1
|
Sinopoli SI, Whittal MC, Chow N, Gregory DE. Mechanical age-related differences in the human cadaveric annulus fibrosus. J Mech Behav Biomed Mater 2025; 168:107015. [PMID: 40267691 DOI: 10.1016/j.jmbbm.2025.107015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/28/2024] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
PURPOSE As humans age, the intervertebral disc begins to deteriorate and lose structural integrity. The purpose of this study was to examine age-related mechanical differences of the annulus fibrosus in a human cadaveric model. METHODS Twenty-two discs were removed from eight soft fixed human cadaveric spine segments (T10-S1) ranging from 53 to 90 years of age; 5 male, 3 female. All discs were a degenerative grade of 3 or higher. Single layer (n = 22), bilayer (n = 22), and multilayer annulus samples (n = 37) were mechanically tested from of the excised discs. Single layer and bilayer samples were mechanically tested in tension; single layer testing isolated the intralamellar matrix while bilayer testing provided a more holistic measure of the annular mechanical properties. The multilayer samples were tested via a 180° peel test to investigate the interlamellar matrix. From these tests, numerous mechanical properties were quantified. RESULTS Age was found to significantly affect single and bilayer stiffness and numerous stress properties including single layer failure stress, bilayer end of toe-region stress, and bilayer stress at 15 % strain such that as age increased, the magnitude of these mechanical properties decreased. In contrast, age did not affect any peel test mechanical property (p > 0.05). CONCLUSION This study demonstrated that, with increasing age, the annulus fibrosus becomes more compliant and weaker. However, the adhesive matrix found between the lamellae of the annulus does not appear to be impacted by age.
Collapse
Affiliation(s)
| | | | - Noah Chow
- Department of Kinesiology and Physical Education, Canada
| | - Diane E Gregory
- Department of Kinesiology and Physical Education, Canada; Department of Health Sciences, Wilfrid Laurier University, 75 University Ave West, Waterloo, Ontario, N2L 3C5, Canada.
| |
Collapse
|
2
|
Shankel M, Nelson TM, Quiros KAM, Bebawy J, Mariano CA, Biddle T, Lo DD, Eskandari M. Lung recruitment mechanics: coalescing tissue strains with organ expansion. Respir Res 2025; 26:58. [PMID: 39966833 PMCID: PMC11834643 DOI: 10.1186/s12931-025-03118-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Recruitment maneuvers are used to prevent atelectasis, or partial lung collapse, and to help prevent ventilator induced lung injury. Recruitment techniques remain a topic of debate due to the possibility for damage as they necessitate higher transpulmonary pressures, which are associated with inducing lung injury. We aim to evaluate and probe injury mechanisms and potential pressure inhomogeneities, expressed as heterogeneous lung recruitment and overdistension, by associating organ level compliances with continuous regional strains during the application of stepwise escalation contrasted with sustained inflation maneuvers. METHODS An established breathing mimicry electromechanical system integrated with high spatio-temporal digital image correlation techniques coupled the global pressure-volume response of the lung with local deformations. Compliances, pressures, strains, heterogeneities and the expansion evolution pertaining to the inflation phase of two recruitment methods were quantified and contrasted. RESULTS Significant differences between the organ- and tissue-level responses of the sustained inflation versus escalation maneuver were found. The escalation maneuver exhibited greater starting compliance, whereas the sustained inflation showed increased inflation compliance. The localized strain distribution for the sustained inflation yielded increased 75th percentile strain, 90th percentile strain, and range at maximum inflation compared to the escalation maneuver. CONCLUSIONS Local and global findings indicate the escalation maneuver exhibits more homogeneous lung recruitment compared to sustained inflation. We also observe a correspondence between the significant organ-level compliance differences between the two maneuvers and the disparities observed in the evolutionary progression of localized strain distributions throughout inflation.
Collapse
Affiliation(s)
- M Shankel
- Department of Mechanical Engineering, University of California, 900 University Ave, Riverside, CA, 92506, USA
| | - T M Nelson
- Department of Mechanical Engineering, University of California, 900 University Ave, Riverside, CA, 92506, USA
| | - K A M Quiros
- Department of Mechanical Engineering, University of California, 900 University Ave, Riverside, CA, 92506, USA
| | - J Bebawy
- Department of Mechanical Engineering, University of California, 900 University Ave, Riverside, CA, 92506, USA
| | - C A Mariano
- Department of Mechanical Engineering, University of California, 900 University Ave, Riverside, CA, 92506, USA
| | - T Biddle
- Breathe Center, School of Medicine, University of California, Riverside, CA, USA
| | - D D Lo
- Breathe Center, School of Medicine, University of California, Riverside, CA, USA
| | - M Eskandari
- Department of Mechanical Engineering, University of California, 900 University Ave, Riverside, CA, 92506, USA.
- Breathe Center, School of Medicine, University of California, Riverside, CA, USA.
- Department of Bioengineering, University of California, Riverside, CA, USA.
| |
Collapse
|
3
|
Sinopoli SI, Whittal MC, Briar KJ, Gregory DE. Does Annulus Fibrosus Lamellar Adhesion Testing Require Preconditioning? J Biomech Eng 2025; 147:024502. [PMID: 39665769 DOI: 10.1115/1.4067399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/09/2024] [Indexed: 12/13/2024]
Abstract
The interlamellar matrix (ILM), located between the annular layers of the intervertebral disc (IVD), is an adhesive component which acts to resist delamination. Investigating the mechanical properties of the ILM can provide us with valuable information regarding risk of disc injury; however given its viscoelastic nature, it may be necessary to conduct preconditioning on tissue samples before measuring these ILM properties. Therefore, the aim of this study was to optimize mechanical testing protocols of the ILM by examining the effect of preconditioning on stiffness and strength of this adhesive matrix. Eighty-eight annular samples were dissected from 22 porcine cervical discs and randomized into one of four testing conditions consisting of ten cycles of 15% strain followed by a 180 deg adhesive peel test. The four testing groups employed a different strain rate for the ten cycles of preconditioning: 0.01 mm/s (n = 23); 0.1 mm/s (n = 26); 1 mm/s (n = 23); and no preconditioning employed (n = 16). Samples preconditioned at 0.01 mm/s were significantly less stiff than those that had not received preconditioning (p = 0.014). No other results were found to be statistically significant. Given the lack of differences observed in this study, preconditioning is likely not necessary prior to conducting a 180 deg peel test. However, if preconditioning is employed, the findings from this study suggest avoiding preconditioning conducted at very slow rates (i.e., 0.01 mm/s) as the long testing time may negatively affect the tissue.
Collapse
Affiliation(s)
- Sabrina I Sinopoli
- Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5, Canada
| | - Mitchel C Whittal
- Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5, Canada
| | - K Josh Briar
- University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- University of Guelph
| | - Diane E Gregory
- Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2L 3C5, Canada
| |
Collapse
|
4
|
Ramirez GO, Mariano CA, Carter D, Eskandari M. Visceral pleura mechanics: Characterization of human, pig, and rat lung material properties. Acta Biomater 2024; 189:388-398. [PMID: 39251049 DOI: 10.1016/j.actbio.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/13/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Pulmonary air leaks are amongst the most common complications in lung surgery. Lung sealants are applied to the organ surface and need to synchronously stretch with the visceral pleura, the layer of tissue which encompasses the lung parenchymal tissue. These adhesives are commonly tested on pig and rat lungs, but applied to human lungs. However, the unknown mechanics of human lung visceral pleura undermines the clinical translatability of such animal-tested sealants and the absence of how pig and rat lung visceral pleura compare to human tissues is necessary to address. Here we quantify the biaxial planar tensile mechanics of visceral pleura from healthy transplant-eligible and smoker human lungs for the first time, and further compare the material behaviors to pig and rat lung visceral pleura. Initial and final stiffness moduli, maximum stress, low-to-high strain transition, and stress relaxation are analyzed and compared between and within groups, further considering regional and directional dependencies. Visceral pleura tissue from all species behave isotropically, and pig and human visceral pleura exhibits regional heterogeneity (i.e. upper versus lower lobe differences). We find that pig visceral pleura exhibits similar initial stiffness moduli and regional trends compared to human visceral pleura, suggesting pig tissue may serve as a viable animal model candidate for lung sealant testing. The outcomes and mechanical characterization of these scarce tissues enables future development of biomimetic lung sealants for improved surgical applications. STATEMENT OF SIGNIFICANCE: Surgical lung sealants must synchronously deform with the underlying tissue and with each breath to minimize post-operative air leaks, which remain the most frequent complications of pulmonary intervention. These adhesives are often tested on pig and rat lungs, but applied to humans; however, the material properties of human lung visceral pleura were previously unexplored. Here, for the first time, the mechanics of human visceral pleura tissue are investigated, further contrasting rarely acquired donated lungs from healthy and smoking individuals, and additionally, comparing biaxial planar material characterizations to animal models often employed for pulmonary sealant development. This fundamental material characterization addresses key hindrances in the advancement of biomimetic sealants and evaluates the translatability of animal model experiments for clinical applications.
