1
|
Menhat M, Ariffin EH, Dong WS, Zakaria J, Ismailluddin A, Shafril HAM, Muhammad M, Othman AR, Kanesan T, Ramli SP, Akhir MF, Ratnayake AS. Rain, rain, go away, come again another day: do climate variations enhance the spread of COVID-19? Global Health 2024; 20:43. [PMID: 38745248 PMCID: PMC11092248 DOI: 10.1186/s12992-024-01044-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/22/2024] [Indexed: 05/16/2024] Open
Abstract
The spread of infectious diseases was further promoted due to busy cities, increased travel, and climate change, which led to outbreaks, epidemics, and even pandemics. The world experienced the severity of the 125 nm virus called the coronavirus disease 2019 (COVID-19), a pandemic declared by the World Health Organization (WHO) in 2019. Many investigations revealed a strong correlation between humidity and temperature relative to the kinetics of the virus's spread into the hosts. This study aimed to solve the riddle of the correlation between environmental factors and COVID-19 by applying RepOrting standards for Systematic Evidence Syntheses (ROSES) with the designed research question. Five temperature and humidity-related themes were deduced via the review processes, namely 1) The link between solar activity and pandemic outbreaks, 2) Regional area, 3) Climate and weather, 4) Relationship between temperature and humidity, and 5) the Governmental disinfection actions and guidelines. A significant relationship between solar activities and pandemic outbreaks was reported throughout the review of past studies. The grand solar minima (1450-1830) and solar minima (1975-2020) coincided with the global pandemic. Meanwhile, the cooler, lower humidity, and low wind movement environment reported higher severity of cases. Moreover, COVID-19 confirmed cases and death cases were higher in countries located within the Northern Hemisphere. The Blackbox of COVID-19 was revealed through the work conducted in this paper that the virus thrives in cooler and low-humidity environments, with emphasis on potential treatments and government measures relative to temperature and humidity. HIGHLIGHTS: • The coronavirus disease 2019 (COIVD-19) is spreading faster in low temperatures and humid area. • Weather and climate serve as environmental drivers in propagating COVID-19. • Solar radiation influences the spreading of COVID-19. • The correlation between weather and population as the factor in spreading of COVID-19.
Collapse
Affiliation(s)
- Masha Menhat
- Faculty of Maritime Studies, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Effi Helmy Ariffin
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Wan Shiao Dong
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Junainah Zakaria
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Aminah Ismailluddin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | | | - Mahazan Muhammad
- Social, Environmental and Developmental Sustainability Research Center, Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Ahmad Rosli Othman
- Institute of Geology Malaysia, Board of Geologists, 62100, Putrajaya, Malaysia
| | - Thavamaran Kanesan
- Executive Office, Proofreading By A UK PhD, 51-1, Biz Avenue II, 63000, Cyberjaya, Malaysia
| | - Suzana Pil Ramli
- Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mohd Fadzil Akhir
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | | |
Collapse
|
2
|
Neisi A, Goudarzi G, Mohammadi MJ, Tahmasebi Y, Rahim F, Baboli Z, Yazdani M, Sorooshian A, Attar SA, Angali KA, Alam K, Ahmadian M, Farhadi M. Association of the corona virus (Covid-19) epidemic with environmental risk factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60314-60325. [PMID: 37022543 PMCID: PMC10078041 DOI: 10.1007/s11356-023-26647-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/20/2023] [Indexed: 05/07/2023]
Abstract
The current outbreak of the novel coronavirus SARS-CoV-2 (coronavirus disease 2019; previously 2019-nCoV), epicenter in Hubei Province (Wuhan), People's Republic of China, has spread too many other countries. The transmission of the corona virus occurs when people are in the incubation stage and do not have any symptoms. Therefore, the role of environmental factors such as temperature and wind speed becomes very important. The study of Acute Respiratory Syndrome (SARS) indicates that there is a significant relationship between temperature and virus transmission and three important factors, namely temperature, humidity and wind speed, cause SARS transmission. Daily data on the incidence and mortality of Covid-19 disease were collected from World Health Organization (WHO) website and World Meter website (WMW) for several major cities in Iran and the world. Data were collected from February 2020 to September 2021. Meteorological data including temperature, air pressure, wind speed, dew point and air quality index (AQI) index are extracted from the website of the World Meteorological Organization (WMO), The National Aeronautics and Space Administration (NASA) and the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Statistical analysis carried out for significance relationships. The correlation coefficient between the number of infected people in one day and the environmental variables in the countries was different from each other. The relationship between AQI and number of infected was significant in all cities. In Canberra, Madrid and Paris, a significant inverse relationship was observed between the number of infected people in one day and wind speed. There is a significant positive relationship between the number of infected people in a day and the dew point in the cities of Canberra, Wellington and Washington. The relationship between the number of infected people in one day and Pressure was significantly reversed in Madrid and Washington, but positive in Canberra, Brasilia, Paris and Wuhan. There was significant relationship between Dew point and prevalence. Wind speed showed a significant relationship in USA, Madrid and Paris. AQI was strongly associated with the prevalence of covid19. The purpose of this study is to investigate some environmental factors in the transmission of the corona virus.
Collapse
Affiliation(s)
- Abdolkazem Neisi
- Department of Environmental Health, School of Public Health and Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Goudarzi
- Department of Environmental Health, School of Public Health and Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Mohammadi
- Department of Environmental Health, School of Public Health and Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health, School of Public Health and Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yasser Tahmasebi
- Department of Environmental Health, School of Public Health and Environmental Technologies Research Center (ETRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fakher Rahim
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zeinab Baboli
- Department of Environmental Health Engineering, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Mohsen Yazdani
- Department of Environmental Health, School of Nursing, Torbat Jaam Faculty of Medical Sciences, Torbat Jaam, Iran
| | - Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ USA
| | - Somayeh Alizade Attar
- Department of Environmental Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kambiz Ahmadi Angali
- Department of Biostatistics and Epidemiology, School of Health, Social Determinants of Health Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Khan Alam
- Department of Physics, University of Peshawar, Peshawar, 25120 Pakistan
| | - Maryam Ahmadian
- Department of Biostatistics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Farhadi
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
3
|
Han J, Yin J, Wu X, Wang D, Li C. Environment and COVID-19 incidence: A critical review. J Environ Sci (China) 2023; 124:933-951. [PMID: 36182196 PMCID: PMC8858699 DOI: 10.1016/j.jes.2022.02.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/27/2022] [Accepted: 02/10/2022] [Indexed: 05/19/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is an unprecedented worldwide health crisis. Many previous research studies have found and investigated its links with one or some natural or human environmental factors. However, a review on the relationship between COVID-19 incidence and both the natural and human environment is still lacking. This review summarizes the inter-correlation between COVID-19 incidence and environmental factors. Based on keyword searching, we reviewed 100 relevant peer-reviewed articles and other research literature published since January 2020. This review is focused on three main findings. One, we found that individual environmental factors have impacts on COVID-19 incidence, but with spatial heterogeneity and uncertainty. Two, environmental factors exert interactive effects on COVID-19 incidence. In particular, the interactions of natural factors can affect COVID-19 transmission in micro- and macro- ways by impacting SARS-CoV-2 survival, as well as human mobility and behaviors. Three, the impact of COVID-19 incidence on the environment lies in the fact that COVID-19-induced lockdowns caused air quality improvement, wildlife shifts and socio-economic depression. The additional value of this review is that we recommend future research perspectives and adaptation strategies regarding the interactions of the environment and COVID-19. Future research should be extended to cover both the effects of the environment on the COVID-19 pandemic and COVID-19-induced impacts on the environment. Future adaptation strategies should focus on sustainable environmental and public policy responses.
Collapse
Affiliation(s)
- Jiatong Han
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Jie Yin
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Xiaoxu Wu
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China.
| | - Danyang Wang
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Chenlu Li
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
4
|
Hassan MA, Mehmood T, Lodhi E, Bilal M, Dar AA, Liu J. Lockdown Amid COVID-19 Ascendancy over Ambient Particulate Matter Pollution Anomaly. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13540. [PMID: 36294120 PMCID: PMC9603700 DOI: 10.3390/ijerph192013540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/10/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Air is a diverse mixture of gaseous and suspended solid particles. Several new substances are being added to the air daily, polluting it and causing human health effects. Particulate matter (PM) is the primary health concern among these air toxins. The World Health Organization (WHO) addressed the fact that particulate pollution affects human health more severely than other air pollutants. The spread of air pollution and viruses, two of our millennium's most serious concerns, have been linked closely. Coronavirus disease 2019 (COVID-19) can spread through the air, and PM could act as a host to spread the virus beyond those in close contact. Studies on COVID-19 cover diverse environmental segments and become complicated with time. As PM pollution is related to everyday life, an essential awareness regarding PM-impacted COVID-19 among the masses is required, which can help researchers understand the various features of ambient particulate pollution, particularly in the era of COVID-19. Given this, the present work provides an overview of the recent developments in COVID-19 research linked to ambient particulate studies. This review summarizes the effect of the lockdown on the characteristics of ambient particulate matter pollution, the transmission mechanism of COVID-19, and the combined health repercussions of PM pollution. In addition to a comprehensive evaluation of the implementation of the lockdown, its rationales-based on topographic and socioeconomic dynamics-are also discussed in detail. The current review is expected to encourage and motivate academics to concentrate on improving air quality management and COVID-19 control.
Collapse
Affiliation(s)
- Muhammad Azher Hassan
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Tariq Mehmood
- College of Ecology and Environment, Hainan University, Haikou 570228, China
- Department of Environmental Engineering, Helmholtz Centre for Environmental Research—UFZ, D-04318 Leipzig, Germany
| | - Ehtisham Lodhi
- The SKL for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Muhammad Bilal
- School of Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Afzal Ahmed Dar
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710000, China
| | - Junjie Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
5
|
Li HL, Yang BY, Wang LJ, Liao K, Sun N, Liu YC, Ma RF, Yang XD. A meta-analysis result: Uneven influences of season, geo-spatial scale and latitude on relationship between meteorological factors and the COVID-19 transmission. ENVIRONMENTAL RESEARCH 2022; 212:113297. [PMID: 35436453 PMCID: PMC9011904 DOI: 10.1016/j.envres.2022.113297] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 05/15/2023]
Abstract
Meteorological factors have been confirmed to affect the COVID-19 transmission, but current studied conclusions varied greatly. The underlying causes of the variance remain unclear. Here, we proposed two scientific questions: (1) whether meteorological factors have a consistent influence on virus transmission after combining all the data from the studies; (2) whether the impact of meteorological factors on the COVID-19 transmission can be influenced by season, geospatial scale and latitude. We employed a meta-analysis to address these two questions using results from 2813 published articles. Our results showed that, the influence of meteorological factors on the newly-confirmed COVID-19 cases varied greatly among existing studies, and no consistent conclusion can be drawn. After grouping outbreak time into cold and warm seasons, we found daily maximum and daily minimum temperatures have significant positive influences on the newly-confirmed COVID-19 cases in cold season, while significant negative influences in warm season. After dividing the scope of the outbreak into national and urban scales, relative humidity significantly inhibited the COVID-19 transmission at the national scale, but no effect on the urban scale. The negative impact of relative humidity, and the positive impacts of maximum temperatures and wind speed on the newly-confirmed COVID-19 cases increased with latitude. The relationship of maximum and minimum temperatures with the newly-confirmed COVID-19 cases were more susceptible to season, while relative humidity's relationship was more affected by latitude and geospatial scale. Our results suggested that relationship between meteorological factors and the COVID-19 transmission can be affected by season, geospatial scale and latitude. A rise in temperature would promote virus transmission in cold seasons. We suggested that the formulation and implementation of epidemic prevention and control should mainly refer to studies at the urban scale. The control measures should be developed according to local meteorological properties for individual city.
