1
|
Yu Z, Xu Z, Fu T, Liu S, Cui J, Zhang B, Liang J, Pang C, Ke Y, Wang R, Tang Z, Gao Y, Du B, Feng Y, Zhao H, Xue G, Yan C, Gan L, Feng J, Fan Z, Yang Y, Huang L, Zhao S, Ying S, Gu Q, Yuan J. Parallel comparison of T cell and B cell subpopulations of adenoid hypertrophy and tonsil hypertrophy of children. Nat Commun 2025; 16:3516. [PMID: 40229254 PMCID: PMC11997228 DOI: 10.1038/s41467-025-58094-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 03/12/2025] [Indexed: 04/16/2025] Open
Abstract
The adenoids and tonsils are important immune organs of the nasopharynx that often become hypertrophic in childhood because of recurrent pathogen infection. However, the differences in the immune microenvironment of adenoid hypertrophy (AH) and tonsil hypertrophy (TH) are unclear. Here, we show the epidemiological characteristics and peripheral blood cell indices of 1209 pediatric patients (1-15 years old) diagnosed with AH, and find that AH is often accompanied by TH and characterized by specific changes in immune cell types. Single-cell RNA sequencing analysis show that 12 paired AH and TH samples contain large numbers of B, T cells and some exhausted effector memory CD4+ T cells. Compared with matched TH, AH have more naïve B cells and regulatory CD4+ T cells and less plasma B cells. Weaker antigen presentation and more significant immunosuppression are also observed in AH. In contrast, the number and cytotoxicity of cytotoxic CD8+ T cells decrease with AH grade. These findings will help our understanding of the immune response to nasopharyngeal infection.
Collapse
Affiliation(s)
- Zihui Yu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Ziying Xu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Tongtong Fu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Shiyu Liu
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
- Military supplies and energy quality supervision station of Bejing, Beijing, 100071, China
| | - Jinghua Cui
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Bing Zhang
- Department of Otolaryngology, Capital Center For Children's Health, Capital Medical University, Beijing, 100020, China
| | - Jieqiong Liang
- Department of Otolaryngology, Capital Center For Children's Health, Capital Medical University, Beijing, 100020, China
| | - Chong Pang
- Department of Otolaryngology, Capital Center For Children's Health, Capital Medical University, Beijing, 100020, China
| | - Yuehua Ke
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Ruikun Wang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
- Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, 100020, China
| | - Zhijie Tang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
- Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing, 100020, China
| | - Yagang Gao
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Bing Du
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yanling Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Hanqing Zhao
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Guanhua Xue
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Chao Yan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Lin Gan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Junxia Feng
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zheng Fan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Yang Yang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Lijuan Huang
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Shuo Zhao
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Sun Ying
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Qinglong Gu
- Department of Otolaryngology, Capital Center For Children's Health, Capital Medical University, Beijing, 100020, China.
| | - Jing Yuan
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, 100020, China.
| |
Collapse
|
2
|
Foster WS, Marcial-Juárez E, Linterman MA. The cellular factors that impair the germinal center in advanced age. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkae039. [PMID: 40073096 DOI: 10.1093/jimmun/vkae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/25/2024] [Indexed: 03/14/2025]
Abstract
Long-lasting immunological memory is a core feature of the adaptive immune system that allows an organism to have a potent recall response to foreign agents that have been previously encountered. Persistent humoral immunity is afforded by long-lived memory B cells and plasma cells, which can mature in germinal centers (GCs) in secondary lymphoid organs. The development of new GC-derived immunity diminishes with age, thereby impairing our immune system's response to both natural infections and vaccinations. This review will describe the current knowledge of how aging affects the cells and microenvironment of the GC. A greater understanding of how the GC changes with age, and how to circumvent these changes, will be critical for tailoring vaccines for older people. This area of research is critical given the twenty-first century will witness a doubling of the aging population and an increased frequency of pandemics.
