1
|
Batth R, Poormassalehgoo A, Bhardwaj K, Kaniecka E, Goto-Yamada S. A Simple and Scalable Chopped-Thallus Transformation Method for Marchantia polymorpha. PLANTS (BASEL, SWITZERLAND) 2025; 14:582. [PMID: 40006840 PMCID: PMC11859832 DOI: 10.3390/plants14040582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
The liverwort Marchantia polymorpha has emerged as a valuable model for studying fundamental biological processes and the evolutionary history of land plants. Agrobacterium-mediated transformation is widely used for genetic modification of M. polymorpha using spores, thalli, and gemmae. While spores offer high transformation efficiency, they result in diverse genetic backgrounds due to sexual reproduction. Conversely, thallus- and gemma-based methods maintain genetic consistency but are impractical for large-scale applications. To address these limitations, we developed a novel chopped-thallus transformation method. This technique improves transformation efficiency by generating numerous thallus fragments through chopping and optimizing the regeneration duration. The method demonstrated superior transformation efficiency compared to traditional approaches and achieved sufficient numbers of transformants using simplified Gamborg's B5 medium, previously considered suboptimal. This scalable and straightforward method enables the generation of large numbers of genetically consistent transformants, facilitating high-throughput experiments, including mutant screening and other large-scale applications.
Collapse
Affiliation(s)
- Rituraj Batth
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Andisheh Poormassalehgoo
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-387 Krakow, Poland
| | - Kritika Bhardwaj
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Elżbieta Kaniecka
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 30-387 Krakow, Poland
| | - Shino Goto-Yamada
- Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
2
|
Biswal DP, Panigrahi KCS. Photoperiodic control of growth and reproduction in non-flowering plants. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:851-872. [PMID: 39575895 DOI: 10.1093/jxb/erae471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/21/2024] [Indexed: 04/27/2025]
Abstract
Photoperiodic responses shape plant fitness to the changing environment and are important regulators of growth, development, and productivity. Photoperiod sensing is one of the most important cues to track seasonal variations. It is also a major cue for reproductive success. The photoperiodic information conveyed through the combined action of photoreceptors and the circadian clock orchestrates an output response in plants. Multiple responses such as hypocotyl elongation, induction of dormancy, and flowering are photoperiodically regulated in seed plants (eg. angiosperms). Flowering plants such as Arabidopsis or rice have served as important model systems to understand the molecular players involved in photoperiodic signalling. However, photoperiodic responses in non-angiosperm plants have not been investigated and documented in detail. Genomic and transcriptomic studies have provided evidence on the conserved and distinct molecular mechanisms across the plant kingdom. In this review, we have attempted to compile and compare photoperiodic responses in the plant kingdom with a special focus on non-angiosperms.
Collapse
Affiliation(s)
- Durga Prasad Biswal
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, India
- Department of Botany, S.K.C.G. (Autonomous) College, Paralakhemundi, Gajapati, 761200, Odisha, India
| | - Kishore Chandra Sekhar Panigrahi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
3
|
Iwano M, Suetsugu N, Nishihama R, Ishida S, Horie T, Costa A, Katsuno T, Kimura M, Iida K, Iida H, Nagai T, Kohchi T. MID1-COMPLEMENTING ACTIVITY regulates cell proliferation and development via Ca2+ signaling in Marchantia polymorpha. PLANT PHYSIOLOGY 2024; 197:kiae613. [PMID: 39535860 PMCID: PMC11663713 DOI: 10.1093/plphys/kiae613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/23/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
MID1-COMPLEMENTING ACTIVITY (MCA) is a land plant-specific, plasma membrane protein, and Ca2+ signaling component that responds to exogenous mechanical stimuli, such as touch, gravity, and hypotonic-osmotic stress, in various plant species. MCA is essential for cell proliferation and differentiation during growth and development in rice (Oryza sativa) and maize (Zea mays). However, the mechanism by which MCA mediates cell proliferation and differentiation via Ca2+ signaling remains unknown. Here, we address this question using the liverwort Marchantia polymorpha. We show that the M. polymorpha MCA ortholog, MpMCA, is highly expressed in actively dividing regions, such as apical notches in the thalli and developing gametangiophores, and that MpMCA is a plasma membrane protein. In vivo, Ca2+ imaging using a Ca2+ sensor (yellow cameleon) revealed that MpMCA is required for maintaining proper [Ca2+]cyt levels in the apical notch region, egg cells, and antheridium cells. Mpmca mutant plants showed severe cell proliferation and differentiation defects in the thalli, gametangiophores, and gametangia, resulting in abnormal development and unsuccessful fertilization. Furthermore, expression of the Arabidopsis MCA1 gene complemented most of the defects in the growth and development of the Mpmca mutant plants. Our findings indicate that MpMCA is an evolutionarily conserved Ca2+-signaling component that regulates cell proliferation and development across the life cycle of land plants.
Collapse
Affiliation(s)
- Megumi Iwano
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Noriyuki Suetsugu
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Ryuichi Nishihama
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Sakiko Ishida
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Alex Costa
- Department of Biosciences, University of Milan, Milano 20133, Italy
| | - Tatsuya Katsuno
- Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Midori Kimura
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan
| | - Kazuko Iida
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan
| | - Hidetoshi Iida
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan
| | - Takeharu Nagai
- SANKEN, The University of Osaka, Ibaraki, Osaka 567-0047, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
4
|
Chen C, Hu Y, Ikeuchi M, Jiao Y, Prasad K, Su YH, Xiao J, Xu L, Yang W, Zhao Z, Zhou W, Zhou Y, Gao J, Wang JW. Plant regeneration in the new era: from molecular mechanisms to biotechnology applications. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1338-1367. [PMID: 38833085 DOI: 10.1007/s11427-024-2581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/26/2024] [Indexed: 06/06/2024]
Abstract
Plants or tissues can be regenerated through various pathways. Like animal regeneration, cell totipotency and pluripotency are the molecular basis of plant regeneration. Detailed systematic studies on Arabidopsis thaliana gradually unravel the fundamental mechanisms and principles underlying plant regeneration. Specifically, plant hormones, cell division, epigenetic remodeling, and transcription factors play crucial roles in reprogramming somatic cells and reestablishing meristematic cells. Recent research on basal non-vascular plants and monocot crops has revealed that plant regeneration differs among species, with various plant species using distinct mechanisms and displaying significant differences in regenerative capacity. Conducting multi-omics studies at the single-cell level, tracking plant regeneration processes in real-time, and deciphering the natural variation in regenerative capacity will ultimately help understand the essence of plant regeneration, improve crop regeneration efficiency, and contribute to future crop design.
Collapse
Affiliation(s)
- Chunli Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences (CAS), China National Botanical Garden, Beijing, 100093, China.
| | - Momoko Ikeuchi
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan.
| | - Yuling Jiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Kalika Prasad
- Indian Institute of Science Education and Research, Pune, 411008, India.
- , Thiruvananthapuram, 695551, India.
| | - Ying Hua Su
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
- Sino-German Joint Research Center on Agricultural Biology, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology (IGDB), CAS, Beijing, 100101, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), IGDB, CAS, Beijing, 100101, China.
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
| | - Weibing Yang
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
- CEPAMS, SIPPE, CAS, Shanghai, 200032, China.
| | - Zhong Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, CEMPS, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Wenkun Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Yun Zhou
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, 47907, USA.
| | - Jian Gao
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai, 200032, China.
- New Cornerstone Science Laboratory, Shanghai, 200032, China.
| |
Collapse
|
5
|
Flores-Sandoval E, Nishihama R, Bowman JL. Hormonal and genetic control of pluripotency in bryophyte model systems. CURRENT OPINION IN PLANT BIOLOGY 2024; 77:102486. [PMID: 38041967 DOI: 10.1016/j.pbi.2023.102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 12/04/2023]
Abstract
Land plant meristems are reservoirs of pluripotent stem cells where new tissues emerge, grow and eventually differentiate into specific cell identities. Compared to algae, where cells are produced in two-dimensional tissues via tip or marginal growth, land plants have meristems that allow three-dimensional growth for successful exploration of the terrestrial environment. In land plants, meristem maintenance leads to indeterminate growth and the production of new meristems leads to branching or regeneration via reprogramming of wounded somatic cells. Emerging model systems in the haploid dominant and monophyletic bryophytes are allowing comparative analyses of meristem gene regulatory networks to address whether all plants use common or diverse programs to organise, maintain, and regenerate meristems. In this piece we aim to discuss recent advances in genetic and hormonal control of bryophyte meristems and possible convergence or discrepancies in an exciting and emerging field in plant biology.
Collapse
Affiliation(s)
- Eduardo Flores-Sandoval
- School of Biological Sciences, Monash University, Melbourne, Vic, 3800, Australia; ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, Vic, 3800, Australia.
| | - Ryuichi Nishihama
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Vic, 3800, Australia; ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, Vic, 3800, Australia
| |
Collapse
|
6
|
Pashkovskiy P, Khalilova L, Vereshchagin M, Voronkov A, Ivanova T, Kosobryukhov AA, Allakhverdiev SI, Kreslavski VD, Kuznetsov VV. Impact of varying light spectral compositions on photosynthesis, morphology, chloroplast ultrastructure, and expression of light-responsive genes in Marchantia polymorpha. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108044. [PMID: 37776673 DOI: 10.1016/j.plaphy.2023.108044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/18/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023]
Abstract
Marchantia polymorpha is a convenient model for studying light of different spectral compositions on various physiological and biochemical processes because its photoreceptor system is vastly simplified. The influence of red light (RL, 660 nm), far-red light (FRL, 730 nm), blue light (BL, 450 nm), and green light (GL, 525 nm) compared to white light (high-pressure sodium light (HPSL), white LEDs (WL 450 + 580 nm) and white fluorescent light (WFL) on photosynthetic and transpiration rates, photosystem II (PSII) activity, photomorphogenesis, and the expression of light and hormonal signaling genes was studied. The ultrastructure of the chloroplasts in different tissues of the gametophyte M. polymorpha was examined. FRL led to the formation of agranal chloroplasts (in the epidermis and the chlorenchyma) with a high starch content (in the parenchyma), which led to a reduced intensity of photosynthesis. BL increased the transcription of genes for the biosynthesis of secondary metabolites - chalcone synthase (CHS), cellulose synthase (CELL), and L-ascorbate peroxidase (APOX3), which is consistent with the increased activity of low-molecular weight antioxidants. FRL increased the expression of phytochrome apoprotein (PHY) and cytokinin oxidase (CYTox) genes, but the expression of the phytochrome interacting factor (PIF) gene decreased, which was accompanied by a significant change in gametophyte morphology. Analysis of crosstalk gene expression, and changes in morphology and photosynthetic activity was carried out.
Collapse
Affiliation(s)
- Pavel Pashkovskiy
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia.
| | - Lyudmila Khalilova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia.
| | - Mikhail Vereshchagin
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia.
| | - Alexander Voronkov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia.
| | - Tatiana Ivanova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia.
| | - Anatoliy A Kosobryukhov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region, 142290, Russia.