Collapse
Affiliation(s)
- Hong-Li Li
- College of Geography and Tourism Culture, Ningbo University, Ningbo, 315211, China
| | - Bai-Yu Yang
- College of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Li-Jing Wang
- College of Geography and Tourism Culture, Ningbo University, Ningbo, 315211, China
| | - Ke Liao
- College of Geography and Tourism Culture, Ningbo University, Ningbo, 315211, China
| | - Nan Sun
- College of Geography and Tourism Culture, Ningbo University, Ningbo, 315211, China
| | - Yong-Chao Liu
- College of Geography and Tourism Culture, Ningbo University, Ningbo, 315211, China; Ningbo Universities Collaborative Innovation Center for Land and Marine Spatial Utilization and Governance Research at Ningbo University, Ningbo, 315211, China; Donghai Academy, Ningbo University, Ningbo, 315211, China
| | - Ren-Feng Ma
- College of Geography and Tourism Culture, Ningbo University, Ningbo, 315211, China; Ningbo Universities Collaborative Innovation Center for Land and Marine Spatial Utilization and Governance Research at Ningbo University, Ningbo, 315211, China; Donghai Academy, Ningbo University, Ningbo, 315211, China
| | - Xiao-Dong Yang
- College of Geography and Tourism Culture, Ningbo University, Ningbo, 315211, China; Ningbo Universities Collaborative Innovation Center for Land and Marine Spatial Utilization and Governance Research at Ningbo University, Ningbo, 315211, China; Donghai Academy, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
6
|
Menon NG, Mohapatra S. The COVID-19 pandemic: Virus transmission and risk assessment. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2022; 28:100373. [PMID: 35669052 PMCID: PMC9156429 DOI: 10.1016/j.coesh.2022.100373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The coronaviruses are the largest known RNA viruses of which SASR-CoV-2 has been spreading continuously due to its repeated mutation triggered by several environmental factors. Multiple human interventions and lessons learned from the SARS 2002 outbreak helped reduce its spread considerably, and thus, the virus was contained but the emerging mutations burdened the medical facility leading to many deaths in the world. As per the world health organization (WHO) droplet mode transmission is the most common mode of SASR-CoV-2 transmission to which environmental factors including temperature and humidity play a major role. This article highlights the responsibility of environmental causes that would affect the distribution and fate of the virus. Recent development in the risk assessment models is also covered in this article.
Collapse
Affiliation(s)
- N Gayathri Menon
- Centre for Research in Nanotechnology and Science (CRNTS), Indian Institute of Technology Bombay, India
| | - Sanjeeb Mohapatra
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower, #15-02, Singapore 138602, Singapore
| |
Collapse
|
7
|
Sun C, Chao L, Li H, Hu Z, Zheng H, Li Q. Modeling and Preliminary Analysis of the Impact of Meteorological Conditions on the COVID-19 Epidemic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6125. [PMID: 35627661 PMCID: PMC9140896 DOI: 10.3390/ijerph19106125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 01/27/2023]
Abstract
Since the COVID-19 epidemic outbreak at the end of 2019, many studies regarding the impact of meteorological factors on the attack have been carried out, and inconsistent conclusions have been reached, indicating the issue's complexity. To more accurately identify the effects and patterns of meteorological factors on the epidemic, we used a combination of logistic regression (LgR) and partial least squares regression (PLSR) modeling to investigate the possible effects of common meteorological factors, including air temperature, relative humidity, wind speed, and surface pressure, on the transmission of the COVID-19 epidemic. Our analysis shows that: (1) Different countries and regions show spatial heterogeneity in the number of diagnosed patients of the epidemic, but this can be roughly classified into three types: "continuous growth", "staged shock", and "finished"; (2) Air temperature is the most significant meteorological factor influencing the transmission of the COVID-19 epidemic. Except for a few areas, regional air temperature changes and the transmission of the epidemic show a significant positive correlation, i.e., an increase in air temperature is conducive to the spread of the epidemic; (3) In different countries and regions studied, wind speed, relative humidity, and surface pressure show inconsistent correlation (and significance) with the number of diagnosed cases but show some regularity.
Collapse
Affiliation(s)
- Chenglong Sun
- School of Atmospheric Sciences and Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Sun Yat-Sen University, Zhuhai 519082, China; (C.S.); (L.C.); (H.L.)
| | - Liya Chao
- School of Atmospheric Sciences and Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Sun Yat-Sen University, Zhuhai 519082, China; (C.S.); (L.C.); (H.L.)
| | - Haiyan Li
- School of Atmospheric Sciences and Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Sun Yat-Sen University, Zhuhai 519082, China; (C.S.); (L.C.); (H.L.)
| | - Zengyun Hu
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
| | - Hehui Zheng
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Qingxiang Li
- School of Atmospheric Sciences and Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Sun Yat-Sen University, Zhuhai 519082, China; (C.S.); (L.C.); (H.L.)
| |
Collapse
|
8
|
Milošević D, Middel A, Savić S, Dunjić J, Lau K, Stojsavljević R. Mask wearing behavior in hot urban spaces of Novi Sad during the COVID-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152782. [PMID: 34990675 PMCID: PMC8720675 DOI: 10.1016/j.scitotenv.2021.152782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/25/2021] [Accepted: 12/26/2021] [Indexed: 05/17/2023]
Abstract
Urban overheating (due to climate change and urbanization) and COVID-19 are two converging crises that must be addressed in tandem. Fine-scale, place-based, people-centric biometeorological and behavioral data are needed to implement context-specific preventative measures such as mask-wearing. This study collected local biometeorological measurements in diverse urban spaces (square, urban park, river quay) in Novi Sad, Serbia on hot sunny summer days (27-30 August 2020) during the COVID-19 pandemic. Observations were supplemented by an online survey asking questions about thermal sensation, comfort, and concurrent protective behavior of the local population. Biometeorological measurements show that the main square in the city center was the most thermally uncomfortable area. According to the survey, it was also perceived as the least safe space to not contract the virus. The urban park was perceived as the most thermally comfortable area in the morning and during midday. It was also considered the safest urban space for outdoor activities. In the evening, the river quay was the most thermally comfortable area in the city. Intra-urban differences in Physiologically Equivalent Temperatures were highest during midday, while differences in air temperatures were highest in the evening. More than 70% of the respondents did not wear face masks when it was hot because of breathing issues and feeling warmer than without mask. Most people wearing a mask felt "slightly warm" in the morning and evening, while the majority of respondents felt "hot" during midday. Only 3% of the respondents felt comfortable while wearing a mask, while 97% experienced some degree of discomfort (from slight discomfort to very uncomfortable). Our study shows that fine scale temporal and spatial urban biometeorological data and population surveys should be included in decision-making processes during the pandemic to develop climate-sensitive health services that are place-based, people-centric, and facilitate planning towards green, resilient, and inclusive cities.
Collapse
Affiliation(s)
- Dragan Milošević
- Climatology and Hydrology Research Centre, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Ariane Middel
- School of Arts, Media and Engineering, School of Computing and Augmented Intelligence, Arizona State University, 950 S. Forest Mall, Stauffer B258, Tempe, AZ 85281, USA.
| | - Stevan Savić
- Climatology and Hydrology Research Centre, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Jelena Dunjić
- Department of Geography, Tourism and Hotel Management, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Kevin Lau
- Institute of Future Cities, The Chinese University of Hong Kong, Hong Kong.
| | - Rastislav Stojsavljević
- Department of Geography, Tourism and Hotel Management, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| |
Collapse
|
9
|
Sun W, Hu X, Hu Y, Zhang G, Guo Z, Lin J, Huang J, Cai X, Dai J, Wang X, Zhang X, Bi X, Zhong N. 大气环境对SARS-CoV-2传播的影响研究进展. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2021-1228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Zhang S, Wang B, Yin L, Wang S, Hu W, Song X, Feng H. Novel Evidence Showing the Possible Effect of Environmental Variables on COVID-19 Spread. GEOHEALTH 2022; 6:e2021GH000502. [PMID: 35317468 PMCID: PMC8923516 DOI: 10.1029/2021gh000502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 06/09/2023]
Abstract
Coronavirus disease (COVID-19) remains a serious issue, and the role played by meteorological indicators in the process of virus spread has been a topic of academic discussion. Previous studies reached different conclusions due to inconsistent methods, disparate meteorological indicators, and specific time periods or regions. This manuscript is based on seven daily meteorological indicators in the NCEP reanalysis data set and COVID-19 data repository of Johns Hopkins University from 22 January 2020 to 1 June 2021. Results showed that worldwide average temperature and precipitable water (PW) had the strongest correlation (ρ > 0.9, p < 0.001) with the confirmed COVID-19 cases per day from 22 January to 31 August 2020. From 22 January to 31 August 2020, positive correlations were observed between the temperature/PW and confirmed COVID-19 cases/deaths in the northern hemisphere, whereas negative correlations were recorded in the southern hemisphere. From 1 September to 31 December 2020, the opposite results were observed. Correlations were weak throughout the near full year, and weak negative correlations were detected worldwide (|ρ| < 0.4, p ≤ 0.05); the lag time had no obvious effect. As the latitude increased, the temperature and PW of the maximum confirmed COVID-19 cases/deaths per day generally showed a decreasing trend; the 2020-year fitting functions of the response latitude pattern were verified by the 2021 data. Meteorological indicators, although not a decisive factor, may influence the virus spread by affecting the virus survival rates and enthusiasm of human activities. The temperature or PW threshold suitable for the spread of COVID-19 may increase as the latitude decreases.