Collapse
Affiliation(s)
- Gustavo O Ramirez
- Department of Mechanical Engineering, University of California, Riverside, CA, USA
| | - Crystal A Mariano
- Department of Mechanical Engineering, University of California, Riverside, CA, USA
| | - David Carter
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Mona Eskandari
- Department of Mechanical Engineering, University of California, Riverside, CA, USA; BREATHE Center, School of Medicine University of California, Riverside, CA, USA; Department of Bioengineering, University of California, Riverside, CA, USA.
| |
Collapse
|
5
|
Sun Z, Sun Y, Mi C. Comprehensive modeling of annulus fibrosus: From biphasic refined characterization to damage accumulation under viscous loading. Acta Biomater 2024; 174:228-244. [PMID: 38070844 DOI: 10.1016/j.actbio.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
The annulus fibrosus (AF), a permeable, hydrated, and fiber-reinforced soft tissue, exhibits complex responses influenced by fluid pressure, osmotic pressure, and structural mechanics. Existing models struggle to comprehensively represent these intricate interactions and the heterogeneous solid responses within the AF. Additionally, the mechanisms driving differential damage accumulation between non-degenerative and degenerative intervertebral discs remain poorly understood. In this study, we introduce a biphasic-swelling damage model for the AF. We conceptually develop and rigorously validate this model through tissue-level tests employing various loading modes, consistently aligning model predictions with experimental data. Leveraging parametric geometric algorithms and custom Python scripts, we construct models simulating both non-degenerative and degenerative discs. Following calibration, we subject these models to viscous loading protocols. Our findings reveal the posterior AF's susceptibility to damage, contingent upon loading rate and water content. We elucidate the underlying mechanisms by examining the temporal evolution of fluid pressure, osmotic pressure, and the regionally dependent fiber network. This research presents a highly accurate model of the AF, providing valuable insights into disc damage. Future research endeavors should expand this model to incorporate ionic transport and diffusion, enabling a more profound exploration of intervertebral disc mechanobiology. This comprehensive model contributes to a better understanding of AF behavior and may inform therapeutic strategies for disc-related pathologies. STATEMENT OF SIGNIFICANCE: This research presents a comprehensive model of the annulus fibrosus (AF), a crucial component of the intervertebral disc that provides structural support and resists deformation. The study introduces a biphasic-swelling damage model for the AF and validates it through tissue-level tests. The model accounts for fluid pressure, osmotic pressure, and matrix mechanics, providing a more accurate representation of the AF's behavior. The study also investigates the differential damage accumulation between non-degenerative and degenerative discs, shedding light on the mechanisms driving disc degeneration. The findings have significant implications for medical treatments and interventions, as they highlight the posterior AF's susceptibility to damage. This research is of great interest to readers interested in biomechanics, tissue engineering, and medical treatments for disc degeneration.
Collapse
Affiliation(s)
- Zhongwei Sun
- Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Yueli Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai 200032, China
| | - Changwen Mi
- Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
6
|
Loffet EA, Durel JF, Gao J, Kam R, Lim H, Nerurkar NL. Elastic fibers define embryonic tissue stiffness to enable buckling morphogenesis of the small intestine. Biomaterials 2023; 303:122405. [PMID: 38000151 PMCID: PMC10842730 DOI: 10.1016/j.biomaterials.2023.122405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/22/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
During embryonic development, tissues must possess precise material properties to ensure that cell-generated forces give rise to the stereotyped morphologies of developing organs. However, the question of how material properties are established and regulated during development remains understudied. Here, we aim to address these broader questions through the study of intestinal looping, a process by which the initially straight intestinal tube buckles into loops, permitting ordered packing within the body cavity. Looping results from elongation of the tube against the constraint of an attached tissue, the dorsal mesentery, which is elastically stretched by the elongating tube to nearly triple its length. This elastic energy storage allows the mesentery to provide stable compressive forces that ultimately buckle the tube into loops. Beginning with a transcriptomic analysis of the mesentery, we identified widespread upregulation of extracellular matrix related genes during looping, including genes related to elastic fiber deposition. Combining molecular and mechanical analyses, we conclude that elastin confers tensile stiffness to the mesentery, enabling its mechanical role in organizing the developing small intestine. These results shed light on the role of elastin as a driver of morphogenesis that extends beyond its more established role in resisting cyclic deformation in adult tissues.
Collapse
Affiliation(s)
- Elise A Loffet
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - John F Durel
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Jenny Gao
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Richard Kam
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Hyunjee Lim
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Nandan L Nerurkar
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
7
|
Sun Z, Mi C. On the identification of the ultra-structural organization of elastic fibers and their effects on the integrity of annulus fibrosus. J Biomech 2023; 157:111728. [PMID: 37499432 DOI: 10.1016/j.jbiomech.2023.111728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Due to the complicated structure of the elastic fiber network in annulus fibrosus, existing in-silico studies either simplified or just overlooked its distribution pattern. Nonetheless, experimental and simulation results have proven that elastic fibers are of great importance to maintaining the structural integrity of annulus fibrosus and therefore to ensuring the load-bearing ability of intervertebral discs. Such needs call for a fine model. This work aims at developing a biphasic annulus fibrosus model by incorporating the accurate distribution pattern of collagen and elastic fibers. Both the structural parameters and intrinsic mechanical parameters were successfully identified using single lamella and inter-lamella microscopy anatomy and micromechanical testing data. The proposed model was then used to implement finite element simulations on various anterior and posterolateral multi-lamellae annulus fibrosus specimens. In general, simulation results agree well with available experimental and simulation data. On this basis, the effects of elastic fibers on the integrity of annulus fibrosus were further investigated. It was found that elastic fibers significantly influence the free swelling, radial stretching and circumferential shear performances of annulus fibrosus. Nonetheless, no significant effects were found for the circumferential stretching capability. The proposed biphasic model considers for the first time the distribution characteristics of elastic fibers at two scales, including both the principal orientations of all fiber families and the detailed distribution pattern within each family. Better understandings on the functions of collagen and elastic fibers can therefore be realized. To further enhance its prediction capability, the current model can be extended in the future by taking the fiber-matrix interaction as well as progressive damages into consideration.
Collapse
Affiliation(s)
- Zhongwei Sun
- Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Changwen Mi
- Jiangsu Key Laboratory of Engineering Mechanics, School of Civil Engineering, Southeast University, Nanjing, Jiangsu 210096, China.
| |
Collapse
|
8
|
Loffet EA, Durel JF, Kam R, Lim H, Nerurkar NL. ELASTIC FIBERS DEFINE EMBRYONIC TISSUE STIFFNESS TO ENABLE BUCKLING MORPHOGENESIS OF THE SMALL INTESTINE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549562. [PMID: 37502968 PMCID: PMC10370103 DOI: 10.1101/2023.07.18.549562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
During embryonic development, tissues must possess precise material properties to ensure that cell-generated forces give rise to the stereotyped morphologies of developing organs. However, the question of how material properties are established and regulated during development remains understudied. Here, we aim to address these broader questions through the study of intestinal looping, a process by which the initially straight intestinal tube buckles into loops, permitting ordered packing within the body cavity. Looping results from elongation of the tube against the constraint of an attached tissue, the dorsal mesentery, which is elastically stretched by the elongating tube to nearly triple its length. This elastic energy storage allows the mesentery to provide stable compressive forces that ultimately buckle the tube into loops. Beginning with a transcriptomic analysis of the mesentery, we identified widespread upregulation of extracellular matrix related genes during looping, including genes related to elastic fiber deposition. Combining molecular and mechanical analyses, we conclude that elastin confers tensile stiffness to the mesentery, enabling its mechanical role in organizing the developing small intestine. These results shed light on the role of elastin as a driver of morphogenesis that extends beyond its more established role in resisting cyclic deformation in adult tissues.
Collapse
Affiliation(s)
- Elise A. Loffet
- Department of Biomedical Engineering, Columbia University, New York NY 10027
| | - John F. Durel
- Department of Biomedical Engineering, Columbia University, New York NY 10027
| | - Richard Kam
- Department of Biomedical Engineering, Columbia University, New York NY 10027
| | - Hyunjee Lim
- Department of Biomedical Engineering, Columbia University, New York NY 10027
| | - Nandan L. Nerurkar
- Department of Biomedical Engineering, Columbia University, New York NY 10027
| |
Collapse
|
9
|
Mariano CA, Sattari S, Ramirez GO, Eskandari M. Effects of tissue degradation by collagenase and elastase on the biaxial mechanics of porcine airways. Respir Res 2023; 24:105. [PMID: 37031200 PMCID: PMC10082978 DOI: 10.1186/s12931-023-02376-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/22/2023] [Indexed: 04/10/2023] Open
Abstract
BACKGROUND Common respiratory illnesses, such as emphysema and chronic obstructive pulmonary disease, are characterized by connective tissue damage and remodeling. Two major fibers govern the mechanics of airway tissue: elastin enables stretch and permits airway recoil, while collagen prevents overextension with stiffer properties. Collagenase and elastase degradation treatments are common avenues for contrasting the role of collagen and elastin in healthy and diseased states; while previous lung studies of collagen and elastin have analyzed parenchymal strips in animal and human specimens, none have focused on the airways to date. METHODS Specimens were extracted from the proximal and distal airways, namely the trachea, large bronchi, and small bronchi to facilitate evaluations of material heterogeneity, and subjected to biaxial planar loading in the circumferential and axial directions to assess airway anisotropy. Next, samples were subjected to collagenase and elastase enzymatic treatment and tensile tests were repeated. Airway tissue mechanical properties pre- and post-treatment were comprehensively characterized via measures of initial and ultimate moduli, strain transitions, maximum stress, hysteresis, energy loss, and viscoelasticity to gain insights regarding the specialized role of individual connective tissue fibers and network interactions. RESULTS Enzymatic treatment demonstrated an increase in airway tissue compliance throughout loading and resulted in at least a 50% decrease in maximum stress overall. Strain transition values led to significant anisotropic manifestation post-treatment, where circumferential tissues transitioned at higher strains compared to axial counterparts. Hysteresis values and energy loss decreased after enzymatic treatment, where hysteresis reduced by almost half of the untreated value. Anisotropic ratios exhibited axially led stiffness at low strains which transitioned to circumferentially led stiffness when subjected to higher strains. Viscoelastic stress relaxation was found to be greater in the circumferential direction for bronchial airway regions compared to axial counterparts. CONCLUSION Targeted fiber treatment resulted in mechanical alterations across the loading range and interactions between elastin and collagen connective tissue networks was observed. Providing novel mechanical characterization of elastase and collagenase treated airways aids our understanding of individual and interconnected fiber roles, ultimately helping to establish a foundation for constructing constitutive models to represent various states and progressions of pulmonary disease.
