1
|
Nowak M, Henningsson M, Davis T, Chowdhury N, Dennis A, Fernandes C, Thomaides Brears H, Robson MD. Repeatability, Reproducibility, and Observer Variability of Cortical T1 Mapping for Renal Tissue Characterization. J Magn Reson Imaging 2025; 61:1914-1922. [PMID: 39468402 PMCID: PMC11896918 DOI: 10.1002/jmri.29602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND The global rise in kidney diseases underscores the need for reliable, noninvasive imaging biomarkers. Among these, renal cortical T1 has shown promise but further technical validation is still required. PURPOSE To evaluate the repeatability, reproducibility, and observer variability of kidney cortical T1 mapping in human volunteers without known renal disease. STUDY TYPE Prospective. SUBJECTS Three cohorts without renal disease: 1) 25 volunteers (median age 38 [interquartile range, IQR: 28-42] years, female N = 11) for scan-rescan assessments on GE 1.5 T and Siemens 1.5 T; 2) 29 volunteers (median age 29 [IQR: 24-40] years, female N = 15) for scan-rescan assessments on Siemens 3 T; and 3) 16 volunteers (median age 34 [IQR: 31-42] years, female N = 8) for cross-scanner reproducibility. FIELD STRENGTH/SEQUENCES 1.5 T and 3 T, a modified Look-Locker imaging (MOLLI) sequence with a balanced steady-state free precession (bSSFP) readout. ASSESSMENT Kidney cortical T1 data was acquired on GE 1.5 T scanner, Siemens 1.5 T and 3 T scanners. Within-scanner repeatability and inter/intra-observer variability: GE 1.5 T and Siemens 1.5 T, and cross-scanner manufacturer reproducibility: Siemens 1.5 T-GE 1.5 T. STATISTICAL TESTS Bland Altman analysis, coefficient of variation (CoV), intra-class coefficient (ICC), and repeatability coefficient (RC). RESULTS Renal cortical T1 mapping showed high repeatability and reliability across scanner field strengths and manufacturers (repeatability: CoV 1.9%-2.8%, ICC 0.79-0.88, pooled RC 73 msec; reproducibility: CoV 3.0%, ICC 0.75, RC 90 msec). The method also showed robust observer variability (CoV 0.6%-1.4%, ICC 0.93-0.98, RC 22-48 msec). DATA CONCLUSION Kidney cortical T1 mapping is a highly repeatable and reproducible method across MRI manufacturers, field strengths, and observer conditions. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
|
2
|
Andersson J, Meik R, Pravdivtseva MS, Langguth P, Gottschalk H, Sedaghat S, Jüptner M, Koktzoglou I, Edelman RR, Kühn B, Feldkamp T, Jansen O, Both M, Salehi Ravesh M. Non-contrast preoperative MRI for determining renal perfusion and visualizing renal arteries in potential living kidney donors at 1.5 Tesla. Clin Kidney J 2024; 17:sfae101. [PMID: 38915436 PMCID: PMC11194483 DOI: 10.1093/ckj/sfae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Indexed: 06/26/2024] Open
Abstract
Background The aim of this work was to create and evaluate a preoperative non-contrast-enhanced (CE) magnetic resonance imaging (MRI)/angiography (MRA) protocol to assess renal function and visualize renal arteries and any abnormalities in potential living kidney donors. Methods In total, 28 subjects were examined using scintigraphy to determine renal function. In addition, 3D-pseudocontinuous arterial spin labeling (pCASL), a 2D-non-CE electrocardiogram-triggered radial quiescent interval slice-selective (QISS-MRA), and 4D-CE time-resolved angiography with interleaved stochastic trajectories (CE-MRA) were performed to assess renal perfusion, visualize renal arteries and detect any abnormalities. Two glomerular filtration rates [described by Gates (GFRG) and according to the Chronic Kidney Disease Epidemiology Collaboration formula (GFRCKD-EPI)]. The renal volumes were determined using both MRA techniques. Results The mean value of regional renal blood flow (rRBF) on the right side was significantly higher than that on the left. The agreements between QISS-MRA and CE-MRA concerning the assessment of absence or presence of an aberrant artery and renal arterial stenosis were perfect. The mean renal volumes measured in the right kidney with QISS-MRA were lower than the corresponding values of CE-MRA. In contrast, the mean renal volumes measured in the left kidney with both MRA techniques were similar. The correlation between the GFRG and rRBF was compared in the same manner as that between GFRCKD-EPI and rRBF. Conclusion The combination of pCASL and QISS-MRA constitute a reliable preoperative protocol with a total measurement time of <10 min without the potential side effects of gadolinium-based contrast agents or radiation exposure.
Collapse
Affiliation(s)
- Julian Andersson
- Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Rosalie Meik
- Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Mariya S Pravdivtseva
- Department of Radiology and Neuroradiology, Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), University Medical Center Schleswig-Holstein (UKSH), University of Kiel, Kiel, Germany
| | - Patrick Langguth
- Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Hannes Gottschalk
- Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Sam Sedaghat
- Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Jüptner
- Department of Nuclear Medicine, Molecular Imaging, Diagnostics and Therapy, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
| | - Ioannis Koktzoglou
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, USA
- University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Robert R Edelman
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Bernd Kühn
- Siemens Healthineers AG, Erlangen, Germany
| | - Thorsten Feldkamp
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, Christian-Albrechts-University, Kiel, Germany
| | - Olav Jansen
- Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Marcus Both
- Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Mona Salehi Ravesh
- Department of Radiology and Neuroradiology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| |
Collapse
|
3
|
Taso M, Aramendía-Vidaurreta V, Englund EK, Francis S, Franklin S, Madhuranthakam AJ, Martirosian P, Nayak KS, Qin Q, Shao X, Thomas DL, Zun Z, Fernández-Seara MA. Update on state-of-the-art for arterial spin labeling (ASL) human perfusion imaging outside of the brain. Magn Reson Med 2023; 89:1754-1776. [PMID: 36747380 DOI: 10.1002/mrm.29609] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 02/08/2023]
Abstract
This review article provides an overview of developments for arterial spin labeling (ASL) perfusion imaging in the body (i.e., outside of the brain). It is part of a series of review/recommendation papers from the International Society for Magnetic Resonance in Medicine (ISMRM) Perfusion Study Group. In this review, we focus on specific challenges and developments tailored for ASL in a variety of body locations. After presenting common challenges, organ-specific reviews of challenges and developments are presented, including kidneys, lungs, heart (myocardium), placenta, eye (retina), liver, pancreas, and muscle, which are regions that have seen the most developments outside of the brain. Summaries and recommendations of acquisition parameters (when appropriate) are provided for each organ. We then explore the possibilities for wider adoption of body ASL based on large standardization efforts, as well as the potential opportunities based on recent advances in high/low-field systems and machine-learning. This review seeks to provide an overview of the current state-of-the-art of ASL for applications in the body, highlighting ongoing challenges and solutions that aim to enable more widespread use of the technique in clinical practice.
Collapse
Affiliation(s)
- Manuel Taso
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Erin K Englund
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Susan Francis
- Sir Peter Mansfield Imaging Center, University of Nottingham, Nottingham, UK
| | - Suzanne Franklin
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Center for Image Sciences, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ananth J Madhuranthakam
- Department of Radiology, Advanced Imaging Research Center, and Biomedical Engineering, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Petros Martirosian
- Section on Experimental Radiology, Department of Radiology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Krishna S Nayak
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California, USA
| | - Qin Qin
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - David L Thomas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Zungho Zun
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
4
|
Ning Z, Chen S, Chen Z, Han H, Qiao H, Zhang N, Wang R, Shen R, Zhao X. Saturated multi-delay renal arterial spin labeling technique for simultaneous perfusion and T 1 quantification in kidneys. Magn Reson Med 2022; 88:1055-1067. [PMID: 35506512 DOI: 10.1002/mrm.29268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE To propose a free-breathing simultaneous multi-delay arterial spin labeling (ASL) and T1 mapping technique with a stepwise kinetic model for renal assessment in a single 4-min scan at 3 T. METHODS The proposed saturated multi-delay renal arterial spin labeling (SAMURAI) sequence used flow-sensitive alternating inversion recovery (FAIR) preparation, followed by acquisition of 9 images with Look-Locker spoiled gradient recalled echo (SPGR). Pre-saturation at the imaging slice was used to achieve saturation-based T1 mapping. A 4-step 2-compartment kinetic model was proposed to characterize water transition through artery- and tissue-compartment. The impact of the Look-Locker sampling scheme on the ASL signal was corrected in this model. T1 estimation with dictionary searching method and perfusion quantification based on the proposed kinetic model fitting were conducted after groupwise registration of the acquired images. The feasibility and repeatability of SAMURAI were validated in healthy subjects (n = 11) and patients with different renal diseases (n = 4). RESULTS The proposed SAMURAI technique can provide accurate T1 map with strong correlation (R2 = 0.98) with inversion recovery spin echo (IR-SE) on phantom. SAMURAI provided equally reliable whole kidney and cortical ASL and T1 quantification results compared with multi-TI FAIR (intraclass correlation coefficient [ICC], 0.880-0.958) and IR-SPGR (ICC, 0.875-0.912), respectively. Low renal blood flow and increased T1 were detected by SAMURAI in the affected kidneys of the patients. SAMURAI had excellent scan-rescan repeatability (ICC, 0.905-0.992) and significantly reduced scan time (4 min 6 s vs. 45 min for 9 TIs) compared to multi-TI FAIR. CONCLUSION The proposed SAMURAI technique is feasible and repeatable for simultaneously quantifying T1 and perfusion of kidneys with high time-efficiency.
Collapse
Affiliation(s)
- Zihan Ning
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Shuo Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China.,Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China
| | - Zhensen Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Hualu Han
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Huiyu Qiao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China.,Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China
| | - Nan Zhang
- Department of Radiology, Beijing Anzhen Hospital, Beijing, China
| | - Rui Wang
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Rui Shen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| | - Xihai Zhao
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China
| |
Collapse
|
5
|
Katagiri D, Wang F, Gore JC, Harris RC, Takahashi T. Clinical and experimental approaches for imaging of acute kidney injury. Clin Exp Nephrol 2021; 25:685-699. [PMID: 33835326 PMCID: PMC8154759 DOI: 10.1007/s10157-021-02055-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/17/2021] [Indexed: 12/23/2022]
Abstract
Complex molecular cell dynamics in acute kidney injury and its heterogeneous etiologies in patient populations in clinical settings have revealed the potential advantages and disadvantages of emerging novel damage biomarkers. Imaging techniques have been developed over the past decade to further our understanding about diseased organs, including the kidneys. Understanding the compositional, structural, and functional changes in damaged kidneys via several imaging modalities would enable a more comprehensive analysis of acute kidney injury, including its risks, diagnosis, and prognosis. This review summarizes recent imaging studies for acute kidney injury and discusses their potential utility in clinical settings.