Collapse
Affiliation(s)
- Sixuan Zhang
- College of Atmospheric ScienceChengdu University of Information TechnologyChengduChina
| | - Bingyun Wang
- College of Atmospheric ScienceChengdu University of Information TechnologyChengduChina
| | - Li Yin
- Panzhihua Central HospitalPanzhihuaChina
| | - Shigong Wang
- College of Atmospheric ScienceChengdu University of Information TechnologyChengduChina
- Zunyi Academician Work CenterZunyiChina
| | - Wendong Hu
- College of Atmospheric ScienceChengdu University of Information TechnologyChengduChina
| | - Xueqian Song
- College of ManagementChengdu University of Information TechnologyChengduChina
| | - Hongmei Feng
- College of Atmospheric ScienceChengdu University of Information TechnologyChengduChina
| |
Collapse
|
11
|
Kato M, Sakihama T, Kinjo Y, Itokazu D, Tokuda Y. Effect of Climate on COVID-19 Incidence: A Cross-Sectional Study in Japan. Korean J Fam Med 2022; 43:37-41. [PMID: 35130638 PMCID: PMC8820970 DOI: 10.4082/kjfm.20.0260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/16/2021] [Indexed: 11/04/2022] Open
Abstract
Background Effect of meteorological factors such as air temperature, humidity, and sunlight exposure on transmission dynamics of novel coronavirus disease 2019 (COVID-19) remains controversial. We investigated the association of these factors on COVID-19 incidence in Japan. Methods We analyzed data on reverse transcription polymerase chain reaction confirmed COVID-19 cases for each prefecture (total=47) in Japan and incidence rate was defined as the number of all reported cumulative cases from January 15 to March 17, 2020. Independent variables of each prefecture included three climatic variables (mean values of air temperature, relative humidity, and sunlight exposure), population elderly ratio, and the number of inbound travelers from China during February 2020. Multivariable-adjusted Poisson regression model was constructed to estimate COVID-19 incidence rate ratio (IRR) of independent variables. Results There was a total of 702 cases during the study period in Japan (population=125, 900,000). Mean±standard deviation values of meteorological variables were 7.12°C±2.91°C for air temperature, 67.49%±7.63% for relative humidity, and 46.77±12.55% for sunlight exposure. Poisson regression model adjusted for climate variables showed significant association between the incidence and three climatic variables: IRR for air temperature 0.854 (95% confidence interval [CI], 0.804–0.907; P<0.0001), relative humidity 0.904 (95% CI, 0.864–0.945; P<0.0001), and sunlight exposure 0.973 (95% CI, 0.951–0.997; P=0.026). Conclusion Higher values of air temperature, relative humidity and sunlight exposure were associated with lower incidence of COVID-19. Public health interventions against COVID-19 epidemic in a country should be developed by considering these meteorological factors.
Collapse
Affiliation(s)
- Mikiro Kato
- Department of General Internal Medicine, Mito Kyodo General Hospital, University of Tsukuba, Tsukuba, Japan
- Corresponding Author: Mikiro Kato Tel: +81-29-231-2371, Fax: +81-29-231-5137, E-mail:
| | - Tomoko Sakihama
- International University of Health and Welfare Graduate School, Tokyo, Japan
| | | | - David Itokazu
- Okinawa Asia Clinical Investigation Synergy, Naha, Japan
| | - Yasuharu Tokuda
- Muribushi Okinawa Center for Teaching Hospitals, Urasoe, Japan
| |
Collapse
|
12
|
Olak AS, Santos WS, Susuki AM, Pott-Junior H, V Skalny A, Tinkov AA, Aschner M, Pinese JPP, Urbano MR, Paoliello MMB. Meteorological parameters and cases of COVID-19 in Brazilian cities: an observational study. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:14-28. [PMID: 34474657 DOI: 10.1080/15287394.2021.1969304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Meteorological parameters modulate transmission of the SARS-Cov-2 virus, the causative agent related to coronavirus disease-2019 (COVID-19) development. However, findings across the globe have been inconsistent attributed to several confounding factors. The aim of the present study was to investigate the relationship between reported meteorological parameters from July 1 to October 31, 2020, and the number of confirmed COVID-19 cases in 4 Brazilian cities: São Paulo, the largest city with the highest number of cases in Brazil, and the cities with greater number of cases in the state of Parana during the study period (Curitiba, Londrina and Maringa). The assessment of meteorological factors with confirmed COVID-19 cases included atmospheric pressure, temperature, relative humidity, wind speed, solar irradiation, sunlight, dew point temperature, and total precipitation. The 7- and 15-day moving averages of confirmed COVID-19 cases were obtained for each city. Pearson's correlation coefficients showed significant correlations between COVID-19 cases and all meteorological parameters, except for total precipitation, with the strongest correlation with maximum wind speed (0.717, <0.001) in São Paulo. Regression tree analysis demonstrated that the largest number of confirmed COVID-19 cases was associated with wind speed (between ≥0.3381 and <1.173 m/s), atmospheric pressure (<930.5mb), and solar radiation (<17.98e+3). Lower number of cases was observed for wind speed <0.3381 m/s and temperature <23.86°C. Our results encourage the use of meteorological information as a critical component in future risk assessment models.
Collapse
Affiliation(s)
- André S Olak
- Department of Architecture and Urbanism; State University of Londrina (Uel), Londrina, PR, Brazil
- Department of Statistics, State University of Londrina (Uel), Londrina, Pr, Brazil
| | - Willian S Santos
- Department of Geoscience, State University of Londrina (Uel), Londrina, PR, Brazil
| | - Aline M Susuki
- Department of Architecture and Urbanism; State University of Londrina (Uel), Londrina, PR, Brazil
| | - Henrique Pott-Junior
- Department of Medicine, Federal University of São Carlos (Ufscar), São Carlos, SP, Brazil
| | - Anatoly V Skalny
- Department of Bioelementology, K.g. Razumovsky Moscow State University of Technologies and Management, Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare," Im Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexey A Tinkov
- World-Class Research Center "Digital Biodesign and Personalized Healthcare," Im Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Michael Aschner
- World-Class Research Center "Digital Biodesign and Personalized Healthcare," Im Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - José P P Pinese
- Department of Geoscience, State University of Londrina (Uel), Londrina, PR, Brazil
- Centre of Studies in Geography and Spatial Planning, CEGOT, Coimbra, Portugal
| | - Mariana R Urbano
- Department of Statistics, State University of Londrina (Uel), Londrina, Pr, Brazil
| | - Monica M B Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
13
|
Martinez JA, Miller RH, Martinez RA. Patient Questions Surrounding Mask Use for Prevention of COVID-19 and Physician Answers from an Evidence-Based Perspective: a Narrative Review. J Gen Intern Med 2021; 36:2739-2744. [PMID: 33145693 PMCID: PMC7609362 DOI: 10.1007/s11606-020-06324-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/15/2020] [Indexed: 12/23/2022]
Abstract
Recent mandates to wear masks in public places across the USA combined with conflicting messaging from the media and government agencies have generated a lot of patient questions surrounding the appropriate use and efficacy of cloth masks. Here, we have organized the evidence in the context of real patient questions and have provided example answers from a physician's perspective. The purpose of this review is to offer healthcare providers with examples of how to respond to patient questions about masks in a way that encourages responsible decision-making. We conclude, based on the evidence showing a benefit for cloth masks and the recent reports supporting a role for aerosols in the transmission of SARS-CoV-2, that cloth masks will be effective when used correctly. We further assert that stronger public messaging surrounding cloth masks in the community setting is needed, and should specify that 2-3 layer, fitted face masks be worn at all times in public as another layer of protection in addition to social distancing, not just when social distancing cannot be maintained.
Collapse
Affiliation(s)
- Jessica A Martinez
- The University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | | | | |
Collapse
|
14
|
Ma Y, Cheng B, Shen J, Wang H, Feng F, Zhang Y, Jiao H. Association between environmental factors and COVID-19 in Shanghai, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:45087-45095. [PMID: 33856634 PMCID: PMC8047551 DOI: 10.1007/s11356-021-13834-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/05/2021] [Indexed: 05/02/2023]
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) continues to spread worldwide and has led to recession, rising unemployment, and the collapse of the health-care system. The aim of this study was to explore the exposure-response relationship between daily confirmed COVID-19 cases and environmental factors. We used a time-series generalized additive model (GAM) to investigate the short-term association between COVID-19 and environmental factors by using daily meteorological elements, air pollutant concentration, and daily confirmed COVID-19 cases from January 21, 2020, to February 29, 2020, in Shanghai, China. We observed significant negative associations between daily confirmed COVID-19 cases and mean temperature (Tave), temperature humidity index (THI), and index of wind effect (K), whereas air quality index (AQI), PM2.5, PM10 NO2, and SO2 were significantly associated with the increase in daily confirmed COVID-19 cases. A 1 °C increase in Tave, one-unit increase in THI, and 10-unit increase in K (lag 0-7 days) were associated with 4.7, 1.8, and 1.6% decrease in daily confirmed cases, respectively. Daily Tave, THI, K, PM10, and SO2 had significant lag and persistence (lag 0-7 days), whereas the lag and persistence of AQI, PM2.5, and NO2 were significant at both lag 0-7 and 0-14 days. A 10-μg/m3 increase in PM10 and 1-μg/m3 increase in SO2 was associated with 13.9 and 5.7% increase in daily confirmed cases at lag 0-7 days, respectively, whereas a 10-unit increase in AQI and a 10-μg/m3 increase in PM2.5 and NO2 were associated with 7.9, 7.8, and 10.1% increase in daily confirmed cases at lag 0-14 days, respectively. Our findings have important implications for public health in the city of Shanghai.
Collapse
Affiliation(s)
- Yuxia Ma
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China.
| | - Bowen Cheng
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Jiahui Shen
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Hang Wang
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Fengliu Feng
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Yifan Zhang
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Haoran Jiao
- College of Atmospheric Sciences, Key Laboratory of Semi-Arid Climate Change, Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
15
|
Madineni VR, Dasari HP, Karumuri R, Viswanadhapalli Y, Perumal P, Hoteit I. Natural processes dominate the pollution levels during COVID-19 lockdown over India. Sci Rep 2021; 11:15110. [PMID: 34302017 PMCID: PMC8302761 DOI: 10.1038/s41598-021-94373-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/30/2021] [Indexed: 11/08/2022] Open
Abstract
The lockdown measures that were taken to combat the COVID-19 pandemic minimized anthropogenic activities and created natural laboratory conditions for studying air quality. Both observations and WRF-Chem simulations show a 20-50% reduction (compared to pre-lockdown and same period of previous year) in the concentrations of most aerosols and trace gases over Northwest India, the Indo Gangetic Plain (IGP), and the Northeast Indian regions. It is shown that this was mainly due to a 70-80% increase in the height of the boundary layer and the low emissions during lockdown. However, a 60-70% increase in the pollutants levels was observed over Central and South India including the Arabian sea and Bay of Bengal during this period, which is attributed to natural processes. Elevated (dust) aerosol layers are transported from the Middle East and Africa via long-range transport, and a decrease in the wind speed (20-40%) caused these aerosols to stagnate, enhancing the aerosol levels over Central and Southern India. A 40-60% increase in relative humidity further amplified aerosol concentrations. The results of this study suggest that besides emissions, natural processes including background meteorology and dynamics, play a crucial role in the pollution concentrations over the Indian sub-continent.