Collapse
Affiliation(s)
- William S Foster
- Immunology Program, Babraham Institute, Cambridge, United Kingdom
| | | | | |
Collapse
|
3
|
Fang YD, Xie F, Zhang WD, Zeng WW, Lu J, Cheng YJ, Wang WH. Age-dependent distribution of IgA and IgG antibody-secreting cells in the pharyngeal tonsil of the Bactrian camel. Vet J 2024; 305:106131. [PMID: 38763403 DOI: 10.1016/j.tvjl.2024.106131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/21/2024]
Abstract
The pharyngeal tonsil, located in the nasopharynx, can effectively defend against pathogens invading the body from the upper respiratory tract and play a crucial role in mucosal immunity of the respiratory tract. Immunoglobulin A (IgA) and Immunoglobulin G (IgG) serve as key effector molecules in mucosal immunity, exhibiting multiple immune functions. This study aimed to investigate the distribution patterns and age-related alterations of IgA and IgG antibody-secreting cells (ASCs) in the pharyngeal tonsils of Bactrian camels. Twelve Alashan Bactrian camels were categorized into four age groups: young (1-2 years, n=3), pubertal (3-5 years, n=3), middle-aged (6-16 years, n=3) and old (17-20 years, n=3). The distribution patterns of IgA and IgG ASCs in the pharyngeal tonsils of Bactrian camels of different ages were meticulously observed, analyzed and compared using immunohistochemical and statistical methods. The results revealed that IgA ASCs in the pharyngeal tonsils of all age groups were primarily clustered or diffusely distributed in the reticular epithelium and its subepithelial regions (region A) and around the glands (region C), scattered in the subepithelial regions of non-reticular epithelium (region B), and sporadically distributed in the interfollicular regions (region D). Interestingly, the distribution pattern of IgG ASCs in the pharyngeal tonsils closely mirrored that of IgA ASCs. The distribution densities of IgA and IgG ASCs in these four regions were significantly decreased in turn (P<0.05). However, IgA ASCs exhibited significantly higher densities than IgG ASCs in the same region (P<0.05). Age-related alterations indicated that the distribution densities of IgA and IgG ASCs in each region of the pharyngeal tonsils exhibited a trend of initially increasing and subsequently decreasing from young to old camels, reaching a peak in the pubertal group. As camels age, there was a significant decrease in the densities of IgA and IgG ASCs in all regions of the pharyngeal tonsils (P<0.05). The results demonstrate that the reticular epithelium and its subepithelial regions in the pharyngeal tonsils of Bactrian camels are the primary regions where IgA and IgG ASCs colonize and exert their immune functions. These regions play a pivotal role in inducing immune responses and defending against pathogen invasions in the pharyngeal tonsils. IgA ASCs may be the principal effector cells of the mucosal immune response in the pharyngeal tonsils of Bactrian camels. Aging significantly reduces the densities of IgA and IgG ASCs, while leaving their distribution patterns unaffected. These findings will provide valuable insights for further investigations into the immunomorphology, immunosenescence, and response mechanisms of the pharyngeal tonsils in Bactrian camels.
Collapse
Affiliation(s)
- Ying-Dong Fang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Fei Xie
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Wang-Dong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Wei-Wei Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Jia Lu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yu-Jiao Cheng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Wen-Hui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
4
|
Pastor R, Puyssegur J, de la Guardia MP, Varón LS, Beccaglia G, Spada N, de Lima AP, Collado MS, Blanco A, Scetti IA, Arabolaza ME, Paoli B, Chirdo F, Arana E. Role of germinal center and CD39 highCD73 + B cells in the age-related tonsillar involution. Immun Ageing 2024; 21:24. [PMID: 38610048 PMCID: PMC11010345 DOI: 10.1186/s12979-024-00425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 03/04/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND The tonsils operate as a protection ring of mucosa at the gates of the upper aero-digestive tract. They show similarities with lymph nodes and participate as inductive organs of systemic and mucosal immunity. Based on the reduction of their size since puberty, they are thought to experience involution in adulthood. In this context, we have used tonsillar mononuclear cells (TMC) isolated from patients at different stages of life, to study the effect of ageing and the concomitant persistent inflammation on these immune cells. RESULTS We found an age-dependent reduction in the proportion of germinal center B cell population (BGC) and its T cell counterpart (T follicular helper germinal center cells, TfhGC). Also, we demonstrated an increment in the percentage of local memory B cells and mantle zone T follicular helper cells (mTfh). Furthermore, younger tonsils rendered higher proportion of proliferative immune cells within the freshly isolated TMC fraction than those from older ones. We demonstrated the accumulation of a B cell subset (CD20+CD39highCD73+ cells) metabolically adapted to catabolize adenosine triphosphate (ATP) as patients get older. To finish, tonsillar B cells from patients at different ages did not show differences in their proliferative response to stimulation ex vivo, in bulk TMC cultures. CONCLUSIONS This paper sheds light on the changing aspects of the immune cellular landscape, over the course of time and constant exposure, at the entrance of the respiratory and digestive systems. Our findings support the notion that there is a re-modelling of the immune functionality of the excised tonsils over time. They are indicative of a transition from an effector type of immune response, typically oriented to reduce pathogen burden early in life, to the development of an immunosuppressive microenvironment at later stages, when tissue damage control gets critical provided the time passed under immune attack. Noteworthy, when isolated from such histologic microenvironment, older tonsillar B cells seem to level their proliferation capacity with the younger ones. Understanding these features will not only contribute to comprehend the differences in susceptibility to pathogens among children and adults but would also impact on vaccine developments intended to target these relevant mucosal sites.