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia.
| | - Vladimir D Kreslavski
- Institute of Basic Biological Problems, Russian Academy of Sciences, Institutskaya Street 2, Pushchino, Moscow Region, 142290, Russia.
| | - Vladimir V Kuznetsov
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, 127276, Russia.
| |
Collapse
|
7
|
Marron AO, Sauret‐Güeto S, Rebmann M, Silvestri L, Tomaselli M, Haseloff J. An enhancer trap system to track developmental dynamics in Marchantia polymorpha. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:604-628. [PMID: 37583263 PMCID: PMC10952768 DOI: 10.1111/tpj.16394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023]
Abstract
A combination of streamlined genetics, experimental tractability and relative morphological simplicity compared to vascular plants makes the liverwort Marchantia polymorpha an ideal model system for studying many aspects of plant biology. Here we describe a transformation vector combining a constitutive fluorescent membrane marker with a nuclear marker that is regulated by nearby enhancer elements and use this to produce a library of enhancer trap lines for Marchantia. Screening gemmae from these lines allowed the identification and characterization of novel marker lines, including markers for rhizoids and oil cells. The library allowed the identification of a margin tissue running around the thallus edge, highlighted during thallus development. The expression of this marker is correlated with auxin levels. We generated multiple markers for the meristematic apical notch region, which have different spatial expression patterns, reappear at different times during meristem regeneration following apical notch excision and have varying responses to auxin supplementation or inhibition. This reveals that there are proximodistal substructures within the apical notch that could not be observed otherwise. We employed our markers to study Marchantia sporeling development, observing meristem emergence as defining the protonema-to-prothallus stage transition, and subsequent production of margin tissue during the prothallus stage. Exogenous auxin treatment stalls meristem emergence at the protonema stage but does not inhibit cell division, resulting in callus-like sporelings with many rhizoids, whereas pharmacologically inhibiting auxin synthesis and transport does not prevent meristem emergence. This enhancer trap system presents a useful resource for the community and will contribute to future Marchantia research.
Collapse
Affiliation(s)
- Alan O. Marron
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Susanna Sauret‐Güeto
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
- Present address:
Crop Science CentreUniversity of Cambridge93 Lawrence Weaver, RoadCambridgeCB3 0LEUK
| | - Marius Rebmann
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Linda Silvestri
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Marta Tomaselli
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Jim Haseloff
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| |
Collapse
|
8
|
Tanaka H, Hashimoto N, Kawai S, Yumoto E, Shibata K, Tameshige T, Yamamoto Y, Sugimoto K, Asahina M, Ikeuchi M. Auxin-Induced WUSCHEL-RELATED HOMEOBOX13 Mediates Asymmetric Activity of Callus Formation upon Cutting. PLANT & CELL PHYSIOLOGY 2023; 64:305-316. [PMID: 36263676 DOI: 10.1093/pcp/pcac146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/30/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Plants have the regenerative ability to reconnect cut organs, which is physiologically important to survive severe tissue damage. The ability to reconnect organs is utilized as grafting to combine two different individuals. Callus formation at the graft junction facilitates organ attachment and vascular reconnection. While it is well documented that local wounding signals provoke callus formation, how callus formation is differentially regulated at each cut end remains elusive. Here, we report that callus formation activity is asymmetrical between the top and bottom cut ends and is regulated by differential auxin accumulation. Gene expression analyses revealed that cellular auxin response is preferentially upregulated in the top part of the graft. Disruption of polar auxin transport inhibited callus formation from the top, while external application of auxin was sufficient to induce callus formation from the bottom, suggesting that asymmetric auxin accumulation is responsible for active callus formation from the top end. We further found that the expression of a key regulator of callus formation, WUSCHEL-RELATED HOMEOBOX 13 (WOX13), is induced by auxin. The ectopic callus formation from the bottom end, which is triggered by locally supplemented auxin, requires WOX13 function, demonstrating that WOX13 plays a pivotal role in auxin-dependent callus formation. The asymmetric WOX13 expression is observed both in grafted petioles and incised inflorescence stems, underscoring the generality of our findings. We propose that efficient organ reconnection is achieved by a combination of local wounding stimuli and disrupted long-distance signaling.
Collapse
Affiliation(s)
- Hayato Tanaka
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, 950-2181 Japan
| | - Naoki Hashimoto
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, 950-2181 Japan
| | - Satomi Kawai
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, 950-2181 Japan
| | - Emi Yumoto
- Advanced Instrumental Analysis Center, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551 Japan
| | - Kyomi Shibata
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551 Japan
| | - Toshiaki Tameshige
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, 630-0192 Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Yokohama, 244-0813 Japan
| | - Yuma Yamamoto
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, 630-0192 Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
- Department of Biological Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 119-0033 Japan
| | - Masashi Asahina
- Advanced Instrumental Analysis Center, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551 Japan
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, 320-8551 Japan
| | - Momoko Ikeuchi
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, 950-2181 Japan
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara, 630-0192 Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
| |
Collapse
|
9
|
Jia H, Ye J, Wu Y, Zhang M, Peng W, Wang H, Tang D. Evaluation and characterization of biochar on the biogeochemical behavior of polycyclic aromatic hydrocarbons in mangrove wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161039. [PMID: 36549525 DOI: 10.1016/j.scitotenv.2022.161039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/24/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
As the inter-tidal regions between land and ocean, mangrove ecosystems have high polycyclic aromatic hydrocarbons (PAHs) content, and the over accumulation of PAHs in mangrove wetland poses a serious ecological risk to the health of plant and living creatures. Comparison to the agricultural sources -biochar, biochar produced from wetland plant has lower O/C (molar ratio), larger N contents, higher stability and more benefits. However, whether the rhizosphere action occurs in biochar- amended sediment and how to influence the biogeochemical behavior of PAH have rarely been reported. In this context, a leaching procedure and pot experiment (60-d) were performed on migration and transformation of PAH at the sediment, and toxicity and their bioavailability in plant affected by the presence of Kandelia obovate-derived biochar in Southeast China. Root exudates amendments significantly increased the cumulative leaching-loss of pyrene by 36-51 % with or without biochar amendment via continuous diffusion and partition process, and biochar amendments decreased the bioavailability of pyrene (16.8-25.8 %) probably due to a faster pyrene sorption on inter-phase transport against desorption. The regression analysis indicated a significant relationship (p < 0.05) between leachate pH and pyrene concentrations. Notably, the bioaccumulation of pyrene on K. obovate parts had significant negative correlation (p < 0.05) to biochar. The activities of four key antioxidizes (phenylalanine ammonia-lyase, dismutases, peroxidases and catalases) were significantly decreased with the application of biochar. Moreover, biochar plays a positive role in cytochrome C release and phosphatidylserine secretion, and a combined biochar-rhizosphere approach can improve the stress tolerance and resistance of K. obovate with an enhanced synergetic effect, which could be a feasible remediation strategy for alleviating the mangrove sediment contaminated by PAH.
Collapse
Affiliation(s)
- Hui Jia
- Institute of Environment and Ecology, School of Emergency Management, Jiangsu University, Jiangsu University, Zhenjiang 212013, China; School of the Environment and Safety Engineering & Institute of Environment and Ecology, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jinhui Ye
- School of the Environment and Safety Engineering & Institute of Environment and Ecology, Jiangsu University, Zhenjiang 212013, China
| | - Yifan Wu
- School of the Environment and Safety Engineering & Institute of Environment and Ecology, Jiangsu University, Zhenjiang 212013, China
| | - Mengqi Zhang
- School of the Environment and Safety Engineering & Institute of Environment and Ecology, Jiangsu University, Zhenjiang 212013, China
| | - Weihua Peng
- Key Laboratory of Mine Water Resource Utilization of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China
| | - He Wang
- Xuzhou Medical University, Affiliated Hospital, Xuzhou 221004, China.
| | - Dehao Tang
- Guangzhou Marine Geological Survey, China Geology Survey, Guangzhou 511458, China.
| |
Collapse
|
10
|
Suzuki H, Kato H, Iwano M, Nishihama R, Kohchi T. Auxin signaling is essential for organogenesis but not for cell survival in the liverwort Marchantia polymorpha. THE PLANT CELL 2023; 35:1058-1075. [PMID: 36529527 PMCID: PMC10015169 DOI: 10.1093/plcell/koac367] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/28/2022] [Accepted: 12/15/2022] [Indexed: 05/12/2023]
Abstract
Auxin plays pleiotropic roles in plant development via gene regulation upon its perception by the receptors TRANSPORT INHIBITOR RESPONSE 1/AUXIN SIGNALING F-BOX (TIR1/AFBs). This auxin-regulated transcriptional control mechanism originated in the common ancestor of land plants. Although the complete loss of TIR1/AFBs causes embryonic lethality in Arabidopsis thaliana, it is unclear whether the requirement for TIR1-mediated auxin perception in cell viability can be generalized. The model liverwort Marchantia polymorpha has a minimal auxin signaling system with only a single TIR1/AFB, MpTIR1. Here we show by genetic, biochemical, and transcriptomic analyses that MpTIR1 functions as an evolutionarily conserved auxin receptor. Null mutants and conditionally knocked-out mutants of MpTIR1 were viable but incapable of forming any organs and grew as cell masses. Principal component analysis performed using transcriptomes at various developmental stages indicated that MpTIR1 is involved in the developmental transition from spores to organized thalli, during which apical notches containing stem cells are established. In Mptir1 cells, stem cell- and differentiation-related genes were up- and downregulated, respectively. Our findings suggest that, in M. polymorpha, auxin signaling is dispensable for cell division but is essential for three-dimensional patterning of the plant body by establishing pluripotent stem cells for organogenesis, a derived trait of land plants.
Collapse
Affiliation(s)
- Hidemasa Suzuki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Hirotaka Kato
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| | - Megumi Iwano
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
11
|
Jia H, Zhang GX, Wu YF, Dai WW, Xu QB, Gan S, Ju XY, Feng ZZ, Li RP, Yuan B. Evaluation of negative effect of Naphthenic acids (NAs) on physiological metabolism and polycyclic aromatic hydrocarbons adsorption of Phragmites australis. CHEMOSPHERE 2023; 318:137909. [PMID: 36681195 DOI: 10.1016/j.chemosphere.2023.137909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/01/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Toxic substances in the environment disturb the adsorption of pollutants in plants but little is known about the underlying mechanisms of these processes. This study evaluated the PAH adsorption by Phragmites australis under NAs stress. Results showed that Naphthenic acids (NAs) significantly decreased the adsorption of PAHs and had higher selectivity for type and structure. P. australis root cell growth and mitosis were significantly affected by NAs, which was accompanied by serious disturbances in mitochondrial function. The physiological evaluation showed the NAs could increase Reactive Oxygen Species (ROS) accumulation by around 16-fold and cause damage to the root cell normal redox equilibrium. The levels of three key related antioxidants, PLA, CAT and POD, decreased significantly to 35-50% under NAs stress and were dependent upon NAs concentration. Furthermore, NAs could significantly change the concentration and species of root exudates of P. ausralis. Autotoxic substances, including alcohol and amines, increased by 28.63% and 23.96, respectively. Sixteen compounds were identified and assumed as potential biomarkers. Galactonic, glyceric, and octadecanoic acid had the general effect of activating PAH in soil. The global view of the metabolic pathway suggests that NAs influenced the citric acid cycle, fatty acid synthesis, amino acid metabolism and the phenylpropanoid pathway. Detection data results indicated that the energy products cause hypoxia and oxidative stress, which are the main processes under the NAs. Furthermore, verification of these processes was fulfilled through gene expression and biomarkers quantification. Our results provide novel metabolic insights into the mechanisms of PAHs adsorption by P. australis under NAs disturbance, suggesting that monitoring NAs in phytoremediation applications is necessary.