Collapse
Affiliation(s)
- Crystal A Mariano
- Department of Mechanical Engineering, University of California at Riverside, Riverside, CA, USA
| | - Samaneh Sattari
- Department of Mechanical Engineering, University of California at Riverside, Riverside, CA, USA
| | - Gustavo O Ramirez
- Department of Mechanical Engineering, University of California at Riverside, Riverside, CA, USA
| | - Mona Eskandari
- Department of Mechanical Engineering, University of California at Riverside, Riverside, CA, USA.
- BREATHE Center, School of Medicine, University of California at Riverside, Riverside, CA, USA.
- Department of Bioengineering, University of California at Riverside, Riverside, CA, USA.
| |
Collapse
|
10
|
Biaxial mechanical properties of the bronchial tree: Characterization of elasticity, extensibility, and energetics, including the effect of strain rate and preconditioning. Acta Biomater 2023; 155:410-422. [PMID: 36328122 DOI: 10.1016/j.actbio.2022.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022]
Abstract
Distal airways commonly obstruct in lung disease and despite their importance, their mechanical properties are vastly underexplored. The lack of bronchial experiments restricts current airway models to either assume rigid structures, or extrapolate the material properties of the trachea to represent the small airways. Furthermore, past works are exclusively limited to uniaxial testing; investigating the multidirectional tensile loads of both the proximal and distal pulmonary airways is long overdue. Here we present comprehensive mechanical and viscoelastic properties of the porcine airway tree, including the trachea, trachealis muscle, large bronchi, and small bronchi, via measures of elasticity, extensibility, and energetics to explore regional and directional dependencies, cross-examining strain rate and preconditioning effects using planar equibiaxial tensile tests for the first time. We find bronchial regions are notably heterogeneous, where the trachea exhibits greater stiffness, energy loss, and preconditioning sensitivity than the smaller airways. Interestingly, the trachealis muscle is similar to the distal bronchi, despite being anatomically located adjacent to the proximal ring. Tissues are anisotropic and axially stiffer under initial loading, losing more energy with greater stress relaxation circumferentially. Strain rate dependency is also noted, where tissues are more energetically efficient at the faster strain rate, likely attributable to the microstructure. Findings highlight assumptions of homogeneity and isotropy are inadequate, and enable the improvement of aerosol flow and dynamic airway deformation computational predictive models. These results provide much needed fundamental material properties for future explorations contrasting healthy versus diseased pulmonary airway mechanics to better understand the relationship between structure and lung function. STATEMENT OF SIGNIFICANCE: We present comprehensive multiaxial mechanical tensile experiments of the proximal and distal airways via measures of maximum stress, initial and ultimate moduli, strain and stress transitions, hysteresis, energy loss, and stress relaxation, and further assess preconditioning and strain rate dependencies to examine the relationship between lung function and structure. The mechanical response of the bronchial tree demonstrates significant anisotropy and heterogeneity, even within the tracheal ring, and emphasizes that contrary to past studies, the behavior of the proximal airways cannot be extended to distal bronchial tree analyses. Establishing these material properties is critical to advancing our understanding of airway function and in developing accurate computational simulations to help diagnose and monitor pulmonary diseases.
Collapse
|
11
|
Cyril D, Giugni A, Bangar SS, Mirzaeipoueinak M, Shrivastav D, Sharabi M, Tipper JL, Tavakoli J. Elastic Fibers in the Intervertebral Disc: From Form to Function and toward Regeneration. Int J Mol Sci 2022; 23:8931. [PMID: 36012198 PMCID: PMC9408956 DOI: 10.3390/ijms23168931] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Despite extensive efforts over the past 40 years, there is still a significant gap in knowledge of the characteristics of elastic fibers in the intervertebral disc (IVD). More studies are required to clarify the potential contribution of elastic fibers to the IVD (healthy and diseased) function and recommend critical areas for future investigations. On the other hand, current IVD in-vitro models are not true reflections of the complex biological IVD tissue and the role of elastic fibers has often been ignored in developing relevant tissue-engineered scaffolds and realistic computational models. This has affected the progress of IVD studies (tissue engineering solutions, biomechanics, fundamental biology) and translation into clinical practice. Motivated by the current gap, the current review paper presents a comprehensive study (from the early 1980s to 2022) that explores the current understanding of structural (multi-scale hierarchy), biological (development and aging, elastin content, and cell-fiber interaction), and biomechanical properties of the IVD elastic fibers, and provides new insights into future investigations in this domain.
Collapse
Affiliation(s)
- Divya Cyril
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Amelia Giugni
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Saie Sunil Bangar
- Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Melika Mirzaeipoueinak
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Dipika Shrivastav
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Mirit Sharabi
- Department of Mechanical Engineering and Mechatronics, Ariel University, Ariel 407000, Israel
| | - Joanne L. Tipper
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Javad Tavakoli
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
12
|
Zhang S, Liu W, Chen S, Wang B, Wang P, Hu B, Lv X, Shao Z. Extracellular matrix in intervertebral disc: basic and translational implications. Cell Tissue Res 2022; 390:1-22. [DOI: 10.1007/s00441-022-03662-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/23/2022] [Indexed: 02/06/2023]
|
13
|
Sinopoli SI, Gregory DE. A Novel Testing Method to Quantify Mechanical Properties of the Intact Annulus Fibrosus Ring From Rat-Tail Intervertebral Discs. J Biomech Eng 2022; 144:1141607. [PMID: 35698873 DOI: 10.1115/1.4054799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 11/08/2022]
Abstract
The annulus fibrosus is the ring-like exterior of the intervertebral disc which is composed of concentrically organized layers of collagen fibre bundles. The mechanical properties of the annulus have been studied extensively; however, tests are typically performed on extracted fragments or multilayered samples of the annulus and not on the annulus as a whole. The purpose of this study was two-fold: 1) to develop a novel testing technique to measure the mechanical properties of the intact, isolated annulus; and 2) to perform a preliminary analysis of the rate-dependency of these mechanical properties. Twenty-nine whole annulus ring samples were dissected from 11 skeletally mature Sprague Dawley rat tails and underwent a tensile failure test at either 2%/s (n=16) or 20%/s (n=13). Force and displacement were sampled at 100Hz and were subsequently normalized to stress and strain. Various mechanical properties were derived from the stress-strain curves and statistically compared between the rates. All mechanical variables, with the exception of initial failure stress, were found to be unaffected by rate. Interestingly, initial failure stress was higher for samples tested at the slower rate compared to the higher rate which is atypical for viscoelastic tissues. Although in general rate did not appear to impact the annulus ring response to tensile loading, this novel, intact annular ring testing technique provides an alternative way to quantify mechanical properties of the annulus.
Collapse
Affiliation(s)
| | - Diane E Gregory
- Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L 3C5
| |
Collapse
|
14
|
Tavakoli J, Tipper JL. Detailed mechanical characterization of the transition zone: New insight into the integration between the annulus and nucleus of the intervertebral disc. Acta Biomater 2022; 143:87-99. [PMID: 35259517 DOI: 10.1016/j.actbio.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 11/19/2022]
Abstract
The Nucleus Pulposus (NP) and Annulus Fibrous (AF) are two primary regions of the intervertebral disc (IVD). The interface between the AF and NP, where the gradual transition in structure and type of fibers are observed, is known as the Transition Zone (TZ). Recent structural studies have shown that the TZ contains organized fibers that appear to connect the NP to the AF. However, the mechanical characteristics of the TZ are yet to be explored. The current study aimed to investigate the mechanical properties of the TZ at the anterolateral (AL) and posterolateral (PL) regions in both radial and circumferential directions of loading using ovine IVDs (N = 28). Young's and toe moduli, maximum stress, failure strain, strain at maximum stress, and toughness were calculated mechanical parameters. The findings from this study revealed that the mechanical properties of the TZ, including young's modulus (p = 0.001), failure strain (p < 0.001), strain at maximum stress (p = 0.002), toughness (p = 0.027), and toe modulus (p = 0.005), were significantly lower for the PL compared to the AL region. Maximum stress was not significantly different between the PL and AL regions (p = 0.164). We found that maximum stress (p = 0.002), failure strain (p < 0.001), and toughness (p = 0.001) were significantly different in different loading directions. No significant differences for modulus (young's; p = 0.169 and toe; p = 0.352) and strain at maximum stress (p = 0.727) were found between the radial and circumferential loading directions. STATEMENT OF SIGNIFICANCE: To date there has not been a study that has investigated the mechanical characterization of the annulus (AF)-nucleus (NP) interface (transition zone; TZ) in the intervertebral disc (IVD), nor is it known whether the posterolateral (PL) and anterolateral (AL) regions of the TZ exhibit different mechanical properties. Accordingly, the TZ mechanical properties have been rarely used in the development of computational IVD models and relevant tissue-engineered scaffolds. The current research reported the mechanical properties of the TZ region and revealed that its mechanical properties were significantly lower for the PL compared to the AL region. These new findings enhance our knowledge about the nature of AF-NP integration and may help to develop more realistic tissue-engineered or computational IVD models.