Collapse
Affiliation(s)
- Rocío Pastor
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Av Córdoba 2351, C1120AAF, Buenos Aires, CABA, Argentina
- Department of Biological Sciences, Faculty of Exact Sciences, Institute of Immunological and Physiopathological studies (IIFP), University of La Plata (UNLP), National Council for Scientific and Technological Research (CONICET), La Plata, Argentina
| | - Juliana Puyssegur
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Av Córdoba 2351, C1120AAF, Buenos Aires, CABA, Argentina
| | - M Paula de la Guardia
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Av Córdoba 2351, C1120AAF, Buenos Aires, CABA, Argentina
| | - Lindybeth Sarmiento Varón
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Av Córdoba 2351, C1120AAF, Buenos Aires, CABA, Argentina
| | - Gladys Beccaglia
- Department of Pathology, Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Nicolás Spada
- Department of Pathology, Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Andrea Paes de Lima
- Department of Pathology, Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - M Soledad Collado
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Av Córdoba 2351, C1120AAF, Buenos Aires, CABA, Argentina
| | - Andrés Blanco
- Institute of Otolaryngology Arauz, Buenos Aires, Argentina
| | | | - M Elena Arabolaza
- Pediatric Otolaryngology Division, Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Bibiana Paoli
- Pediatric Otolaryngology Division, Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Fernando Chirdo
- Department of Biological Sciences, Faculty of Exact Sciences, Institute of Immunological and Physiopathological studies (IIFP), University of La Plata (UNLP), National Council for Scientific and Technological Research (CONICET), La Plata, Argentina
| | - Eloísa Arana
- Institute of Immunology, Genetics and Metabolism (INIGEM), Clinical Hospital 'José de San Martín', University of Buenos Aires (UBA), National Council for Scientific and Technological Research (CONICET), Av Córdoba 2351, C1120AAF, Buenos Aires, CABA, Argentina.
- Department of Immunology, School of Medicine, University of Buenos Aires (UBA), Buenos Aires, Argentina.
| |
Collapse
|
5
|
Lee S, Kim S, Kim SD, Oh SJ, Kong SK, Lee HM, Kim S, Choi SW. Differences in the metabolomic profile of the human palatine tonsil between pediatrics and adults. PLoS One 2023; 18:e0288871. [PMID: 37523386 PMCID: PMC10389742 DOI: 10.1371/journal.pone.0288871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 07/05/2023] [Indexed: 08/02/2023] Open
Abstract
Palatine tonsils (PT) are B cell-predominant lymphoid organs that provide primary immune responses to airborne and dietary pathogens. Numerous histopathological and immunological studies have been conducted on PT, yet no investigations have been conducted on its metabolic profile. We performed high-resolution magic angle spinning nuclear magnetic resonance spectroscopy-based metabolic profiling in 35 pediatric and 28 adult human palatine tonsillar tissue samples. A total of 36 metabolites were identified, and the levels of 10 metabolites were significantly different depending on age. Among them, partial correlation analysis shows that glucose levels increased with age, whereas glycine, phosphocholine, phosphoethanolamine, and ascorbate levels decreased with age. We confirmed the decrease in immunometabolic activity in adults through metabolomic analysis, which had been anticipated from previous histological and immunological studies on the PT. These results improve our understanding of metabolic changes in the PT with aging and serve as a basis for future tonsil-related metabolomic studies.