Collapse
Affiliation(s)
- Hui Jia
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China; Institute of Environment and Ecology, Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Guang-Xi Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Yi-Fan Wu
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Wei-Wei Dai
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Quan-Bin Xu
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Shu Gan
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Xiu-Yun Ju
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China
| | - Zhao-Zhong Feng
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China.
| | - Rong-Peng Li
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China.
| | - Bo Yuan
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, PR China.
| |
Collapse
|
12
|
Liang Y, Heyman J, Lu R, De Veylder L. Evolution of wound-activated regeneration pathways in the plant kingdom. Eur J Cell Biol 2023; 102:151291. [PMID: 36709604 DOI: 10.1016/j.ejcb.2023.151291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
Regeneration serves as a self-protective mechanism that allows a tissue or organ to recover its entire form and function after suffering damage. However, the regenerative capacity varies greatly within the plant kingdom. Primitive plants frequently display an amazing regenerative ability as they have developed a complex system and strategy for long-term survival under extreme stress conditions. The regenerative ability of dicot species is highly variable, but that of monocots often exhibits extreme recalcitrance to tissue replenishment. Recent studies have revealed key factors and signals that affect cell fate during plant regeneration, some of which are conserved among the plant lineage. Among these, several members of the ETHYLENE RESPONSE FACTOR (ERF) transcription factors have been implicated in wound signaling, playing crucial roles in the regenerative mechanisms after different types of wounding. An understanding of plant regeneration may ultimately lead to an increased regenerative potential of recalcitrant species, producing more high-yielding, multi-resistant and environmentally friendly crops and ensuring the long-term development of global agriculture.
Collapse
Affiliation(s)
- Yuanke Liang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium; VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium; VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Ran Lu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium; VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium; VIB Center for Plant Systems Biology, Ghent B-9052, Belgium.
| |
Collapse
|
13
|
Omary M, Matosevich R, Efroni I. Systemic control of plant regeneration and wound repair. THE NEW PHYTOLOGIST 2023; 237:408-413. [PMID: 36101501 PMCID: PMC10092612 DOI: 10.1111/nph.18487] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Plants have a broad capacity to regenerate damaged organs. The study of wounding in multiple developmental systems has uncovered many of the molecular properties underlying plants' competence for regeneration at the local cellular level. However, in nature, wounding is rarely localized to one place, and plants need to coordinate regeneration responses at multiple tissues with environmental conditions and their physiological state. Here, we review the evidence for systemic signals that regulate regeneration on a plant-wide level. We focus on the role of auxin and sugars as short- and long-range signals in natural wounding contexts and discuss the varied origin of these signals in different regeneration scenarios. Together, this evidence calls for a broader, system-wide view of plant regeneration competence.
Collapse
Affiliation(s)
- Moutasem Omary
- The Institute of Plant Sciences, Faculty of AgricultureThe Hebrew UniversityRehovot761000Israel
| | - Rotem Matosevich
- The Institute of Plant Sciences, Faculty of AgricultureThe Hebrew UniversityRehovot761000Israel
| | - Idan Efroni
- The Institute of Plant Sciences, Faculty of AgricultureThe Hebrew UniversityRehovot761000Israel
| |
Collapse
|
14
|
Bowman JL, Arteaga-Vazquez M, Berger F, Briginshaw LN, Carella P, Aguilar-Cruz A, Davies KM, Dierschke T, Dolan L, Dorantes-Acosta AE, Fisher TJ, Flores-Sandoval E, Futagami K, Ishizaki K, Jibran R, Kanazawa T, Kato H, Kohchi T, Levins J, Lin SS, Nakagami H, Nishihama R, Romani F, Schornack S, Tanizawa Y, Tsuzuki M, Ueda T, Watanabe Y, Yamato KT, Zachgo S. The renaissance and enlightenment of Marchantia as a model system. THE PLANT CELL 2022; 34:3512-3542. [PMID: 35976122 PMCID: PMC9516144 DOI: 10.1093/plcell/koac219] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/21/2022] [Indexed: 05/07/2023]
Abstract
The liverwort Marchantia polymorpha has been utilized as a model for biological studies since the 18th century. In the past few decades, there has been a Renaissance in its utilization in genomic and genetic approaches to investigating physiological, developmental, and evolutionary aspects of land plant biology. The reasons for its adoption are similar to those of other genetic models, e.g. simple cultivation, ready access via its worldwide distribution, ease of crossing, facile genetics, and more recently, efficient transformation, genome editing, and genomic resources. The haploid gametophyte dominant life cycle of M. polymorpha is conducive to forward genetic approaches. The lack of ancient whole-genome duplications within liverworts facilitates reverse genetic approaches, and possibly related to this genomic stability, liverworts possess sex chromosomes that evolved in the ancestral liverwort. As a representative of one of the three bryophyte lineages, its phylogenetic position allows comparative approaches to provide insights into ancestral land plants. Given the karyotype and genome stability within liverworts, the resources developed for M. polymorpha have facilitated the development of related species as models for biological processes lacking in M. polymorpha.
Collapse
Affiliation(s)
| | - Mario Arteaga-Vazquez
- Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Xalapa VER 91090, México
| | - Frederic Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Liam N Briginshaw
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne VIC 3800, Australia
| | - Philip Carella
- Department of Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Adolfo Aguilar-Cruz
- Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Xalapa VER 91090, México
| | - Kevin M Davies
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North 4442, New Zealand
| | - Tom Dierschke
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
| | - Liam Dolan
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna 1030, Austria
| | - Ana E Dorantes-Acosta
- Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana, Xalapa VER 91090, México
| | - Tom J Fisher
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne VIC 3800, Australia
| | - Eduardo Flores-Sandoval
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne VIC 3800, Australia
| | - Kazutaka Futagami
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | | | - Rubina Jibran
- The New Zealand Institute for Plant & Food Research Limited, Auckland 1142, New Zealand
| | - Takehiko Kanazawa
- Division of Cellular Dynamics, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Hirotaka Kato
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Jonathan Levins
- School of Biological Sciences, Monash University, Melbourne VIC 3800, Australia
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
| | - Hirofumi Nakagami
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Ryuichi Nishihama
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Facundo Romani
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | | | - Yasuhiro Tanizawa
- Department of Informatics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Masayuki Tsuzuki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa, Wakayama 649-6493, Japan
| | - Sabine Zachgo
- Division of Botany, School of Biology and Chemistry, Osnabrück University, Osnabrück 49076, Germany
| |
Collapse
|
15
|
Fouracre JP, Harrison CJ. How was apical growth regulated in the ancestral land plant? Insights from the development of non-seed plants. PLANT PHYSIOLOGY 2022; 190:100-112. [PMID: 35771646 PMCID: PMC9434304 DOI: 10.1093/plphys/kiac313] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Land plant life cycles are separated into distinct haploid gametophyte and diploid sporophyte stages. Indeterminate apical growth evolved independently in bryophyte (moss, liverwort, and hornwort) and fern gametophytes, and tracheophyte (vascular plant) sporophytes. The extent to which apical growth in tracheophytes co-opted conserved gametophytic gene networks, or exploited ancestral sporophytic networks, is a long-standing question in plant evolution. The recent phylogenetic confirmation of bryophytes and tracheophytes as sister groups has led to a reassessment of the nature of the ancestral land plant. Here, we review developmental genetic studies of apical regulators and speculate on their likely evolutionary history.
Collapse
Affiliation(s)
- Jim P Fouracre
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - C Jill Harrison
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
16
|
Shinkawa H, Kajikawa M, Furuya T, Nishihama R, Tsukaya H, Kohchi T, Fukuzawa H. Protein Kinase MpYAK1 Is Involved in Meristematic Cell Proliferation, Reproductive Phase Change and Nutrient Signaling in the Liverwort Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2022; 63:1063-1077. [PMID: 35674121 DOI: 10.1093/pcp/pcac076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Plant growth and development are regulated by environmental factors, including nutrient availability and light conditions, via endogenous genetic signaling pathways. Phosphorylation-dependent protein modification plays a major role in the regulation of cell proliferation in stress conditions, and several protein kinases have been shown to function in response to nutritional status, including dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs). Although DYRKs are widely conserved in eukaryotes, the physiological functions of DYRKs in land plants are still to be elucidated. In the liverwort Marchantia polymorpha, a model bryophyte, four putative genes encoding DYRK homologous proteins, each of which belongs to the subfamily yet another kinase 1 (Yak1), plant-specific DYRK, DYRK2, or pre-mRNA processing protein 4 kinase, were identified. MpYAK1-defective male and female mutant lines generated by the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system showed smaller sizes of thalli than did the wild-type plants and repressed cell divisions in the apical notch regions. The Mpyak1 mutants developed rhizoids from gemmae in the gemma cup before release. The Mpyak1 lines developed sexual organs even in non-inductive short-day photoperiod conditions supplemented with far-red light. In nitrogen (N)-deficient conditions, rhizoid elongation was inhibited in the Mpyak1 mutants. In conditions of aeration with 0.08% CO2 (v/v) and N depletion, Mpyak1 mutants accumulated higher levels of sucrose and lower levels of starch compared to the wild type. Transcriptomic analyses revealed that the expression of peroxidase genes was differentially affected by MpYAK1. These results suggest that MpYAK1 is involved in the maintenance of plant growth and developmental responses to light conditions and nutrient signaling.
Collapse
Affiliation(s)
- Haruka Shinkawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa, 921-8836 Japan
| | - Masataka Kajikawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
- Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, 649-6493 Japan
| | - Tomoyuki Furuya
- Graduate School of Science, University of Tokyo, Tokyo, 113-0033 Japan
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
- Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510 Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, University of Tokyo, Tokyo, 113-0033 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
17
|
Liang Y, Heyman J, Xiang Y, Vandendriessche W, Canher B, Goeminne G, De Veylder L. The wound-activated ERF15 transcription factor drives Marchantia polymorpha regeneration by activating an oxylipin biosynthesis feedback loop. SCIENCE ADVANCES 2022; 8:eabo7737. [PMID: 35960801 PMCID: PMC9374346 DOI: 10.1126/sciadv.abo7737] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The regenerative potential in response to wounding varies widely among species. Within the plant lineage, the liverwort Marchantia polymorpha displays an extraordinary regeneration capacity. However, its molecular pathways controlling the initial regeneration response are unknown. Here, we demonstrate that the MpERF15 transcription factor gene is instantly activated after wounding and is essential for gemmaling regeneration following tissue incision. MpERF15 operates both upstream and downstream of the MpCOI1 oxylipin receptor by controlling the expression of oxylipin biosynthesis genes. The resulting rise in the oxylipin dinor-12-oxo-phytodienoic acid (dn-OPDA) levels results in an increase in gemma cell number and apical notch organogenesis, generating highly disorganized and compact thalli. Our data pinpoint MpERF15 as a key factor activating an oxylipin biosynthesis amplification loop after wounding, which eventually results in reactivation of cell division and regeneration. We suggest that the genetic networks controlling oxylipin biosynthesis in response to wounding might have been reshuffled over evolution.