Collapse
Affiliation(s)
- Daisuke Katagiri
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223 MCN, Nashville, TN, 37232, USA.
- Department of Nephrology, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan.
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt In Vivo Mouse Kidney Imaging Core, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt In Vivo Mouse Kidney Imaging Core, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223 MCN, Nashville, TN, 37232, USA
| | - Takamune Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223 MCN, Nashville, TN, 37232, USA.
- Vanderbilt In Vivo Mouse Kidney Imaging Core, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
6
|
Zhang HM, Wen DG, Wang Y, Bao YG, Yuan Y, Chen YT, Song B. Arterial Spin Labeling MRI for Predicting Microvascular Invasion of T1 Staging Renal Clear Cell Carcinoma Preoperatively. Front Oncol 2021; 11:644975. [PMID: 34084743 PMCID: PMC8168533 DOI: 10.3389/fonc.2021.644975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/09/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Microvascular invasion (MVI) is a valuable factor for T1 staging renal clear cell carcinoma (ccRCC) operation strategy decision, which is confirmed histopathologically post-operation. This study aimed to prospectively evaluate the performance of arterial spin labeling (ASL) MRI for predicting MVI of T1 staging ccRCC preoperatively. METHODS 16 volunteers and 39 consecutive patients were enrolled. MRI examinations consisted of ASL (three post label delays separately) of the kidney, followed by T1 and T2-weighted imaging. Two sessions of ASL were used to evaluate the reproducibility on volunteers. Renal blood flow of renal cortex, medulla, the entire and solid part of the tumor were measured on ASL images. Conventional imaging features were extracted. MVI and WHO/ISUP classification were evaluated histopathologically. A paired t-test was used to compare the renal cortex and medulla between ASL 1 and ASL 2. The reproducibility was assessed using the intraclass correlation. Differences in mean perfusion between the entire and the solid parts of tumors with or without MVI were assessed separately using Student's t test. The diagnostic performance was assessed. Logistic regression analysis was used to indicate the independent prediction index for MVI. RESULTS The two sessions of ASL showed no significant difference between the mean cortex values of RBF. The cortical RBF measurements demonstrated good agreement. 12 ccRCCs presented with MVI histopathologically. Mean perfusion of the solid part of tumors with MVI were 536.4 ± 154.8 ml/min/100 g (PLD1), 2912.5 ± 939.3 ml/min/100 g (PLD2), 3280.3 ± 901.2 ml/min/100 g (PLD3). Mean perfusion of the solid part of tumors without MVI were 453.5 ± 87.2 ml/min/100 g (PLD1), 1043.6 ± 695.8 ml/min/100 g (PLD2), 1577.6 ± 1085.8 ml/min/100 g (PLD3). These two groups have significant difference at all the PLDs (p < 0.05). The RBF of PLD1 of the solid part of tumor perfusion showed well diagnostic performance for predicting MVI: sensitivity 75%, specificity 100%, positive predictive value 66.7%, and negative predictive value 95.7%. The maximum diameter of the tumor, ill-defined margin, and the solid part of tumor perfusion were the independent prediction index for MVI. CONCLUSION ASL MR imaging has good reproducibility for renal cortex, and good diagnostic performance for predicting MVI for ccRCC.
Collapse
Affiliation(s)
- Han-Mei Zhang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Da-Guang Wen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Wang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi-Ge Bao
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Yuan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yun-Tian Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Srivastava A, Tomar B, Prajapati S, Gaikwad AB, Mulay SR. Advanced non-invasive diagnostic techniques for visualization and estimation of kidney fibrosis. Drug Discov Today 2021; 26:2053-2063. [PMID: 33617976 DOI: 10.1016/j.drudis.2021.02.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/22/2020] [Accepted: 02/12/2021] [Indexed: 12/17/2022]
Abstract
Kidney fibrosis is marked by excessive extracellular matrix deposition during disease progression. Unfortunately, existing kidney function parameters do not predict the extent of kidney fibrosis. Moreover, the traditional histology methods for the assessment of kidney fibrosis require liquid and imaging biomarkers as well as needle-based biopsies, which are invasive and often associated with kidney injury. The repetitive analyses required to monitor the disease progression are therefore difficult. Hence, there is an unmet medical need for non-invasive and informative diagnostic approaches to monitor kidney fibrosis during the progression of chronic kidney disease. Here, we summarize the modern advances in diagnostic imaging techniques that have shown promise for non-invasive estimation of kidney fibrosis in pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Anjali Srivastava
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Bhawna Tomar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Smita Prajapati
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, 333031, India
| | - Shrikant R Mulay
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| |
Collapse
|
8
|
Ku MC, Fernández-Seara MA, Kober F, Niendorf T. Noninvasive Renal Perfusion Measurement Using Arterial Spin Labeling (ASL) MRI: Basic Concept. Methods Mol Biol 2021; 2216:229-239. [PMID: 33476003 PMCID: PMC9703206 DOI: 10.1007/978-1-0716-0978-1_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The kidney is a complex organ involved in the excretion of metabolic products as well as the regulation of body fluids, osmolarity, and homeostatic status. These functions are influenced in large part by alterations in the regional distribution of blood flow between the renal cortex and medulla. Renal perfusion is therefore a key determinant of glomerular filtration. Therefore the quantification of regional renal perfusion could provide important insights into renal function and renal (patho)physiology. Arterial spin labeling (ASL) based perfusion MRI techniques, can offer a noninvasive and reproducible way of measuring renal perfusion in animal models. This chapter addresses the basic concept of ASL-MRI.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by two separate chapters describing the experimental procedure and data analysis.
Collapse
Affiliation(s)
- Min-Chi Ku
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - Frank Kober
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), Marseille, France
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
9
|
Ahn HS, Yu HC, Kwak HS, Park SH. Assessment of Renal Perfusion in Transplanted Kidney Patients Using Pseudo-Continuous Arterial Spin Labeling with Multiple Post-Labeling Delays. Eur J Radiol 2020; 130:109200. [PMID: 32739781 DOI: 10.1016/j.ejrad.2020.109200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/24/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE To investigate technical issues for implementing pseudo-continuous arterial spin labeling (pCASL) for renal perfusion measurements in transplanted kidney patients (TK) in the early postoperative recovery phase. METHODS Eleven subjects were scanned: TK (N = 4, 42 ± 8.1Y) and normal volunteers (NV) (N = 7, 25 ± 3Y). In 3.0 T clinical MRI, pCASL with a 2D balanced steady-state free precession readout was applied with four different post-labeling delays: 0.5/1.0/1.5/2.0 s. Perfusion images were acquired with and without background suppression and processed with and without registration for comparison. Renal blood flow (RBF) and arterial transit time (ATT) values were calculated from each pixel of images. The F-test, Wilcoxon signed-rank test, and Wilcoxon rank-sum test were used for statistical analyses. RESULTS Background suppression decreased signal variations for both NV and TK. Registration suppressed effects of kidney motion for NV, which was not critical for TK. The renal cortex showed greater perfusion than the renal medulla in both NV and TK(p < 0.01). TK showed greater renal perfusion than NV(p < 0.05). Cortical and medullary RBF values were 271.8 ± 43.5, 119.1 ± 15.1 ml/100 g/min for NV and 358.3 ± 36.4, 141.0 ± 11.5 ml/100 g/min for TK. TK showed longer ATT values than NV(p < 0.01). ATT values in the cortex and medulla were 641 ± 141 and 746 ± 150 ms for NV and 919 ± 49 and 935 ± 81 ms for TK. CONCLUSIONS We demonstrated that although there is no discernible motion of the transplanted kidney, background suppression is necessary to suppress signal fluctuations in renal perfusion measurements. Also, relatively high RBF and long ATT values were observed in the transplanted kidneys in the early postoperative recovery phase, which requires further longitudinal studies.
Collapse
Affiliation(s)
- Hyun-Seo Ahn
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hee Chul Yu
- Department of Surgery, Jeonbuk National University Medical School and Hospital, Jeonju, South Korea
| | - Hyo Sung Kwak
- Department of Radiology and Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea.
| | - Sung-Hong Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
10
|
Nery F, Buchanan CE, Harteveld AA, Odudu A, Bane O, Cox EF, Derlin K, Gach HM, Golay X, Gutberlet M, Laustsen C, Ljimani A, Madhuranthakam AJ, Pedrosa I, Prasad PV, Robson PM, Sharma K, Sourbron S, Taso M, Thomas DL, Wang DJJ, Zhang JL, Alsop DC, Fain SB, Francis ST, Fernández-Seara MA. Consensus-based technical recommendations for clinical translation of renal ASL MRI. MAGMA (NEW YORK, N.Y.) 2019. [PMID: 31833014 DOI: 10.1007/s10334‐019‐00800‐z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES This study aimed at developing technical recommendations for the acquisition, processing and analysis of renal ASL data in the human kidney at 1.5 T and 3 T field strengths that can promote standardization of renal perfusion measurements and facilitate the comparability of results across scanners and in multi-centre clinical studies. METHODS An international panel of 23 renal ASL experts followed a modified Delphi process, including on-line surveys and two in-person meetings, to formulate a series of consensus statements regarding patient preparation, hardware, acquisition protocol, analysis steps and data reporting. RESULTS Fifty-nine statements achieved consensus, while agreement could not be reached on two statements related to patient preparation. As a default protocol, the panel recommends pseudo-continuous (PCASL) or flow-sensitive alternating inversion recovery (FAIR) labelling with a single-slice spin-echo EPI readout with background suppression and a simple but robust quantification model. DISCUSSION This approach is considered robust and reproducible and can provide renal perfusion images of adequate quality and SNR for most applications. If extended kidney coverage is desirable, a 2D multislice readout is recommended. These recommendations are based on current available evidence and expert opinion. Nonetheless they are expected to be updated as more data become available, since the renal ASL literature is rapidly expanding.