Collapse
Affiliation(s)
- Seokhwan Lee
- Department of Otorhinolaryngology, Inje University Haeundae Paik Hospital, Busan, Republic of Korea
| | - Seonghye Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, Republic of Korea
| | - Sung-Dong Kim
- Department of Otorhinolaryngology and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Se-Joon Oh
- Department of Otorhinolaryngology and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Soo-Keun Kong
- Department of Otorhinolaryngology and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Hyun-Min Lee
- Department of Otorhinolaryngology and Biomedical Research Institute, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Suhkmann Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, Republic of Korea
| | - Sung-Won Choi
- Department of Otorhinolaryngology and Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| |
Collapse
|
6
|
Bautista D, Romero-Sánchez C, Franco M, Angel J. Expression of Homing Receptors in IgM +IgD +CD27 + B Cells and Their Frequencies in Appendectomized and/or Tonsillectomized Individuals. Immunol Invest 2023:1-15. [PMID: 36943113 DOI: 10.1080/08820139.2023.2187303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
BACKGROUND In humans, blood circulating IgM+IgD+CD27+ B cells are considered analogous to those described in the marginal zone of the spleen and are involved in important immunological processes. The homing receptors they express, and the organs involved in their development (for example, intestinal organs in rabbits) are only partially known. We recently reported that this population is heterogeneous and composed of at least two subsets: one expressing high levels of IgM - IgMhi B cells - and another low levels - IgMlo B cells. OBJECTIVES To evaluate the expression of homing receptors on IgD+CD27+ IgMhi and IgMlo B cells and quantify their frequencies in blood of control and appendectomized and/or tonsillectomized volunteers. MATERIALS AND METHODS Using spectral flow cytometry, the simultaneous expression of 12 previously reported markers that differentiate IgMhi B cells and IgMlo B cells and of α4β7, CCR9, CD22 and CCR10 were evaluated in blood circulating B cells of control and appendectomized and/or tonsillectomized volunteers. RESULTS The existence of phenotypically defined IgMlo and IgMhi B cell subsets was confirmed. They differentially expressed intestinal homing receptors, and the expression of α4β7 and CCR9 seems to determine new IgM subpopulations. IgMlo and IgMhi B cells were detected at lower frequencies in the appendectomized and/or tonsillectomized volunteers relative to controls. CONCLUSIONS Human blood circulating IgD+CD27+ IgMlo and IgMhi B cell subsets differentially express homing receptors, and it is necessary to investigate if mucosal organs are important in their development.
Collapse
Affiliation(s)
- Diana Bautista
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
- GIBAT, Facultad de Medicina, Universidad El Bosque, Bogotá, Colombia
| | - Consuelo Romero-Sánchez
- Cellular and Molecular Immunology Group/INMUBO, Universidad El Bosque, Bogotá, Colombia
- Clinical Immunology Group, Hospital Militar Central/Universidad Militar Nueva Granada, Bogotá, Colombia
| | - Manuel Franco
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Juana Angel
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
7
|
Tonsillectomy in Adults over 40 Years of Age Does Not Increase the Risk of Pneumonia: A Three-Year Longitudinal Follow-Up Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182413059. [PMID: 34948668 PMCID: PMC8701389 DOI: 10.3390/ijerph182413059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/17/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022]
Abstract
To evaluate the effect of tonsillectomy on the subsequent risk of pneumonia in an adult population, a longitudinal follow-up case control study was conducted using a national health screening cohort dataset between 2003 and 2012. A total of 1005 tonsillectomy participants were 1:4 matched with 4020 control participants for age, sex, income, and region of residence. The number of pneumonia diagnoses were counted from the index date (ID) to the date after the first-year (post-ID 1y), second-year (post-ID 2y), and third-year (post-ID 3y) periods. Simple linear regression and multiple linear regression were conducted to calculate estimated values (EVs) and 95% confidence intervals for each post-ID pneumonia and compared between the two groups. Subgroup analyses were performed according to age, sex, and the number of pneumonia cases during the year prior to the ID (pre-ID 1y). In the simple linear regression model, post-ID pneumonia did not show a significant correlation with tonsillectomy (post-ID 1y: EV = 0.003; post-ID 2y: EV = 0.007; post-ID 3y: EV = 0.013; all p > 0.05). In the multiple regression model, post-ID pneumonia also did not show a significant correlation with tonsillectomy (post-ID 1y: EV = 0.001; post-ID 2y: EV = 0.006; post-ID 3y: EV = 0.011; all p > 0.05). In the subgroup analyses, tonsillectomy did not show a significant correlation with post-ID pneumonia in either the simple linear regression or multiple linear regression models (all p > 0.05). Tonsillectomy performed in the adult population did not show any effect in increasing the incidence of pneumonia during the first three postoperative years.