Collapse
Affiliation(s)
- Yuanke Liang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Jefri Heyman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Yanli Xiang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Wiske Vandendriessche
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Balkan Canher
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Geert Goeminne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Metabolomics Core, Ghent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| |
Collapse
|
18
|
Bae SH, Noh YS, Seo PJ. REGENOMICS: A web-based application for plant REGENeration-associated transcriptOMICS analyses. Comput Struct Biotechnol J 2022; 20:3234-3247. [PMID: 35832616 PMCID: PMC9249971 DOI: 10.1016/j.csbj.2022.06.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 01/09/2023] Open
Abstract
In plants, differentiated somatic cells exhibit an exceptional ability to regenerate new tissues, organs, or whole plants. Recent studies have unveiled core genetic components and pathways underlying cellular reprogramming and de novo tissue regeneration in plants. Although high-throughput analyses have led to key discoveries in plant regeneration, a comprehensive organization of large-scale data is needed to further enhance our understanding of plant regeneration. Here, we collected all currently available transcriptome datasets related to wounding responses, callus formation, de novo organogenesis, somatic embryogenesis, and protoplast regeneration to construct REGENOMICS, a web-based application for plant REGENeration-associated transcriptOMICS analyses. REGENOMICS supports single- and multi-query analyses of plant regeneration-related gene-expression dynamics, co-expression networks, gene-regulatory networks, and single-cell expression profiles. Furthermore, it enables user-friendly transcriptome-level analysis of REGENOMICS-deposited and user-submitted RNA-seq datasets. Overall, we demonstrate that REGENOMICS can serve as a key hub of plant regeneration transcriptome analysis and greatly enhance our understanding on gene-expression networks, new molecular interactions, and the crosstalk between genetic pathways underlying each mode of plant regeneration. The REGENOMICS web-based application is available at http://plantregeneration.snu.ac.kr.
Collapse
Affiliation(s)
- Soon Hyung Bae
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Yoo-Sun Noh
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
- Research Center for Plant Plasticity, Seoul National University, Seoul 08826, South Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, South Korea
- Research Institute of Basic Sciences, Seoul National University, Seoul 08826, South Korea
- Corresponding author at: Department of Chemistry, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
19
|
Abstract
The liverwort Marchantia polymorpha has been known to man for millennia due to its inclusion Greek herbals. Perhaps due to its familiarity and association with growth in, often, man-made disturbed habitats, it was readily used to address fundamental biological questions of the day, including elucidation of land plant life cycles in the late 18th century, the formulation of cell theory early in the 19th century and the discovery of the alternation of generations in land plants in the mid-19th century. Subsequently, Marchantia was used as model in botany classes. With the arrival of the molecular era, its organellar genomes, the chloroplast and mitochondrial, were some of the first to be sequenced from any plant. In the past two decades, molecular genetic tools have been applied such that genes may be manipulated seemingly at will. Here, are past, present, and some views to the future of Marchantia as a model.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
20
|
Furuya T, Nishihama R, Ishizaki K, Kohchi T, Fukuda H, Kondo Y. A glycogen synthase kinase 3-like kinase MpGSK regulates cell differentiation in Marchantia polymorpha. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:65-72. [PMID: 35800965 PMCID: PMC9200085 DOI: 10.5511/plantbiotechnology.21.1219a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/19/2021] [Indexed: 05/27/2023]
Abstract
Plants precisely coordinate the balance between cell proliferation and differentiation to ensure the continuous development. In Arabidopsis thaliana, members of glycogen synthase kinase 3 (GSK3) family, which are highly conserved serine/threonine protein kinases among eukaryotes, play important roles in regulating cell proliferation and differentiation during various developmental processes. However, functional roles of GSK3s in the plant lineages except angiosperms remain to be elucidated. Here, we utilized a model liverwort, Marchantia polymorpha, for studies of GSK3, because it has a single GSK3-like kinase, MpGSK. When M. polymorpha was treated with a chemical compound, bikinin, which is known as a specific inhibitor for GSK3-like kinases, growth and morphologies were altered with an expansion of the meristematic region. Similarly, Mpgsk loss-of-function mutants accumulated undifferentiated cell mass with no differentiated tissues. By contrast, overexpression of MpGSK reduced the size of the meristem region. These results suggest that MpGSK plays important roles as a regulator for the balance between cell differentiation and proliferation in M. polymorpha.
Collapse
Affiliation(s)
- Tomoyuki Furuya
- Graduate School of Science, Kobe University, Kobe, Hyogo 657-8501, Japan
- Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8502, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Kimitsune Ishizaki
- Graduate School of Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Kyoto 606-8502, Japan
| | - Hiroo Fukuda
- Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Bioscience and Biotechnology, Faculty of Bioenvironmental Science, Kyoto University of Advanced Science, Kyoto University of Advanced Science, Kameoka, Kyoto 621-8555, Japan
| | - Yuki Kondo
- Graduate School of Science, Kobe University, Kobe, Hyogo 657-8501, Japan
- Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
21
|
Ishida S, Suzuki H, Iwaki A, Kawamura S, Yamaoka S, Kojima M, Takebayashi Y, Yamaguchi K, Shigenobu S, Sakakibara H, Kohchi T, Nishihama R. Diminished Auxin Signaling Triggers Cellular Reprogramming by Inducing a Regeneration Factor in the Liverwort Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2022; 63:384-400. [PMID: 35001102 DOI: 10.1093/pcp/pcac004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 05/27/2023]
Abstract
Regeneration in land plants is accompanied by the establishment of new stem cells, which often involves reactivation of the cell division potential in differentiated cells. The phytohormone auxin plays pivotal roles in this process. In bryophytes, regeneration is enhanced by the removal of the apex and repressed by exogenously applied auxin, which has long been proposed as a form of apical dominance. However, the molecular basis behind these observations remains unexplored. Here, we demonstrate that in the liverwort Marchantia polymorpha, the level of endogenous auxin is transiently decreased in the cut surface of decapitated explants, and identify by transcriptome analysis a key transcription factor gene, LOW-AUXIN RESPONSIVE (MpLAXR), which is induced upon auxin reduction. Loss of MpLAXR function resulted in delayed cell cycle reactivation, and transient expression of MpLAXR was sufficient to overcome the inhibition of regeneration by exogenously applied auxin. Furthermore, ectopic expression of MpLAXR caused cell proliferation in normally quiescent tissues. Together, these data indicate that decapitation causes a reduction of auxin level at the cut surface, where, in response, MpLAXR is up-regulated to trigger cellular reprogramming. MpLAXR is an ortholog of Arabidopsis ENHANCER OF SHOOT REGENERATION 1/DORNRÖSCHEN, which has dual functions as a shoot regeneration factor and a regulator of axillary meristem initiation, the latter of which requires a low auxin level. Thus, our findings provide insights into stem cell regulation as well as apical dominance establishment in land plants.
Collapse
Affiliation(s)
- Sakiko Ishida
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Hidemasa Suzuki
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Aya Iwaki
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510 Japan
| | - Shogo Kawamura
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, 230-0045 Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Aichi, 444-8585 Japan
| | - Shuji Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Aichi, 444-8585 Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, 230-0045 Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, 278-8510 Japan
| |
Collapse
|
22
|
Tools for In Vitro Propagation/Synchronization of the Liverwort Marchantia polymorpha and Application of a Validated HPLC-ESI-MS-MS Method for Glutathione and Phytochelatin Analysis. STRESSES 2022. [DOI: 10.3390/stresses2010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bryophytes, due to their poikilohydric nature and peculiar traits, are useful and versatile organisms for studies on metal accumulation and detoxification in plants. Among bryophytes, the liverwort Marchantia polymorpha is an excellent candidate as a model organism, having a key role in plant evolutionary history. In particular, M. polymorpha axenic cultivation of gametophytes offers several advantages, such as fast growth, easy propagation and high efficiency of crossing. Thus, the main purpose of this work was to promote and validate experimental procedures useful in the establishment of a standardized set-up of M. polymorpha gametophytes, as well as to study cadmium detoxification processes in terms of thiol-peptide production, detection and characterisation by HPLC-mass spectrometry. The results show how variations in the composition of the Murashige and Skoog medium impact the growth rate or development of this liverwort, and what levels of glutathione and phytochelatins are produced by gametophytes to counteract cadmium stress.
Collapse
|
23
|
Iwasaki M, Kajiwara T, Yasui Y, Yoshitake Y, Miyazaki M, Kawamura S, Suetsugu N, Nishihama R, Yamaoka S, Wanke D, Hashimoto K, Kuchitsu K, Montgomery SA, Singh S, Tanizawa Y, Yagura M, Mochizuki T, Sakamoto M, Nakamura Y, Liu C, Berger F, Yamato KT, Bowman JL, Kohchi T. Identification of the sex-determining factor in the liverwort Marchantia polymorpha reveals unique evolution of sex chromosomes in a haploid system. Curr Biol 2021; 31:5522-5532.e7. [PMID: 34735792 PMCID: PMC8699743 DOI: 10.1016/j.cub.2021.10.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/02/2021] [Accepted: 10/08/2021] [Indexed: 12/18/2022]
Abstract
Sex determination is a central process for sexual reproduction and is often regulated by a sex determinant encoded on a sex chromosome. Rules that govern the evolution of sex chromosomes via specialization and degeneration following the evolution of a sex determinant have been well studied in diploid organisms. However, distinct predictions apply to sex chromosomes in organisms where sex is determined in the haploid phase of the life cycle: both sex chromosomes, female U and male V, are expected to maintain their gene functions, even though both are non-recombining. This is in contrast to the X-Y (or Z-W) asymmetry and Y (W) chromosome degeneration in XY (ZW) systems of diploids. Here, we provide evidence that sex chromosomes diverged early during the evolution of haploid liverworts and identify the sex determinant on the Marchantia polymorpha U chromosome. This gene, Feminizer, encodes a member of the plant-specific BASIC PENTACYSTEINE transcription factor family. It triggers female differentiation via regulation of the autosomal sex-determining locus of FEMALE GAMETOPHYTE MYB and SUPPRESSOR OF FEMINIZATION. Phylogenetic analyses of Feminizer and other sex chromosome genes indicate dimorphic sex chromosomes had already been established 430 mya in the ancestral liverwort. Feminizer also plays a role in reproductive induction that is shared with its gametolog on the V chromosome, suggesting an ancestral function, distinct from sex determination, was retained by the gametologs. This implies ancestral functions can be preserved after the acquisition of a sex determination mechanism during the evolution of a dominant haploid sex chromosome system.
Collapse
Affiliation(s)
- Miyuki Iwasaki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Tomoaki Kajiwara
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yukiko Yasui
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | | - Motoki Miyazaki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Shogo Kawamura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Noriyuki Suetsugu
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Dierk Wanke
- Department Biologie I, Ludwig-Maximilians-University (LMU), München 80638, Germany
| | - Kenji Hashimoto
- Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Kazuyuki Kuchitsu
- Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Sean A Montgomery
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Shilpi Singh
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Yasuhiro Tanizawa
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Masaru Yagura
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Takako Mochizuki
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Mika Sakamoto
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Yasukazu Nakamura
- National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka 411-8540, Japan
| | - Chang Liu
- Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology (BOST), Kindai University, Kinokawa, Wakayama 649-6493, Japan
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia.