Collapse
Affiliation(s)
| | - Hari Prasad Dasari
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ramakrishna Karumuri
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Prasad Perumal
- National Atmospheric Research Laboratory, Gadanki, Andhra Pradesh, India
| | - Ibrahim Hoteit
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
16
|
Nicastro F, Sironi G, Antonello E, Bianco A, Biasin M, Brucato JR, Ermolli I, Pareschi G, Salvati M, Tozzi P, Trabattoni D, Clerici M. Solar UV-B/A radiation is highly effective in inactivating SARS-CoV-2. Sci Rep 2021; 11:14805. [PMID: 34285313 PMCID: PMC8292397 DOI: 10.1038/s41598-021-94417-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/06/2021] [Indexed: 02/06/2023] Open
Abstract
Solar UV-C photons do not reach Earth's surface, but are known to be endowed with germicidal properties that are also effective on viruses. The effect of softer UV-B and UV-A photons, which copiously reach the Earth's surface, on viruses are instead little studied, particularly on single-stranded RNA viruses. Here we combine our measurements of the action spectrum of Covid-19 in response to UV light, Solar irradiation measurements on Earth during the SARS-CoV-2 pandemics, worldwide recorded Covid-19 mortality data and our "Solar-Pump" diffusive model of epidemics to show that (a) UV-B/A photons have a powerful virucidal effect on the single-stranded RNA virus Covid-19 and that (b) the Solar radiation that reaches temperate regions of the Earth at noon during summers, is sufficient to inactivate 63% of virions in open-space concentrations (1.5 × 103 TCID50/mL, higher than typical aerosol) in less than 2 min. We conclude that the characteristic seasonality imprint displayed world-wide by the SARS-Cov-2 mortality time-series throughout the diffusion of the outbreak (with temperate regions showing clear seasonal trends and equatorial regions suffering, on average, a systematically lower mortality), might have been efficiently set by the different intensity of UV-B/A Solar radiation hitting different Earth's locations at different times of the year. Our results suggest that Solar UV-B/A play an important role in planning strategies of confinement of the epidemics, which should be worked out and set up during spring/summer months and fully implemented during low-solar-irradiation periods.
Collapse
Affiliation(s)
- Fabrizio Nicastro
- Italian National Institute for Astrophysics (INAF)-Rome Astronomical Observatory, Rome, Italy.
| | - Giorgia Sironi
- Italian National Institute for Astrophysics (INAF)-Brera Astronomical Observatory, Merate, Milan, Italy
| | - Elio Antonello
- Italian National Institute for Astrophysics (INAF)-Brera Astronomical Observatory, Merate, Milan, Italy
| | - Andrea Bianco
- Italian National Institute for Astrophysics (INAF)-Brera Astronomical Observatory, Merate, Milan, Italy
| | - Mara Biasin
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milano, Milan, Italy
| | - John R Brucato
- Italian National Institute for Astrophysics (INAF)-Arcetri Astrophysical Observatory, Florence, Italy
| | - Ilaria Ermolli
- Italian National Institute for Astrophysics (INAF)-Rome Astronomical Observatory, Rome, Italy
| | - Giovanni Pareschi
- Italian National Institute for Astrophysics (INAF)-Brera Astronomical Observatory, Merate, Milan, Italy
| | - Marta Salvati
- Regional Agency for Environmental Protection of Lombardia (ARPA Lombardia), Milan, Italy
| | - Paolo Tozzi
- Italian National Institute for Astrophysics (INAF)-Arcetri Astrophysical Observatory, Florence, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milano, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milano, Don C. Gnocchi Foundation, IRCCS, Milan, Italy
| |
Collapse
|
17
|
Quintana AV, Clemons M, Hoevemeyer K, Liu A, Balbus J. A Descriptive Analysis of the Scientific Literature on Meteorological and Air Quality Factors and COVID-19. GEOHEALTH 2021; 5:e2020GH000367. [PMID: 34430778 PMCID: PMC8290880 DOI: 10.1029/2020gh000367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/23/2021] [Accepted: 04/23/2021] [Indexed: 06/09/2023]
Abstract
The role of meteorological and air quality factors in moderating the transmission of SARS-CoV-2 and severity of COVID-19 is a critical topic as an opportunity for targeted intervention and relevant public health messaging. Studies conducted in early 2020 suggested that temperature, humidity, ultraviolet radiation, and other meteorological factors have an influence on the transmissibility and viral dynamics of COVID-19. Previous reviews of the literature have found significant heterogeneity in associations but did not examine many factors relating to epidemiological quality of the analyses such as rigor of data collection and statistical analysis, or consideration of potential confounding factors. To provide greater insight into the current state of the literature from an epidemiological standpoint, the authors conducted a rapid descriptive analysis with a strong focus on the characterization of COVID-19 health outcomes and use of controls for confounding social and demographic variables such as population movement and age. We have found that few studies adequately considered the challenges posed by the use of governmental reporting of laboratory testing as a proxy for disease transmission, including timeliness and consistency. In addition, very few studies attempted to control for confounding factors, including timing and implementation of public health interventions and metrics of population compliance with those interventions. Ongoing research should give greater consideration to the measures used to quantify COVID-19 transmission and health outcomes as well as how to control for the confounding influences of public health measures and personal behaviors.
Collapse
Affiliation(s)
| | | | - Krista Hoevemeyer
- Des Moines University ‐ U.S. Global Change Research ProgramDes MoinesIAUSA
| | - Ann Liu
- National Institute of Environmental Health SciencesBethesdaMDUSA
| | - John Balbus
- National Institute of Environmental Health SciencesBethesdaMDUSA
| |
Collapse
|
18
|
Bamgboye EL, Omiye JA, Afolaranmi OJ, Davids MR, Tannor EK, Wadee S, Niang A, Were A, Naicker S. COVID-19 Pandemic: Is Africa Different? J Natl Med Assoc 2021; 113:324-335. [PMID: 33153755 PMCID: PMC7607238 DOI: 10.1016/j.jnma.2020.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/24/2020] [Accepted: 10/05/2020] [Indexed: 12/29/2022]
Abstract
COVID-19 has now spread to all the continents of the world with the possible exception of Antarctica. However, Africa appears different when compared with all the other continents. The absence of exponential growth and the low mortality rates contrary to that experienced in other continents, and contrary to the projections for Africa by various agencies, including the World Health Organization (WHO) has been a puzzle to many. Although Africa is the second most populous continent with an estimated 17.2% of the world's population, the continent accounts for only 5% of the total cases and 3% of the mortality. Mortality for the whole of Africa remains at a reported 19,726 as at August 01, 2020. The onset of the pandemic was later, the rate of rise has been slower and the severity of illness and case fatality rates have been lower in comparison to other continents. In addition, contrary to what had been documented in other continents, the occurrence of the renal complications in these patients also appeared to be much lower. This report documents the striking differences between the continents and within the continent of Africa itself and then attempts to explain the reasons for these differences. It is hoped that information presented in this review will help policymakers in the fight to contain the pandemic, particularly within Africa with its resource-constrained health care systems.
Collapse
Affiliation(s)
| | | | | | - Mogamat Razeen Davids
- Division of Nephrology, Stellenbosch University and Tygerberg Hospital, Cape Town, South Africa
| | | | - Shoyab Wadee
- Wits Donald Gordon Medical Centre, University of the Witwatersrand, Johannesburg, South Africa
| | - Abdou Niang
- Dalal Jamm Hospital, Dakar Cheikh A. Diop University, Senegal
| | - Anthony Were
- Department of Medicine, East African Kidney Institute, College of Health Sciences, University of Nairobi, Kenya
| | - Saraladevi Naicker
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
19
|
Paraskevis D, Kostaki EG, Alygizakis N, Thomaidis NS, Cartalis C, Tsiodras S, Dimopoulos MA. A review of the impact of weather and climate variables to COVID-19: In the absence of public health measures high temperatures cannot probably mitigate outbreaks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144578. [PMID: 33450689 DOI: 10.1016/j.scitotenv.2020.144578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 05/28/2023]
Abstract
The new severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) pandemic was first recognized at the end of 2019 and has caused one of the most serious global public health crises in the last years. In this paper, we review current literature on the effect of weather (temperature, humidity, precipitation, wind, etc.) and climate (temperature as an essential climate variable, solar radiation in the ultraviolet, sunshine duration) variables on SARS-CoV-2 and discuss their impact to the COVID-19 pandemic; the review also refers to respective effect of urban parameters and air pollution. Most studies suggest that a negative correlation exists between ambient temperature and humidity on the one hand and the number of COVID-19 cases on the other, while there have been studies which support the absence of any correlation or even a positive one. The urban environment and specifically the air ventilation rate, as well as air pollution, can probably affect, also, the transmission dynamics and the case fatality rate of COVID-19. Due to the inherent limitations in previously published studies, it remains unclear if the magnitude of the effect of temperature or humidity on COVID-19 is confounded by the public health measures implemented widely during the first pandemic wave. The effect of weather and climate variables, as suggested previously for other viruses, cannot be excluded, however, under the conditions of the first pandemic wave, it might be difficult to be uncovered. The increase in the number of cases observed during summertime in the Northern hemisphere, and especially in countries with high average ambient temperatures, demonstrates that weather and climate variables, in the absence of public health interventions, cannot mitigate the resurgence of COVID-19 outbreaks.
Collapse
Affiliation(s)
- Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Evangelia Georgia Kostaki
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikiforos Alygizakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistiopolis Zografou, 15771 Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistiopolis Zografou, 15771 Athens, Greece
| | - Constantinos Cartalis
- Department of Environmental Physics - Meteorology, Department of Physics, National and Kapodistrian University of Athens, Panepistiopolis Zografou, 15771 Athens, Greece
| | - Sotirios Tsiodras
- Fourth Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Meletios Athanasios Dimopoulos
- Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
20
|
Paraskevis D, Kostaki EG, Alygizakis N, Thomaidis NS, Cartalis C, Tsiodras S, Dimopoulos MA. A review of the impact of weather and climate variables to COVID-19: In the absence of public health measures high temperatures cannot probably mitigate outbreaks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144578. [PMID: 33450689 PMCID: PMC7765762 DOI: 10.1016/j.scitotenv.2020.144578] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 04/15/2023]
Abstract
The new severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) pandemic was first recognized at the end of 2019 and has caused one of the most serious global public health crises in the last years. In this paper, we review current literature on the effect of weather (temperature, humidity, precipitation, wind, etc.) and climate (temperature as an essential climate variable, solar radiation in the ultraviolet, sunshine duration) variables on SARS-CoV-2 and discuss their impact to the COVID-19 pandemic; the review also refers to respective effect of urban parameters and air pollution. Most studies suggest that a negative correlation exists between ambient temperature and humidity on the one hand and the number of COVID-19 cases on the other, while there have been studies which support the absence of any correlation or even a positive one. The urban environment and specifically the air ventilation rate, as well as air pollution, can probably affect, also, the transmission dynamics and the case fatality rate of COVID-19. Due to the inherent limitations in previously published studies, it remains unclear if the magnitude of the effect of temperature or humidity on COVID-19 is confounded by the public health measures implemented widely during the first pandemic wave. The effect of weather and climate variables, as suggested previously for other viruses, cannot be excluded, however, under the conditions of the first pandemic wave, it might be difficult to be uncovered. The increase in the number of cases observed during summertime in the Northern hemisphere, and especially in countries with high average ambient temperatures, demonstrates that weather and climate variables, in the absence of public health interventions, cannot mitigate the resurgence of COVID-19 outbreaks.