Collapse
|
8
|
King HW, Wells KL, Shipony Z, Kathiria AS, Wagar LE, Lareau C, Orban N, Capasso R, Davis MM, Steinmetz LM, James LK, Greenleaf WJ. Integrated single-cell transcriptomics and epigenomics reveals strong germinal center-associated etiology of autoimmune risk loci. Sci Immunol 2021; 6:eabh3768. [PMID: 34623901 PMCID: PMC8859880 DOI: 10.1126/sciimmunol.abh3768] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The germinal center (GC) response is critical for both effective adaptive immunity and establishing peripheral tolerance by limiting autoreactive B cells. Dysfunction in these processes can lead to defective immune responses to infection or contribute to autoimmune disease. To understand the gene regulatory principles underlying the GC response, we generated a single-cell transcriptomic and epigenomic atlas of the human tonsil, a widely studied and representative lymphoid tissue. We characterize diverse immune cell subsets and build a trajectory of dynamic gene expression and transcription factor activity during B cell activation, GC formation, and plasma cell differentiation. We subsequently leverage cell type–specific transcriptomic and epigenomic maps to interpret potential regulatory impact of genetic variants implicated in autoimmunity, revealing that many exhibit their greatest regulatory potential in GC-associated cellular populations. These included gene loci linked with known roles in GC biology (IL21, IL21R, IL4R, and BCL6) and transcription factors regulating B cell differentiation (POU2AF1 and HHEX). Together, these analyses provide a powerful new cell type–resolved resource for the interpretation of cellular and genetic causes underpinning autoimmune disease.
Collapse
Affiliation(s)
- Hamish W King
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Kristen L Wells
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Zohar Shipony
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Arwa S Kathiria
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Lisa E Wagar
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Caleb Lareau
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Pathology, University of California Irvine, Irvine, CA, USA
| | - Nara Orban
- Barts Health Ear, Nose and Throat Service, The Royal London Hospital, London, UK
| | - Robson Capasso
- Division of Sleep Surgery, Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark M Davis
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Lars M Steinmetz
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Genome Technology Center, Stanford University, Stanford, CA, USA
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Louisa K James
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, USA
- Chan–Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
9
|
Isolation of primary human B lymphocytes from tonsils compared to blood as alternative source for ex vivo application. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1179:122853. [PMID: 34325309 DOI: 10.1016/j.jchromb.2021.122853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 01/18/2023]
Abstract
B lymphocytes ('B cells') are components of the human immune system with obvious potential for medical and biotechnological applications. Here, we discuss the isolation of primary human B cells from both juvenile and adult tonsillar material using a two-step procedure based on gradient centrifugation followed by separation on a nylon wool column as alternative to the current gold standard, i.e., negative immunosorting from buffy coats by antibody-coated magnetic beads. We show that the nylon wool separation is a low-cost method well suited to the isolation of large amounts of primary B cells reaching purities ≥ 80%. More importantly, this method allows the preservation of all B cell subsets, while MACS sorting seems to be biased against a certain B cell subtype, namely the CD27+ B cells. Importantly, compared to blood, the excellent recovery yield during purification of tonsillar B cells provides high number of cells, hence increases the number of subsequent experiments feasible with identical cell material, consequently improving comparability of results. The cultivability of the isolated B cells was demonstrated using pokeweed mitogen (PWM) as a stimulatory substance. Our results showed for the first time that the proliferative response of tonsillar B cells to mitogens declines with the age of the donor. Furthermore, we observed that PWM treatment stimulates the proliferation of a dedicated subpopulation and induces some terminal differentiation with ASCs signatures. Taken together this indicates that the proposed isolation procedure preserves the proliferative capability as well as the differentiation capacity of the B cells.
Collapse
|
10
|
The investigation of bacterial adhesion of palatine tonsils epithelial cells in patient with infectious mononucleosis. EUREKA: HEALTH SCIENCES 2021. [DOI: 10.21303/2504-5679.2021.001835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim. To evaluate the features of pharynx tonsils mucous membrane colonization by pathogenic and opportunistic microorganisms by using the pharynx palatine tonsils epithelium electron microscopic examination of the patients with infectious mononucleosis and acute streptococcal tonsillitis.
Materials and methods. Two patients – patient P., 12 years old with a confirmed diagnosis of infectious mononucleosis and patient A., 8 years old with confirmed acute streptococcal tonsillitis. The patients were taken a bacteriological examination of the mucus and epithelium scraping from the surface of the pharyngeal tonsils. Tissue samples were examined in the electron microscopy laboratory of the Lviv National University.