Collapse
Affiliation(s)
- Javad Tavakoli
- Centre for Health Technologies, Faculty of Engineering and Information Technology, School of Biomedical Engineering, University of Technology Sydney, NSW, Australia.
| | - Joanne L Tipper
- Centre for Health Technologies, Faculty of Engineering and Information Technology, School of Biomedical Engineering, University of Technology Sydney, NSW, Australia.
| |
Collapse
|
15
|
Tavakoli J, Geargeflia S, Tipper JL, Diwan AD. Magnetic resonance elastography: A non-invasive biomarker for low back pain studies. BIOMEDICAL ENGINEERING ADVANCES 2021. [DOI: 10.1016/j.bea.2021.100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
16
|
Leszczynski A, Meyer F, Charles YP, Deck C, Willinger R. Development of a flexible instrumented lumbar spine finite element model and comparison with in-vitro experiments. Comput Methods Biomech Biomed Engin 2021; 25:221-237. [PMID: 34311646 DOI: 10.1080/10255842.2021.1948021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Surgical corrections of degenerative lumbar scoliosis and sagittal malalignment are associated with significant complications, such as rod fractures and pseudarthrosis, particularly in the lumbosacral junction. Finite element studies can provide relevant insights to improve performance of spinal implants. The aim of the present study was to present the development of non-instrumented and instrumented Finite Element Models (FEMs) of the lumbopelvic spine and to compare numerical results with experimental data available in the literature. The lumbo-pelvic spine FEM was based on a CT-scan from an asymptomatic volunteer representing the 50th percentile male. In a first step a calibration of mechanical properties was performed in order to obtain a quantitative agreement between numerical results and experimental data for defect stages of spinal segments. Then, FEM results were compared in terms of range of motion and strains in rods to in-vitro experimental data from the literature for flexible non-instrumented and instrumented lumbar spines. Numerical results from the calibration process were consistent with experimental data, especially in flexion. A positive agreement was obtained between FEM and experimental results for the lumbar and sacroiliac segments. Instrumented FEMs predicted the same trends as experimental in-vitro studies. The instrumentation configuration consisting of double rods and an interbody cage at L5-S1 maximally reduced range of motion and strains in main rods and thus had the lowest risk of pseudarthrosis and rod fracture. The developed FEMs were found to be consistent with published experimental results; therefore they can be used for further post-operative complication investigations.
Collapse
Affiliation(s)
| | - Frank Meyer
- ICube, MMB-MechaniCS, University of Strasbourg, Strasbourg, France
| | - Yann-Philippe Charles
- Service de chirurgie du Rachis, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Caroline Deck
- ICube, MMB-MechaniCS, University of Strasbourg, Strasbourg, France
| | - Rémy Willinger
- ICube, MMB-MechaniCS, University of Strasbourg, Strasbourg, France
| |
Collapse
|
17
|
Godinho MS, Thorpe CT, Greenwald SE, Screen HR. Elastase treatment of tendon specifically impacts the mechanical properties of the interfascicular matrix. Acta Biomater 2021; 123:187-196. [PMID: 33508509 PMCID: PMC7935645 DOI: 10.1016/j.actbio.2021.01.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/16/2022]
Abstract
The tendon interfascicular matrix (IFM) binds tendon fascicles together. As a result of its low stiffness behaviour under small loads, it enables non-uniform loading and increased overall extensibility of tendon by facilitating fascicle sliding. This function is particularly important in energy storing tendons, with previous studies demonstrating enhanced extensibility, recovery and fatigue resistance in the IFM of energy storing compared to positional tendons. However, the compositional specialisations within the IFM that confer this behaviour remain to be elucidated. It is well established that the IFM is rich in elastin, therefore we sought to test the hypothesis that elastin depletion (following elastase treatment) will significantly impact IFM, but not fascicle, mechanical properties, reducing IFM resilience in all samples, but to a greater extent in younger tendons, which have a higher elastin content. Using a combination of quasi-static and fatigue testing, and optical imaging, we confirmed our hypothesis, demonstrating that elastin depletion resulted in significant decreases in IFM viscoelasticity, fatigue resistance and recoverability compared to untreated samples, with no significant changes to fascicle mechanics. Ageing had little effect on fascicle or IFM response to elastase treatment. This study offers a first insight into the functional importance of elastin in regional specific tendon mechanics. It highlights the important contribution of elastin to IFM mechanical properties, demonstrating that maintenance of a functional elastin network within the IFM is essential to maintain IFM and thus tendon integrity. Statement of significance Developing effective treatments or preventative measures for musculoskeletal tissue injuries necessitates the understanding of healthy tissue function and mechanics. By establishing the contribution of specific proteins to tissue mechanical behaviour, key targets for therapeutics can be identified. Tendon injury is increasingly prevalent and chronically debilitating, with no effective treatments available. Here, we investigate how elastin modulates tendon mechanical behaviour, using enzymatic digestion combined with local mechanical characterisation, and demonstrate for the first time that removing elastin from tendon affects the mechanical properties of the interfascicular matrix specifically, resulting in decreased recoverability and fatigue resistance. These findings provide a new level of insight into tendon hierarchical mechanics, important for directing development of novel therapeutics for tendon injury.
Collapse
|
18
|
Tavakoli J, Diwan AD, Tipper JL. The ultrastructural organization of elastic fibers at the interface of the nucleus and annulus of the intervertebral disk. Acta Biomater 2020; 114:323-332. [PMID: 32682056 DOI: 10.1016/j.actbio.2020.07.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/28/2022]
Abstract
There has been no study to describe the ultrastructural organization of elastic fibers at the interface of the nucleus pulposus and annulus fibrosus of the intervertebral disk (IVD), a region called the transition zone (TZ). A previously developed digestion technique was optimized to eliminate cells and non-elastin ECM components except for the elastic fibers from the anterolateral (AL) and posterolateral (PL) regions of the TZ in ovine IVDs. Not previously reported, the current study identified a complex elastic fiber network across the TZ for both AL and PL regions. In the AL region, this network consisted of major thick elastic fibers (≈ 1 µm) that were interconnected with delicate (< 200 nm) elastic fibers. While the same ultrastructural organization was observed in the PL region, interestingly the size of the elastic fibers was smaller (< 100 nm) compared to those that were located in the AL region. Quantitative analysis of the elastic fibers revealed significant differences in the size (p < 0.001) and the orientation of elastic fibers (p = 0.001) between the AL and PL regions, with a higher orientation and larger size of elastic fibers observed in the AL region. The gradual elimination of cells and non-elastin extracellular matrix components identified that elastic fibers in the TZ region in combination with the extracellular matrix created a honeycomb structure that was more compact at the AF interface compared to that located close to the NP. Three different symmetrically organized angles of rotation (0⁰ and ±90⁰) were detected for the honeycomb structure at both interfaces, and the structure was significantly orientated at the TZ-AF compared to the TZ-NP interface (p = 0.003).
Collapse
Affiliation(s)
- Javad Tavakoli
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, Australia; SpineLabs, St George & Sutherland Clinical School, The University of New South Wales, NSW, Australia.
| | - Ashish D Diwan
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, Australia; SpineLabs, St George & Sutherland Clinical School, The University of New South Wales, NSW, Australia; Spine Service, Department of Orthopaedic Surgery, St George Hospital Campus, NSW, Australia
| | - Joanne L Tipper
- Centre for Health Technologies, School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, Australia.
| |
Collapse
|
19
|
Fazaeli S, Mirahmadi F, Everts V, Smit TH, Koolstra JH, Ghazanfari S. Alteration of structural and mechanical properties of the temporomandibular joint disc following elastase digestion. J Biomed Mater Res B Appl Biomater 2020; 108:3228-3240. [PMID: 32478918 PMCID: PMC7586824 DOI: 10.1002/jbm.b.34660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/05/2020] [Accepted: 05/19/2020] [Indexed: 11/09/2022]
Abstract
The temporomandibular joint disc is a fibrocartilaginous structure, composed of collagen fibers, elastin fibers, and proteoglycans. Despite the crucial role of elastin fibers in load‐bearing properties of connective tissues, its contribution in temporomandibular joint disc biomechanics has been disregarded. This study attempts to characterize the structural–functional contribution of elastin in the temporomandibular joint disc. Using elastase, we selectively perturbed the elastin fiber network in porcine temporomandibular joint discs and investigated the structural, compositional, and mechanical regional changes through: (a) analysis of collagen and elastin fibers by immunolabeling and transmission electron microscopy; (b) quantitative analysis of collagen tortuosity, cell shape, and disc volume; (c) biochemical quantification of collagen, glycosaminoglycan and elastin content; and (d) cyclic compression test. Following elastase treatment, microscopic examination revealed fragmentation of elastin fibers across the temporomandibular joint disc, with a more pronounced effect in the intermediate regions. Also, biochemical analyses of the intermediate regions showed significant depletion of elastin (50%), and substantial decrease in collagen (20%) and glycosaminoglycan (49%) content, likely due to non‐specific activity of elastase. Degradation of elastin fibers affected the homeostatic configuration of the disc, reflected in its significant volume enlargement accompanied by remarkable reduction of collagen tortuosity and cell elongation. Mechanically, elastase treatment nearly doubled the maximal energy dissipation across the intermediate regions while the instantaneous modulus was not significantly affected. We conclude that elastin fibers contribute to the restoration and maintenance of the disc resting shape and actively interact with collagen fibers to provide mechanical resilience to the temporomandibular joint disc.