Collapse
Affiliation(s)
- Dimitrios Paraskevis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Evangelia Georgia Kostaki
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikiforos Alygizakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistiopolis Zografou, 15771 Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistiopolis Zografou, 15771 Athens, Greece
| | - Constantinos Cartalis
- Department of Environmental Physics - Meteorology, Department of Physics, National and Kapodistrian University of Athens, Panepistiopolis Zografou, 15771 Athens, Greece
| | - Sotirios Tsiodras
- Fourth Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Meletios Athanasios Dimopoulos
- Department of Clinical Therapeutics, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
21
|
Spada A, Tucci FA, Ummarino A, Ciavarella PP, Calà N, Troiano V, Caputo M, Ianzano R, Corbo S, de Biase M, Fascia N, Forte C, Gambacorta G, Maccione G, Prencipe G, Tomaiuolo M, Tucci A. Structural equation modeling to shed light on the controversial role of climate on the spread of SARS-CoV-2. Sci Rep 2021; 11:8358. [PMID: 33863938 PMCID: PMC8052355 DOI: 10.1038/s41598-021-87113-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/23/2021] [Indexed: 12/23/2022] Open
Abstract
Climate seems to influence the spread of SARS-CoV-2, but the findings of the studies performed so far are conflicting. To overcome these issues, we performed a global scale study considering 134,871 virologic-climatic-demographic data (209 countries, first 16 weeks of the pandemic). To analyze the relation among COVID-19, population density, and climate, a theoretical path diagram was hypothesized and tested using structural equation modeling (SEM), a powerful statistical technique for the evaluation of causal assumptions. The results of the analysis showed that both climate and population density significantly influence the spread of COVID-19 (p < 0.001 and p < 0.01, respectively). Overall, climate outweighs population density (path coefficients: climate vs. incidence = 0.18, climate vs. prevalence = 0.11, population density vs. incidence = 0.04, population density vs. prevalence = 0.05). Among the climatic factors, irradiation plays the most relevant role, with a factor-loading of - 0.77, followed by temperature (- 0.56), humidity (0.52), precipitation (0.44), and pressure (0.073); for all p < 0.001. In conclusion, this study demonstrates that climatic factors significantly influence the spread of SARS-CoV-2. However, demographic factors, together with other determinants, can affect the transmission, and their influence may overcome the protective effect of climate, where favourable.
Collapse
Affiliation(s)
- Alessia Spada
- Statistics and Mathematics Area, Department of Economics, University of Foggia, Foggia, Italy
| | - Francesco Antonio Tucci
- Agorà Biomedical Sciences, Etromapmax Pole, Lesina (FG), Italy
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Aldo Ummarino
- Agorà Biomedical Sciences, Etromapmax Pole, Lesina (FG), Italy.
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 4, 20090, Pieve Emanuele (MI), Italy.
| | | | - Nicholas Calà
- Agorà Biomedical Sciences, Etromapmax Pole, Lesina (FG), Italy
| | | | - Michele Caputo
- Agorà Biomedical Sciences, Etromapmax Pole, Lesina (FG), Italy
| | | | - Silvia Corbo
- Agorà Biomedical Sciences, Etromapmax Pole, Lesina (FG), Italy
| | - Marco de Biase
- Agorà Biomedical Sciences, Etromapmax Pole, Lesina (FG), Italy
| | - Nicola Fascia
- Agorà Biomedical Sciences, Etromapmax Pole, Lesina (FG), Italy
| | - Chiara Forte
- Agorà Biomedical Sciences, Etromapmax Pole, Lesina (FG), Italy
| | | | | | | | | | - Antonio Tucci
- Agorà Biomedical Sciences, Etromapmax Pole, Lesina (FG), Italy
| |
Collapse
|
22
|
Mohapatra S, Menon NG, Mohapatra G, Pisharody L, Pattnaik A, Menon NG, Bhukya PL, Srivastava M, Singh M, Barman MK, Gin KYH, Mukherji S. The novel SARS-CoV-2 pandemic: Possible environmental transmission, detection, persistence and fate during wastewater and water treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142746. [PMID: 33092831 PMCID: PMC7536135 DOI: 10.1016/j.scitotenv.2020.142746] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/08/2020] [Accepted: 09/27/2020] [Indexed: 04/14/2023]
Abstract
The contagious SARS-CoV-2 virus, responsible for COVID-19 disease, has infected over 27 million people across the globe within a few months. While literature on SARS-CoV-2 indicates that its transmission may occur predominantly via aerosolization of virus-laden droplets, the possibility of alternate routes of transmission and/or reinfection via the environment requires considerable scientific attention. This review aims to collate information on possible transmission routes of this virus, to ascertain its fate in the environment. Concomitant with the presence of SARS-CoV-2 viral RNA in faeces and saliva of infected patients, studies also indicated its occurrence in raw wastewater, primary sludge and river water. Therefore sewerage system could be a possible route of virus outbreak, a possible tool to assess viral community spread and future surveillance technique. Hence, this review looked into detection, occurrence and fate of SARS-CoV-2 during primary, secondary, and tertiary wastewater and water treatment processes based on published literature on SARS-CoV and other enveloped viruses. The review also highlights the need for focused research on occurrence and fate of SARS-CoV-2 in various environmental matrices. Utilization of this information in environmental transmission models developed for other enveloped and enteric viruses can facilitate risk assessment studies. Preliminary research efforts with SARS-CoV-2 and established scientific reports on other coronaviruses indicate that the threat of virus transmission from the aquatic environment may be currently non-existent. However, the presence of viral RNA in wastewater provides an early warning that highlights the need for effective sewage treatment to prevent a future outbreak of SARS-CoV-2.
Collapse
Affiliation(s)
- Sanjeeb Mohapatra
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, India; NUS Environmental Research Institute, National University of Singapore (NUS), Singapore
| | - N Gayathri Menon
- Centre for Research in Nanotechnology and Science (CRNTS), Indian Institute of Technology Bombay, India; nEcoTox GmbH, An der Neümuhle 2, Annweiler am Trifels, Germany
| | | | - Lakshmi Pisharody
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, India
| | - Aryamav Pattnaik
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln (UNL), USA
| | - N Gowri Menon
- Department of Veterinary Epidemiology and Preventive Medicine, Kerala Veterinary and Animal Sciences University (KVASU), Wayanad, Kerala, India
| | | | | | | | | | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore (NUS), Singapore.
| | - Suparna Mukherji
- Environmental Science and Engineering Department (ESED), Indian Institute of Technology Bombay, India; Centre for Research in Nanotechnology and Science (CRNTS), Indian Institute of Technology Bombay, India.
| |
Collapse
|
23
|
To T, Zhang K, Maguire B, Terebessy E, Fong I, Parikh S, Zhu J, Su Y. UV, ozone, and COVID-19 transmission in Ontario, Canada using generalised linear models. ENVIRONMENTAL RESEARCH 2021; 194:110645. [PMID: 33359457 PMCID: PMC7787508 DOI: 10.1016/j.envres.2020.110645] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Quantifying the impact of environmental factors on COVID-19 transmission is crucial in preventing more cases. Ultraviolet (UV) radiation and ozone (O3) have reported antimicrobial properties but few studies have examined associations with community infectivity of COVID-19. Research suggests UV light can be preventative while the effect of O3 is contested. We sought to determine the relationship between UV, O3, and COVID-19 incidence in Ontario, Canada. METHODS In our time series analyses, we calculated daily incidence rates and reproductive number (Rt) from 34,975 cases between January and June 2020 across 34 Ontario Public Health Units. We used generalised linear models, adjusting for potential confounders, to calculate point estimates (PE) and 95% confidence intervals (CI) for UV and O3. Analyses were further stratified by age groups and outbreaks at institutions versus community. RESULTS We found that 1-week averaged UV was significantly associated with a 13% decrease (95% CI: 0.80-0.96) in overall COVID-19 Rt, per unit increase. A negative association with UV was also significant among community outbreaks (PE: 0.88, 95% CI: 0.81-0.96) but not institutional outbreaks (PE: 0.94, 95% CI: 0.85-1.03). A positive association of O3 with COVID-19 incidence is strongly suggested among institutional outbreak cases (PE: 1.06, 95% CI: 1.00-1.13). CONCLUSION Our study found evidence to support the hypothesis that higher UV reduced transmission of COVID-19 and some evidence that ground-level O3 positively influenced COVID-19 transmission. Setting of infection should be strongly considered as a factor in future research. UV and O3 may explain some of COVID-19's seasonal behaviour.
Collapse
Affiliation(s)
- Teresa To
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| | - Kimball Zhang
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Bryan Maguire
- Biostatistics, Design and Analysis, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Emilie Terebessy
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ivy Fong
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Supriya Parikh
- Biostatistics, Design and Analysis, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jingqin Zhu
- Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Yushan Su
- Air Monitoring and Modelling Section, Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON, Canada
| |
Collapse
|
24
|
Singh R, Sim T. Families in the Time of the Pandemic: Breakdown or Breakthrough? THE AUSTRALIAN AND NEW ZEALAND JOURNAL OF FAMILY THERAPY 2021; 42:84-97. [PMID: 34230764 PMCID: PMC8251058 DOI: 10.1002/anzf.1445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The COVID-19 pandemic has taken a toll on all individuals and their families around the world. Some suffer more adversely than others depending on their unique developmental needs, resources, and resilience. However, instead of breaking down, many families and therapists have hunkered down to cope with this 'wicked' situation as it continues to evolve. This article examines the unique challenges and opportunities of COVID-19 for families at different life developmental stages, as well as the challenges and opportunities for systemic therapists as they venture into unfamiliar territory. Through a case example and by integrating recent literature related to this pandemic, we apply three key and interconnected systemic themes (unsafe uncertainty, family life cycle, and social diversity) to discuss the challenges and opportunities for families and therapists, respectively. We are optimistic that there are many possibilities as families and therapists draw on, and often reinvent, currently available resources to navigate their course in this pandemic. We also find that while the pandemic continues to present unsafe and uncertain situations, there are new ways of being and behaving, especially when families and professionals work together collaboratively. Despite formidable challenges, there are many opportunities, both within families and communities that cut through different social contexts related to family, culture, economics, and even politics. Families and therapists could endure better when they are more cognisant of how and what these contexts may impact and offer them.
Collapse
Affiliation(s)
| | - Timothy Sim
- Singapore University of Social SciencesSingapore
| |
Collapse
|
25
|
Isaia G, Diémoz H, Maluta F, Fountoulakis I, Ceccon D, di Sarra A, Facta S, Fedele F, Lorenzetto G, Siani AM, Isaia G. Does solar ultraviolet radiation play a role in COVID-19 infection and deaths? An environmental ecological study in Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143757. [PMID: 33272604 PMCID: PMC7678486 DOI: 10.1016/j.scitotenv.2020.143757] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 05/21/2023]
Abstract
A significantly stronger impact in mortality and morbidity by COVID-19 has been observed in the northern Italian regions compared to the southern ones. The reasons of this geographical pattern might involve several concurrent factors. The main objective of this work is to investigate whether any correlations exist between the spatial distribution of COVID-19 cases and deaths in the different Italian regions and the amount of solar ultraviolet (UV) radiation at the Earth's surface. To this purpose, in this environmental ecological study a mixed-effect exponential regression was built to explain the incidence of COVID-19 based on the environmental conditions, and demographic and pathophysiologic factors. Observations and estimates of the cumulative solar UV exposure have been included to quantify the amount of radiation available e.g., for pre-vitamin D3 synthesis or SARS-CoV-2 inactivation by sunlight. The analysis shows a significant correlation (p-value <5 × 10-2) between the response variables (death percentage, incidence of infections and positive tests) and biologically effective solar UV radiation, residents in nursing homes per inhabitant (NHR), air temperature, death percentage due to the most frequent comorbidities. Among all factors, the amount of solar UV radiation is the variable contributing the most to the observed correlation, explaining up to 83.2% of the variance of the COVID-19 affected cases per population. While the statistical outcomes of the study do not directly entail a specific cause-effect relationship, our results are consistent with the hypothesis that solar UV radiation impacted on the development of the infection and on its complications, e.g. through the effect of vitamin D on the immune system or virus inactivation by sunlight. The analytical framework used in this study, based on commonly available data, can be easily replicated in other countries and geographical domains to identify possible correlations between exposure to solar UV radiation and the spread of the pandemic.