Collapse
Affiliation(s)
- Fabio Nery
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Charlotte E Buchanan
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Anita A Harteveld
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Aghogho Odudu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Octavia Bane
- Translational and Molecular Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eleanor F Cox
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Katja Derlin
- Department of Radiology, Hannover Medical School, Hannover, Germany
| | - H Michael Gach
- Departments of Radiation Oncology, Radiology, and Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Xavier Golay
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Marcel Gutberlet
- Department of Radiology, Hannover Medical School, Hannover, Germany
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ananth J Madhuranthakam
- Department of Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ivan Pedrosa
- Department of Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Pottumarthi V Prasad
- Department of Radiology, Center for Advanced Imaging, NorthShore University Health System, Evanston, IL, USA
| | - Philip M Robson
- Translational and Molecular Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kanishka Sharma
- Imaging Biomarkers Group, Department of Biomedical Imaging Sciences, University of Leeds, Leeds, UK
| | - Steven Sourbron
- Imaging Biomarkers Group, Department of Biomedical Imaging Sciences, University of Leeds, Leeds, UK
| | - Manuel Taso
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - David L Thomas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Danny J J Wang
- Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Jeff L Zhang
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - David C Alsop
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Sean B Fain
- Departments of Medical Physics, Radiology, and Biomedical Engineering, University of Wisconsin, Madison, Madison, USA
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
11
|
Nery F, Buchanan CE, Harteveld AA, Odudu A, Bane O, Cox EF, Derlin K, Gach HM, Golay X, Gutberlet M, Laustsen C, Ljimani A, Madhuranthakam AJ, Pedrosa I, Prasad PV, Robson PM, Sharma K, Sourbron S, Taso M, Thomas DL, Wang DJJ, Zhang JL, Alsop DC, Fain SB, Francis ST, Fernández-Seara MA. Consensus-based technical recommendations for clinical translation of renal ASL MRI. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 33:141-161. [PMID: 31833014 PMCID: PMC7021752 DOI: 10.1007/s10334-019-00800-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022]
Abstract
Objectives This study aimed at developing technical recommendations for the acquisition, processing and analysis of renal ASL data in the human kidney at 1.5 T and 3 T field strengths that can promote standardization of renal perfusion measurements and facilitate the comparability of results across scanners and in multi-centre clinical studies. Methods An international panel of 23 renal ASL experts followed a modified Delphi process, including on-line surveys and two in-person meetings, to formulate a series of consensus statements regarding patient preparation, hardware, acquisition protocol, analysis steps and data reporting. Results Fifty-nine statements achieved consensus, while agreement could not be reached on two statements related to patient preparation. As a default protocol, the panel recommends pseudo-continuous (PCASL) or flow-sensitive alternating inversion recovery (FAIR) labelling with a single-slice spin-echo EPI readout with background suppression and a simple but robust quantification model. Discussion This approach is considered robust and reproducible and can provide renal perfusion images of adequate quality and SNR for most applications. If extended kidney coverage is desirable, a 2D multislice readout is recommended. These recommendations are based on current available evidence and expert opinion. Nonetheless they are expected to be updated as more data become available, since the renal ASL literature is rapidly expanding. Electronic supplementary material The online version of this article (10.1007/s10334-019-00800-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fabio Nery
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Charlotte E Buchanan
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Anita A Harteveld
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Aghogho Odudu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Octavia Bane
- Translational and Molecular Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eleanor F Cox
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Katja Derlin
- Department of Radiology, Hannover Medical School, Hannover, Germany
| | - H Michael Gach
- Departments of Radiation Oncology, Radiology, and Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Xavier Golay
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Marcel Gutberlet
- Department of Radiology, Hannover Medical School, Hannover, Germany
| | - Christoffer Laustsen
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ananth J Madhuranthakam
- Department of Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ivan Pedrosa
- Department of Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, USA
| | - Pottumarthi V Prasad
- Department of Radiology, Center for Advanced Imaging, NorthShore University Health System, Evanston, IL, USA
| | - Philip M Robson
- Translational and Molecular Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kanishka Sharma
- Imaging Biomarkers Group, Department of Biomedical Imaging Sciences, University of Leeds, Leeds, UK
| | - Steven Sourbron
- Imaging Biomarkers Group, Department of Biomedical Imaging Sciences, University of Leeds, Leeds, UK
| | - Manuel Taso
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - David L Thomas
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Danny J J Wang
- Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Jeff L Zhang
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - David C Alsop
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Sean B Fain
- Departments of Medical Physics, Radiology, and Biomedical Engineering, University of Wisconsin, Madison, Madison, USA
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
12
|
Zöllner FG, Šerifović-Trbalić A, Kabelitz G, Kociński M, Materka A, Rogelj P. Image registration in dynamic renal MRI-current status and prospects. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 33:33-48. [PMID: 31598799 PMCID: PMC7210245 DOI: 10.1007/s10334-019-00782-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/16/2019] [Accepted: 09/25/2019] [Indexed: 12/26/2022]
Abstract
Magnetic resonance imaging (MRI) modalities have achieved an increasingly important role in the clinical work-up of chronic kidney diseases (CKD). This comprises among others assessment of hemodynamic parameters by arterial spin labeling (ASL) or dynamic contrast-enhanced (DCE-) MRI. Especially in the latter, images or volumes of the kidney are acquired over time for up to several minutes. Therefore, they are hampered by motion, e.g., by pulsation, peristaltic, or breathing motion. This motion can hinder subsequent image analysis to estimate hemodynamic parameters like renal blood flow or glomerular filtration rate (GFR). To overcome motion artifacts in time-resolved renal MRI, a wide range of strategies have been proposed. Renal image registration approaches could be grouped into (1) image acquisition techniques, (2) post-processing methods, or (3) a combination of image acquisition and post-processing approaches. Despite decades of progress, the translation in clinical practice is still missing. The aim of the present article is to discuss the existing literature on renal image registration techniques and show today’s limitations of the proposed techniques that hinder clinical translation. This paper includes transformation, criterion function, and search types as traditional components and emerging registration technologies based on deep learning. The current trend points towards faster registrations and more accurate results. However, a standardized evaluation of image registration in renal MRI is still missing.
Collapse
Affiliation(s)
- Frank G Zöllner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | | | - Gordian Kabelitz
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Marek Kociński
- Institute of Electronics, Lodz University of Technology, Lodz, Poland
| | - Andrzej Materka
- Institute of Electronics, Lodz University of Technology, Lodz, Poland
| | - Peter Rogelj
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| |
Collapse
|
13
|
Bones IK, Harteveld AA, Franklin SL, van Osch MJP, Hendrikse J, Moonen CTW, Bos C, van Stralen M. Enabling free-breathing background suppressed renal pCASL using fat imaging and retrospective motion correction. Magn Reson Med 2019; 82:276-288. [PMID: 30883873 PMCID: PMC6593735 DOI: 10.1002/mrm.27723] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/24/2019] [Accepted: 02/12/2019] [Indexed: 12/14/2022]
Abstract
Purpose For free‐breathing renal perfusion imaging using arterial spin labeling (ASL), retrospective image realignment has been found essential to reduce subtraction artifacts and, independently, background suppression has been demonstrated to reduce physiologic noise. However, negative results on ASL precision and accuracy have been reported for the combination of both. In this study, the effect of background suppression ‐level in combination with image registration on free‐breathing renal ASL signal quality, with registration either on ASL‐images themselves or guided by additionally acquired fat‐images, was investigated. The results from free‐breathing acquisitions were compared with the reference paced‐breathing motion compensation strategy. Methods Pseudocontinuous ASL (pCASL) data with additional fat‐images were acquired from 10 subjects at 1.5T with varying background suppression levels during free‐breathing and paced‐breathing. Images were registered using the ASL‐images themselves (ASLReg) or using their corresponding fat‐images (FatReg). Temporal signal‐to‐noise ratio (tSNR) served to evaluate precision and perfusion weighted signal (PWS) to assess accuracy. Results In combination with image registration, background suppression significantly improved tSNR by 50% (P < .05). For heavy suppression, ASLReg and FatReg showed similar performance in terms of tSNR and PWS. Background suppression with two inversion pulses induced a small, nonsignificant (P > .05) PWS reduction, but increased PWS accuracy. When applying heavy background suppression, free‐breathing acquisitions resulted in similar ASL‐quality to paced‐breathing acquisitions. Conclusion Background suppression was found beneficial for free‐breathing renal pCASL precision without compromising accuracy, despite motion challenges. In combination with ASLReg or FatReg, background suppression enabled clinically viable free‐breathing renal pCASL.
Collapse
Affiliation(s)
- Isabell K. Bones
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Anita A. Harteveld
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Suzanne L. Franklin
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtthe Netherlands
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
| | - Matthias J. P. van Osch
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
| | - Jeroen Hendrikse
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Chrit T. W. Moonen
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Clemens Bos
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Marijn van Stralen
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtthe Netherlands
| |
Collapse
|
14
|
Nery F, De Vita E, Clark CA, Gordon I, Thomas DL. Robust kidney perfusion mapping in pediatric chronic kidney disease using single-shot 3D-GRASE ASL with optimized retrospective motion correction. Magn Reson Med 2018; 81:2972-2984. [PMID: 30536817 DOI: 10.1002/mrm.27614] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE To develop a robust renal arterial spin labeling (ASL) acquisition and processing strategy for mapping renal blood flow (RBF) in a pediatric cohort with severe kidney disease. METHODS A single-shot background-suppressed 3D gradient and spin-echo (GRASE) flow-sensitive alternating inversion recovery (FAIR) ASL acquisition method was used to perform 2 studies. First, an evaluation of the feasibility of single-shot 3D-GRASE and retrospective noise reduction methods was performed in healthy volunteers. Second, a pediatric cohort with severe chronic kidney disease underwent single-shot 3D-GRASE FAIR ASL and RBF was quantified following several retrospective motion correction pipelines, including image registration and threshold-free weighted averaging. The effect of motion correction on the fit errors of saturation recovery (SR) images (required for RBF quantification) and on the perfusion-weighted image (PWI) temporal signal-to-noise ratio (tSNR) was evaluated, as well as the intra- and inter-session repeatability of renal longitudinal relaxation time (T1 ) and RBF. RESULTS The mean cortical and/or functional renal parenchyma RBF in healthy volunteers and CKD patients was 295 ± 97 and 95 ± 47 mL/100 g/min, respectively. Motion-correction reduced image artefacts in both T1 and RBF maps, significantly reduced SR fit errors, significantly increased the PWI tSNR and improved the improved the repeatability of T1 and RBF in the pediatric patient cohort. CONCLUSION Single-shot 3D-GRASE ASL combined with retrospective motion correction enabled repeatable non-invasive RBF mapping in the first pediatric cohort with severe kidney disease undergoing ASL scans.
Collapse
Affiliation(s)
- Fabio Nery
- Developmental Imaging and Biophysics Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Enrico De Vita
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, United Kingdom
| | - Chris A Clark
- Developmental Imaging and Biophysics Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Isky Gordon
- Developmental Imaging and Biophysics Section, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - David L Thomas
- Department of Brain Repair and Rehabilitation, University College London Queen Square Institute of Neurology, Queen Square, London, United Kingdom.,Leonard Wolfson Experimental Neurology Centre, University College London Queen Square Institute of Neurology, Queen Square, London, United Kingdom
| |
Collapse
|
15
|
Taso M, Guidon A, Alsop DC. Influence of background suppression and retrospective realignment on free-breathing renal perfusion measurement using pseudo-continuous ASL. Magn Reson Med 2018; 81:2439-2449. [PMID: 30474312 DOI: 10.1002/mrm.27575] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE To assess the influence of background suppression and retrospective realignment on physiological noise and image quality in free-breathing renal pseudo-continuous arterial spin labeling (pCASL). METHODS Ten subjects were scanned at 3T with a pCASL prepared single-slice coronal acquisition through the kidneys under free breathing. Multiple acquisitions were performed with various levels of residual background signal based on optimization of pulse timings to achieve specific background suppression levels (<2%, <5%, <10%, <20%). A retrospective non-rigid motion-correction strategy was also implemented. RESULTS Decreasing level of residual background signal was associated with higher temporal SNR. The retrospective motion-correction provided an additional but not statistically significant improvement in tSNR. The highest image quality was obtained with the lowest level of residual background signal accompanied by the retrospective motion-correction, although no significant difference in quantitative renal blood-flow could be observed. CONCLUSIONS Renal perfusion measurement with ASL under free breathing is feasible and robust against physiological noise when using strong background suppression strategies. Finally, retrospective motion-correction further improves image quality but cannot replace background suppression.