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
24
|
Furuya T, Shinkawa H, Kajikawa M, Nishihama R, Kohchi T, Fukuzawa H, Tsukaya H. A plant-specific DYRK kinase DYRKP coordinates cell morphology in Marchantia polymorpha. JOURNAL OF PLANT RESEARCH 2021; 134:1265-1277. [PMID: 34549353 PMCID: PMC8514375 DOI: 10.1007/s10265-021-01345-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/01/2021] [Indexed: 05/31/2023]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) are activated via the auto-phosphorylation of conserved tyrosine residues in their activation loop during protein translation, and they then phosphorylate serine/threonine residues on substrates. The DYRK family is widely conserved in eukaryotes and is composed of six subgroups. In plant lineages, DYRK homologs are classified into four subgroups, DYRK2s, yet another kinase1s, pre-mRNA processing factor 4 kinases, and DYRKPs. Only the DYRKP subgroup is plant-specific and has been identified in a wide array of plant lineages, including land plants and green algae. It has been suggested that in Arabidopsis thaliana DYRKPs are involved in the regulation of centripetal nuclear positioning induced by dark light conditions. However, the molecular functions, such as kinase activity and the developmental and physiological roles of DYRKPs are poorly understood. Here, we focused on a sole DYRKP ortholog in the model bryophyte, Marchantia polymorpha, MpDYRKP. MpDYRKP has a highly conserved kinase domain located in the C-terminal region and shares common sequence motifs in the N-terminal region with other DYRKP members. To identify the roles of MpDYRKP in M. polymorpha, we generated loss-of-function Mpdyrkp mutants via genome editing. Mpdyrkp mutants exhibited abnormal, shrunken morphologies with less flattening in their vegetative plant bodies, thalli, and male reproductive organs, antheridial receptacles. The surfaces of the thalli in the Mpdyrkp mutants appeared uneven and disordered. Moreover, their epidermal cells were drastically altered to a narrower shape when compared to the wild type. These results suggest that MpDYRKP acts as a morphological regulator, which contributes to orderly tissue morphogenesis via the regulation of cell shape.
Collapse
Grants
- 19K21189 ministry of education, culture, sports, science and technology
- 20K15813 ministry of education, culture, sports, science and technology
- 17K07753 ministry of education, culture, sports, science and technology
- 16H04805 ministry of education, culture, sports, science and technology
- 25113002 ministry of education, culture, sports, science and technology
- 19H05672 ministry of education, culture, sports, science and technology
- 251113009 ministry of education, culture, sports, science and technology
- 25113001 ministry of education, culture, sports, science and technology
- 19H05675 ministry of education, culture, sports, science and technology
Collapse
Affiliation(s)
- Tomoyuki Furuya
- Graduate School of Science, The University of Tokyo, Tokyo, 113- 0033, Japan
- Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Haruka Shinkawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa, 921-8836, Japan
| | - Masataka Kajikawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
- Faculty of Biology-Oriented Science and Technology, Kindai University, Wakayama, 649-6493, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
- Faculty of Science and Technology, Tokyo University of Science, Chiba, 278- 8510, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, The University of Tokyo, Tokyo, 113- 0033, Japan.
| |
Collapse
|
25
|
Kohchi T, Yamato KT, Ishizaki K, Yamaoka S, Nishihama R. Development and Molecular Genetics of Marchantia polymorpha. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:677-702. [PMID: 33684298 DOI: 10.1146/annurev-arplant-082520-094256] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bryophytes occupy a basal position in the monophyletic evolution of land plants and have a life cycle in which the gametophyte generation dominates over the sporophyte generation, offering a significant advantage in conducting genetics. Owing to its low genetic redundancy and the availability of an array of versatile molecular tools, including efficient genome editing, the liverwort Marchantia polymorpha has become a model organism of choice that provides clues to the mechanisms underlying eco-evo-devo biology in plants. Recent analyses of developmental mutants have revealed that key genes in developmental processes are functionally well conserved in plants, despite their morphological differences, and that lineage-specific evolution occurred by neo/subfunctionalization of common ancestral genes. We suggest that M. polymorpha is an excellent platform to uncover the conserved and diversified mechanisms underlying land plant development.
Collapse
Affiliation(s)
- Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; , ,
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kindai University, Kinokawa 649-6493, Japan;
| | | | - Shohei Yamaoka
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; , ,
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan; , ,
| |
Collapse
|
26
|
Suzuki H, Kohchi T, Nishihama R. Auxin Biology in Bryophyta: A Simple Platform with Versatile Functions. Cold Spring Harb Perspect Biol 2021; 13:a040055. [PMID: 33431584 PMCID: PMC7919391 DOI: 10.1101/cshperspect.a040055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Bryophytes, including liverworts, mosses, and hornworts, are gametophyte-dominant land plants that are derived from a common ancestor and underwent independent evolution from the sporophyte-dominant vascular plants since their divergence. The plant hormone auxin has been shown to play pleiotropic roles in the haploid bodies of bryophytes. Pharmacological and chemical studies identified conserved auxin molecules, their inactivated forms, and auxin transport in bryophyte tissues. Recent genomic and molecular biological studies show deep conservation of components and their functions in auxin biosynthesis, inactivation, transport, and signaling in land plants. Low genetic redundancy in model bryophytes enable unique assays, which are elucidating the design principles of the auxin signaling pathway. In this article, the physiological roles of auxin and regulatory mechanisms of gene expression and development by auxin in Bryophyta are reviewed.
Collapse
Affiliation(s)
- Hidemasa Suzuki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
27
|
Phokas A, Coates JC. Evolution of DELLA function and signaling in land plants. Evol Dev 2021; 23:137-154. [PMID: 33428269 PMCID: PMC9285615 DOI: 10.1111/ede.12365] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/21/2020] [Accepted: 11/28/2020] [Indexed: 01/08/2023]
Abstract
DELLA proteins are master growth regulators that repress responses to a group of plant growth hormones called gibberellins (GAs). Manipulation of DELLA function and signaling was instrumental in the development of high‐yielding crop varieties that saved millions from starvation during the “Green Revolution.” Despite decades of extensive research, it is still unclear how DELLA function and signaling mechanisms evolved within the land plant lineage. Here, we review current knowledge on DELLA protein function with reference to structure, posttranslational modifications, downstream transcriptional targets, and protein–protein interactions. Furthermore, we discuss older and recent findings regarding the evolution of DELLA signaling within the land plant lineage, with an emphasis on bryophytes, and identify future avenues of research that would enable us to shed more light on the evolution of DELLA signaling. Unraveling how DELLA function and signaling mechanisms have evolved could enable us to engineer better crops in an attempt to contribute to mitigating the effects of global warming and achieving global food security. DELLA genes first appeared in the common ancestor of land plants and underwent two major duplications during land plant evolution. DELLAs repress gibberellin responses in vascular plants but their function in nonvascular plants remains elusive.
Collapse
Affiliation(s)
- Alexandros Phokas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Juliet C Coates
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
28
|
Dijkhuizen LW, Tabatabaei BES, Brouwer P, Rijken N, Buijs VA, Güngör E, Schluepmann H. Far-Red Light-Induced Azolla filiculoides Symbiosis Sexual Reproduction: Responsive Transcripts of Symbiont Nostoc azollae Encode Transporters Whilst Those of the Fern Relate to the Angiosperm Floral Transition. FRONTIERS IN PLANT SCIENCE 2021; 12:693039. [PMID: 34456937 PMCID: PMC8386757 DOI: 10.3389/fpls.2021.693039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/22/2021] [Indexed: 05/02/2023]
Abstract
Water ferns of the genus Azolla and the filamentous cyanobacteria Nostoc azollae constitute a model symbiosis that enabled the colonization of the water surface with traits highly desirable for the development of more sustainable crops: their floating mats capture CO2 and fix N2 at high rates using light energy. Their mode of sexual reproduction is heterosporous. The regulation of the transition from the vegetative phase to the spore forming phase in ferns is largely unknown, yet a prerequisite for Azolla domestication, and of particular interest as ferns represent the sister lineage of seed plants. Sporocarps induced with far red light could be crossed so as to verify species attribution of strains from the Netherlands but not of the strain from the Anzali lagoon in Iran; the latter strain was assigned to a novel species cluster from South America. Red-dominated light suppresses the formation of dissemination stages in both gametophyte- and sporophyte-dominated lineages of plants, the response likely is a convergent ecological strategy to open fields. FR-responsive transcripts included those from MIKCC homologues of CMADS1 and miR319-controlled GAMYB transcription factors in the fern, transporters in N. azollae, and ycf2 in chloroplasts. Loci of conserved microRNA (miRNA) in the fern lineage included miR172, yet FR only induced miR529 and miR535, and reduced miR319 and miR159. Phylogenomic analyses of MIKCC TFs suggested that the control of flowering and flower organ specification may have originated from the diploid to haploid phase transition in the homosporous common ancestor of ferns and seed plants.
Collapse
Affiliation(s)
- Laura W. Dijkhuizen
- Laboratory of Molecular Plant Physiology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | | | - Paul Brouwer
- Laboratory of Molecular Plant Physiology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Niels Rijken
- Laboratory of Molecular Plant Physiology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Valerie A. Buijs
- Laboratory of Molecular Plant Physiology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Erbil Güngör
- Laboratory of Molecular Plant Physiology, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Henriette Schluepmann
- Laboratory of Molecular Plant Physiology, Department of Biology, Utrecht University, Utrecht, Netherlands
- *Correspondence: Henriette Schluepmann
| |
Collapse
|
29
|
Biswal DP, Panigrahi KCS. Light- and hormone-mediated development in non-flowering plants: An overview. PLANTA 2020; 253:1. [PMID: 33245411 DOI: 10.1007/s00425-020-03501-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Light, hormones and their interaction regulate different aspects of development in non-flowering plants. They might have played a role in the evolution of different plant groups by conferring specific adaptive evolutionary changes. Plants are sessile organisms. Unlike animals, they lack the opportunity to abandon their habitat in unfavorable conditions. They respond to different environmental cues and adapt accordingly to control their growth and developmental pattern. While phytohormones are known to be internal regulators of plant development, light is a major environmental signal that shapes plant processes. It is plausible that light-hormone crosstalk might have played an important role in plant evolution. But how the crosstalk between light and phytohormone signaling pathways might have shaped the plant evolution is unclear. One of the possible reasons is that flowering plants have been studied extensively in context of plant development, which cannot serve the purpose of evolutionary comparisons. In order to elucidate the role of light, hormone and their crosstalk in the evolutionary adaptation in plant kingdom, one needs to understand various light- and hormone-mediated processes in diverse non-flowering plants. This review is an attempt to outline major light- and phytohormone-mediated responses in non-flowering plant groups such as algae, bryophytes, pteridophytes and gymnosperms.
Collapse
Affiliation(s)
- Durga Prasad Biswal
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| | - Kishore Chandra Sekhar Panigrahi
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, India.