Collapse
Affiliation(s)
- Giancarlo Isaia
- Department of Medical Sciences, University of Turin, Italy; Academy of Medicine of Turin, Italy.
| | - Henri Diémoz
- Regional Environmental Protection Agency (ARPA), Valle d'Aosta, Italy
| | - Francesco Maluta
- Department of Industrial Chemistry, University of Bologna, Italy
| | | | - Daniela Ceccon
- Provincial Environmental Protection Agency (APPA), Bolzano, Italy
| | - Alcide di Sarra
- Italian Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Italy
| | - Stefania Facta
- Regional Environmental Protection Agency (ARPA), Piemonte, Italy
| | | | | | | | - Gianluca Isaia
- Geriatrics and Metabolic Bone Diseases, AOU Città della Salute e della Scienza of Turin, Italy
| |
Collapse
|
26
|
Altitude conditions seem to determine the evolution of COVID-19 in Brazil. Sci Rep 2021; 11:4402. [PMID: 33623105 PMCID: PMC7902649 DOI: 10.1038/s41598-021-83971-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19 is spreading rapidly in Brazil, a country of continental dimensions, but the incidence of the disease is showing to be very heterogeneous, affecting cities and regions differently. Thus, there is a gap regarding what factors would contribute to accentuate the differences in the incidence of COVID-19 among Brazilian cities. This work aimed to evaluate the effect of altitude on the incidence of COVID-19 in Brazilian cities. We analyzed the relative incidence (RI), the relative death rate (RDR) of COVID-19, and air relative humidity (RH) in all 154 cities in Brazil with a population above 200 thousand inhabitants, located between 5 and 1135 m in altitude. Pearson's correlation analysis was performed to compare a relationship between altitude with RI and RDR, and between RH with RI and RDR. Altitudes were classified into three classes [low (altitude ≤ 97 m a. s. l), middle (97 < altitude ≤ 795 m a. s. l), high (795 < altitude ≤ 1135 m a. s. l)] for the RI, RDR, and RH variables. To compare the three classes of altitude, analysis of variance (ANOVA) and Tukey test were used to compare averages (p < 0.05). Our epidemiological analysis found that the RI, RDR, and RH were lower in cities located in high altitudes (795 < altitude ≤ 1135 m a. s. l) when compared to the middle (97 < altitude ≤ 795 m a. s. l) and low (altitude ≤ 97 m a. s. l) cities altitudes. Furthermore, our study shows that there is a negative correlation between the incidence of COVID-19 with altitude and a positive correlation with RH in the cities analyzed. Brazilian cities with high altitude and low RH have lower RI and RDR from COVID-19. Thus, high altitude cities may be favorable to shelter people at risk. This study may be useful for understanding the behavior of SARS-CoV2, and start point for future studies to establish causality of environmental conditions with SARS-CoV2 contributing to the implementation of measures to prevent and control the spread of COVID-19.
Collapse
|
27
|
Yuan J, Wu Y, Jing W, Liu J, Du M, Wang Y, Liu M. Non-linear correlation between daily new cases of COVID-19 and meteorological factors in 127 countries. ENVIRONMENTAL RESEARCH 2021; 193:110521. [PMID: 33279492 PMCID: PMC7713195 DOI: 10.1016/j.envres.2020.110521] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 05/21/2023]
Abstract
Meteorological parameters are the critical factors of affecting respiratory infectious disease such as Middle East Respiratory Syndrome (MERS), Severe Acute Respiratory Syndrome (SARS) and influenza, however, the effect of meteorological parameters on coronavirus disease 2019 (COVID-19) remains controversial. This study investigated the effects of meteorological factors on daily new cases of COVID-19 in 127 countries, as of August 31 2020. The log-linear generalized additive model (GAM) was used to analyze the effect of meteorological variables on daily new cases of COVID-19. Our findings revealed that temperature, relative humidity, and wind speed are nonlinearly correlated with daily new cases, and they may be negatively correlated with the daily new cases of COVID-19 over 127 countries when temperature, relative humidity and wind speed were below 20°C, 70% and 7 m/s respectively. Temperature(>20°C) was positively correlated with daily new cases. Wind speed (when>7 m/s) and relative humidity (>70%) was not statistically associated with transmission of COVID-19. The results of this research will be a useful supplement to help healthcare policymakers in the Belt and Road countries, the Centers for Disease Control (CDC) and the World Health Organization (WHO) to develop strategies to combat COVID-19.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Epidemiology and Biostatics, School of Public Health, Peking University, No.38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yu Wu
- Department of Epidemiology and Biostatics, School of Public Health, Peking University, No.38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Wenzhan Jing
- Department of Epidemiology and Biostatics, School of Public Health, Peking University, No.38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Jue Liu
- Department of Epidemiology and Biostatics, School of Public Health, Peking University, No.38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Min Du
- Department of Epidemiology and Biostatics, School of Public Health, Peking University, No.38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yaping Wang
- Department of Epidemiology and Biostatics, School of Public Health, Peking University, No.38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Min Liu
- Department of Epidemiology and Biostatics, School of Public Health, Peking University, No.38, Xueyuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
28
|
Pepin KM, Miller RS, Wilber MQ. A framework for surveillance of emerging pathogens at the human-animal interface: Pigs and coronaviruses as a case study. Prev Vet Med 2021; 188:105281. [PMID: 33530012 PMCID: PMC7839430 DOI: 10.1016/j.prevetmed.2021.105281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/09/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022]
Abstract
Pigs (Sus scrofa) may be important surveillance targets for risk assessment and risk-based control planning against emerging zoonoses. Pigs have high contact rates with humans and other animals, transmit similar pathogens as humans including CoVs, and serve as reservoirs and intermediate hosts for notable human pandemics. Wild and domestic pigs both interface with humans and each other but have unique ecologies that demand different surveillance strategies. Three fundamental questions shape any surveillance program: where, when, and how can surveillance be conducted to optimize the surveillance objective? Using theory of mechanisms of zoonotic spillover and data on risk factors, we propose a framework for determining where surveillance might begin initially to maximize a detection in each host species at their interface. We illustrate the utility of the framework using data from the United States. We then discuss variables to consider in refining when and how to conduct surveillance. Recent advances in accounting for opportunistic sampling designs and in translating serology samples into infection times provide promising directions for extracting spatio-temporal estimates of disease risk from typical surveillance data. Such robust estimates of population-level disease risk allow surveillance plans to be updated in space and time based on new information (adaptive surveillance) thus optimizing allocation of surveillance resources to maximize the quality of risk assessment insight.
Collapse
Affiliation(s)
- Kim M Pepin
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, 4101 Laporte Ave., Fort Collins, CO, 80526, United States.
| | - Ryan S Miller
- Centers for Epidemiology and Animal Health, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, 2150 Center Ave., Fort Collins, CO, 80526, United States
| | - Mark Q Wilber
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106, United States
| |
Collapse
|
29
|
Mansouri Daneshvar MR, Ebrahimi M, Sadeghi A, Mahmoudzadeh A. Climate effects on the COVID-19 outbreak: a comparative analysis between the UAE and Switzerland. MODELING EARTH SYSTEMS AND ENVIRONMENT 2021; 8:469-482. [PMID: 33521243 PMCID: PMC7822754 DOI: 10.1007/s40808-021-01110-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
The main aim of the present study is to disclose the similarities or differences of the climate effects on the COVID-19 outbreak in two countries, which have different climatic conditions. Using the correlation modeling, the results revealed that some climatic factors, such as the ULR, temperature, and CH4 in the UAE and aerosol index and NO2 in Switzerland have positive lagged correlations with the outburst of COVID-19 by intensifying role within - 9, - 7, and - 2 days. The mitigating role was also observed for ozone/solar radiation and temperature/long-wave radiation in the UAE and Switzerland, respectively. The initial hypotheses of the research have confirmed the correlations between new cases of COVID-19 and ULR and aerosol indices in the UAE and Switzerland. However, the main finding revealed that the climate effects on the COVID-19 outbreak show different roles in the different countries, locating in dissimilar climatic zones. Accordingly, the COVID-19 can be intensified by increases of the ULR and temperature in an arid region, while it can be exactly mitigated by increases of these factors in a temperate area. This finding may be useful for future researches for identifying the essential influencing factors for the mitigating COVID-19 outbreak.
Collapse
Affiliation(s)
- M. R. Mansouri Daneshvar
- Department of Geography and Natural Hazards, Research Institute of Shakhes Pajouh, Isfahan, Iran
| | - M. Ebrahimi
- Department of Physical Geography, Hakim Sabzevari University, Sabzevar, Iran
| | - A. Sadeghi
- Department of Humanities and Social Science, Farhangian University, Tehran, Iran
| | - A. Mahmoudzadeh
- Head of Departments and Chancellor, Research Institute of Shakhes Pajouh, Isfahan, Iran
| |
Collapse
|
30
|
Zerefos CS, Solomos S, Kapsomenakis J, Poupkou A, Dimitriadou L, Polychroni ID, Kalabokas P, Philandras CM, Thanos D. Lessons learned and questions raised during and post-COVID-19 anthropopause period in relation to the environment and climate. ENVIRONMENT, DEVELOPMENT AND SUSTAINABILITY 2021; 23:10623-10645. [PMID: 33230388 PMCID: PMC7673974 DOI: 10.1007/s10668-020-01075-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/03/2020] [Indexed: 05/05/2023]
Abstract
In the first part, this work reports that during the global "anthropopause" period, that was imposed in March and April 2020 for limiting the spread of COVID-19, the concentrations of basic air pollutants over Europe were reduced by up to 70%. During May and June, the gradual lift of the stringent measures resulted in the recovery of these reductions with pollution concentrations approaching the levels before the lockdown by the end of June 2020. In the second part, this work examines the alleged correlations between the reported cases of COVID-19 and temperature, humidity and particulate matter for March and April 2020 in Europe. It was found that decreasing temperatures and relative humidity with increasing concentrations of particulate matter are correlated with an increase in the number of reported cases during these 2 months. However, when these calculations were repeated for May and June, we found a remarkable drop in the significance of the correlations which leads us to question the generally accepted inverse relation between pandemics and air temperature at least during the warmer months. Such a relationship could not be supported in our study for SARS-CoV-2 virus and the question remains open. In the third and last part of this work, we examine the question referring to the origin of pandemics. In this context we have examined the hypothesis that the observed climate warming in Siberia and the Arctic and the thawing of permafrost could result to the release of trapped in the permafrost pathogens in the atmosphere. We find that although such relations cannot be directly justified, they present a possible horrifying mechanism for the origin of viruses in the future during the developing global warming of our planet in the decades to come. Overall the findings of our study indicate that: (1) the reduction of anthropogenic emissions in Europe during the "anthropopause" period of March and April 2020 was significant, but when the lockdown measures were raised the concentrations of atmospheric pollutants quickly recovered to pre-pandemic levels and therefore any possible climatic feedbacks were negligible; (2) no robust relationship between atmospheric parameters and the spread of COVID-19 cases can be justified in the warmer part of the year and (3) more research needs to be done regarding the possible links between climate change and the release of new pathogens from thawing of permafrost areas.
