena are involved in the initiation and propagation of the disease. Advances in the comprehension of the mechanisms leading to dissection have been made these last decades, thanks to improvements in imaging and experimental techniques. However, the micro-mechanics involved in triggering such rupture events remains poorly described and understood. It constitutes the primary focus of the present review. Towards the goal of detailing the dissection phenomenon, different experimental and modeling methods were used to investigate aortic dissection, and to understand the underlying phenomena involved. In the last ten years, research has tended to focus on the influence of microstructure on initiation and propagation of the dissection, leading to a number of multiscale models being developed. This review brings together all these materials in an attempt to identify main advances and remaining questions.
Collapse
|
41
|
Wang R, Yu X, Gkousioudi A, Zhang Y. Effect of Glycation on Interlamellar Bonding of Arterial Elastin. EXPERIMENTAL MECHANICS 2021; 61:81-94. [PMID: 33583947 PMCID: PMC7880226 DOI: 10.1007/s11340-020-00644-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/21/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Interlamellar bonding in the arterial wall is often compromised by cardiovascular diseases. However, several recent nationwide and hospital-based studies have uniformly reported reduced risk of thoracic aortic dissection in patients with diabetes. As one of the primary structural constituents in the arterial wall, elastin plays an important role in providing its interlamellar structural integrity. OBJECTIVE The purpose of this study is to examine the effects of glycation on the interlamellar bonding properties of arterial elastin. METHODS Purified elastin network was isolated from porcine descending thoracic aorta and incubated in 2 M glucose solution for 7, 14 or 21 days at 37 °C. Peeling and direct tension tests were performed to provide complimentary information on understanding the interlamellar layer separation properties of elastin network with glycation effect. Peeling tests were simulated using a cohesive zone model (CZM). Multiphoton imaging was used to visualize the interlamellar elastin fibers in samples subjected to peeling and direct tension. RESULTS Peeling and direct tension tests show that interlamellar energy release rate and strength both increases with the duration of glucose treatment. The traction at damage initiation estimated for the CZM agrees well with the interlamellar strength measurements from direct tension tests. Glycation was also found to increase the interlamellar failure strain of arterial elastin. Multiphoton imaging confirmed the contribution of radially running elastin fibers to resisting dissection. CONCLUSIONS Nonenzymatic glycation reduces the propensity of arterial elastin to dissection. This study also suggests that the CZM effectively describes the interlamellar bonding properties of arterial elastin.
Collapse
Affiliation(s)
- R Wang
- Department of Mechanical Engineering, Boston University, Boston, MA 02215
| | - X Yu
- Department of Mechanical Engineering, Boston University, Boston, MA 02215
| | - A Gkousioudi
- Department of Mechanical Engineering, Boston University, Boston, MA 02215
| | - Y Zhang
- Department of Mechanical Engineering, Boston University, Boston, MA 02215
- Department of Biomedical Engineering, Boston University, Boston, MA 02215
- Divison of Materials Science & Engineering, Boston University, Boston, MA 02215
| |
Collapse
|
42
|
Abstract
Aggrecan is a large proteoglycan that forms giant hydrated aggregates with hyaluronan in the extracellular matrix (ECM). The extraordinary resistance of these aggregates to compression explains their abundance in articular cartilage of joints where they ensure adequate load-bearing. In the brain, they provide mechanical buffering and contribute to formation of perineuronal nets, which regulate synaptic plasticity. Aggrecan is also present in cardiac jelly, developing heart valves, and blood vessels during cardiovascular development. Whereas aggrecan is essential for skeletal development, its function in the developing cardiovascular system remains to be fully elucidated. An excess of aggrecan was demonstrated in cardiovascular tissues in aortic aneurysms, atherosclerosis, vascular re-stenosis after injury, and varicose veins. It is a product of vascular smooth muscle and is likely to be an important component of pericellular matrix, where its levels are regulated by proteases. Aggrecan can contribute to specific biophysical and regulatory properties of cardiovascular ECM via the diverse interactions of its domains, and its accumulation is likely to have a significant role in developmental and disease pathways. Here, the established biological functions of aggrecan, its cardiovascular associations, and potential roles in cardiovascular development and disease are discussed.