Collapse
Affiliation(s)
- Sepanta Fazaeli
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Fereshteh Mirahmadi
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Vincent Everts
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Theodoor H Smit
- Department of Medical Biology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Jan H Koolstra
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Samaneh Ghazanfari
- Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, Geleen, The Netherlands.,Department of Biohybrid & Medical Textiles (Biotex), RWTH Aachen University, Aachen, Germany
| |
Collapse
|
20
|
Kubo H, Gatzlik E, Hufeland M, Konieczny M, Latz D, Pilge H, Filler T. Histologic examination of the shoulder capsule shows new layer of elastic fibres between synovial and fibrous membrane. J Orthop 2020; 22:251-255. [PMID: 32425427 DOI: 10.1016/j.jor.2020.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/13/2020] [Accepted: 04/24/2020] [Indexed: 11/25/2022] Open
Abstract
Purpose In the present study, a systematic histological analysis of the glenohumeral joint capsule was conducted. Materials and methods 12 cadaveric shoulders were examined. Inclusion criteria were: 1) intact joint capsule and 2) fixation in neutral position. The tissue samples were Elastica Hematoxylin-van-Gieson-(ElHvG) stained and diameter, quantity, and distribution patterns were analyzed. Results We detected a new layer (elastic boundary layer, EBL) between the synovial and fibrous membrane. The elastic fibres of the EBL differ considerably in diameter, quantity, and distribution pattern. Conclusions A previously undescribed layer was noticed, which we named elastic boundary layer for now.
Collapse
Affiliation(s)
- Hannes Kubo
- University of Düsseldorf, Medical Faculty, Department of Orthopaedics and Trauma Surgery, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Eva Gatzlik
- University of Düsseldorf, Medical Faculty, Institute for Anatomy I, Universitätsstr. 1, D-40225, Düsseldorf, Germany
| | - Martin Hufeland
- University of Düsseldorf, Medical Faculty, Department of Orthopaedics and Trauma Surgery, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Markus Konieczny
- University of Düsseldorf, Medical Faculty, Department of Orthopaedics and Trauma Surgery, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - David Latz
- University of Düsseldorf, Medical Faculty, Department of Orthopaedics and Trauma Surgery, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Hakan Pilge
- University of Düsseldorf, Medical Faculty, Department of Orthopaedics and Trauma Surgery, Moorenstr. 5, D-40225, Düsseldorf, Germany
| | - Timm Filler
- University of Düsseldorf, Medical Faculty, Institute for Anatomy I, Universitätsstr. 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
21
|
Fazaeli S, Ghazanfari S, Mirahmadi F, Everts V, Smit TH, Koolstra JH. The dynamic mechanical viscoelastic properties of the temporomandibular joint disc: The role of collagen and elastin fibers from a perspective of polymer dynamics. J Mech Behav Biomed Mater 2019; 100:103406. [PMID: 31473438 DOI: 10.1016/j.jmbbm.2019.103406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/27/2019] [Accepted: 08/24/2019] [Indexed: 10/26/2022]
Abstract
The temporomandibular joint disc is a structure, characterized as heterogeneous fibrocartilage, and is composed of macromolecular biopolymers. Despite a large body of characterization studies, the contribution of matrix biopolymers on the dynamic viscoelastic behavior of the disc is poorly understood. Given the high permeability and low concentration of glycosaminoglycans in the disc, it has been suggested that poro-elastic behavior can be neglected and that the intrinsic viscoelastic nature of solid matrix plays a dominant role in governing its time-dependent behavior. This study attempts to quantify the contribution of collagen and elastin fibers to the viscoelastic properties of the disc. Using collagenase and elastase, we perturbed the collagen and elastin fibrillar network in porcine temporomandibular joint discs and investigated the changes of dynamic viscoelastic properties in five different regions of the disc. Following both treatments, the storage and loss moduli of these regions were reduced dramatically up to the point that the tissue was no longer mechanically heterogeneous. However, the proportion of changes in storage and loss moduli were different for each treatment, reflected in the decrease and increase of the loss tangent for collagenase and elastase treated discs, respectively. The reduction of storage and loss moduli of the disc correlated with a decrease of biopolymer length. The present study indicates that the compositional and structural changes of collagen and elastin fibers alter the viscoelastic properties of the disc consistent with polymer dynamics.
Collapse
Affiliation(s)
- Sepanta Fazaeli
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| | - Samaneh Ghazanfari
- Aachen-Maastricht Institute for Biobased Materials, Faculty of Science and Engineering, Maastricht University, Geleen, the Netherlands; Department of Biohybrid & Medical Textiles (Biotex), RWTH Aachen University, Aachen, Germany.
| | - Fereshteh Mirahmadi
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| | - Vincent Everts
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| | - Theodoor Henri Smit
- Department of Medical Biology - Academic Medical Center Amsterdam, Amsterdam, the Netherlands.
| | - Jan Harm Koolstra
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
22
|
A method for visualization and isolation of elastic fibres in annulus fibrosus of the disc. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:299-304. [DOI: 10.1016/j.msec.2018.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 07/17/2018] [Accepted: 08/03/2018] [Indexed: 01/03/2023]
|
23
|
Akintunde A, Robison KM, Capone D, Desrosiers L, Knoepp LR, Miller KS. Effects of elastase digestion on the murine vaginal wall biaxial mechanical response. J Biomech Eng 2018; 141:2716276. [PMID: 30453317 DOI: 10.1115/1.4042014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Indexed: 11/08/2022]
Abstract
Although the underlying mechanisms of pelvic organ prolapse (POP) remain unknown, disruption of elastic fiber metabolism within the vaginal wall extracellular matrix has been highly implicated. It has been hypothesized that elastic fiber fragmentation correlates to decreased structural integrity and increased risk of prolapse; however, the mechanisms by which elastic fiber damage may contribute to prolapse are poorly understood. Further, the role of elastic fibers in normal vaginal wall mechanics has not been fully ascertained. Therefore, the objective of this study is to investigate the contribution of elastic fibers to murine vaginal wall mechanics. Vaginal tissue from C57BL/6 female mice were mechanically tested using biaxial extension-inflation protocols before and after intraluminal exposure to elastase. Elastase digestion induced marked changes in the vaginal geometry, and biaxial mechanical properties, suggesting that elastic fibers may play an important role in vaginal wall mechanical function. Additionally, a constitutive model that considered two diagonal families of collagen fibers with a slight preference towards the circumferential direction described the data reasonably well before and after digestion. The present findings may be important to determine the underlying structural and mechanical mechanisms of POP, and aid in the development of growth and remodeling models for improved assessment and prediction of changes in structure-function relationships with prolapse development. Keywords: vaginal wall, women's health, mechanical testing, pelvic floor disorders, elastic fibers Disclosures: none.