Results and discussion. 36 tonsils epithelial tissue micro preparations of patient A. and 41 micro preparations of patient P. were studied. Streptococcus pyogenes, Str. pneumoniae, Str. viridans, Сandida albicans, as well as non-pathogenic bacteria: Diphtheroides sp., Neisseria sp., Corynebacterium spp. were identified as result of the patient P. bacteriological examination of mucus from the surface of the pharyngeal tonsils. Staph. aureus, Str. viridans, Str. pneumoniae were identified during a bacteriological examination of patient A. Eosinophils with a two-segmented nucleus, specific granularity, phagocytosed spherical bacteria in the cytoplasm were detected during the histological examination of the materials taken from the surface of the patient’s tonsils with acute tonsillitis. Research showed that bacteria were accumulated not only in the structure of extracellular detritus. Numerous bacteria accumulations were also found in the cytoplasm of the epithelial cells in the patient with infectious mononucleosis. The cell's shape looked like a bunch of grapes.
Conclusions. The electron microscopic examination showed differences in the coccal flora localization: the extracellular localization of bacteria in the patient with acute bacterial tonsillitis and intraepithelial presence of the bacteria in the patient with tonsillitis during infectious mononucleosis were found.
Collapse
|
11
|
Gibbs MJ, Bergeron CM, Bethel KJ, Gibbs PM. Tonsillar lymphoid alterations caused by TNF-α inhibitors: an iatrogenic mimicker of lymphoproliferative disorders. Histopathology 2021; 78:909-911. [PMID: 33301626 DOI: 10.1111/his.14313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/01/2020] [Accepted: 12/06/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Michelle J Gibbs
- University of Central Lancashire School of Medicine, Preston, Lancashire, UK
| | | | - Kelly J Bethel
- Department of Pathology, Scripps Clinic, La Jolla, CA, USA
| | - Paul M Gibbs
- Department of Pathology, Scripps Clinic, La Jolla, CA, USA
| |
Collapse
|
12
|
Silvoniemi A, Mikola E, Ivaska L, Jeskanen M, Löyttyniemi E, Puhakka T, Vuorinen T, Jartti T. Intratonsillar detection of 27 distinct viruses: A cross-sectional study. J Med Virol 2020; 92:3830-3838. [PMID: 32603480 PMCID: PMC7689766 DOI: 10.1002/jmv.26245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
Palatine tonsils have been observed to harbor several distinct respiratory and herpesviruses in separate studies. In this study, the presence of these viruses in palatine tonsils was comprehensively studied in both children and adults. A cross-sectional analysis of 181 patients (median age 22 years; range, 2.6-66) operated for a benign tonsillar disease was conducted. Real-time polymerase chain reaction was performed to detect 27 distinct viruses in all: eight human herpesviruses, 16 respiratory viruses, parvo B19, and polyoma BK/JC viruses. Clinical characteristics of the patients and underlying conditions were evaluated. In total, 92% of patients had virus detected in tonsils (Epstein-Barr virus 72%, human herpesvirus 7, and 6B 54% and 16%, respectively, enterovirus 18%, parvovirus B19 7% and the rest <4%). No herpes simplex virus 2, varicella zoster virus, polyoma JC virus, parainfluenza-, metapneumo-, or coronaviruses were found. Enterovirus was more common in children and was frequently observed in the presence of HHV6B. None of the viruses showed a positive association to the tonsillar disease. Respiratory symptoms were not associated with the prevalence of viruses. This study comprehensively reports a cross-sectional view of intratonsillar virus infections in elective tonsillectomy patients in a wide age range cohort. Tonsils are a major virus reservoir for distinct herpes and respiratory viruses without a positive association with tonsillar disease or respiratory symptoms.