Collapse
Affiliation(s)
- Christopher D Koch
- Department of Laboratory Medicine, Yale University, New Haven, Connecticut.,Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio.,Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | - Chan Mi Lee
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio.,Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Suneel S Apte
- Department of Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| |
Collapse
|
43
|
Wang R, Yu X, Zhang Y. Mechanical and structural contributions of elastin and collagen fibers to interlamellar bonding in the arterial wall. Biomech Model Mechanobiol 2020; 20:93-106. [PMID: 32705413 DOI: 10.1007/s10237-020-01370-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/15/2020] [Indexed: 12/25/2022]
Abstract
The artery relies on interlamellar structural components, mainly elastin and collagen fibers, for maintaining its integrity and resisting dissection propagation. In this study, the contribution of arterial elastin and collagen fibers to interlamellar bonding was studied through mechanical testing, multiphoton imaging and finite element modeling. Steady-state peeling experiments were performed on porcine aortic media and the purified elastin network in the circumferential (Circ) and longitudinal (Long) directions. The peeling force and energy release rate associated with mode-I failure are much higher for aortic media than for the elastin network. Also, longitudinal peeling exhibits a higher energy release rate and strength than circumferential peeling for both the aortic media and elastin. Multiphoton imaging shows the recruitment of both elastin and collagen fibers within the interlamellar space and points to in-plane anisotropy of fiber distributions as a potential mechanism for the direction-dependent phenomena of peeling tests. Three-dimensional finite element models based on cohesive zone model (CZM) of fracture were created to simulate the peeling tests with the interlamellar energy release rate and separation distance at damage initiation obtained directly from peeling test. Our experimental results show that the separation distance at damage initiation is 80 μm for aortic media and 40 μm for elastin. The damage initiation stress was estimated from the model for aortic media (Circ: 60 kPa; Long: 95 kPa) and elastin (Circ: 9 kPa; Long: 14 kPa). The interlamellar separation distance at complete failure was estimated to be 3 - 4 mm for both media and elastin. Furthermore, elastin and collagen fibers both play an important role in bonding of the arterial wall, while collagen has a higher contribution than elastin to interlamellar stiffness, strength and toughness. These results on microstructural interlamellar failure shed light on the pathological development and progression of aortic dissection.
Collapse
Affiliation(s)
- Ruizhi Wang
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Xunjie Yu
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| | - Yanhang Zhang
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA. .,Department of Biomedical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA. .,Divison of Materials Science & Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|
44
|
Ghadie N, St-Pierre JP, Labrosse MR. Intramural Glycosaminoglycans Distribution vs. Residual Stress in Porcine Ascending Aorta: a Computational Study . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2816-2819. [PMID: 33018592 DOI: 10.1109/embc44109.2020.9176381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this computational modelling work, we explored the mechanical roles that various glycosaminoglycans (GAGs) distributions may play in the porcine ascending aortic wall, by studying both the transmural residual stress as well as the opening angle in aortic ring samples. A finite element (FE) model was first constructed and validated against published data generated from rodent aortic rings. The FE model was then used to simulate the response of porcine ascending aortic rings with different GAG distributions prescribed through the wall of the aorta. The results indicated that a uniform GAG distribution within the aortic wall did not induce residual stresses, allowing the aortic ring to remain closed when subjected to a radial cut. By contrast, a heterogeneous GAG distribution led to the development of residual stresses which could be released by a radial cut, causing the ring to open. The residual stresses and opening angle were shown to be modulated by the GAG content, gradient, and the nature of the transmural distribution.
Collapse
|
45
|
Yu X, Suki B, Zhang Y. Avalanches and power law behavior in aortic dissection propagation. SCIENCE ADVANCES 2020; 6:eaaz1173. [PMID: 32494736 PMCID: PMC7244314 DOI: 10.1126/sciadv.aaz1173] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Aortic dissection is a devastating cardiovascular disease known for its rapid propagation and high morbidity and mortality. The mechanisms underlying the propagation of aortic dissection are not well understood. Our study reports the discovery of avalanche-like failure of the aorta during dissection propagation that results from the local buildup of strain energy followed by a cascade failure of inhomogeneously distributed interlamellar collagen fibers. An innovative computational model was developed that successfully describes the failure mechanics of dissection propagation. Our study provides the first quantitative agreement between experiment and model prediction of the dissection propagation within the complex extracellular matrix (ECM). Our results may lead to the possibility of predicting such catastrophic events based on microscopic features of the ECM.