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
30
|
Natural Variation in Plant Pluripotency and Regeneration. PLANTS 2020; 9:plants9101261. [PMID: 32987766 PMCID: PMC7598583 DOI: 10.3390/plants9101261] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/03/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022]
Abstract
Plant regeneration is essential for survival upon wounding and is, hence, considered to be a strong natural selective trait. The capacity of plant tissues to regenerate in vitro, however, varies substantially between and within species and depends on the applied incubation conditions. Insight into the genetic factors underlying this variation may help to improve numerous biotechnological applications that exploit in vitro regeneration. Here, we review the state of the art on the molecular framework of de novo shoot organogenesis from root explants in Arabidopsis, which is a complex process controlled by multiple quantitative trait loci of various effect sizes. Two types of factors are distinguished that contribute to natural regenerative variation: master regulators that are conserved in all experimental systems (e.g., WUSCHEL and related homeobox genes) and conditional regulators whose relative role depends on the explant and the incubation settings. We further elaborate on epigenetic variation and protocol variables that likely contribute to differential explant responsivity within species and conclude that in vitro shoot organogenesis occurs at the intersection between (epi) genetics, endogenous hormone levels, and environmental influences.
Collapse
|
31
|
Moody LA. Three-dimensional growth: a developmental innovation that facilitated plant terrestrialization. JOURNAL OF PLANT RESEARCH 2020; 133:283-290. [PMID: 32095969 PMCID: PMC7214384 DOI: 10.1007/s10265-020-01173-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/11/2020] [Indexed: 05/18/2023]
Abstract
One of the most transformative events in the history of life on earth was the transition of plants from water to land approximately 470 million years ago. Within the Charophyte green algae, the closest living relatives of land plants, body plans have evolved from those that comprise simple unicells to those that are morphologically complex, large and multicellular. The Charophytes developed these broad ranging body plans by exploiting a range of one-dimensional and two-dimensional growth strategies to produce filaments, mats and branches. When plants were confronted with harsh conditions on land, they were required to make significant changes to the way they shaped their body plans. One of the fundamental developmental transitions that occurred was the evolution of three-dimensional growth and the acquisition of apical cells with three or more cutting faces. Plants subsequently developed a range of morphological adaptations (e.g. vasculature, roots, flowers, seeds) that enabled them to colonise progressively drier environments. 3D apical growth also evolved convergently in the brown algae, completely independently of the green lineage. This review summarises the evolving developmental complexities observed in the early divergent Charophytes all the way through to the earliest conquerors of land, and investigates 3D apical growth in the brown algae.
Collapse
Affiliation(s)
- Laura A Moody
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|
32
|
Suzuki H, Harrison CJ, Shimamura M, Kohchi T, Nishihama R. Positional cues regulate dorsal organ formation in the liverwort Marchantia polymorpha. JOURNAL OF PLANT RESEARCH 2020; 133:311-321. [PMID: 32206925 DOI: 10.1007/s10265-020-01180-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/10/2020] [Indexed: 05/05/2023]
Abstract
Bryophytes and vascular plants represent the broadest evolutionary divergence in the land plant lineage, and comparative analyses of development spanning this divergence therefore offer opportunities to identify truisms of plant development in general. In vascular plants, organs are formed repetitively around meristems at the growing tips in response to positional cues. In contrast, leaf formation in mosses and leafy liverworts occurs from clonal groups of cells derived from a daughter cell of the apical stem cell known as merophytes, and cell lineage is a crucial factor in repetitive organ formation. However, it remains unclear whether merophyte lineages are a general feature of repetitive organ formation in bryophytes as patterns of organogenesis in thalloid liverworts are unclear. To address this question, we developed a clonal analysis method for use in the thalloid liverwort Marchantia polymorpha, involving random low-frequency induction of a constitutively expressed nuclear-targeted fluorescent protein by dual heat-shock and dexamethasone treatment. M. polymorpha thalli ultimately derive from stem cells in the apical notch, and the lobes predominantly develop from merophytes cleft to the left and right of the apical cell(s). Sector induction in gemmae and subsequent culture occasionally generated fluorescent sectors that bisected thalli along the midrib and were maintained through several bifurcation events, likely reflecting the border between lateral merophytes. Such thallus-bisecting sectors traversed dorsal air chambers and gemma cups, suggesting that these organs arise independently of merophyte cell lineages in response to local positional cues.
Collapse
Affiliation(s)
- Hidemasa Suzuki
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - C Jill Harrison
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Masaki Shimamura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
33
|
Hu W, Figueroa‐Balderas R, Chi‐Ham C, Lagarias JC. Regulation of monocot and dicot plant development with constitutively active alleles of phytochrome B. PLANT DIRECT 2020; 4:e00210. [PMID: 32346668 PMCID: PMC7184922 DOI: 10.1002/pld3.210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/03/2020] [Accepted: 02/25/2020] [Indexed: 05/31/2023]
Abstract
The constitutively active missense allele of Arabidopsis phytochrome B, AtPHYBY276H or AtYHB, encodes a polypeptide that adopts a light-insensitive, physiologically active conformation capable of sustaining photomorphogenesis in darkness. Here, we show that the orthologous OsYHB allele of rice phytochrome B (OsPHYBY283H ) also encodes a dominant "constitutively active" photoreceptor through comparative phenotypic analyses of AtYHB and OsYHB transgenic lines of four eudicot species, Arabidopsis thaliana, Nicotiana tabacum (tobacco), Nicotiana sylvestris and Solanum lycopersicum cv. MicroTom (tomato), and of two monocot species, Oryza sativa ssp. japonica and Brachypodium distachyon. Reciprocal transformation experiments show that the gain-of-function constitutive photomorphogenic (cop) phenotypes by YHB expression are stronger in host plants within the same class than across classes. Our studies also reveal additional YHB-dependent traits in adult plants, which include extreme shade tolerance, both early and late flowering behaviors, delayed leaf senescence, reduced tillering, and even viviparous seed germination. However, the strength of these gain-of-function phenotypes depends on the specific combination of YHB allele and species/cultivar transformed. Flowering and tillering of OsYHB- and OsPHYB-expressing lines of rice Nipponbare and Kitaake cultivars were compared, also revealing differences in YHB/PHYB allele versus genotype interaction on the phenotypic behavior of the two rice cultivars. In view of recent evidence that the regulatory activity of AtYHB is not only light insensitive but also temperature insensitive, selective YHB expression is expected to yield improved agronomic performance of both dicot and monocot crop plant species not possible with wild-type PHYB alleles.
Collapse
Affiliation(s)
- Wei Hu
- Department of Molecular and Cellular BiologyUniversity of CaliforniaDavisCAUSA
| | - Rosa Figueroa‐Balderas
- Public Intellectual Property Resource for Agriculture (PIPRA)University of CaliforniaDavisCAUSA
- Department of Viticulture and EnologyUniversity of CaliforniaDavisCAUSA
| | - Cecilia Chi‐Ham
- Public Intellectual Property Resource for Agriculture (PIPRA)University of CaliforniaDavisCAUSA
| | - J. Clark Lagarias
- Department of Molecular and Cellular BiologyUniversity of CaliforniaDavisCAUSA
| |
Collapse
|
34
|
Koide E, Suetsugu N, Iwano M, Gotoh E, Nomura Y, Stolze SC, Nakagami H, Kohchi T, Nishihama R. Regulation of Photosynthetic Carbohydrate Metabolism by a Raf-Like Kinase in the Liverwort Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2020; 61:631-643. [PMID: 31851335 DOI: 10.1093/pcp/pcz232] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/12/2019] [Indexed: 05/27/2023]
Abstract
To optimize growth and development, plants monitor photosynthetic activities and appropriately regulate various cellular processes. However, signaling mechanisms that coordinate plant growth with photosynthesis remain poorly understood. To identify factors that are involved in signaling related to photosynthetic stimuli, we performed a phosphoproteomic analysis with Marchantia polymorpha, an extant bryophyte species in the basal lineage of land plants. Among proteins whose phosphorylation status changed differentially between dark-treated plants and those after light irradiation but failed to do so in the presence of a photosynthesis inhibitor, we identified a B4-group Raf-like kinase, named PHOTOSYNTHESIS-RELATED RAF (MpPRAF). Biochemical analyses confirmed photosynthesis-activity-dependent changes in the phosphorylation status of MpPRAF. Mutations in the MpPRAF gene resulted in growth retardation. Measurement of carbohydrates demonstrated both hyper-accumulation of starch and reduction of sucrose in Mppraf mutants. Neither inhibition of starch synthesis nor exogenous supply of sucrose alleviated the growth defect, suggesting serious impairment of Mppraf mutants in both the synthesis of sucrose and the repression of its catabolism. As a result of the compromised photosynthate metabolism, photosynthetic electron transport was downregulated in Mppraf mutants. A mutated MpPRAF with a common amino acid substitution for inactivating kinase activity was unable to rescue the Mppraf mutant defects. Our results provide evidence that MpPRAF is a photosynthesis signaling kinase that regulates sucrose metabolism.
Collapse
Affiliation(s)
- Eri Koide
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Noriyuki Suetsugu
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Megumi Iwano
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Eiji Gotoh
- Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581 Japan
| | - Yuko Nomura
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama, 230-0045 Japan
| | - Sara Christina Stolze
- Protein Mass Spectrometry Group, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Hirofumi Nakagami
- Plant Proteomics Research Unit, RIKEN CSRS, Yokohama, 230-0045 Japan
- Protein Mass Spectrometry Group, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
35
|
Chen JJ, Wang LY, Immanen J, Nieminen K, Spicer R, Helariutta Y, Zhang J, He XQ. Differential regulation of auxin and cytokinin during the secondary vascular tissue regeneration in Populus trees. THE NEW PHYTOLOGIST 2019; 224:188-201. [PMID: 31230359 DOI: 10.1111/nph.16019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/14/2019] [Indexed: 05/04/2023]
Abstract
Tissue regeneration upon wounding in plants highlights the developmental plasticity of plants. Previous studies have described the morphological and molecular changes of secondary vascular tissue (SVT) regeneration after large-scale bark girdling in trees. However, how phytohormones regulate SVT regeneration is still unknown. Here, we established a novel in vitro SVT regeneration system in the hybrid aspen (Populus tremula × Populus tremuloides) clone T89 to bypass the limitation of using field-grown trees. The effects of phytohormones on SVT regeneration were investigated by applying exogenous hormones and utilizing various transgenic trees. Vascular tissue-specific markers and hormonal response factors were also examined during SVT regeneration. Using this in vitro regeneration system, we demonstrated that auxin and cytokinin differentially regulate phloem and cambium regeneration. Whereas auxin is sufficient to induce regeneration of phloem prior to continuous cambium restoration, cytokinin only promotes the formation of new phloem, not cambium. The positive role of cytokinin on phloem regeneration was further confirmed in cytokinin overexpression trees. Analysis of a DR5 reporter transgenic line further suggested that cytokinin blocks the re-establishment of auxin gradients, which is required for the cambium formation. Investigation on the auxin and cytokinin signalling genes indicated these two hormones interact to regulate SVT regeneration. Taken together, the in vitro SVT regeneration system allows us to make use of various molecular and genetic tools to investigate SVT regeneration. Our results confirmed that complementary auxin and cytokinin domains are required for phloem and cambium reconstruction.