Collapse
Affiliation(s)
- Akinjide Akintunde
- Department of Biomedical Engineering, Lindy Boggs Center Suite 500, Tulane University, New Orleans, LA 70118 USA
| | - Kathryn M Robison
- ASME Member, Department of Biomedical Engineering, Lindy Boggs Center Suite 500, Tulane University, New Orleans, LA 70118 USA
| | - Daniel Capone
- Department of Biomedical Engineering, Lindy Boggs Center Suite 500, Tulane University, New Orleans, LA 70118 USA
| | - Laurephile Desrosiers
- Department of Female Pelvic Medicine & Reconstructive Surgery, UQ Ochsner Clinical School, 1514 Jefferson Highway, New Orleans, LA 70121
| | - Leise R Knoepp
- Department of Female Pelvic Medicine & Reconstructive Surgery, UQ Ochsner Clinical School, 1514 Jefferson Highway, New Orleans, LA 70121
| | - Kristin S Miller
- ASME Member, Department of Biomedical Engineering, Lindy Boggs Center Suite 500, Tulane University, New Orleans, LA 70118 USA
| |
Collapse
|
24
|
Tavakoli J, Costi JJ. New insights into the viscoelastic and failure mechanical properties of the elastic fiber network of the inter-lamellar matrix in the annulus fibrosus of the disc. Acta Biomater 2018; 77:292-300. [PMID: 30017922 DOI: 10.1016/j.actbio.2018.07.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/25/2018] [Accepted: 07/10/2018] [Indexed: 10/28/2022]
Abstract
The mechanical role of elastic fibers in the inter-lamellar matrix (ILM) is unknown; however, it has been suggested that they play a role in providing structural integrity to the annulus fibrosus (AF). Therefore, the aim of this study was to measure the viscoelastic and failure properties of the elastic fiber network in the ILM of ovine discs under both tension and shear directions of loading. Utilizing a technique, isolated elastic fibers within the ILM from ovine discs were stretched to 40% of their initial length at three strain rates of 0.1% s-1 (slow), 1% s-1 (medium) and 10% s-1 (fast), followed by a ramp test to failure at 10% s-1. A significant strain-rate dependent response was found, particularly at the fastest rate for phase angle and normalized stiffness (p < 0.001). The elastic fibers in the ILM demonstrated a significantly higher capability for energy absorption at slow compared to medium and fast strain rates (p < 0.001). These finding suggests that the elastic fiber network of the ILM exhibits nonlinear elastic behavior. When tested to failure, a significantly higher normalized failure force was found in tension compared to shear loading (p = 0.011), which is consistent with the orthotropic structure of elastic fibers in the ILM. The results of this study confirmed the mechanical contribution of the elastic fiber network to the ILM and the structural integrity of the AF. This research serves as a foundation for future studies to investigate the relationship between degeneration and ILM mechanical properties. STATEMENT OF SIGNIFICANCE The mechanical role of elastic fibres in the inter-lamellar matrix (ILM) of the disc is unknown. The viscoelastic and failure properties of the elastic fibre network in the ILM in both tension and shear directions of loading was measured for the first time. We found a strain-rate dependent response for the elastic fibres in the ILM. The elastic fibres in the ILM demonstrated a significantly higher capability for energy absorption at slow compared to medium and fast strain rates. When tested to failure, a significantly higher normalized failure force was found in tension compared to shear loading, which is consistent with the orthotropic structure of elastic fibres in the ILM.
Collapse
|
25
|
Ultrastructural organization of elastic fibres in the partition boundaries of the annulus fibrosus within the intervertebral disc. Acta Biomater 2018; 68:67-77. [PMID: 29269332 DOI: 10.1016/j.actbio.2017.12.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/14/2017] [Accepted: 12/14/2017] [Indexed: 11/21/2022]
Abstract
The relationship between elastic fibre disorders and disc degeneration, aging and progression of spine deformity have been discussed in a small number of studies. However, the clinical relevance of elastic fibres in the annulus fibrosus (AF) of the disc is poorly understood. Ultrastructural visualization of elastic fibres is an important step towards understanding their structure-function relationship. In our previous studies, a novel technique for visualization of elastic fibres across the AF was presented and their ultrastructural organization in intra- and inter-lamellar regions was compared. Using the same novel technique in the present study, the ultrastructural organization of elastic fibres in the partition boundaries (PBs), which are located between adjacent collagen bundles, is presented for the first time. Visualization of elastic fibres in the PBs in control and partially digested (digested) samples was compared, and their orientation in two different cutting planes (transverse and oblique) were discussed. The ultrastructural analysis revealed that elastic fibres in PBs were a well-organized dense and complex network having different size and shape. Adjacent collagen bundles in a cross section (CS) lamella appear to be connected to each other, where elastic fibres in the PBs were merged in parallel or penetrated into the collagen bundles. There was no significant difference in directional coherency coefficient of elastic fibres between the two different cutting planes (p = .35). The present study revealed that a continuous network of elastic fibres may provide disc integrity by connecting adjacent bundles of CS lamellae together. Compared to our previous studies, the density of the elastic fibre network in PBs was lower, and fibre orientation was similar to the intra-lamellar space and inter-lamellar matrix. STATEMENT OF SIGNIFICANCE A detailed ultrastructural study in the partition boundaries of the annulus fibrosus within the disc revealed a well-organized elastic fibre network with a complex ultrastructure. The continuous network of elastic fibres may provide disc integrity by connecting adjacent bundles of cross section lamellae together. The density of the elastic fibre network in PBs was lower, and fibre orientation was similar to the intra-lamellar space and the inter-lamellar matrix.
Collapse
|
26
|
Tensile behaviour of individual fibre bundles in the human lumbar anulus fibrosus. J Biomech 2018; 67:24-31. [DOI: 10.1016/j.jbiomech.2017.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 11/16/2017] [Accepted: 11/18/2017] [Indexed: 11/18/2022]
|
27
|
Aker L, Ghannam M, Alzuabi MA, Jumah F, Alkhdour SM, Mansour S, Samara A, Cronk K, Massengale J, Holsapple J, Adeeb N, Oskouian RJ, Tubbs RS. Molecular Biology and Interactions in Intervertebral Disc Development, Homeostasis, and Degeneration, with Emphasis on Future Therapies: A Systematic Review. ACTA ACUST UNITED AC 2017. [DOI: 10.26632/ss.3.2017.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Tavakoli J, Elliott DM, Costi JJ. The ultra-structural organization of the elastic network in the intra- and inter-lamellar matrix of the intervertebral disc. Acta Biomater 2017; 58:269-277. [PMID: 28526629 DOI: 10.1016/j.actbio.2017.05.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/01/2017] [Accepted: 05/15/2017] [Indexed: 11/18/2022]
Abstract
The inter-lamellar matrix (ILM)-located between adjacent lamellae of the annulus fibrosus-consists of a complex structure of elastic fibers, while elastic fibers of the intra-lamellar region are aligned predominantly parallel to the collagen fibers. The organization of elastic fibers under low magnification, in both inter- and intra-lamellar regions, was studied by light microscopic analysis of histologically prepared samples; however, little is known about their ultrastructure. An ultrastructural visualization of elastic fibers in the inter-lamellar matrix is crucial for describing their contribution to structural integrity, as well as mechanical properties of the annulus fibrosus. The aims of this study were twofold: first, to present an ultrastructural analysis of the elastic fiber network in the ILM and intra-lamellar region, including cross section (CS) and in-plane (IP) lamellae, of the AF using Scanning Electron Microscopy (SEM) and second, to -compare the elastic fiber orientation between the ILM and intra-lamellar region. Four samples (lumbar sheep discs) from adjacent sections (30μm thickness) of anterior annulus were partially digested by a developed NaOH-sonication method for visualization of elastic fibers by SEM. Elastic fiber orientation and distribution were quantified relative to the tangential to circumferential reference axis. Visualization of the ILM under high magnification revealed a dense network of elastic fibers that has not been previously described. Within the ILM, elastic fibers form a complex network, consisting of different size and shape fibers, which differed to those located in the intra-lamellar region. For both regions, the majority of fibers were oriented near 0° with respect to tangential to circumferential (TCD) direction and two minor symmetrical orientations of approximately±45°. Statistically, the orientation of elastic fibers between the ILM and intra-lamellar region was not different (p=0.171). The present study used extracellular matrix partial digestion to address significant gaps in understanding of disc microstructure and will contribute to multidisciplinary ultrastructure-function studies. STATEMENT OF SIGNIFICANCE Visualization of the intra-lamellar matrix under high magnification revealed a dense network of elastic fibers that has not been previously described. The present study used extracellular matrix partial digestion to address significant gaps in understanding of disc microstructure and will contribute to multidisciplinary ultrastructure-function studies.
Collapse
Affiliation(s)
- J Tavakoli
- Biomechanics and Implants Research Group, The Medical Device Research Institute, School of Computer Science, Engineering and Mathematics, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - D M Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - J J Costi
- Biomechanics and Implants Research Group, The Medical Device Research Institute, School of Computer Science, Engineering and Mathematics, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia.
| |
Collapse
|
29
|
Development of a rapid matrix digestion technique for ultrastructural analysis of elastic fibers in the intervertebral disc. J Mech Behav Biomed Mater 2017; 71:175-183. [DOI: 10.1016/j.jmbbm.2017.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/09/2017] [Accepted: 03/19/2017] [Indexed: 11/23/2022]
|
30
|
Noninvasive Measurement of Ear Cartilage Elasticity on the Cellular Level: A New Method to Provide Biomechanical Information for Tissue Engineering. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2017; 5:e1147. [PMID: 28280656 PMCID: PMC5340471 DOI: 10.1097/gox.0000000000001147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 10/07/2016] [Indexed: 11/26/2022]
Abstract
Background: An important feature of auricular cartilage is its stiffness. To tissue engineer new cartilage, we need objective tools to provide us with the essential biomechanical information to mimic optimal conditions for chondrogenesis and extracellular matrix (ECM) development. In this study, we used an optomechanical sensor to investigate the elasticity of auricular cartilage ECM and tested whether sensitivity and measurement reproducibility of the sensor would be sufficient to accurately detect (subtle) differences in matrix compositions in healthy, diseased, or regenerated cartilage. Methods: As a surrogate model to different cartilage ECM compositions, goat ears (n = 9) were subjected to different degradation processes to remove the matrix components elastin and glycosaminoglycans. Individual ear samples were cut and divided into 3 groups. Group 1 served as control and was measured within 2 hours after animal death and at 24 and 48 hours, and groups 2 and 3 were measured after 24- and 48-h hyaluronidase or elastase digestion. Per sample, 9 consecutive measurements were taken ±300 μm apart. Results: Good reproducibility was seen between consecutive measurements with an overall interclass correlation coefficient average of 0.9 (0.81–0.98). Although degradation led to variable results, overall, a significant difference was seen between treatment groups after 48 hours (control, 4.2 MPa [±0.5] vs hyaluronidase, 2.0 MPa [±0.3], and elastase, 3.0 MPa [±0.4]; both P < 0.001). Conclusions: The optomechanical sensor system we used provided a fast and reliable method to perform measurements of cartilage ECM in a reverse tissue-engineering model. In future applications, this method seems feasible for the monitoring of changes in stiffness during the development of tissue-engineered auricular cartilage.