Collapse
Affiliation(s)
- Xunjie Yu
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Béla Suki
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Yanhang Zhang
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Divison of Materials Science & Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
46
|
Lane BA, Wang X, Lessner SM, Vyavahare NR, Eberth JF. Targeted Gold Nanoparticles as an Indicator of Mechanical Damage in an Elastase Model of Aortic Aneurysm. Ann Biomed Eng 2020; 48:2268-2278. [PMID: 32240423 DOI: 10.1007/s10439-020-02500-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/27/2020] [Indexed: 12/23/2022]
Abstract
Elastin is a key structural protein and its pathological degradation deterministic in aortic aneurysm (AA) outcomes. Unfortunately, using current diagnostic and clinical surveillance techniques the integrity of the elastic fiber network can only be assessed invasively. To address this, we employed fragmented elastin-targeting gold nanoparticles (EL-AuNPs) as a diagnostic tool for the evaluation of unruptured AAs. Electron dense EL-AuNPs were visualized within AAs using micro-computed tomography (micro-CT) and the corresponding Gold-to-Tissue volume ratios quantified. The Gold-to-Tissue volume ratios correlated strongly with the concentration (0, 0.5, or 10 U/mL) of infused porcine pancreatic elastase and therefore the degree of elastin damage. Hyperspectral mapping confirmed the spatial targeting of the EL-AuNPs to the sites of damaged elastin. Nonparametric Spearman's rank correlation indicated that the micro-CT-based Gold-to-Tissue volume ratios had a strong correlation with loaded (ρ = 0.867, p-val = 0.015) and unloaded (ρ = 0.830, p-val = 0.005) vessel diameter, percent dilation (ρ = 0.976, p-val = 0.015), circumferential stress (ρ = 0.673, p-val = 0.007), loaded (ρ = - 0.673, p-val = 0.017) and unloaded (ρ = - 0.697, p-val = 0.031) wall thicknesses, circumferential stretch (ρ = - 0.7234, p-val = 0.018), and lumen area compliance (ρ = - 0.831, p-val = 0.003). Likewise, in terms of axial force and axial stress vs. stretch, the post-elastase vessels were stiffer. Collectively, these findings suggest that, when combined with CT imaging, EL-AuNPs can be used as a powerful tool in the non-destructive estimation of mechanical and geometric features of AAs.
Collapse
Affiliation(s)
- Brooks A Lane
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, 29208, USA
| | - Xiaoying Wang
- Bioengineering Department, Clemson University, Clemson, SC, USA
| | - Susan M Lessner
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, 29208, USA.,Cell Biology and Anatomy Department, University of South Carolina, Columbia, SC, USA
| | | | - John F Eberth
- Biomedical Engineering Program, University of South Carolina, Columbia, SC, 29208, USA. .,Cell Biology and Anatomy Department, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
47
|
Shen YH, LeMaire SA, Webb NR, Cassis LA, Daugherty A, Lu HS. Aortic Aneurysms and Dissections Series. Arterioscler Thromb Vasc Biol 2020; 40:e37-e46. [PMID: 32101472 DOI: 10.1161/atvbaha.120.313991] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aortic wall is composed of highly dynamic cell populations and extracellular matrix. In response to changes in the biomechanical environment, aortic cells and extracellular matrix modulate their structure and functions to increase aortic wall strength and meet the hemodynamic demand. Compromise in the structural and functional integrity of aortic components leads to aortic degeneration, biomechanical failure, and the development of aortic aneurysms and dissections (AAD). A better understanding of the molecular pathogenesis of AAD will facilitate the development of effective medications to treat these conditions. Here, we summarize recent findings on AAD published in ATVB. In this issue, we focus on the dynamics of aortic cells and extracellular matrix in AAD; in the next issue, we will focus on the role of signaling pathways in AAD.
Collapse
Affiliation(s)
- Ying H Shen
- From the Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (Y.H.S., S.A.L.).,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Y.H.S., S.A.L.)
| | - Scott A LeMaire
- From the Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX (Y.H.S., S.A.L.).,Department of Cardiovascular Surgery, Texas Heart Institute, Houston (Y.H.S., S.A.L.)
| | - Nancy R Webb
- Department of Pharmacology and Nutritional Sciences (N.R.W., L.A.C.), University of Kentucky, Lexington
| | - Lisa A Cassis
- Department of Pharmacology and Nutritional Sciences (N.R.W., L.A.C.), University of Kentucky, Lexington
| | - Alan Daugherty
- Department of Physiology and Saha Cardiovascular Research Center (A.D., H.S.L.), University of Kentucky, Lexington
| | - Hong S Lu
- Department of Physiology and Saha Cardiovascular Research Center (A.D., H.S.L.), University of Kentucky, Lexington
| |
Collapse
|
48
|
Characterization of chemoelastic effects in arteries using digital volume correlation and optical coherence tomography. Acta Biomater 2020; 102:127-137. [PMID: 31794873 DOI: 10.1016/j.actbio.2019.11.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
Understanding stress-strain relationships in arteries is important for fundamental investigations in mechanobiology. Here we demonstrate the essential role of chemoelasticity in determining the mechanical properties of arterial tissues. Stepwise stress-relaxation uniaxial tensile tests were carried out on samples of porcine thoracic aortas immersed in a hyperosmotic solution. The tissue deformations were tracked using optical coherence tomography (OCT) during the tensile tests and digital volume correlation (DVC) was used to obtain measurements of depth-resolved strains across the whole thickness of the tested aortas. The hyperosmotic solution exacerbated chemoelastic effects, and we were able to measure different manifestations of these chemoelastic effects: swelling of the media inducing a modification of its optical properties, and existence of a transverse tensile strain. For the first time ever to our best knowledge, 3D strains induced by chemoelastic effects in soft tissues were quantified thanks to the OCT-DVC method. Without doubt, chemoelasticity plays an essential role in arterial mechanobiology in vivo and future work should focus on characterizing chemoelastic effects in arterial walls under physiological and disease conditions. STATEMENT OF SIGNIFICANCE: Chemoelasticity, coupling osmotic phenomena and mechanical stresses, is essential in soft tissue mechanobiology. For the first time ever, we measure and analyze 3D strain fields induced by these chemoelastic effects thanks to the unique combination of OCT imaging and digital volume correlation.