Collapse
Affiliation(s)
- Jia-Jia Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00014, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Ling-Yan Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Juha Immanen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
- Natural Resources Institute Finland (Luke), Production Systems, Plant Genetics, Helsinki, 00790, Finland
| | - Kaisa Nieminen
- Natural Resources Institute Finland (Luke), Production Systems, Plant Genetics, Helsinki, 00790, Finland
| | - Rachel Spicer
- Department of Botany, Connecticut College, New London, CT, 06320, USA
| | - Ykä Helariutta
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00014, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge, CB2 1LR, UK
| | - Jing Zhang
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00014, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Xin-Qiang He
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
36
|
Inoue K, Nishihama R, Araki T, Kohchi T. Reproductive Induction is a Far-Red High Irradiance Response that is Mediated by Phytochrome and PHYTOCHROME INTERACTING FACTOR in Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2019; 60:1136-1145. [PMID: 30816950 DOI: 10.1093/pcp/pcz029] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/08/2019] [Indexed: 05/15/2023]
Abstract
Land plants have evolved a series of photoreceptors to precisely perceive environmental information. Among these, phytochromes are the sole photoreceptors for red light (R) and far-red light (FR), and play pivotal roles in modulating various developmental processes. Most extant land plants possess multiple phytochromes that probably evolved from a single phytochrome in the common ancestor of land plants. However, the ancestral phytochrome signaling mechanism remains unknown due to a paucity of knowledge regarding phytochrome functions in basal land plants. It has recently been reported that Mpphy, a single phytochrome in the liverwort Marchantia polymorpha, regulates typical photoreversible responses collectively classified as low fluence response (LFR). Here, we show that Mpphy also regulates the gametangiophore formation analogous to the mode of action of the far-red high irradiance response (FR-HIR) in angiosperms. Our phenotypic analyses using mutant plants obtained by CRISPR/Cas9-based genome editing revealed that MpFHY1, an ortholog of FAR-RED ELONGATED HYPOCOTYL1, as well as Mpphy is critical for the FR-HIR signaling in M. polymorpha. In addition, knockout of MpPIF, a single PHYTOCHROME INTERACTING FACTOR gene in M. polymorpha, completely abolished the FR-HIR-dependent gametangiophore formation, while overexpression of MpPIF accelerated the response. FR-HIR-dependent transcriptional regulation was also disrupted in the Mppif mutant. Our findings suggest that plants had already acquired the FR-HIR signaling mediated by phytochrome and PIF at a very early stage during the course of land plant evolution, and that a single phytochrome in the common ancestor of land plants could mediate both LFR and FR-HIR.
Collapse
Affiliation(s)
- Keisuke Inoue
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | - Takashi Araki
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
37
|
Soriano G, Del-Castillo-Alonso MÁ, Monforte L, Tomás-Las-Heras R, Martínez-Abaigar J, Núñez-Olivera E. Photosynthetically-active radiation, UV-A and UV-B, causes both common and specific damage and photoprotective responses in the model liverwort Marchantia polymorpha subsp. ruderalis. Photochem Photobiol Sci 2019; 18:400-412. [PMID: 30608105 DOI: 10.1039/c8pp00421h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We studied the effects of different radiation treatments on the physiology and UV-absorbing compounds of the model liverwort Marchantia polymorpha subsp. ruderalis. Starting from gemmae, samples were exposed to five radiation treatments: low photosynthetically active radiation (PAR), low PAR+ UV-A, low PAR + UV-B, low PAR + UV-A + UV-B, and high PAR. After 35 days, the maximum quantum yield of photosystem II was similar between treatments, which suggested comparable photoinhibition and physiological vitality, also supported by results showing an unchanged chlorophyll a/b ratio and only slight changes in growth. However, the total contents of both chlorophylls and carotenoids decreased in the UV radiation treatments and, more strongly, in the high-PAR samples, suggesting mainly PAR-dependent damage to the photosynthetic pigments. The xanthophyll index (antheraxanthin + zeaxanthin)/(violaxanthin + antheraxanthin + zeaxanthin) was only increased in the high-PAR samples, indicating an increase in photoprotection through nonphotochemical dissipation of the excess energy. The sclerophylly index (the ratio between the thallus dry mass and surface area) was increased in the UV-B-exposed samples, suggesting a UV-induced structural protection. Only the UV-B-exposed samples showed DNA damage. Several apigenin and luteolin derivatives were found in the methanol-soluble vacuolar fraction of the liverwort and p-coumaric and ferulic acids in the methanol-insoluble cell wall-bound fraction. Most individual soluble compounds, the bulk level of soluble compounds, and chalcone synthase expression increased in UV-B-exposed samples, whereas individual insoluble compounds increased in the samples exposed to only PAR. Principal components analysis summarized these responses, showing the strong influence of both UV-B and PAR levels on the physiology and UV protection of the samples.
Collapse
Affiliation(s)
- Gonzalo Soriano
- Facultad de Ciencia y Tecnología, Universidad de La Rioja, Madre de Dios 53, Logroño (La Rioja), 26006, Spain
| | | | - Laura Monforte
- Facultad de Ciencia y Tecnología, Universidad de La Rioja, Madre de Dios 53, Logroño (La Rioja), 26006, Spain
| | - Rafael Tomás-Las-Heras
- Facultad de Ciencia y Tecnología, Universidad de La Rioja, Madre de Dios 53, Logroño (La Rioja), 26006, Spain
| | - Javier Martínez-Abaigar
- Facultad de Ciencia y Tecnología, Universidad de La Rioja, Madre de Dios 53, Logroño (La Rioja), 26006, Spain
| | - Encarnación Núñez-Olivera
- Facultad de Ciencia y Tecnología, Universidad de La Rioja, Madre de Dios 53, Logroño (La Rioja), 26006, Spain.
| |
Collapse
|
38
|
Sugimoto K, Temman H, Kadokura S, Matsunaga S. To regenerate or not to regenerate: factors that drive plant regeneration. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:138-150. [PMID: 30703741 DOI: 10.1016/j.pbi.2018.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 05/23/2023]
Abstract
Plants have a remarkable regenerative capacity, but it varies widely among species and tissue types. Whether plant cells/tissues initiate regeneration largely depends on the extent to which they are constrained to their original tissue fate. Once cells start the regeneration program, they acquire a new fate, form meristems, and develop into organs. During these processes, the cells must continuously overcome various barriers to the progression of the regeneration program until the organ (or whole plant) is complete. Recent studies have revealed key factors and signals affecting cell fate during plant regeneration. Here, we review recent research on: (i) environmental signal inputs and physical stimuli that act as initial triggers of regeneration; (ii) epigenetic and transcriptional cellular responses to those triggers leading to cellular reprograming; and (iii) molecules that direct the formation and development of the new stem cell niche. We also discuss differences and similarities between regeneration and normal development.
Collapse
Affiliation(s)
- Kaoru Sugimoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Haruka Temman
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Satoshi Kadokura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
39
|
Furuya T, Hattori K, Kimori Y, Ishida S, Nishihama R, Kohchi T, Tsukaya H. ANGUSTIFOLIA contributes to the regulation of three-dimensional morphogenesis in the liverwort Marchantia polymorpha. Development 2018; 145:dev.161398. [PMID: 30126903 DOI: 10.1242/dev.161398] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 08/06/2018] [Indexed: 01/04/2023]
Abstract
Arabidopsis thaliana mutants deficient in ANGUSTIFOLIA (AN) exhibit several phenotypes at the sporophyte stage, such as narrow and thicker leaves, trichomes with two branches, and twisted fruits. It is thought that these phenotypes are caused by abnormal arrangement of cortical microtubules (MTs). AN homologs are present in the genomes of diverse land plants, including the basal land plant Marchantia polymorpha, and their molecular functions have been shown to be evolutionarily conserved in terms of the ability to complement the A. thaliana an-1 mutation. However, the roles of ANs in bryophytes, the life cycle of which includes a dominant haploid gametophyte generation, remain unknown. Here, we have examined the roles of AN homologs in the model bryophyte M. polymorpha (MpAN). Mpan knockout mutants showed abnormal twisted thalli and suppressed thallus growth along the growth axis. Under weak blue light conditions, elongated thallus growth was observed in wild-type plants, whereas it was suppressed in the mutants. Moreover, disordered cortical MT orientations were observed. Our findings suggest that MpAN contributes to three-dimensional morphogenesis by regulating cortical MT arrangement in the gametophytes of bryophytes.
Collapse
Affiliation(s)
- Tomoyuki Furuya
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Koro Hattori
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Yoshitaka Kimori
- Department of Imaging Science, Center for Novel Science Initiatives, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Sakiko Ishida
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Hirokazu Tsukaya
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan .,Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| |
Collapse
|
40
|
Sugano SS, Nishihama R. CRISPR/Cas9-Based Genome Editing of Transcription Factor Genes in Marchantia polymorpha. Methods Mol Biol 2018; 1830:109-126. [PMID: 30043367 DOI: 10.1007/978-1-4939-8657-6_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Plant transcription factors (TFs) belong to a wide variety of gene families. The systematic and rapid establishment of knockout lines of TF genes is critical for functional genetics. Genome engineering techniques for dissecting out the molecular function of TFs have been dramatically improved by CRISPR/Cas9-based genome editing technology. In the CRISPR/Cas9 system, Cas9 functions as a Cas9-gRNA ribonucleoprotein complex and uses its DNA endonuclease activity to induce the cleavage of the genome, which is targeted by gRNA. Double-strand breaks sometimes induce insertions and deletions at the target site, leading to frameshift mutations of TF genes. In this chapter, we describe a detailed protocol for the targeted mutagenesis of TFs using the CRISPR/Cas9 system, specifically in the case of Marchantia polymorpha, an emerging model plant for functional genomics. The CRISPR/Cas9 system is highly versatile for targeting genomic sequences because only an alteration of the gRNA sequence is needed to change target sequences. The labor and cost required to establish genome-edited lines are low enough that multiple mutants of TF genes can be generated in one laboratory. The CRISPR/Cas9-based genome editing technique consists of four steps: (1) gRNA design; (2) vector construction; (3) transformation; and (4) isolation of genome-edited lines. This manuscript focuses mainly on the strategy of gRNA design, the workflow for off-target searches, and the selection and identification of genome-edited lines by genotyping. Although we describe a protocol for M. polymorpha, the basic strategy of generating genome-edited lines of TF genes should be applicable widely to other plants.
Collapse
Affiliation(s)
- Shigeo S Sugano
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Shiga, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | | |
Collapse
|
41
|
Inoue K, Nishihama R, Kohchi T. Evolutionary origin of phytochrome responses and signaling in land plants. PLANT, CELL & ENVIRONMENT 2017; 40:2502-2508. [PMID: 28098347 DOI: 10.1111/pce.12908] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 06/06/2023]
Abstract
Phytochromes comprise one of the major photoreceptor families in plants, and they regulate many aspects of plant growth and development throughout the plant life cycle. A canonical land plant phytochrome originated in the common ancestor of streptophytes. Phytochromes have diversified in seed plants and some basal land plants because of lineage-specific gene duplications that occurred during the course of land plant evolution. Molecular genetic analyses using Arabidopsis thaliana suggested that there are two types of phytochromes in angiosperms, light-labile type I and light-stable type II, which have different signaling mechanisms and which regulate distinct responses. In basal land plants, little is known about molecular mechanisms of phytochrome signaling, although red light/far-red photoreversible physiological responses and the distribution of phytochrome genes are relatively well documented. Recent advances in molecular genetics using the moss Physcomitrella patens and the liverwort Marchantia polymorpha revealed that basal land plants show far-red-induced responses and that the establishment of phytochrome-mediated transcriptional regulation dates back to at least the common ancestor of land plants. In this review, we summarize our knowledge concerning functions of land plant phytochromes, especially in basal land plants, and discuss subfunctionalization/neofunctionalization of phytochrome signaling during the course of land plant evolution.