Collapse
Affiliation(s)
- Manuel Taso
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Arnaud Guidon
- Global MR applications and workflow, GE Healthcare, Boston, Massachusetts
| | - David C Alsop
- Division of MRI Research, Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Odudu A, Nery F, Harteveld AA, Evans RG, Pendse D, Buchanan CE, Francis ST, Fernández-Seara MA. Arterial spin labelling MRI to measure renal perfusion: a systematic review and statement paper. Nephrol Dial Transplant 2018; 33:ii15-ii21. [PMID: 30137581 PMCID: PMC6106644 DOI: 10.1093/ndt/gfy180] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/15/2018] [Indexed: 01/03/2023] Open
Abstract
Renal perfusion provides the driving pressure for glomerular filtration and delivers the oxygen and nutrients to fuel solute reabsorption. Renal ischaemia is a major mechanism in acute kidney injury and may promote the progression of chronic kidney disease. Thus, quantifying renal tissue perfusion is critically important for both clinicians and physiologists. Current reference techniques for assessing renal tissue perfusion have significant limitations. Arterial spin labelling (ASL) is a magnetic resonance imaging (MRI) technique that uses magnetic labelling of water in arterial blood as an endogenous tracer to generate maps of absolute regional perfusion without requiring exogenous contrast. The technique holds enormous potential for clinical use but remains restricted to research settings. This statement paper from the PARENCHIMA network briefly outlines the ASL technique and reviews renal perfusion data in 53 studies published in English through January 2018. Renal perfusion by ASL has been validated against reference methods and has good reproducibility. Renal perfusion by ASL reduces with age and excretory function. Technical advancements mean that a renal ASL study can acquire a whole kidney perfusion measurement in less than 5-10 min. The short acquisition time permits combination with other MRI techniques that might inform drug mechanisms and renal physiology. The flexibility of renal ASL has yielded several variants of the technique, but there are limited data comparing these approaches. We make recommendations for acquiring and reporting renal ASL data and outline the knowledge gaps that future research should address.
Collapse
Affiliation(s)
- Aghogho Odudu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Fabio Nery
- Developmental Imaging & Biophysics Section, University College London, Great Ormond Street Institute of Child Health, London, UK
| | - Anita A Harteveld
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roger G Evans
- Department of Physiology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Douglas Pendse
- Centre for Medical Imaging, University College London, London, UK
| | - Charlotte E Buchanan
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
17
|
Shirvani S, Tokarczuk P, Statton B, Quinlan M, Berry A, Tomlinson J, Weale P, Kühn B, O'Regan DP. Motion-corrected multiparametric renal arterial spin labelling at 3 T: reproducibility and effect of vasodilator challenge. Eur Radiol 2018; 29:232-240. [PMID: 29992384 PMCID: PMC6291439 DOI: 10.1007/s00330-018-5628-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/14/2018] [Accepted: 06/22/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVES We investigated the feasibility and reproducibility of free-breathing motion-corrected multiple inversion time (multi-TI) pulsed renal arterial spin labelling (PASL), with general kinetic model parametric mapping, to simultaneously quantify renal perfusion (RBF), bolus arrival time (BAT) and tissue T1. METHODS In a study approved by the Health Research Authority, 12 healthy volunteers (mean age, 27.6 ± 18.5 years; 5 male) gave informed consent for renal imaging at 3 T using multi-TI ASL and conventional single-TI ASL. Glyceryl trinitrate (GTN) was used as a vasodilator challenge in six subjects. Flow-sensitive alternating inversion recovery (FAIR) preparation was used with background suppression and 3D-GRASE (gradient and spin echo) read-out, and images were motion-corrected. Parametric maps of RBF, BAT and T1 were derived for both kidneys. Agreement was assessed using Pearson correlation and Bland-Altman plots. RESULTS Inter-study correlation of whole-kidney RBF was good for both single-TI (r2 = 0.90), and multi-TI ASL (r2 = 0.92). Single-TI ASL gave a higher estimate of whole-kidney RBF compared to multi-TI ASL (mean bias, 29.3 ml/min/100 g; p <0.001). Using multi-TI ASL, the median T1 of renal cortex was shorter than that of medulla (799.6 ms vs 807.1 ms, p = 0.01), and mean whole-kidney BAT was 269.7 ± 56.5 ms. GTN had an effect on systolic blood pressure (p < 0.05) but the change in RBF was not significant. CONCLUSIONS Free-breathing multi-TI renal ASL is feasible and reproducible at 3 T, providing simultaneous measurement of renal perfusion, haemodynamic parameters and tissue characteristics at baseline and during pharmacological challenge. KEY POINTS • Multiple inversion time arterial spin labelling (ASL) of the kidneys is feasible and reproducible at 3 T. • This approach allows simultaneous mapping of renal perfusion, bolus arrival time and tissue T 1 during free breathing. • This technique enables repeated measures of renal haemodynamic characteristics during pharmacological challenge.
Collapse
Affiliation(s)
- Saba Shirvani
- Medical Research Council (MRC), London Institute of Medical Sciences (LMS), Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
- Department of Chemistry, Imperial College London, South Kensington Campus, Exhibition Road, London, UK
| | - Paweł Tokarczuk
- Medical Research Council (MRC), London Institute of Medical Sciences (LMS), Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Ben Statton
- Medical Research Council (MRC), London Institute of Medical Sciences (LMS), Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Marina Quinlan
- Medical Research Council (MRC), London Institute of Medical Sciences (LMS), Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Alaine Berry
- Medical Research Council (MRC), London Institute of Medical Sciences (LMS), Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - James Tomlinson
- Medical Research Council (MRC), London Institute of Medical Sciences (LMS), Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | | | - Bernd Kühn
- Siemens Healthcare GmbH, Erlangen, Germany
| | - Declan P O'Regan
- Medical Research Council (MRC), London Institute of Medical Sciences (LMS), Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
18
|
Evaluation of 2D Imaging Schemes for Pulsed Arterial Spin Labeling of the Human Kidney Cortex. Diagnostics (Basel) 2018; 8:diagnostics8030043. [PMID: 29958409 PMCID: PMC6165477 DOI: 10.3390/diagnostics8030043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/18/2018] [Accepted: 06/25/2018] [Indexed: 01/13/2023] Open
Abstract
A number of imaging readout schemes are proposed for renal arterial spin labeling (ASL) to quantify kidney cortex perfusion, including gradient echo-based methods of balanced fast field echo (bFFE) and gradient-echo echo-planar imaging (GE-EPI), or spin echo-based schemes of spin-echo echo-planar imaging (SE-EPI) and turbo spin-echo (TSE). Here, we compare these two-dimensional (2D) imaging schemes to evaluate the optimal imaging scheme for pulsed ASL (PASL) assessment of human kidney cortex perfusion at 3 T. Ten healthy volunteers with normal renal function were scanned using each 2D multi-slice imaging scheme, in combination with a respiratory triggered flow-sensitive alternating inversion recovery (FAIR) ASL scheme on a 3 T Philips Achieva scanner. All volunteers returned for a second identical scan session within two weeks of the first scan session. Comparisons were made between the imaging schemes in terms of perfusion-weighted image (PWI) signal-to-noise ratio (SNR) and perfusion quantification, temporal SNR (tSNR), spatial coverage, and repeatability. For each imaging scheme, the renal cortex perfusion was calculated (bFFE: 276 ± 29 mL/100g/min, GE-EPI: 222 ± 18 mL/100g/min, SE-EPI: 201 ± 36 mL/100g/min, and TSE: 200 ± 20 mL/100g/min). Perfusion was found to be higher for GE-based readouts when compared with SE-based readouts, with significantly higher measured perfusion for the bFFE readout when compared with all other schemes (p < 0.05), attributed to the greater vascular signal present. Despite the PWI-SNR being significantly lower for SE-EPI when compared with all other schemes (p < 0.05), the SE-EPI readout gave the highest tSNR, and was found to be the most reproducible scheme for the assessment of kidney cortex, with a coefficient of variation (CoV) of 17.2%, whilst minimizing variability of the perfusion-weighted signal across slices for whole-kidney perfusion assessment. For the assessment of kidney cortex perfusion using 2D readout schemes, SE-EPI provides optimal tSNR, minimal variability across slices, and repeatable data acquired in a short scan time with low specific absorption rate.
Collapse
|
19
|
Non-Invasive Renal Perfusion Imaging Using Arterial Spin Labeling MRI: Challenges and Opportunities. Diagnostics (Basel) 2018; 8:diagnostics8010002. [PMID: 29303965 PMCID: PMC5871985 DOI: 10.3390/diagnostics8010002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/25/2017] [Accepted: 01/02/2018] [Indexed: 12/28/2022] Open
Abstract
Tissue perfusion allows for delivery of oxygen and nutrients to tissues, and in the kidneys is also a key determinant of glomerular filtration. Quantification of regional renal perfusion provides a potential window into renal (patho) physiology. However, non-invasive, practical, and robust methods to measure renal perfusion remain elusive, particularly in the clinic. Arterial spin labeling (ASL), a magnetic resonance imaging (MRI) technique, is arguably the only available method with potential to meet all these needs. Recent developments suggest its viability for clinical application. This review addresses several of these developments and discusses remaining challenges with the emphasis on renal imaging in human subjects.