Collapse
Affiliation(s)
- Christos S. Zerefos
- Research Centre for Atmospheric Physics and Climatology, Academy of Athens, Athens, Greece
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Navarino Environmental Observatory (N.E.O.), Messinia, Greece
- Mariolopoulos-Kanaginis Foundation for the Environmental Sciences, Athens, Greece
| | - Stavros Solomos
- Research Centre for Atmospheric Physics and Climatology, Academy of Athens, Athens, Greece
| | - John Kapsomenakis
- Research Centre for Atmospheric Physics and Climatology, Academy of Athens, Athens, Greece
| | - Anastasia Poupkou
- Research Centre for Atmospheric Physics and Climatology, Academy of Athens, Athens, Greece
| | - Lida Dimitriadou
- Research Centre for Atmospheric Physics and Climatology, Academy of Athens, Athens, Greece
- Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, Athens, Greece
| | - Iliana D. Polychroni
- Research Centre for Atmospheric Physics and Climatology, Academy of Athens, Athens, Greece
- Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, Athens, Greece
| | - Pavlos Kalabokas
- Research Centre for Atmospheric Physics and Climatology, Academy of Athens, Athens, Greece
| | | | - Dimitris Thanos
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
31
|
Abrar E, Abduljabbar AS, Naseem M, Panhwar M, Vohra F, Abduljabbar T. Evaluating the Influence of COVID-19 Among Dental Practitioners After Lockdown. INQUIRY : A JOURNAL OF MEDICAL CARE ORGANIZATION, PROVISION AND FINANCING 2021; 58:469580211060753. [PMID: 34928738 PMCID: PMC8721685 DOI: 10.1177/00469580211060753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Clinical activities at dental premises after the COVID-19 lockdown period or post-COVID-19 are likely to be a challenge for all practicing dentists. To assess the impact of the COVID-19 pandemic on dentists and change in dental practice following lockdown, a total of 1150 participants were approached through online survey forms registered on www.surveys.google. A link containing details of the questionnaire and a consent form was sent to dentists through emails and social media forums. The questionnaire included 3 domains comprising of seventeen questions. The first section focused on demographics. The second section inquired about the change in dental practice, that is, clinical hours, use of PPE, type of treatment, and patient flow. The third section investigated the impact of COVID-19 on dentistry. Means, standard deviation, and percentages were calculated using descriptive statistics. Chi-square was used to find an association between different variables. The response rate was 87%. Demographic factors revealed participants aged from 20.45 to 40.55 years. The data showed around 89.6% (896) of dentists have altered their clinical working hours post lockdown and, approximately, 59.7% (597) of dentists provided only emergency treatments. 88.1% (881) of the dentists wore PPE during dental procedures. Overall, a huge negative impact of the COVID-19 pandemic was observed among practicing dentists in terms of the dental supply chain, cost, and availability of dental equipment, treatment cost, and bill payments.COVID-19 pandemic compromised dental care. Though dentists were taking precautionary measures and have changed their practice according to the guidelines provided by the ADA and World Health Organization, they were still experiencing monetary loss due to decrease patient influx post lockdown.
Collapse
Affiliation(s)
- Eisha Abrar
- Department of Community and Preventive Dentistry, Dow International Dental College, Karachi, Pakistan
| | - Adel S. Abduljabbar
- Department of Psychology, College of Education, King Saud University, Riyadh, Saudi Arabia
| | - Mustafa Naseem
- Department of Community and Preventive Dentistry, Dow International Dental College, Karachi, Pakistan
| | - Maryam Panhwar
- Department of Community and Preventive Dentistry, Dow International Dental College, Karachi, Pakistan
| | - Fahim Vohra
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Tariq Abduljabbar
- Department of Prosthetic Dental Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
32
|
Fernández-Raga M, Díaz-Marugán L, García Escolano M, Bort C, Fanjul V. SARS-CoV-2 viability under different meteorological conditions, surfaces, fluids and transmission between animals. ENVIRONMENTAL RESEARCH 2021; 192:110293. [PMID: 33017611 PMCID: PMC7531924 DOI: 10.1016/j.envres.2020.110293] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 05/17/2023]
Abstract
Since the COVID-19 outbreak, researchers have tried to characterise the novel coronavirus SARS-CoV-2 to better understand the pathogenic mechanisms of the virus and prevent further dissemination. As a consequence, there has been a bloom in scientific research papers focused on the behaviour of the virus in different environmental contexts. Nevertheless, despite these efforts and due to its novelty, available information about this coronavirus is limited, as several research studies are still ongoing. This review aims to shed light on this issue. To that end, we have examined the scientific literature to date regarding the viability of SARS-CoV-2 on surfaces and fluids or under different environmental conditions (temperature, precipitation and UV radiation). We have also addressed the role of animals in the transmission of this coronavirus.
Collapse
Affiliation(s)
- María Fernández-Raga
- IMARENAB, Applied Chemical and Physics Department, University of León, Spain; Celera Talent Association, Madrid, Spain.
| | | | - Marta García Escolano
- Celera Talent Association, Madrid, Spain; Prospera Biotech. Scientific Park Universitas Miguel Hernández, Elche, Spain
| | - Carlos Bort
- Celera Talent Association, Madrid, Spain; Xplore.ai, Madrid, Spain
| | - Víctor Fanjul
- Celera Talent Association, Madrid, Spain; Data Team, Savana Medica, Madrid, Spain
| |
Collapse
|
33
|
Loomba RS, Villarreal EG, Farias JS, Bronicki RA, Flores S. Pediatric Intensive Care Unit Admissions for COVID-19: Insights Using State-Level Data. Int J Pediatr 2020; 2020:9680905. [PMID: 33299428 PMCID: PMC7704189 DOI: 10.1155/2020/9680905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/28/2020] [Accepted: 11/06/2020] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Intensive care has played a pivotal role during the COVID-19 pandemic as many patients developed severe pulmonary complications. The availability of information in pediatric intensive care units (PICUs) remains limited. The purpose of this study is to characterize COVID-19 positive admissions (CPAs) in the United States and to determine factors that may impact those admissions. MATERIALS AND METHODS This is a retrospective cohort study using data from the COVID-19 Virtual Pediatric System (VPS) dashboard containing information regarding respiratory support and comorbidities for all CPAs between March and April 2020. The state-level data contained 13 different factors from population density, comorbid conditions, and social distancing score. The absolute CPA count was converted to frequency using the state's population. Univariate and multivariate regression analyses were performed to assess the association between CPA frequency and admission endpoints. RESULTS A total of 205 CPAs were reported by 167 PICUs across 48 states. The estimated CPA frequency was 2.8 per million children in a one-month period. A total of 3,235 tests were conducted of which 6.3% were positive. Children above 11 years of age comprised 69.7% of the total cohort and 35.1% had moderated or severe comorbidities. The median duration of a CPA was 4.9 days (1.25-12.00 days). Out of the 1,132 total CPA days, 592 (52.2%) involved mechanical ventilation. The inpatient mortalities were 3 (1.4%). Multivariate analyses demonstrated an association between CPAs with greater population density (beta coefficient 0.01, p < 0.01). Multivariate analyses also demonstrated an association between pediatric type 1 diabetes mellitus with increased CPA duration requiring advanced respiratory support (beta coefficient 5.1, p < 0.01) and intubation (beta coefficient 4.6, p < 0.01). CONCLUSIONS Inpatient mortality during PICU CPAs is relatively low at 1.4%. CPA frequency seems to be impacted by population density. Type 1 DM appears to be associated with increased duration of HFNC and intubation. These factors should be included in future studies using patient-level data.
Collapse
Affiliation(s)
- Rohit S. Loomba
- Division of Pediatric Cardiac Critical Care, Advocate Children's Hospital, Chicago, IL, USA
- Department of Pediatrics, Chicago Medical School/Rosalind Franklin School of Medicine and Science, Chicago, IL, USA
| | - Enrique G. Villarreal
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
| | - Juan S. Farias
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
| | - Ronald A. Bronicki
- Sections of Critical Care Medicine and Cardiology, Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Saul Flores
- Sections of Critical Care Medicine and Cardiology, Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
34
|
Azuma K, Kagi N, Kim H, Hayashi M. Impact of climate and ambient air pollution on the epidemic growth during COVID-19 outbreak in Japan. ENVIRONMENTAL RESEARCH 2020; 190:110042. [PMID: 32800895 PMCID: PMC7420955 DOI: 10.1016/j.envres.2020.110042] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 05/19/2023]
Abstract
Coronavirus disease 2019 (COVID-19) rapidly spread worldwide in the first quarter of 2020 and resulted in a global crisis. Investigation of the potential association of the spread of the COVID-19 infection with climate or ambient air pollution could lead to the development of preventive strategies for disease control. To examine this association, we conducted a longitudinal cohort study of 28 geographical areas of Japan with documented outbreaks of COVID-19. We analyzed data obtained from March 13 to April 6, 2020, before the Japanese government declared a state of emergency. The results revealed that the epidemic growth of COVID-19 was significantly associated with increase in daily temperature or sunshine hours. This suggests that an increase in person-to-person contact due to increased outing activities on a warm and/or sunny day might promote the transmission of COVID-19. Our results also suggested that short-term exposure to suspended particles might influence respiratory infections caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Further research by well-designed or well-controlled study models is required to ascertain this effect. Our findings suggest that weather has an indirect role in the transmission of COVID-19 and that daily adequate preventive behavior decreases the transmission.
Collapse
Affiliation(s)
- Kenichi Azuma
- Department of Environmental Medicine and Behavioral Science, Kindai University Faculty of Medicine, Osakasayama, 589-8511, Japan.
| | - Naoki Kagi
- Department of Architecture and Building Engineering, School of Environment and Society, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
| | - Hoon Kim
- Department of Environmental Health, National Institute of Public Health, Wako, 351-0197, Japan.
| | - Motoya Hayashi
- Laboratory of Environmental Space Design, Division of Architecture, Faculty of Engineering, Hokkaido University, Sapporo, 060-6826, Japan.
| |
Collapse
|
35
|
Tzampoglou P, Loukidis D. Investigation of the Importance of Climatic Factors in COVID-19 Worldwide Intensity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7730. [PMID: 33105818 PMCID: PMC7660112 DOI: 10.3390/ijerph17217730] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022]
Abstract
The transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the severity of the related disease (COVID-19) are influenced by a large number of factors. This study aimed to investigate the correlation of COVID-19 case and death rates with possible causal climatological and sociodemographic factors for the March to May 2020 (first wave) period in a worldwide scale by statistically processing data for over one hundred countries. The weather parameters considered herein were air temperature, relative humidity, cumulative precipitation, and cloud cover, while sociodemographic factors included population density, median age, and government measures in response to the pandemic. The results of this study indicate that there is a statistically significant correlation between average atmospheric temperature and the COVID-19 case and death rates, with chi-square test p-values in the 0.001-0.02 range. Regarding sociodemographic factors, there is an even stronger dependence of the case and death rates on the population median age (p = 0.0006-0.0012). Multivariate linear regression analysis using Lasso and the forward stepwise approach revealed that the median age ranks first in importance among the examined variables, followed by the temperature and the delays in taking first governmental measures or issuing stay-at-home orders.