Collapse
Affiliation(s)
- Keisuke Inoue
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
42
|
Kato H, Kouno M, Takeda M, Suzuki H, Ishizaki K, Nishihama R, Kohchi T. The Roles of the Sole Activator-Type Auxin Response Factor in Pattern Formation of Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2017; 58:1642-1651. [PMID: 29016901 DOI: 10.1093/pcp/pcx095] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/05/2017] [Indexed: 05/08/2023]
Abstract
Cell division patterning is important to determine body shape in plants. Nuclear auxin signaling mediated by AUXIN RESPONSE FACTOR (ARF) transcription factors affects plant growth and development through regulation of cell division, elongation and differentiation. The evolutionary origin of the ARF-mediated pathway dates back to at least the common ancestor of bryophytes and other land plants. The liverwort Marchantia polymorpha has three phylogenetically distinct ARFs: MpARF1, the sole 'activator' ARF; and MpARF2 and MpARF3, two 'repressor' ARFs. Genetic screens for auxin-resistant mutants revealed that loss of MpARF1 function conferred auxin insensitivity. Mparf1 mutants showed reduced auxin-inducible gene expression and various developmental defects, including thallus twisting and gemma malformation. We further investigated the role of MpARF1 in gemma development, which is traceable at the cellular level. In wild-type plants, a gemma initial first undergoes several transverse divisions to generate a single-celled stalk and a gemma proper, followed by rather synchronous longitudinal divisions in the latter. Mparf1 mutants often contained multicelled stalks and showed defects in the execution and timing of the longitudinal divisions. While wild-type gemmae finally generate two meristem notches, Mparf1 gemmae displayed various numbers of ectopic meristems. These results suggest that MpARF1 regulates formative cell divisions and axis formation through auxin responses. The mechanism for activator ARF regulation of pattern formation may be shared in land plants and therefore important for the general acquisition of three-dimensional body plans.
Collapse
Affiliation(s)
- Hirotaka Kato
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Masaru Kouno
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Mayuko Takeda
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Hidemasa Suzuki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Kimitsune Ishizaki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
- Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
43
|
Lee N, Choi G. Phytochrome-interacting factor from Arabidopsis to liverwort. CURRENT OPINION IN PLANT BIOLOGY 2017; 35:54-60. [PMID: 27875778 DOI: 10.1016/j.pbi.2016.11.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/29/2016] [Accepted: 11/02/2016] [Indexed: 05/08/2023]
Abstract
Phytochromes are red and far-red light photoreceptors that regulate the responses of plants to light throughout their life cycles. Phytochromes do this in part by inhibiting the function of a group of basic helix-loop-helix transcription factors called phytochrome-interacting factors (PIFs). Arabidopsis has eight PIFs that function sometimes redundantly and sometimes distinctively depending on their expression patterns and protein stability, as well as on variations in the promoters they target in vivo. PIF-like proteins exist in other seed plants and non-vascular plants where they also regulate light responses. The mechanism by which phytochrome regulates light responses by promoting the degradation of the PIFs is conserved in liverwort, suggesting it must have evolved some time before the last common ancestor shared by seed plants and non-vascular plants.
Collapse
Affiliation(s)
- Nayoung Lee
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
44
|
Ikeuchi M, Ogawa Y, Iwase A, Sugimoto K. Plant regeneration: cellular origins and molecular mechanisms. Development 2016; 143:1442-51. [DOI: 10.1242/dev.134668] [Citation(s) in RCA: 276] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Compared with animals, plants generally possess a high degree of developmental plasticity and display various types of tissue or organ regeneration. This regenerative capacity can be enhanced by exogenously supplied plant hormones in vitro, wherein the balance between auxin and cytokinin determines the developmental fate of regenerating organs. Accumulating evidence suggests that some forms of plant regeneration involve reprogramming of differentiated somatic cells, whereas others are induced through the activation of relatively undifferentiated cells in somatic tissues. We summarize the current understanding of how plants control various types of regeneration and discuss how developmental and environmental constraints influence these regulatory mechanisms.
Collapse
Affiliation(s)
- Momoko Ikeuchi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Yoichi Ogawa
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Akira Iwase
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
45
|
Ishizaki K, Nishihama R, Yamato KT, Kohchi T. Molecular Genetic Tools and Techniques for Marchantia polymorpha Research. PLANT & CELL PHYSIOLOGY 2016; 57:262-70. [PMID: 26116421 DOI: 10.1093/pcp/pcv097] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 06/18/2015] [Indexed: 05/18/2023]
Abstract
Liverworts occupy a basal position in the evolution of land plants, and are a key group to address a wide variety of questions in plant biology. Marchantia polymorpha is a common, easily cultivated, dioecious liverwort species, and is emerging as an experimental model organism. The haploid gametophytic generation dominates the diploid sporophytic generation in its life cycle. Genetically homogeneous lines in the gametophyte generation can be established easily and propagated through asexual reproduction, which aids genetic and biochemical experiments. Owing to its dioecy, male and female sexual organs are formed in separate individuals, which enables crossing in a fully controlled manner. Reproductive growth can be induced at the desired times under laboratory conditions, which helps genetic analysis. The developmental process from a single-celled spore to a multicellular body can be observed directly in detail. As a model organism, molecular techniques for M. polymorpha are well developed; for example, simple and efficient protocols of Agrobacterium-mediated transformation have been established. Based on them, various strategies for molecular genetics, such as introduction of reporter constructs, overexpression, gene silencing and targeted gene modification, are available. Herein, we describe the technologies and resources for reverse and forward genetics in M. polymorpha, which offer an excellent experimental platform to study the evolution and diversity of regulatory systems in land plants.
Collapse
Affiliation(s)
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kinki University, Wakayama, 649-6493 Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
46
|
Tanaka D, Ishizaki K, Kohchi T, Yamato KT. Cryopreservation of Gemmae from the Liverwort Marchantia polymorpha L. PLANT & CELL PHYSIOLOGY 2016; 57:300-6. [PMID: 26561534 PMCID: PMC4788409 DOI: 10.1093/pcp/pcv173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 11/03/2015] [Indexed: 05/22/2023]
Abstract
The liverwort Marchantia polymorpha L. is one of the key model plants in evo-devo studies, and an increasing number of transgenic and mutant lines have been established. For reliable long-term preservation of M. polymorpha plants, spores have been used, but crossing is indispensable to obtain them. Gemmae, however, are vegetative clones and readily available in large numbers without crossing, thereby enabling the clonal preservation and rapid propagation of transgenic or mutant lines. Here, we report a simple cryopreservation protocol for in vitro grown M. polymorpha gemmae using aluminum cryoplates. Gemmae were pre-cultured on sucrose-containing medium, embedded in calcium alginate gel on the surface of a cryoplate, moderately dehydrated and stored in liquid nitrogen. After rapid thawing, the stored gemmae showed a 100% survival rate. Our protocol does not require plant growth regulators such as ABA, and takes only 1 h to complete except for 1 d of pre-culture. Furthermore, gemmae treated as described above but then air-dried for 2 h can be stored at -80°C for at least 1 year without a significant decrease in survival rate, which is convenient for most laboratories that have a -80°C freezer but not a liquid nitrogen container for long-term storage. These preservation techniques for M. polymorpha should increase their availability in the research community.
Collapse
Affiliation(s)
- Daisuke Tanaka
- IBBP Center, National Institute for Basic Biology, Okazaki, 444-8787 Japan Department of Basic Biology, the Graduate University for Advanced Studies, Okazaki, 444-8585 Japan Present address: Genetic Resources Conservation Research Unit, Genetic Resources Center, National Institute of Agrobiological Sciences, Tsukuba, 305-8602, Japan.
| | | | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kinki University, Kinokawa, 649-6493 Japan
| |
Collapse
|
47
|
Ishizaki K, Nishihama R, Ueda M, Inoue K, Ishida S, Nishimura Y, Shikanai T, Kohchi T. Development of Gateway Binary Vector Series with Four Different Selection Markers for the Liverwort Marchantia polymorpha. PLoS One 2015; 10:e0138876. [PMID: 26406247 PMCID: PMC4583185 DOI: 10.1371/journal.pone.0138876] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/06/2015] [Indexed: 11/19/2022] Open
Abstract
We previously reported Agrobacterium-mediated transformation methods for the liverwort Marchantia polymorpha using the hygromycin phosphotransferase gene as a marker for selection with hygromycin. In this study, we developed three additional markers for M. polymorpha transformation: the gentamicin 3'-acetyltransferase gene for selection with gentamicin; a mutated acetolactate synthase gene for selection with chlorsulfuron; and the neomycin phosphotransferase II gene for selection with G418. Based on these four marker genes, we have constructed a series of Gateway binary vectors designed for transgenic experiments on M. polymorpha. The 35S promoter from cauliflower mosaic virus and endogenous promoters for constitutive and heat-inducible expression were used to create these vectors. The reporters and tags used were Citrine, 3×Citrine, Citrine-NLS, TagRFP, tdTomato, tdTomato-NLS, GR, SRDX, SRDX-GR, GUS, ELuc(PEST), and 3×FLAG. These vectors, designated as the pMpGWB series, will facilitate molecular genetic analyses of the emerging model plant M. polymorpha.
Collapse
Affiliation(s)
- Kimitsune Ishizaki
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Graduate School of Science, Kobe University, Kobe, Japan
| | | | - Minoru Ueda
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Keisuke Inoue
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Sakiko Ishida
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yoshiki Nishimura
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
48
|
Montgomery BL. Light-dependent governance of cell shape dimensions in cyanobacteria. Front Microbiol 2015; 6:514. [PMID: 26074902 PMCID: PMC4443024 DOI: 10.3389/fmicb.2015.00514] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/09/2015] [Indexed: 12/15/2022] Open
Abstract
The regulation of cellular dimension is important for the function and survival of cells. Cellular dimensions, such as size and shape, are regulated throughout the life cycle of bacteria and can be adapted in response to environmental changes to fine-tune cellular fitness. Cell size and shape are generally coordinated with cell growth and division. Cytoskeletal regulation of cell shape and cell wall biosynthesis and/or deposition occurs in a range of organisms. Photosynthetic organisms, such as cyanobacteria, particularly exhibit light-dependent regulation of morphogenes and generation of reactive oxygen species and other signals that can impact cellular dimensions. Environmental signals initiate adjustments of cellular dimensions, which may be vitally important for optimizing resource acquisition and utilization or for coupling the cellular dimensions with the regulation of subcellular organization to maintain optimal metabolism. Although the involvement of cytoskeletal components in the regulation of cell shape is widely accepted, the signaling factors that regulate cytoskeletal and other distinct components involved in cell shape control, particularly in response to changes in external light cues, remain to be fully elucidated. In this review, factors impacting the inter-coordination of growth and division, the relationship between the regulation of cellular dimensions and central carbon metabolism, and consideration of the effects of specific environment signals, primarily light, on cell dimensions in cyanobacteria will be discussed. Current knowledge about the molecular bases of the light-dependent regulation of cellular dimensions and cell shape in cyanobacteria will be highlighted.
Collapse
Affiliation(s)
- Beronda L. Montgomery
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|