Collapse
|
20
|
Cox EF, Buchanan CE, Bradley CR, Prestwich B, Mahmoud H, Taal M, Selby NM, Francis ST. Multiparametric Renal Magnetic Resonance Imaging: Validation, Interventions, and Alterations in Chronic Kidney Disease. Front Physiol 2017; 8:696. [PMID: 28959212 PMCID: PMC5603702 DOI: 10.3389/fphys.2017.00696] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022] Open
Abstract
Background: This paper outlines a multiparametric renal MRI acquisition and analysis protocol to allow non-invasive assessment of hemodynamics (renal artery blood flow and perfusion), oxygenation (BOLD T2*), and microstructure (diffusion, T1 mapping). Methods: We use our multiparametric renal MRI protocol to provide (1) a comprehensive set of MRI parameters [renal artery and vein blood flow, perfusion, T1, T2*, diffusion (ADC, D, D*, fp), and total kidney volume] in a large cohort of healthy participants (127 participants with mean age of 41 ± 19 years) and show the MR field strength (1.5 T vs. 3 T) dependence of T1 and T2* relaxation times; (2) the repeatability of multiparametric MRI measures in 11 healthy participants; (3) changes in MRI measures in response to hypercapnic and hyperoxic modulations in six healthy participants; and (4) pilot data showing the application of the multiparametric protocol in 11 patients with Chronic Kidney Disease (CKD). Results: Baseline measures were in-line with literature values, and as expected, T1-values were longer at 3 T compared with 1.5 T, with increased T1 corticomedullary differentiation at 3 T. Conversely, T2* was longer at 1.5 T. Inter-scan coefficients of variation (CoVs) of T1 mapping and ADC were very good at <2.9%. Intra class correlations (ICCs) were high for cortex perfusion (0.801), cortex and medulla T1 (0.848 and 0.997 using SE-EPI), and renal artery flow (0.844). In response to hypercapnia, a decrease in cortex T2* was observed, whilst no significant effect of hyperoxia on T2* was found. In CKD patients, renal artery and vein blood flow, and renal perfusion was lower than for healthy participants. Renal cortex and medulla T1 was significantly higher in CKD patients compared to healthy participants, with corticomedullary T1 differentiation reduced in CKD patients compared to healthy participants. No significant difference was found in renal T2*. Conclusions: Multiparametric MRI is a powerful technique for the assessment of changes in structure, hemodynamics, and oxygenation in a single scan session. This protocol provides the potential to assess the pathophysiological mechanisms in various etiologies of renal disease, and to assess the efficacy of drug treatments.
Collapse
Affiliation(s)
- Eleanor F Cox
- Sir Peter Mansfield Imaging Centre, University of NottinghamNottingham, United Kingdom
| | - Charlotte E Buchanan
- Sir Peter Mansfield Imaging Centre, University of NottinghamNottingham, United Kingdom
| | - Christopher R Bradley
- Sir Peter Mansfield Imaging Centre, University of NottinghamNottingham, United Kingdom
| | - Benjamin Prestwich
- Sir Peter Mansfield Imaging Centre, University of NottinghamNottingham, United Kingdom
| | - Huda Mahmoud
- Centre for Kidney Research and Innovation, Royal Derby Hospital, University of NottinghamDerby, United Kingdom
| | - Maarten Taal
- Centre for Kidney Research and Innovation, Royal Derby Hospital, University of NottinghamDerby, United Kingdom
| | - Nicholas M Selby
- Centre for Kidney Research and Innovation, Royal Derby Hospital, University of NottinghamDerby, United Kingdom
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, University of NottinghamNottingham, United Kingdom
| |
Collapse
|
21
|
van Eijs MJM, van Zuilen AD, de Boer A, Froeling M, Nguyen TQ, Joles JA, Leiner T, Verhaar MC. Innovative Perspective: Gadolinium-Free Magnetic Resonance Imaging in Long-Term Follow-Up after Kidney Transplantation. Front Physiol 2017; 8:296. [PMID: 28559850 PMCID: PMC5432553 DOI: 10.3389/fphys.2017.00296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/24/2017] [Indexed: 12/23/2022] Open
Abstract
Since the mid-1980s magnetic resonance imaging (MRI) has been investigated as a non- or minimally invasive tool to probe kidney allograft function. Despite this long-standing interest, MRI still plays a subordinate role in daily practice of transplantation nephrology. With the introduction of new functional MRI techniques, administration of exogenous gadolinium-based contrast agents has often become unnecessary and true non-invasive assessment of allograft function has become possible. This raises the question why application of MRI in the follow-up of kidney transplantation remains restricted, despite promising results. Current literature on kidney allograft MRI is mainly focused on assessment of (sub) acute kidney injury after transplantation. The aim of this review is to survey whether MRI can provide valuable diagnostic information beyond 1 year after kidney transplantation from a mechanistic point of view. The driving force behind chronic allograft nephropathy is believed to be chronic hypoxia. Based on this, techniques that visualize kidney perfusion and oxygenation, scarring, and parenchymal inflammation deserve special interest. We propose that functional MRI mechanistically provides tools for diagnostic work-up in long-term follow-up of kidney allografts.
Collapse
Affiliation(s)
- Mick J M van Eijs
- Department of Nephrology and Hypertension, University Medical Center UtrechtUtrecht, Netherlands
| | - Arjan D van Zuilen
- Department of Nephrology and Hypertension, University Medical Center UtrechtUtrecht, Netherlands
| | - Anneloes de Boer
- Department of Radiology, University Medical Center UtrechtUtrecht, Netherlands
| | - Martijn Froeling
- Department of Radiology, University Medical Center UtrechtUtrecht, Netherlands
| | - Tri Q Nguyen
- Department of Pathology, University Medical Center UtrechtUtrecht, Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Center UtrechtUtrecht, Netherlands
| | - Tim Leiner
- Department of Radiology, University Medical Center UtrechtUtrecht, Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center UtrechtUtrecht, Netherlands
| |
Collapse
|
22
|
Gutjahr FT, Günster SM, Kampf T, Winter P, Herold V, Bauer WR, Jakob PM. MRI-based quantification of renal perfusion in mice: Improving sensitivity and stability in FAIR ASL. Z Med Phys 2017; 27:334-339. [PMID: 28431859 DOI: 10.1016/j.zemedi.2017.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/11/2017] [Accepted: 02/06/2017] [Indexed: 11/16/2022]
Abstract
PURPOSE The importance of the orientation of the selective inversion slice in relation to the anatomy in flow-sensitive alternating inversion recovery arterial spin labeling (FAIR ASL) kidney perfusion measurements is demonstrated by comparing the standard FAIR scheme to a scheme with an improved slice selective control experiment. METHODS A FAIR ASL method is used. The selective inversion preparation slice is set perpendicular to the measurement slice to decrease the unintended labeling of arterial spins in the control experiment. A T1*-based quantification method compensates for the effects of the imperfect inversion on the edge of the selective inversion slice. The quantified perfusion values are compared to the standard experiment with parallel orientation of imaging and selective inversion slice. RESULTS Perfusion maps acquired with the perpendicular inversion slice orientation show higher sensitivity compared to the parallel orientation. The T1*-based quantification method removes artifacts arising from imperfect inversion slice profiles. The stability is improved. CONCLUSION Adjusting the labeling technique to the anatomy is of high importance. Improved sensitivity and reproducibility could be demonstrated. The proposed method provides a solution to the problem of FAIR ASL measurements of renal perfusion in coronal view.
Collapse
Affiliation(s)
- Fabian Tobias Gutjahr
- Universität Würzburg, Lehrstuhl für Experimentelle Physik 5, Am Hubland, 97074 Würzburg, Germany.
| | - Stephan Michael Günster
- Universität Würzburg, Lehrstuhl für Experimentelle Physik 5, Am Hubland, 97074 Würzburg, Germany
| | - Thomas Kampf
- Universität Würzburg, Lehrstuhl für Experimentelle Physik 5, Am Hubland, 97074 Würzburg, Germany; Institut für Diagnostische und Interventionelle Neuroradiologie, Universitätsklinikum Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Patrick Winter
- Universität Würzburg, Lehrstuhl für Experimentelle Physik 5, Am Hubland, 97074 Würzburg, Germany
| | - Volker Herold
- Universität Würzburg, Lehrstuhl für Experimentelle Physik 5, Am Hubland, 97074 Würzburg, Germany
| | - Wolfgang Rudolf Bauer
- Universität Würzburg, Medizinische Klinik und Poliklinik I, Oberdürrbacher Straße 6, 97080 Würzburg, Germany
| | - Peter Michael Jakob
- Universität Würzburg, Lehrstuhl für Experimentelle Physik 5, Am Hubland, 97074 Würzburg, Germany; Research Center Magnetic-Resonance-Bavaria, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
23
|
Song H, Ruan D, Liu W, Stenger VA, Pohmann R, Fernández-Seara MA, Nair T, Jung S, Luo J, Motai Y, Ma J, Hazle JD, Gach HM. Respiratory motion prediction and prospective correction for free-breathing arterial spin-labeled perfusion MRI of the kidneys. Med Phys 2017; 44:962-973. [PMID: 28074528 DOI: 10.1002/mp.12099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 12/14/2016] [Accepted: 12/27/2016] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Respiratory motion prediction using an artificial neural network (ANN) was integrated with pseudocontinuous arterial spin labeling (pCASL) MRI to allow free-breathing perfusion measurements in the kidney. In this study, we evaluated the performance of the ANN to accurately predict the location of the kidneys during image acquisition. METHODS A pencil-beam navigator was integrated with a pCASL sequence to measure lung/diaphragm motion during ANN training and the pCASL transit delay. The ANN algorithm ran concurrently in the background to predict organ location during the 0.7-s 15-slice acquisition based on the navigator data. The predictions were supplied to the pulse sequence to prospectively adjust the axial slice acquisition to match the predicted organ location. Additional navigators were acquired immediately after the multislice acquisition to assess the performance and accuracy of the ANN. The technique was tested in eight healthy volunteers. RESULTS The root-mean-square error (RMSE) and mean absolute error (MAE) for the eight volunteers were 1.91 ± 0.17 mm and 1.43 ± 0.17 mm, respectively, for the ANN. The RMSE increased with transit delay. The MAE typically increased from the first to last prediction in the image acquisition. The overshoot was 23.58% ± 3.05% using the target prediction accuracy of ± 1 mm. CONCLUSION Respiratory motion prediction with prospective motion correction was successfully demonstrated for free-breathing perfusion MRI of the kidney. The method serves as an alternative to multiple breathholds and requires minimal effort from the patient.