Collapse
Affiliation(s)
- Antti Silvoniemi
- Department of Otorhinolaryngology – Head and Neck SurgeryTurku University Hospital and University of TurkuTurkuFinland
| | - Emilia Mikola
- Department of Otorhinolaryngology – Head and Neck SurgeryTurku University Hospital and University of TurkuTurkuFinland
| | - Lotta Ivaska
- Department of Otorhinolaryngology – Head and Neck SurgeryTurku University Hospital and University of TurkuTurkuFinland
| | - Marja Jeskanen
- Department of Clinical Microbiology, Turku University Hospital and Institute of BiomedicineUniversity of TurkuTurkuFinland
| | | | - Tuomo Puhakka
- Department of Otorhinolaryngology – Head and Neck SurgeryTurku University Hospital and University of TurkuTurkuFinland
| | - Tytti Vuorinen
- Department of Clinical Microbiology, Turku University Hospital and Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Tuomas Jartti
- Department of Pediatrics and Adolescent MedicineTurku University Hospital and University of TurkuTurkuFinland
| |
Collapse
|
13
|
Shankwitz K, Pallikkuth S, Sirupangi T, Kirk Kvistad D, Russel KB, Pahwa R, Gama L, Koup RA, Pan L, Villinger F, Pahwa S, Petrovas C. Compromised steady-state germinal center activity with age in nonhuman primates. Aging Cell 2020; 19:e13087. [PMID: 31840398 PMCID: PMC6996951 DOI: 10.1111/acel.13087] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 12/27/2022] Open
Abstract
Age-related reductions in vaccine-induced B cells in aging indicate that germinal centers (GCs), the anatomical site where the development of humoral responses takes place, may lose efficacy with age. We have investigated the baseline follicular and GC composition in nonhuman primates (NHPs) with respect to their age. There was a marked reduction in follicular area in old animals. We found significantly lower normalized numbers of follicular PD1hi CD4 T (Tfh) and proliferating (Ki67hi ) GC B cells with aging, a profile associated with significantly higher numbers of potential follicular suppressor FoxP3hi Lag3hi CD4 T cells. Furthermore, a positive correlation was found between Tfh and follicular CD8 T cells (fCD8) only in young animals. Despite the increased levels of circulating preinflammatory factors in aging, young animals had higher numbers of monocytes and granulocytes in the follicles, a profile negatively associated with numbers of Tfh cells. Multiple regression analysis showed an altered association between GC B cells and other GC immune cell populations in old animals suggesting a differential mechanistic regulation of GC activity in aging. Our data demonstrate defective baseline GC composition in old NHPs and provide an immunological base for further understanding the adaptive humoral responses with respect to aging.
Collapse
Affiliation(s)
- Kimberly Shankwitz
- Tissue Analysis CoreImmunology LaboratoryVaccine Research CenterNIAIDNIHBethesdaMDUSA
- New Iberia Research CenterUniversity of Louisiana at LafayetteLafayetteLAUSA
| | - Suresh Pallikkuth
- Microbiology and ImmunologyUniversity of Miami Miller School MedicineMiamiFLUSA
| | | | - Daniel Kirk Kvistad
- Microbiology and ImmunologyUniversity of Miami Miller School MedicineMiamiFLUSA
| | - Kyle Blaine Russel
- Microbiology and ImmunologyUniversity of Miami Miller School MedicineMiamiFLUSA
| | - Rajendra Pahwa
- Microbiology and ImmunologyUniversity of Miami Miller School MedicineMiamiFLUSA
| | - Lucio Gama
- Department of Molecular and Comparative PathobiologyJohns Hopkins School of MedicineBaltimoreUSA
- Vaccine Research CenterNIAIDNIHBethesdaMDUSA
- Immunology LaboratoryVaccine Research CenterNIAIDNIHBethesdaMDUSA
| | - Richard A. Koup
- Immunology LaboratoryVaccine Research CenterNIAIDNIHBethesdaMDUSA
| | - Li Pan
- Microbiology and ImmunologyUniversity of Miami Miller School MedicineMiamiFLUSA
| | - Francois Villinger
- New Iberia Research CenterUniversity of Louisiana at LafayetteLafayetteLAUSA
| | - Savita Pahwa
- Microbiology and ImmunologyUniversity of Miami Miller School MedicineMiamiFLUSA
| | - Constantinos Petrovas
- Tissue Analysis CoreImmunology LaboratoryVaccine Research CenterNIAIDNIHBethesdaMDUSA
| |
Collapse
|
14
|