Collapse
|
31
|
Newell N, Little JP, Christou A, Adams MA, Adam CJ, Masouros SD. Biomechanics of the human intervertebral disc: A review of testing techniques and results. J Mech Behav Biomed Mater 2017; 69:420-434. [PMID: 28262607 DOI: 10.1016/j.jmbbm.2017.01.037] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/06/2017] [Accepted: 01/23/2017] [Indexed: 01/08/2023]
Abstract
Many experimental testing techniques have been adopted in order to provide an understanding of the biomechanics of the human intervertebral disc (IVD). The aim of this review article is to amalgamate results from these studies to provide readers with an overview of the studies conducted and their contribution to our current understanding of the biomechanics and function of the IVD. The overview is presented in a way that should prove useful to experimentalists and computational modellers. Mechanical properties of whole IVDs can be assessed conveniently by testing 'motion segments' comprising two vertebrae and the intervening IVD and ligaments. Neural arches should be removed if load-sharing between them and the disc is of no interest, and specimens containing more than two vertebrae are required to study 'adjacent level' effects. Mechanisms of injury (including endplate fracture and disc herniation) have been studied by applying complex loading at physiologically-relevant loading rates, whereas mechanical evaluations of surgical prostheses require slower application of standardised loading protocols. Results can be strongly influenced by the testing environment, preconditioning, loading rate, specimen age and degeneration, and spinal level. Component tissues of the disc (anulus fibrosus, nucleus pulposus, and cartilage endplates) have been studied to determine their material properties, but only the anulus has been thoroughly evaluated. Animal discs can be used as a model of human discs where uniform non-degenerate specimens are required, although differences in scale, age, and anatomy can lead to problems in interpretation.
Collapse
Affiliation(s)
- N Newell
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom.
| | - J P Little
- Paediatric Spine Research Group, IHBI at Centre for Children's Health Research, Queensland University of Technology, Brisbane, Australia
| | - A Christou
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - M A Adams
- Centre for Applied Anatomy, University of Bristol, Southwell Street, Bristol BS2 8EJ, United Kingdom
| | - C J Adam
- Paediatric Spine Research Group, IHBI at Centre for Children's Health Research, Queensland University of Technology, Brisbane, Australia
| | - S D Masouros
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
32
|
Tavakoli J, Elliott DM, Costi JJ. Structure and mechanical function of the inter-lamellar matrix of the annulus fibrosus in the disc. J Orthop Res 2016; 34:1307-15. [PMID: 27208689 DOI: 10.1002/jor.23306] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/11/2016] [Indexed: 02/04/2023]
Abstract
The inter-lamellar matrix (ILM) has an average thickness of less than 30 µm and lies between adjacent lamellae in the annulus fibrosus (AF). The microstructure and composition of the ILM have been studied in various anatomic regions of the disc; however, their contribution to AF mechanical properties and structural integrity is unknown. It was suggested that the ILM components, mainly elastic fibers and cross-bridges, play a role in providing mechanical integrity of the AF. Therefore, the manner in which they respond to different loadings and stabilize adjacent lamellae structure will influence AF tear formation and subsequent herniation. This review paper summarizes the composition, microstructure, and potential role of the ILM in the progression of disc herniation, clarifies the micromechanical properties of the ILM, and proposes critical areas for future studies. There are a number of unknown characteristics of the ILM, such as its mechanical role, impact on AF integrity, and ultrastructure of elastic fibers at the ILM-lamella boundary. Determining these characteristics will provide important information for tissue engineering, repair strategies, and the development of more-physiological computational models to study the initiation and propagation of AF tears that lead to herniation and degeneration. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1307-1315, 2016.
Collapse
Affiliation(s)
- Javad Tavakoli
- Biomechanics and Implants Research Group, The Medical Device Research Institute, School of Computer Science, Engineering and Mathematics, Flinders University, GPO Box 2100, Adelaide 5042, South Australia, Australia
| | - Dawn M Elliott
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware
| | - John J Costi
- Biomechanics and Implants Research Group, The Medical Device Research Institute, School of Computer Science, Engineering and Mathematics, Flinders University, GPO Box 2100, Adelaide 5042, South Australia, Australia
| |
Collapse
|
33
|
Fang F, Lake SP. Multiscale mechanical integrity of human supraspinatus tendon in shear after elastin depletion. J Mech Behav Biomed Mater 2016; 63:443-455. [PMID: 27472764 DOI: 10.1016/j.jmbbm.2016.06.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 01/28/2023]
Abstract
Human supraspinatus tendon (SST) exhibits region-specific nonlinear mechanical properties under tension, which have been attributed to its complex multiaxial physiological loading environment. However, the mechanical response and underlying multiscale mechanism regulating SST behavior under other loading scenarios are poorly understood. Furthermore, little is known about the contribution of elastin to tendon mechanics. We hypothesized that (1) SST exhibits region-specific shear mechanical properties, (2) fiber sliding is the predominant mode of local matrix deformation in SST in shear, and (3) elastin helps maintain SST mechanical integrity by facilitating force transfer among collagen fibers. Through the use of biomechanical testing and multiphoton microscopy, we measured the multiscale mechanical behavior of human SST in shear before and after elastase treatment. Three distinct SST regions showed similar stresses and microscale deformation. Collagen fiber reorganization and sliding were physical mechanisms observed as the SST response to shear loading. Measures of microscale deformation were highly variable, likely due to a high degree of extracellular matrix heterogeneity. After elastase treatment, tendon exhibited significantly decreased stresses under shear loading, particularly at low strains. These results show that elastin contributes to tendon mechanics in shear, further complementing our understanding of multiscale tendon structure-function relationships.
Collapse
Affiliation(s)
- Fei Fang
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, United States
| | - Spencer P Lake
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, United States; Department of Biomedical Engineering, Washington University in St. Louis, United States; Department of Orthopaedic Surgery, Washington University in St. Louis, United States.
| |
Collapse
|
34
|
Kobielarz M, Szotek S, Głowacki M, Dawidowicz J, Pezowicz C. Qualitative and quantitative assessment of collagen and elastin in annulus fibrosus of the physiologic and scoliotic intervertebral discs. J Mech Behav Biomed Mater 2016; 62:45-56. [PMID: 27177214 DOI: 10.1016/j.jmbbm.2016.04.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/15/2016] [Accepted: 04/25/2016] [Indexed: 02/02/2023]
Abstract
The biophysical properties of the annulus fibrosus of the intervertebral disc are determined by collagen and elastin fibres. The progression of scoliosis is accompanied by a number of pathological changes concerning these structural proteins. This is a major cause of dysfunction of the intervertebral disc. The object of the study were annulus fibrosus samples excised from intervertebral discs of healthy subjects and patients treated surgically for scoliosis in the thoracolumbar or lumbar spine. The research material was subjected to structural analysis by light microscopy and quantitative analysis of the content of collagen types I, II, III and IV as well as elastin by immunoenzymatic test (ELISA). A statistical analysis was conducted to assess the impact of the sampling site (Mann-Whitney test, α=0.05) and scoliosis (Wilcoxon matched pairs test, α=0.05) on the obtained results. The microscopic studies conducted on scoliotic annulus fibrosus showed a significant architectural distortion of collagen and elastin fibres. Quantitative biochemical assays demonstrated region-dependent distribution of only collagen types I and II in the case of healthy intervertebral discs whereas in the case of scoliotic discs region-dependent distribution concerned all examined proteins of the extracellular matrix. Comparison of scoliotic and healthy annulus fibrosus revealed a significant decrease in the content of collagen type I and elastin as well as a slight increase in the proportion of collagen types III and IV. The content of collagen type II did not differ significantly between both groups. The observed anomalies are a manifestation of degenerative changes affecting annulus fibrosus of the intervertebral disc in patients suffering from scoliosis.