Collapse
Affiliation(s)
- Hao Song
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dan Ruan
- Departments of Radiation Oncology, Biomedical Physics and Bioengineering, UCLA, Los Angeles, CA, 90095, USA
| | - Wenyang Liu
- Departments of Radiation Oncology, Biomedical Physics and Bioengineering, UCLA, Los Angeles, CA, 90095, USA
| | - V Andrew Stenger
- Department of Medicine, University of Hawai'i at Manoa, Honolulu, HI, 96813, USA
| | - Rolf Pohmann
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, 72076, Tubingen, Germany
| | | | - Tejas Nair
- DMC R&D Center, Samsung Electronics Inc., Seocho-gu, 06765, Seoul, Korea
| | - Sungkyu Jung
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jingqin Luo
- Department of Surgery, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Yuichi Motai
- Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Jingfei Ma
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John D Hazle
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - H Michael Gach
- Departments of Radiation Oncology and Radiology, Washington University, St. Louis, MO, 63110, USA
| |
Collapse
|
24
|
Kim DW, Shim WH, Yoon SK, Oh JY, Kim JK, Jung H, Matsuda T, Kim D. Measurement of arterial transit time and renal blood flow using pseudocontinuous ASL MRI with multiple post-labeling delays: Feasibility, reproducibility, and variation. J Magn Reson Imaging 2017; 46:813-819. [PMID: 28092411 DOI: 10.1002/jmri.25634] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 12/28/2016] [Indexed: 01/16/2023] Open
Abstract
PURPOSE To evaluate the feasibility, reproducibility, and variation of renal perfusion and arterial transit time (ATT) using pseudocontinuous arterial spin labeling magnetic resonance imaging (PCASL MRI) in healthy volunteers. MATERIALS AND METHODS PCASL MRI at 3T was performed in 25 healthy volunteers on two different occasions. The ATT and ATT-corrected renal blood flow (ATT-cRBF) were calculated at four different post-labeling delay points (0.5, 1.0, 1.5, and 2.0 s) and evaluated for each kidney and subject. The intraclass correlation (ICC) and Bland-Altman plot were used to assess the reproducibility of the PCASL MRI technique. The within-subject coefficient of variance was determined. RESULTS Results were obtained for 46 kidneys of 23 subjects with a mean age of 38.6 ± 9.8 years and estimated glomerular filtration rate (eGFR) of 89.1 ± 21.2 ml/min/1.73 m2 . Two subjects failed in the ASL MRI examination. The mean cortical and medullary ATT-cRBF for the subjects were 215 ± 65 and 81 ± 21 ml/min/100 g, respectively, and the mean cortical and medullary ATT were 1141 ± 262 and 1123 ± 245 msec, correspondingly. The ICC for the cortical ATT-cRBF was 0.927 and the within-subject coefficient of variance was 14.4%. The ICCs for the medullary ATT-cRBF and the cortical and medullary ATT were poor. The Bland-Altman plot for cortical RBF showed good agreement between the two measurements. CONCLUSION PCASL MRI is a feasible and reproducible method for measuring renal cortical perfusion. In contrast, ATT for the renal cortex and medulla has poor reproducibility and high variation. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:813-819.
Collapse
Affiliation(s)
- Dong Won Kim
- Department of Radiology, Dong-A University College of Medicine, Busan, South Korea
| | - Woo Hyun Shim
- Department of Radiology, Research Institute of Radiology, Bioimaging Infrastructure, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seong Kuk Yoon
- Department of Radiology, Dong-A University College of Medicine, Busan, South Korea
| | - Jong Yeong Oh
- Department of Radiology, Dong-A University College of Medicine, Busan, South Korea
| | - Jeong Kon Kim
- Department of Radiology, Research Institute of Radiology, Bioimaging Infrastructure, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.,Center for Bioimaging of New Drug Development, Asan Institute for life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hoesu Jung
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | | | | |
Collapse
|
25
|
Becker AS, Rossi C. Renal Arterial Spin Labeling Magnetic Resonance Imaging. Nephron Clin Pract 2016; 135:1-5. [PMID: 27760424 DOI: 10.1159/000450797] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/06/2016] [Indexed: 12/13/2022] Open
Abstract
Arterial spin labeling (ASL) MRI allows the quantification of tissue perfusion without administration of exogenous contrast agents. Patients with reduced renal function or other contraindications to Gadolinium-based contrast media may benefit from the non-invasive monitoring of tissue microcirculation. So far, only few studies have investigated the sensitivity, the specificity and the reliability of the ASL techniques for the assessment of renal perfusion. Moreover, only little is known about the interplay between ASL markers of perfusion and functional renal filtration parameters. In this editorial, we discuss the main technical issues related to the quantification of renal perfusion by ASL and, in particular, the latest results in patients with kidney disorders.
Collapse
Affiliation(s)
- Anton S Becker
- Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
26
|
Niles DJ, Artz NS, Djamali A, Sadowski EA, Grist TM, Fain SB. Longitudinal Assessment of Renal Perfusion and Oxygenation in Transplant Donor-Recipient Pairs Using Arterial Spin Labeling and Blood Oxygen Level-Dependent Magnetic Resonance Imaging. Invest Radiol 2016; 51:113-20. [PMID: 26561047 DOI: 10.1097/rli.0000000000000210] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The aims of this study were to assess renal function in kidney transplant recipients and their respective donors over 2 years using arterial spin labeling (ASL) and blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) and to prospectively evaluate the effect of losartan on functional MRI measures in recipients. MATERIALS AND METHODS The study included 15 matched pairs of renal transplant donors and recipients. Arterial spin labeling and BOLD MRI of the kidneys were performed on donors before transplant surgery (baseline) and on both donors and recipients at 3 months, 1 year, and 2 years after transplant. After 3 months, 7 of the 15 recipients were prescribed 25 to 50 mg/d losartan for the remainder of the study. A linear mixed-effects model was used to evaluate perfusion, R2*, estimated glomerular filtration rate, and fractional excretion of sodium for changes across time or associated with losartan treatment. RESULTS In donors, cortical perfusion in the remaining kidney decreased by 50 ± 19 mL/min per 100 g (11.8%) between baseline and 2 years (P < 0.05), while cortical R2* declined modestly by 0.7 ± 0.3 s-1 (5.6%; P < 0.05). In transplanted kidneys, cortical perfusion decreased markedly by 141 ± 21 mL/min per 100 g (34.2%) between baseline and 2 years (P < 0.001), while medullary R2* declined by 1.5 ± 0.8 s-1 (8.3%; P = 0.06). Single-kidney estimated glomerular filtration rate increased between baseline and 2 years by 17.7 ± 2.7 mL/min per 1.73 m (40.3%; P < 0.0001) in donors and to 14.6 ± 4.3 mL/min per 1.73 m (33.3%; P < 0.01) in recipients. Cortical perfusion at 1 and 2 years in recipients receiving 25 to 50 mg/d losartan was 62 ± 24 mL/min per 100 g higher than recipients not receiving the drug (P < 0.05). No significant effects of losartan were observed for any other markers of renal function. CONCLUSIONS The results suggest an important role for noninvasive functional monitoring with ASL and BOLD MRI in kidney transplant recipients and donors, and they indicate a potentially beneficial effect of losartan in recipients.
Collapse
Affiliation(s)
- David J Niles
- From the Departments of *Medical Physics, †Medicine, ‡Surgery, §Radiology, ∥Obstetrics and Gynecology, and ¶Biomedical Engineering, University of Wisconsin, Madison, WI
| | | | | | | | | | | |
Collapse
|
27
|
Gillis KA, McComb C, Patel RK, Stevens KK, Schneider MP, Radjenovic A, Morris STW, Roditi GH, Delles C, Mark PB. Non-Contrast Renal Magnetic Resonance Imaging to Assess Perfusion and Corticomedullary Differentiation in Health and Chronic Kidney Disease. Nephron Clin Pract 2016; 133:183-92. [PMID: 27362585 DOI: 10.1159/000447601] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/10/2016] [Indexed: 11/19/2022] Open
Abstract
AIMS Arterial spin labelling (ASL) MRI measures perfusion without administration of contrast agent. While ASL has been validated in animals and healthy volunteers (HVs), application to chronic kidney disease (CKD) has been limited. We investigated the utility of ASL MRI in patients with CKD. METHODS We studied renal perfusion in 24 HVs and 17 patients with CKD (age 22-77 years, 40% male) using ASL MRI at 3.0T. Kidney function was determined using estimated glomerular filtration rate (eGFR). T1 relaxation time was measured using modified look-locker inversion and xFB02;ow-sensitive alternating inversion recovery true-fast imaging and steady precession was performed to measure cortical and whole kidney perfusion. RESULTS T1 was higher in CKD within cortex and whole kidney, and there was association between T1 time and eGFR. No association was seen between kidney size and volume and either T1, or ASL perfusion. Perfusion was lower in CKD in cortex (136 ± 37 vs. 279 ± 69 ml/min/100 g; p < 0.001) and whole kidney (146 ± 24 vs. 221 ± 38 ml/min/100 g; p < 0.001). There was significant, negative, association between T1 longitudinal relaxation time and ASL perfusion in both the cortex (r = -0.75, p < 0.001) and whole kidney (r = -0.50, p < 0.001). There was correlation between eGFR and both cortical (r = 0.73, p < 0.01) and whole kidney (r = 0.69, p < 0.01) perfusion. CONCLUSIONS Significant differences in renal structure and function were demonstrated using ASL MRI. T1 may be representative of structural changes associated with CKD; however, further investigation is required into the pathological correlates of reduced ASL perfusion and increased T1 time in CKD.
Collapse
Affiliation(s)
- Keith A Gillis
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Shimizu K, Kosaka N, Fujiwara Y, Matsuda T, Yamamoto T, Tsuchida T, Tsuchiyama K, Oyama N, Kimura H. Arterial Transit Time-corrected Renal Blood Flow Measurement with Pulsed Continuous Arterial Spin Labeling MR Imaging. Magn Reson Med Sci 2016; 16:38-44. [PMID: 27170422 PMCID: PMC5600042 DOI: 10.2463/mrms.mp.2015-0117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Purpose: The importance of arterial transit time (ATT) correction for arterial spin labeling MRI has been well debated in neuroimaging, but it has not been well evaluated in renal imaging. The purpose of this study was to evaluate the feasibility of pulsed continuous arterial spin labeling (pcASL) MRI with multiple post-labeling delay (PLD) acquisition for measuring ATT-corrected renal blood flow (ATC-RBF). Materials and Methods: A total of 14 volunteers were categorized into younger (n = 8; mean age, 27.0 years) and older groups (n = 6; 64.8 years). Images of pcASL were obtained at three different PLDs (0.5, 1.0, and 1.5 s), and ATC-RBF and ATT were calculated using a single-compartment model. To validate ATC-RBF, a comparative study of effective renal plasma flow (ERPF) measured by 99mTc-MAG3 scintigraphy was performed. ATC-RBF was corrected by kidney volume (ATC-cRBF) for comparison with ERPF. Results: The younger group showed significantly higher ATC-RBF (157.68 ± 38.37 mL/min/100 g) and shorter ATT (961.33 ± 260.87 ms) than the older group (117.42 ± 24.03 mL/min/100 g and 1227.94 ± 226.51 ms, respectively; P < 0.05). A significant correlation was evident between ATC-cRBF and ERPF (P < 0.05, r = 0.47). With suboptimal single PLD (1.5 s) settings, there was no significant correlation between ERPF and kidney volume-corrected RBF calculated from single PLD data. Conclusion: Calculation of ATT and ATC-RBF by pcASL with multiple PLD was feasible in healthy volunteers, and differences in ATT and ATC-RBF were seen between the younger and older groups. Although ATT correction by multiple PLD acquisitions may not always be necessary for RBF quantification in the healthy subjects, the effect of ATT should be taken into account in renal ASL–MRI as debated in brain imaging.