Collapse
Affiliation(s)
- Ploutarchos Tzampoglou
- Department of Civil & Environmental Engineering, University of Cyprus, 1678 Nicosia, Cyprus
| | - Dimitrios Loukidis
- Department of Civil & Environmental Engineering, University of Cyprus, 1678 Nicosia, Cyprus
| |
Collapse
|
36
|
Pani SK, Lin NH, RavindraBabu S. Association of COVID-19 pandemic with meteorological parameters over Singapore. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140112. [PMID: 32544735 PMCID: PMC7289735 DOI: 10.1016/j.scitotenv.2020.140112] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 05/09/2023]
Abstract
Meteorological parameters are the critical factors affecting the transmission of infectious diseases such as Middle East Respiratory Syndrome (MERS), Severe Acute Respiratory Syndrome (SARS), and influenza. Consequently, infectious disease incidence rates are likely to be influenced by the weather change. This study investigates the role of Singapore's hot tropical weather in COVID-19 transmission by exploring the association between meteorological parameters and the COVID-19 pandemic cases in Singapore. This study uses the secondary data of COVID-19 daily cases from the webpage of Ministry of Health (MOH), Singapore. Spearman and Kendall rank correlation tests were used to investigate the correlation between COVID-19 and meteorological parameters. Temperature, dew point, relative humidity, absolute humidity, and water vapor showed positive significant correlation with COVID-19 pandemic. These results will help the epidemiologists to understand the behavior of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus against meteorological variables. This study finding would be also a useful supplement to help the local healthcare policymakers, Center for Disease Control (CDC), and the World Health Organization (WHO) in the process of strategy making to combat COVID-19 in Singapore.
Collapse
Affiliation(s)
- Shantanu Kumar Pani
- Department of Atmospheric Sciences, National Central University, Taoyuan 32001, Taiwan
| | - Neng-Huei Lin
- Department of Atmospheric Sciences, National Central University, Taoyuan 32001, Taiwan; Center for Environmental Monitoring and Technology, National Central University, Taoyuan 32001, Taiwan.
| | - Saginela RavindraBabu
- Center for Space and Remote Sensing Research, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
37
|
SARS-CoV-2: From Structure to Pathology, Host Immune Response and Therapeutic Management. Microorganisms 2020; 8:microorganisms8101468. [PMID: 32987852 PMCID: PMC7600570 DOI: 10.3390/microorganisms8101468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Coronaviruses are large, enveloped viruses with a single-stranded RNA genome, infecting both humans and a wide range of wild and domestic animals. SARS-CoV-2, the agent of the COVID-19 pandemic, has 80% sequence homology with SARS-CoV-1 and 96-98% homology with coronaviruses isolated from bats. The spread of infection is favored by prolonged exposure to high densities of aerosols indoors. Current studies have shown that SARS-CoV-2 is much more stable than other coronaviruses and viral respiratory pathogens. The severe forms of infection are associated with several risk factors, including advanced age, metabolic syndrome, diabetes, obesity, chronic inflammatory or autoimmune disease, and other preexisting infectious diseases, all having in common the pre-existence of a pro-inflammatory condition. Consequently, it is essential to understand the relationship between the inflammatory process and the specific immune response in SARS-CoV-2 infection. In this review, we present a general characterization of the SARS-CoV-2 virus (origin, sensitivity to chemical and physical factors, multiplication cycle, genetic variability), the molecular mechanisms of COVID-19 pathology, the host immune response and discuss how the inflammatory conditions associated with different diseases could increase the risk of COVID-19. Last, but not least, we briefly review the SARS-CoV-2 diagnostics, pharmacology, and future approaches toward vaccine development.
Collapse
|
38
|
Komorowski M, Aberegg SK. Using applied lung physiology to understand COVID-19 patterns. Br J Anaesth 2020; 125:250-253. [PMID: 32536444 PMCID: PMC7250770 DOI: 10.1016/j.bja.2020.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 11/26/2022] Open
Affiliation(s)
- Matthieu Komorowski
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK; Intensive Care Unit, Charing Cross Hospital, London, UK.
| | - Scott K Aberegg
- Division of Pulmonary and Critical Care Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
39
|
Smit AJ, Fitchett JM, Engelbrecht FA, Scholes RJ, Dzhivhuho G, Sweijd NA. Winter Is Coming: A Southern Hemisphere Perspective of the Environmental Drivers of SARS-CoV-2 and the Potential Seasonality of COVID-19. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5634. [PMID: 32764257 PMCID: PMC7459895 DOI: 10.3390/ijerph17165634] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 01/09/2023]
Abstract
SARS-CoV-2 virus infections in humans were first reported in December 2019, the boreal winter. The resulting COVID-19 pandemic was declared by the WHO in March 2020. By July 2020, COVID-19 was present in 213 countries and territories, with over 12 million confirmed cases and over half a million attributed deaths. Knowledge of other viral respiratory diseases suggests that the transmission of SARS-CoV-2 could be modulated by seasonally varying environmental factors such as temperature and humidity. Many studies on the environmental sensitivity of COVID-19 are appearing online, and some have been published in peer-reviewed journals. Initially, these studies raised the hypothesis that climatic conditions would subdue the viral transmission rate in places entering the boreal summer, and that southern hemisphere countries would experience enhanced disease spread. For the latter, the COVID-19 peak would coincide with the peak of the influenza season, increasing misdiagnosis and placing an additional burden on health systems. In this review, we assess the evidence that environmental drivers are a significant factor in the trajectory of the COVID-19 pandemic, globally and regionally. We critically assessed 42 peer-reviewed and 80 preprint publications that met qualifying criteria. Since the disease has been prevalent for only half a year in the northern, and one-quarter of a year in the southern hemisphere, datasets capturing a full seasonal cycle in one locality are not yet available. Analyses based on space-for-time substitutions, i.e., using data from climatically distinct locations as a surrogate for seasonal progression, have been inconclusive. The reported studies present a strong northern bias. Socio-economic conditions peculiar to the 'Global South' have been omitted as confounding variables, thereby weakening evidence of environmental signals. We explore why research to date has failed to show convincing evidence for environmental modulation of COVID-19, and discuss directions for future research. We conclude that the evidence thus far suggests a weak modulation effect, currently overwhelmed by the scale and rate of the spread of COVID-19. Seasonally modulated transmission, if it exists, will be more evident in 2021 and subsequent years.
Collapse
Affiliation(s)
- Albertus J. Smit
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Cape Town 7535, South Africa
- Elwandle Coastal Node, South African Environmental Observation Network (SAEON), Port Elizabeth 6031, South Africa
| | - Jennifer M. Fitchett
- School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg 2050, South Africa;
| | - Francois A. Engelbrecht
- Global Change Institute, University of the Witwatersrand, Johannesburg 2050, South Africa; (F.A.E.); (R.J.S.)
| | - Robert J. Scholes
- Global Change Institute, University of the Witwatersrand, Johannesburg 2050, South Africa; (F.A.E.); (R.J.S.)
| | - Godfrey Dzhivhuho
- Department of Microbiology, Immunology and Cancer Biology, Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, VA 22903, USA;
| | - Neville A. Sweijd
- Alliance for Collaboration on Climate and Earth Systems Science (ACCESS), Council for Scientific and Industrial Research (CSIR), Pretoria 0001, South Africa;
| |
Collapse
|
40
|
Munnoli PM, Nabapure S, Yeshavanth G. Post-COVID-19 precautions based on lessons learned from past pandemics: a review. ZEITSCHRIFT FUR GESUNDHEITSWISSENSCHAFTEN = JOURNAL OF PUBLIC HEALTH 2020; 30:973-981. [PMID: 32837846 PMCID: PMC7402078 DOI: 10.1007/s10389-020-01371-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/10/2020] [Indexed: 01/07/2023]
Abstract
Aim In view of the spread of the contagious coronavirus disease (COVID-19) globally, the present review focuses on the details of past pandemic diseases, along with comparisons and lessons learned. A general awareness of COVID-19 infection is addressed, and it is compared with the Spanish flu pandemic. Based on the successes, failures and lessons learned in the past, governmental efforts must be undertaken to empower citizens by providing accurate information and implementing post-COVID-19 precautions that need to be taken now to stop the spread and recurrence of the virus locally, and to restore health and economic normalcy. Methods A detailed literature survey of past pandemics is undertaken in order to extract the successes, failures and lessons learned from previous breakouts. The comparison of past pandemics will enable us to determine post-COVID-19 precautions that should be followed. Separate tables are prepared to highlight the lessons learned and measures to be taken. Both general precautions and preventive measures for pregnant women are compiled. Results The literature shows a continuous struggle of humans with disease outbreaks, with the most adverse impact of the Spanish flu killing 20-50 million people. Precautions need to be taken including social distancing, compulsory mask-wearing, avoiding public gatherings and washing hands regularly. The lessons from earlier pandemics show that they were equally devastating, and vaccines were not available at the time of outbreaks. Vaccines developed for polio, H1N1, measles, and other viral diseases have proven to save countless lives. Living with COVID-19 and evolving the work culture of protecting oneself and protecting others also has to be adopted. Conclusions COVID-19 has become an everyday topic of discussion throughout the world, indicating the increasing number of COVID-19 cases, deaths and recoveries. The lessons learned from past pandemics such as social distancing, wearing masks, avoiding public gatherings and adherence to guidelines, along with personal hygiene, are the key measures that must be taken in order to live with COVID-19. Precautions for the elderly and pregnant women advised by medical authorities are to be strictly adhered to. These will help in reducing COVID-19 cases and in turn will reduce the pressure on hospitals to serve those in need. India has learned lessons from the past and the present pandemic and will move towards growth through its self-reliance.
Collapse
Affiliation(s)
- Prakash Mallappa Munnoli
- Department of Civil Engineering, S D M College of Engineering and Technology, Dharwad, 580002 India
| | - S. Nabapure
- Department of Obstetrics and Gynecology, Shamnur Shivashankarappa Institute of Medical Science and Research Center, Davangere, 577004 India
| | - G. Yeshavanth
- Department of General Medicine, Shamnur Shivashankarappa Institute of Medical Science and Research Center, Davangere, 577004 India
| |
Collapse
|
41
|
Martinez GS, Linares C, de'Donato F, Diaz J. Protect the vulnerable from extreme heat during the COVID-19 pandemic. ENVIRONMENTAL RESEARCH 2020; 187:109684. [PMID: 32447085 PMCID: PMC7255271 DOI: 10.1016/j.envres.2020.109684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 05/09/2023]
Affiliation(s)
- G S Martinez
- Technical University of Denmark, Copenhagen, Denmark.
| | - C Linares
- Instituto de Salud Carlos III, Madrid, Spain
| | - F de'Donato
- Department of Epidemiology Lazio Regional Health Service, ASL ROMA 1, Rome, Italy
| | - J Diaz
- Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|