Birkin E, Moore KS, Huang C, Christopher M, Rees JI, Jayaprakasam V, Fielding PA. Determinants of physiological uptake of 18F-fluorodeoxyglucose in palatine tonsils. Medicine (Baltimore) 2018; 97:e11040. [PMID: 29901601 PMCID: PMC6025693 DOI: 10.1097/md.0000000000011040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To determine the extent of physiological variation of uptake of F-flurodeoxyglucose (FDG) within palatine tonsils. To define normal limits for side-to-side variation and characterize factors affecting tonsillar uptake of FDG.Over a period of 16 weeks 299 adult patients at low risk for head and neck pathology, attending our center for FDG positron emission tomography/computed tomography (PET/CT) scans were identified. The maximum standardized uptake value (SUVmax) was recorded for each palatine tonsil. For each patient age, gender, smoking status, scan indication and prior tonsillectomy status as well as weather conditions were noted.There was a wide variation in palatine tonsil FDG uptake with SUVmax values between 1.3 and 11.4 recorded. There was a strong left to right correlation for tonsillar FDG uptake within each patient (P < .01). The right palatine tonsil showed increased FDG uptake (4.63) compared to the left (4.47) (P < .01). In multivariate analysis, gender, scan indication, and prevailing weather had no significant impact of tonsillar FDG uptake. Lower tonsillar uptake was seen in patients with a prior history of tonsillectomy (4.13) than those without this history (4.64) (P < .01). Decreasing tonsillar FDG uptake was seen with advancing age (P < .01). Significantly lower uptake was seen in current smokers (SUVmax 4.2) than nonsmokers (SUV 4.9) (P = .03).Uptake of FDG in palatine tonsils is variable but shows a strong side-to-side correlation. We suggest the left/ right SUVmax ratio as a guide to normality with a first to 99th percentiles of (0.70-1.36) for use in patients not suspected to have tonsillar pathology.
Collapse
Affiliation(s)
- Emily Birkin
- PETIC, Cardiff University, University Hospital of Wales, Heath Park
| | | | - Chao Huang
- South East Wales Cancer trials unit, Neuadd Meirionnydd, Cardiff CF14 4YS, UK
| | | | - John I. Rees
- PETIC, Cardiff University, University Hospital of Wales, Heath Park
| | | | | |
Collapse
|
15
|
|
16
|
Wohlford EM, Baresel PC, Wilmore JR, Mortelliti AJ, Coleman CB, Rochford R. Changes in Tonsil B Cell Phenotypes and EBV Receptor Expression in Children Under 5-Years-Old. CYTOMETRY PART B-CLINICAL CYTOMETRY 2017; 94:291-301. [PMID: 28885784 DOI: 10.1002/cyto.b.21589] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 07/27/2017] [Accepted: 08/30/2017] [Indexed: 11/11/2022]
Abstract
BACKGROUND Palatine tonsils are principally B cell organs that are the initial line of defense against many oral pathogens, as well as the site of infection for others. While the size of palatine tonsils changes greatly in the first five years of life, the cellular changes during this period are not well studied. Epstein Barr virus (EBV) is a common orally transmitted virus that infects tonsillar B cells. Naïve B cells are thought to be the target of primary infection with EBV in vivo, suggesting that they are targeted by the virus. EBV enters B cells through CD21, but studies of older children and adults have not shown differences in surface CD21 between naïve B cells and other tonsil B cell populations. METHODS In this study, we used an 11-color flow cytometry panel to detail the changes in B cell subpopulations in human tonsils over the first five years of life from 33 healthy US children. RESULTS We provide reference ranges for tonsil B cell subpopulations over this age range. We show that the frequency of naïve tonsil B cells decreases over the early years of life, and that naïve B cells expressed higher surface levels of CD21 relative to other tonsil B cell populations. CONCLUSIONS We show that young children have a higher frequency of naïve tonsil B cells, and importantly that these cells express increased surface EBV receptor, suggesting that young children have a larger pool of cells that can be infected by the virus. © 2017 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- Eric M Wohlford
- Department of Microbiology and Immunology, State University of New York, Upstate Medical University, Syracuse, New York
| | - Paul C Baresel
- Department of Microbiology and Immunology, State University of New York, Upstate Medical University, Syracuse, New York
| | - Joel R Wilmore
- Department of Microbiology and Immunology, State University of New York, Upstate Medical University, Syracuse, New York
| | - Anthony J Mortelliti
- Department of Otolaryngology and Communication Sciences and Department of Pediatrics, State University of New York, Upstate Medical University, Syracuse, New York
| | - Carrie B Coleman
- Department of Immunology and Microbiology, University of Colorado, Denver, Colorado, Aurora
| | - Rosemary Rochford
- Department of Microbiology and Immunology, State University of New York, Upstate Medical University, Syracuse, New York.,Department of Immunology and Microbiology, University of Colorado, Denver, Colorado, Aurora
| |
Collapse
|