Collapse
Affiliation(s)
- Kazuhiro Shimizu
- Department of Radiology, Faculty of Medical Sciences, University of Fukui
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hammon M, Janka R, Siegl C, Seuss H, Grosso R, Martirosian P, Schmieder RE, Uder M, Kistner I. Reproducibility of Kidney Perfusion Measurements With Arterial Spin Labeling at 1.5 Tesla MRI Combined With Semiautomatic Segmentation for Differential Cortical and Medullary Assessment. Medicine (Baltimore) 2016; 95:e3083. [PMID: 26986143 PMCID: PMC4839924 DOI: 10.1097/md.0000000000003083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Magnetic resonance imaging with arterial spin labeling (ASL) is a noninvasive approach to measure organ perfusion. The purpose of this study was to evaluate the reproducibility of ASL kidney perfusion measurements with semiautomatic segmentation, which allows separate quantification of cortical and medullary perfusion. The right kidneys of 14 healthy volunteers were examined 6 times on 2 occasions (3 times at each occasion). There was a 10-minute pause between each examination and a 14-day interval between the 2 occasions. Cortical, medullary, and whole kidney parenchymal perfusion was determined with customized semiautomatic segmentation software. Coefficient of variances (CVs) and intraclass correlations (ICCs) were calculated. Mean whole, cortical, and medullary kidney perfusion was 307.26 ± 25.65, 337.10 ± 34.83, and 279.61 ± 26.73 mL/min/100 g, respectively. On session 1, mean perfusion for the whole kidney, cortex, and medulla was 307.08 ± 26.91, 336.79 ± 36.54, and 279.60 ± 27.81 mL/min/100 g, respectively, and on session 2, 307.45 ± 24.65, 337.41 ± 33.48, and 279.61 ± 25.94 mL/min/100 g, respectively (P > 0.05; R² = 0.60/0.59/0.54). For whole, cortical, and medullary kidney perfusion, the total ICC/CV were 0.97/3.43 ± 0.86%, 0.97/4.19 ± 1.33%, and 0.96/4.12 ± 1.36%, respectively. Measurements did not differ significantly and showed a very good correlation (P > 0.05; R² = 0.75/0.76/0.65). ASL kidney measurements combined with operator-independent semiautomatic segmentation revealed high correlation and low variance of cortical, medullary, and whole kidney perfusion.
Collapse
Affiliation(s)
- Matthias Hammon
- From the Department of Radiology (MH, RJ, HS, MU), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Maximiliansplatz, Erlangen, Germany; Department of Computer Graphics (CS, RG), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße, Erlangen, Germany; Experimental Radiology, Department of Diagnostic and Interventional Radiology (PM), University Hospital Tübingen, Otfried-Müller-Straße, Tübingen, Germany; and Department of Nephrology and Hypertension (RES, IK), University Hospital Erlangen, Ulmenweg, Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Robson PM, Madhuranthakam AJ, Smith MP, Sun MRM, Dai W, Rofsky NM, Pedrosa I, Alsop DC. Volumetric Arterial Spin-labeled Perfusion Imaging of the Kidneys with a Three-dimensional Fast Spin Echo Acquisition. Acad Radiol 2016; 23:144-54. [PMID: 26521186 DOI: 10.1016/j.acra.2015.09.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 07/06/2015] [Accepted: 09/27/2015] [Indexed: 11/16/2022]
Abstract
RATIONALE AND OBJECTIVES Renal perfusion measurements using noninvasive arterial spin-labeled (ASL) magnetic resonance imaging techniques are gaining interest. Currently, focus has been on perfusion in the context of renal transplant. Our objectives were to explore the use of ASL in patients with renal cancer, and to evaluate three-dimensional (3D) fast spin echo (FSE) acquisition, a robust volumetric imaging method for abdominal applications. We evaluate 3D ASL perfusion magnetic resonance imaging in the kidneys compared to two-dimensional (2D) ASL in patients and healthy subjects. MATERIALS AND METHODS Isotropic resolution (2.6 × 2.6 × 2.8 mm(3)) 3D ASL using segmented FSE was compared to 2D single-shot FSE. ASL used pseudo-continuous labeling, suppression of background signal, and synchronized breathing. Quantitative perfusion values and signal-to-noise ratio (SNR) were compared between 3D and 2D ASL in four healthy volunteers and semiquantitative assessments were made by four radiologists in four patients with known renal masses (primary renal cell carcinoma). RESULTS Renal cortex perfusion in healthy subjects was 284 ± 21 mL/100 g/min, with test-retest repeatability of 8.8%. No significant differences were found between the quantitative perfusion value and SNR in volunteers between 3D ASL and 2D ASL, or in 3D ASL with synchronized or free breathing. In patients, semiquantitative assessment by radiologists showed no significant difference in image quality between 2D ASL and 3D ASL. In one case, 2D ASL missed a high perfusion focus in a mass that was seen by 3D ASL. CONCLUSIONS 3D ASL renal perfusion imaging provides isotropic-resolution images, with comparable quantitative perfusion values and image SNR in similar imaging time to single-slice 2D ASL.
Collapse
Affiliation(s)
- Philip M Robson
- Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, AN-226, Boston, MA 02215.
| | | | - Martin P Smith
- Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, AN-226, Boston, MA 02215
| | - Maryellen R M Sun
- Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, AN-226, Boston, MA 02215
| | - Weiying Dai
- Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, AN-226, Boston, MA 02215
| | - Neil M Rofsky
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ivan Pedrosa
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - David C Alsop
- Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, AN-226, Boston, MA 02215
| |
Collapse
|
31
|
Prevost VH, Girard OM, Callot V, Cozzone PJ, Duhamel G. Fast imaging strategies for mouse kidney perfusion measurement with pseudocontinuous arterial spin labeling (pCASL) at ultra high magnetic field (11.75 tesla). J Magn Reson Imaging 2015; 42:999-1008. [DOI: 10.1002/jmri.24874] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/04/2015] [Indexed: 12/28/2022] Open
Affiliation(s)
- Valentin H Prevost
- Aix-Marseille Université, CNRS Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, Marseille, France
| | - Olivier M Girard
- Aix-Marseille Université, CNRS Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, Marseille, France
| | - Virginie Callot
- Aix-Marseille Université, CNRS Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, Marseille, France
| | - Patrick J Cozzone
- Aix-Marseille Université, CNRS Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, Marseille, France
| | - Guillaume Duhamel
- Aix-Marseille Université, CNRS Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, Marseille, France
| |
Collapse
|
32
|
Cutajar M, Hilton R, Olsburgh J, Marks SD, Thomas DL, Banks T, Clark CA, Gordon I. Renal blood flow using arterial spin labelling MRI and calculated filtration fraction in healthy adult kidney donors Pre-nephrectomy and post-nephrectomy. Eur Radiol 2015; 25:2390-6. [PMID: 25666379 DOI: 10.1007/s00330-015-3594-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 12/21/2014] [Accepted: 01/12/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Renal plasma flow (RPF) (derived from renal blood flow, RBF) and glomerular filtration rate (GFR) allow the determination of the filtration fraction (FF), which may have a role as a non-invasive renal biomarker. This is a hypothesis-generating pilot study assessing the effect of nephrectomy on renal function in healthy kidney donors. METHODS Eight living kidney donors underwent arterial spin labelling (ASL) magnetic resonance imaging (MRI) and GFR measurement prior to and 1 year after nephrectomy. Chromium-51 labelled ethylenediamine tetraacetic acid ((51)Cr-EDTA) with multi-blood sampling was undertaken and GFR calculated. The RBF and GFR obtained were used to calculate FF. RESULTS All donors showed an increase in single kidney GFR of 24 - 75 %, and all but two showed an increase in FF (-7 to +52 %) after nephrectomy. The increase in RBF, and hence RPF, post-nephrectomy was not as great as the increase in GFR in seven out of eight donors. As with any pilot study, the small number of donors and their relatively narrow age range are potential limiting factors. CONCLUSIONS The ability to measure RBF, and hence RPF, non-invasively, coupled with GFR measurement, allows calculation of FF, a biomarker that might provide a sensitive indicator of loss of renal reserve in potential donors. KEY POINTS • Non-invasive MRI measured renal blood flow and calculated renal plasma flow. • Effect of nephrectomy on blood flow and filtration in donors is presented. • Calculated filtration fraction may be a useful new kidney biomarker.
Collapse
Affiliation(s)
- Marica Cutajar
- Imaging and Biophysics Unit, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N1EH, UK
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Milman Z, Axelrod JH, Heyman SN, Nachmansson N, Abramovitch R. Assessment with unenhanced MRI techniques of renal morphology and hemodynamic changes during acute kidney injury and chronic kidney disease in mice. Am J Nephrol 2014; 39:268-78. [PMID: 24662013 DOI: 10.1159/000360093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/25/2014] [Indexed: 01/10/2023]
Abstract
BACKGROUND/AIMS Changes in renal oxygenation and perfusion have been identified as common pathways to the development and progression of renal disease. Recently, the sensitivity of hemodynamic response imaging (HRI) was demonstrated; this is a functional magnetic resonance imaging (MRI) method combined with transient hypercapnia and hyperoxia for the evaluation of renal perfusion and vascular reactivity. The aim of this study was to utilize HRI for the noninvasive evaluation of changes in renal hemodynamics and morphology during acute, chronic and acute-on-chronic renal failures. METHODS Renal-HRI maps and true fast imaging with steady-state precession (True-FISP) images were used to evaluate renal perfusion, morphology and corticomedullary differentiation (CMD). MR images were acquired on two mouse models of kidney injury: adenine-induced chronic kidney disease (CKD) and rhabdomyolysis-induced acute kidney injury (AKI). Serum urea was measured from these mice in order to determine renal function. RESULTS Renal-HRI maps revealed a blunted response to hypercapnia and hyperoxia with evolving kidney dysfunction in both models, reflecting hampered renal vascular reactivity and perfusion. True-FISP images showed a high sensitivity to renal morphological changes, with different patterns characterizing each model. Calculated data obtained from HRI and True-FISP during the evolution of renal failure and upon recovery, with and without protective intervention, closely correlated with the degree of renal impairment. CONCLUSIONS This study suggests the potential combined usage of two noninvasive MRI methods, HRI and True-FISP, for the assessment of renal dysfunction without the potential risk associated with contrast-agents administration. HRI may also serve as a research tool in experimental settings, revealing the hemodynamic changes associated with kidney dysfunction.