Collapse
|
49
|
Effect of diabetes mellitus on the dissection properties of the rabbit descending thoracic aortas. J Biomech 2019; 100:109592. [PMID: 31911049 DOI: 10.1016/j.jbiomech.2019.109592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 01/02/2023]
Abstract
Effect of diabetes mellitus (DM) on the dissection properties of thoracic aortas remains largely unclear and relevant biomechanical analysis is lacking. In the present study forty adult rabbits (1.6-2.2 kg) were collected and type 1 diabetic rabbit model was induced by injection of alloxan. A total of 10 control and 30 diabetic (with different time exposure to diabetic condition) rabbit descending thoracic aortas were harvested. Peeling tests were performed to quantitatively determine force/width values and dissection energy in the control and diabetic aortas. Histological and mass fraction analyses were performed to characterize the dissected morphology and to quantify dry weight percentages of elastin and collagen. The resisting force/width values were significantly higher for the diabetic thoracic aortas (in 8 weeks) than those of the control thoracic aortas (axial: 26.1 ± 4.0 vs. 20.5 ± 3.1 mN/mm, p = 0.04; circ: 19.7 ± 2.8 vs. 15.3 ± 1.9 mN/mm, p = 0.03). There was a higher resistance to the dissection in both axial and circumferential directions for the diabetic aortas. The dissection energy generated by axial and circumferential peeling of the diabetic aortas (in 6 and 8 weeks) was statistically significantly higher than that of the control aortas (axial: 5.6 ± 0.7 vs. 4.3 ± 0.5 mJ/cm2, p = 0.02; circ: 3.9 ± 0.3 vs. 3.2 ± 0.3 mJ/cm2, p = 0.02). Histology showed that dissection mainly occurred in the aortic media and the dissected surfaces were close to external elastic lamina for some specimens. The mass fractions of collagen within the diabetic aortas increased significantly as compared to the control aortas, whereas no significant change was found for that of elastin. Our data suggest that the experimentally induced DM may lead to a lower propensity of dissection for the rabbit thoracic aortas. The dissection properties of the rabbit thoracic aortas vary with time exposed to diabetic condition.
Collapse
|
50
|
Ahmadzadeh H, Rausch MK, Humphrey JD. Particle-based computational modelling of arterial disease. J R Soc Interface 2019; 15:20180616. [PMID: 30958237 DOI: 10.1098/rsif.2018.0616] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Accumulated glycosaminoglycans (GAGs) can sequester water and induce swelling within the intra-lamellar spaces of the medial layer of an artery. It is increasingly believed that stress concentrations caused by focal swelling can trigger the damage and delamination that is often seen in thoracic aortic disease. Here, we present computational simulations using an extended smoothed particle hydrodynamics approach to examine potential roles of pooled GAGs in initiating and propagating intra-lamellar delaminations. Using baseline models of the murine descending thoracic aorta, we first calculate stress distributions in a healthy vessel. Next, we examine increases in mechanical stress in regions surrounding GAG pools. The simulations show that smooth muscle activation can partially protect the wall from swelling-associated damage, consistent with experimental observations, but the wall can yet delaminate particularly in cases of smooth muscle dysfunction or absence. Moreover, pools of GAGs located at different but nearby locations can extend and coalesce, thus propagating a delamination. These findings, combined with a sensitivity study on the input parameters of the model, suggest that localized swelling can alter aortic mechanics in ways that eventually can cause catastrophic damage within the wall. There is, therefore, an increased need to consider roles of GAGs in aortic pathology.
Collapse
Affiliation(s)
- H Ahmadzadeh
- 1 Department of Biomedical Engineering, Yale University , New Haven, CT , USA
| | - M K Rausch
- 2 Departments of Aerospace Engineering and Engineering Mechanics and Biomedical Engineering, The University of Texas at Austin , Austin, TX , USA
| | - J D Humphrey
- 1 Department of Biomedical Engineering, Yale University , New Haven, CT , USA
| |
Collapse
|