Collapse
Affiliation(s)
- Zohar Milman
- The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
34
|
Cutajar M, Thomas DL, Hales PW, Banks T, Clark CA, Gordon I. Comparison of ASL and DCE MRI for the non-invasive measurement of renal blood flow: quantification and reproducibility. Eur Radiol 2014; 24:1300-8. [PMID: 24599625 DOI: 10.1007/s00330-014-3130-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 02/06/2014] [Accepted: 02/13/2014] [Indexed: 12/27/2022]
|
35
|
Gillis KA, McComb C, Foster JE, Taylor AHM, Patel RK, Morris STW, Jardine AG, Schneider MP, Roditi GH, Delles C, Mark PB. Inter-study reproducibility of arterial spin labelling magnetic resonance imaging for measurement of renal perfusion in healthy volunteers at 3 Tesla. BMC Nephrol 2014; 15:23. [PMID: 24484613 PMCID: PMC3909760 DOI: 10.1186/1471-2369-15-23] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/28/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Measurement of renal perfusion is a crucial part of measuring kidney function. Arterial spin labelling magnetic resonance imaging (ASL MRI) is a non-invasive method of measuring renal perfusion using magnetised blood as endogenous contrast. We studied the reproducibility of ASL MRI in normal volunteers. METHODS ASL MRI was performed in healthy volunteers on 2 occasions using a 3.0 Tesla MRI scanner with flow-sensitive alternating inversion recovery (FAIR) perfusion preparation with a steady state free precession (True-FISP) pulse sequence. Kidney volume was measured from the scanned images. Routine serum and urine biochemistry were measured prior to MRI scanning. RESULTS 12 volunteers were recruited yielding 24 kidneys, with a mean participant age of 44.1 ± 14.6 years, blood pressure of 136/82 mmHg and chronic kidney disease epidemiology formula estimated glomerular filtration rate (CKD EPI eGFR) of 98.3 ± 15.1 ml/min/1.73 m2. Mean kidney volumes measured using the ellipsoid formula and voxel count method were 123.5 ± 25.5 cm3, and 156.7 ± 28.9 cm3 respectively. Mean kidney perfusion was 229 ± 41 ml/min/100 g and mean cortical perfusion was 327 ± 63 ml/min/100 g, with no significant differences between ASL MRIs. Mean absolute kidney perfusion calculated from kidney volume measured during the scan was 373 ± 71 ml/min. Bland Altman plots were constructed of the cortical and whole kidney perfusion measurements made at ASL MRIs 1 and 2. These showed good agreement between measurements, with a random distribution of means plotted against differences observed. The intra class correlation for cortical perfusion was 0.85, whilst the within subject coefficient of variance was 9.2%. The intra class correlation for whole kidney perfusion was 0.86, whilst the within subject coefficient of variance was 7.1%. CONCLUSIONS ASL MRI at 3.0 Tesla provides a repeatable method of measuring renal perfusion in healthy subjects without the need for administration of exogenous compounds. We have established normal values for renal perfusion using ASL MRI in a cohort of healthy volunteers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Patrick B Mark
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow, UK.
| |
Collapse
|
36
|
Ferré JC, Bannier E, Raoult H, Mineur G, Carsin-Nicol B, Gauvrit JY. Arterial spin labeling (ASL) perfusion: Techniques and clinical use. Diagn Interv Imaging 2013; 94:1211-23. [DOI: 10.1016/j.diii.2013.06.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Ferré JC, Bannier E, Raoult H, Mineur G, Carsin-Nicol B, Gauvrit JY. Perfusion par arterial spin labeling (ASL) : technique et mise en œuvre clinique. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.jradio.2013.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
|
39
|
Rajendran R, Lew SK, Yong CX, Tan J, Wang DJJ, Chuang KH. Quantitative mouse renal perfusion using arterial spin labeling. NMR IN BIOMEDICINE 2013; 26:1225-1232. [PMID: 23592238 DOI: 10.1002/nbm.2939] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 12/30/2012] [Accepted: 02/08/2013] [Indexed: 06/02/2023]
Abstract
Information on renal perfusion is essential for the diagnosis and prognosis of kidney function. Quantification using gadolinium chelates is limited as a result of filtration through renal glomeruli and safety concerns in patients with kidney dysfunction. Arterial spin labeling MRI is a noninvasive technique for perfusion quantification that has been applied to humans and animals. However, because of the low sensitivity and vulnerability to motion and susceptibility artifacts, its application to mice has been challenging. In this article, mouse renal perfusion was studied using flow-sensitive alternating inversion recovery at 7 T. Good perfusion image quality was obtained with spin-echo echo-planar imaging after controlling for respiratory, susceptibility and fat artifacts by triggering, high-order shimming and water excitation, respectively. High perfusion was obtained in the renal cortex relative to the medulla, and signal was absent in scans carried out post mortem. Cortical perfusion increased from 397 ± 36 (mean ± standard deviation) to 476 ± 73 mL/100 g/min after switching from 100% oxygen to carbogen with 95% oxygen and 5% carbon dioxide. The perfusion in the medulla was 2.5 times lower than that in the cortex and changed from 166 ± 41 mL/100 g/min under oxygen to 203 ± 40 mL/100 g/min under carbogen. T1 decreased in both the cortex (from 1570 ± 164 to 1377 ± 72 ms, p < 0.05) and medulla (from 1788 ± 107 to 1573 ± 144 ms, p < 0.05) under carbogen relative to 100% oxygen. The results showed the potential of the use of ASL for perfusion quantification in mice and in models of renal diseases.
Collapse
Affiliation(s)
- Reshmi Rajendran
- Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore
| | | | | | | | | | | |
Collapse
|
40
|
|
41
|
|
42
|
Duhamel G, Prevost V, Girard OM, Callot V, Cozzone PJ. High-resolution mouse kidney perfusion imaging by pseudo-continuous arterial spin labeling at 11.75T. Magn Reson Med 2013; 71:1186-96. [DOI: 10.1002/mrm.24740] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Guillaume Duhamel
- Aix-Marseille Université, CNRS; CRMBM UMR 7339, 13385; Marseille France
| | - Valentin Prevost
- Aix-Marseille Université, CNRS; CRMBM UMR 7339, 13385; Marseille France
| | - Olivier M. Girard
- Aix-Marseille Université, CNRS; CRMBM UMR 7339, 13385; Marseille France
| | - Virginie Callot
- Aix-Marseille Université, CNRS; CRMBM UMR 7339, 13385; Marseille France
| | | |
Collapse
|
43
|
MRI for the assessment of organ perfusion in patients with chronic kidney disease. Curr Opin Nephrol Hypertens 2013; 21:647-54. [PMID: 23010761 DOI: 10.1097/mnh.0b013e328358d582] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Recent data have highlighted the importance of quantitative measures of organ perfusion and functional reserve. Magnetic resonance imaging allows the assessment of markers of perfusion without the use of contrast media. Techniques such as arterial spin labelling (ASL) and blood oxygen level-dependent (BOLD) imaging have been available for some time, but advances in the technology and concerns over the safety of contrast media in renal disease have spurred renewed interest and development. RECENT FINDINGS ASL measures perfusion, whereas BOLD imaging provides a marker of blood oxygenation, arising from the compound effect of a number of measures including perfusion, blood volume and oxygen consumption; thus, the techniques are complementary rather than analogous. They were initially confined to brain imaging as inherently low signal, susceptibility effects and motion limited their use in thoracic and abdominal organs. Advances in technology have led to robust sequences that can quantify clinically relevant changes and correlate well with reference standards. Novel approaches are likely to accelerate translation into clinical practice. SUMMARY The noninvasive and repeatable nature of ASL and BOLD imaging makes it likely that they will be increasingly used in clinical research. Using a developmental framework, we suggest that the application of these techniques to thoracic and abdominal organs requires validation before they are suitable for generalized clinical use. The demand for these techniques is likely to be driven by the incentive to avoid the use of contrast media.
Collapse
|
44
|
He X, Aghayev A, Gumus S, Ty Bae K. Estimation of single-kidney glomerular filtration rate without exogenous contrast agent. Magn Reson Med 2013; 71:257-66. [PMID: 23468406 DOI: 10.1002/mrm.24668] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 01/07/2013] [Accepted: 01/10/2013] [Indexed: 11/06/2022]
Abstract
PURPOSE Measurement of single-kidney filtration fraction and glomerular filtration rate (GFR) without exogenous contrast is clinically important to assess renal function and pathophysiology, especially for patients with comprised renal function. The objective of this study is to develop a novel MR-based tool for noninvasive quantification of renal function using conventional MR arterial spin labeling water as endogenous tracer. THEORY AND METHODS The regional differentiation of the arterial spin labeling water between the glomerular capsular space and the renal parenchyma was characterized and measured according to their MR relaxation properties (T1ρ or T2 ), and applied to the estimation of filtration fraction and single-kidney GFR. The proposed approach was tested to quantify GFR in healthy volunteers at baseline and after a protein-loading challenge. RESULTS Biexponential decay of the cortical arterial spin labeling water MR signal was observed. The major component decays the same as parenchyma water; the minor component decays much slower as expected from glomerular ultra-filtrates. The mean single-kidney GFR was estimated to be 49 ± 9 mL/min at baseline and increased by 28% after a protein-loading challenge. CONCLUSION We developed an arterial spin labeling-based MR imaging method that allows us to estimate renal filtration fraction and singe-kidney GFR without use of exogenous contrast.
Collapse
Affiliation(s)
- Xiang He
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
45
|
Petr J, Schramm G, Hofheinz F, Langner J, van den Hoff J. Partial volume correction in arterial spin labeling using a Look-Locker sequence. Magn Reson Med 2012; 70:1535-43. [PMID: 23280559 DOI: 10.1002/mrm.24601] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/07/2012] [Accepted: 11/21/2012] [Indexed: 01/04/2023]
Abstract
PURPOSE Partial volume (PV) effects are caused by limited spatial resolution and significantly affect cerebral blood flow investigations with arterial spin labeling. Therefore, accurate PV correction (PVC) procedures are required. PVC is commonly based on PV maps obtained from segmented high-resolution T1 -weighted images. Segmentation of these images is error-prone, and it can be difficult to coregister these images accurately with the single-shot ASL images such as those created by echo-planar imaging (EPI). In this paper, an alternative method for PV map generation is proposed. METHODS The Look-Locker EPI (LL-EPI) acquisition is used for analyzing the T1 -recovery curve and for subsequent PV map generation. The new method was evaluated in five healthy volunteers (mean age 30 ± 3.7 years). RESULTS By applying a linear regression method for PVC, a 12% decrease in regression error was reached with the new method. CONCLUSION PV maps extraction from LL-EPI is a viable, possibly superior alternative to the standard approach based on segmentation of high-resolution T1 -weighted images.
Collapse
Affiliation(s)
- Jan Petr
- PET Center, Institute of Radiopharmacy, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | | | | | | | | |
Collapse
|
46
|
Arterial spin labeling: its time is now. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2012; 25:75-7. [PMID: 22427138 DOI: 10.1007/s10334-012-0309-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|