Collapse
Affiliation(s)
- Magdalena Kobielarz
- Department of Biomedical Engineering, Mechatronics and Theory of Mechanisms, Wroclaw University of Technology, Łukasiewicza 7/9, 50-371 Wroclaw, Poland
| | - Sylwia Szotek
- Department of Biomedical Engineering, Mechatronics and Theory of Mechanisms, Wroclaw University of Technology, Łukasiewicza 7/9, 50-371 Wroclaw, Poland.
| | - Maciej Głowacki
- Department of Paediatric Orthopaedics, Karol Marcinkowski University of Medical Sciences, 28 Czerwca 1956r., 61-545 Poznan, Poland
| | | | - Celina Pezowicz
- Department of Biomedical Engineering, Mechatronics and Theory of Mechanisms, Wroclaw University of Technology, Łukasiewicza 7/9, 50-371 Wroclaw, Poland
| |
Collapse
|
35
|
Fu LJ, Chen CS, Xie YZ, Yang JW, Sun XJ, Zhang P. Effect of a New Annular Incision on Biomechanical Properties of the Intervertebral Disc. Orthop Surg 2016; 8:68-74. [PMID: 27028383 DOI: 10.1111/os.12226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 11/15/2015] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE To compare the biomechanical properties of a novel annular incision technique, an oblique incision made approximately 60° to the spinal column, with the traditional transverse and longitudinal annular slit incision in an ex vivo sheep lumbar spine model. METHODS Sixteen sheep lumbar spines were used for the current ex vivo biomechanical comparative study. Functional spine unit (FSU) specimens composed of two vertebrae and one disc in the middle was cut from the whole lumbar spine. Annular slit incisions of 5 mm were made in different directions with a 15-blade knife at the intervertebral disc, following which partial discectomy was performed to produce the following groups: control with no incision, transverse slit, longitudinal slit and oblique slit groups. The specimens were then subjected to flexion-extension, lateral bending, axial rotation and compression tests. RESULTS As expected, the control group showed the least range of motion (ROM) in the flexion-extension test. The oblique slit group showed a trend toward a smaller ROM than the transverse and longitudinal groups in 1, 2, 3 and 5 Nm flexion-extension tests; these differences were not statistically significant (P > 0.05). In addition, the transverse (5.80° ± 0.20°), longitudinal (5.77° ± 0.67°) and oblique (5.47° ± 0.43°) slit groups showed a significantly larger ROM than the control group (3.22° ± 0.28°) in 2 Nm lateral bending tests (P < 0.05). Compared with the transverse and longitudinal groups, the oblique group also showed a trend toward a smaller ROM in lateral bending tests (P > 0.05). Following increments in the axial torsion force, the ROM was greater in all four experimental groups than the ROM with 1 Nm axial torsion. Furthermore, a significantly smaller axial rotational ROM was found in the oblique than the transverse group for 1 and 5 Nm force (P < 0.05). With increase in the axial force to 5 Nm, the ROM in the oblique slit group (4.71° ± 0.52°) was significantly smaller than that in the transverse group (7.25° ± 0.46°, P < 0.05), but not significantly different from that of the longitudinal slit group (5.84° ± 0.23°, P > 0.05). Comparable ultimate loads to failure were found in the oblique, transverse and longitudinal groups; the highest ultimate load to failure being in the control group (P > 0.05). CONCLUSION The novel oblique slit annular incision to the intervertebral disc showed a trend toward better biomechanical properties than the traditional transverse and longitudinal slit incisions.
Collapse
Affiliation(s)
- Ling-jie Fu
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chang-sheng Chen
- College of Mechanical and Electrical Engineering, Hohai University, Changzhou, China
| | - You-zhuan Xie
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jian-wei Yang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao-jiang Sun
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Pu Zhang
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Li P, Shi R, Chen D, Gan Y, Xu Y, Song L, Li S, Zhou Q. Surgical removal and controlled trypsinization of the outer annulus fibrosus improves the bioactivity of the nucleus pulposus in a disc bioreactor culture. BMC Musculoskelet Disord 2016; 17:133. [PMID: 27000557 PMCID: PMC4802625 DOI: 10.1186/s12891-016-0990-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The maintenance of nucleus pulposus (NP) viability in vitro is difficult. The annulus fibrosus (AF) pathway reflects one nutrient transport channel and may have an important effect on NP viability in disc organ cultures. The present study describes a feasible disc pre-treatment involving the AF and investigates its efficacy in improving NP bioactivity in an in vitro disc bioreactor culture. METHODS Rabbit discs that were randomly assigned to the experimental group (EG) were pretreated via the surgical removal and controlled trypsinization of the outer AF. The discs in the control group (CG) did not receive any special treatment. All discs were organ-cultured in a self-developed bioreactor. Solute transport into the central NP was measured using a methylene blue solution. On days 7 and 14, histological properties, cell viability, cell membrane damage, gene expression and matrix composition within the NP in these two groups were compared with each other and with the corresponding parameters of fresh NP samples. Additionally, the structures of the outer AF and the cartilage endplate (CEP) following pre-treatment were also assessed. RESULTS The outer AF in the EG became disorganized, but no specific changes occurred in the CEP or the inner AF following pre-treatment. The discs in the EG exhibited increased penetration of methylene blue into the central NP. On days 7 and 14, the NP bioactivity in the EG was improved compared with that of the CG in terms of cell viability, cell membrane damage, gene expression profile and matrix synthesis. Moreover, cell viability and matrix synthesis parameters in the EG were more similar to those of fresh samples than they were to the same parameters in the CG on day 14. CONCLUSIONS Using this disc pre-treatment, i.e., the surgical removal and controlled trypsinization of the outer AF, NP bioactivity was better maintained for up to 14 days in an in vitro disc bioreactor culture.
Collapse
Affiliation(s)
- Pei Li
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Gao Tan Yan 29, Chongqing, 400038, China
| | - Rongmao Shi
- Department of Orthopedic Surgery, Kunming General Hospital of Chengdu Command, Kunming, Yunnan, 650032, China
| | - Daosen Chen
- The 91245 Troops of the Chinese People's Liberation Army, Huludao, Liaoning, 125000, China
| | - Yibo Gan
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Gao Tan Yan 29, Chongqing, 400038, China
| | - Yuan Xu
- Department of Orthopedic Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Lei Song
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Gao Tan Yan 29, Chongqing, 400038, China
| | - Songtao Li
- Department of Orthopedic Surgery, No. 181 hospital of PLA, Guilin, Guangxi, 541002, China
| | - Qiang Zhou
- Department of Orthopedic Surgery, Southwest Hospital, Third Military Medical University, Gao Tan Yan 29, Chongqing, 400038, China.
| |
Collapse
|
37
|
Tissue composition regulates distinct viscoelastic responses in auricular and articular cartilage. J Biomech 2016; 49:344-52. [DOI: 10.1016/j.jbiomech.2015.12.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/24/2015] [Accepted: 12/16/2015] [Indexed: 01/24/2023]
|
38
|
Inter-lamellar shear resistance confers compressive stiffness in the intervertebral disc: An image-based modelling study on the bovine caudal disc. J Biomech 2015; 48:4303-8. [DOI: 10.1016/j.jbiomech.2015.10.041] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/26/2015] [Accepted: 10/26/2015] [Indexed: 01/27/2023]
|
39
|
The Biomechanics of eyelid tarsus tissue. J Biomech 2015; 48:3455-9. [DOI: 10.1016/j.jbiomech.2015.05.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 04/26/2015] [Accepted: 05/24/2015] [Indexed: 11/20/2022]
|
40
|
The Mechanical, Structural, and Compositional Changes of Tendon Exposed to Elastase. Ann Biomed Eng 2015; 43:2477-86. [PMID: 25808209 DOI: 10.1007/s10439-015-1308-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 03/20/2015] [Indexed: 01/24/2023]
Abstract
The mechanical response of tendon is dependent on the interaction of structural molecules that constitute the extracellular matrix. However, little is known about the role of elastic fibers that are present in this structure. Elastase treatments have been used to elucidate the mechanical role of elastic fibers in numerous tissues. Here, we show that a standard elastase treatment affects the mechanical properties of tendon, including the ultimate tensile strength and failure strain. Moreover, elastase-treated specimens exhibit significant structural and compositional changes including crimp undulation and release of glycosaminoglycans. These data demonstrate that a common elastase treatment has a complex digestion profile that influences the structure-function relationship of tendon. Thus, defining the mechanical role of elastic fibers in tendon using this technique is challenging. This introduces new and exciting questions regarding the function of elastic fibers in tendon, which may not be as well understood as previously thought.
Collapse
|
41
|
Role of biomolecules on annulus fibrosus micromechanics: effect of enzymatic digestion on elastic and failure properties. J Mech Behav Biomed Mater 2014; 40:75-84. [PMID: 25212387 DOI: 10.1016/j.jmbbm.2014.08.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/07/2014] [Accepted: 08/12/2014] [Indexed: 01/07/2023]
Abstract
Uniaxial tension was applied to selectively digested single lamellar human cadaveric annulus fibrosus specimens to investigate the role of different biomolecules in annular biomechanics. Single layered and inter-lamellar annulus fibrosus samples were obtained from 10 isolated cadaveric lumbar intervertebral discs in one of four orientations: longitudinal, transverse, radial, and circumferential. Within each orientation the samples were subjected to a selective enzymatic digestion protocol with collagenase, elastase, chondroitinase ABC, or 1× Phosphate Buffered Saline. Uniaxial tensile tests were performed to failure at a strain rate of 0.005s(-1). Failure stress and strain, and elastic moduli were compared among the digested conditions. The collagenase- and elastase-treated groups had the most significant effect on the mechanical properties among the orientation groups, decreasing the failure stress for both interlaminar and intralaminar groups. Collagenase-treated groups showed an increase in the failure strain following enzymatic digestion for the intralaminar groups and one interlaminar testing direction (circumferential). The chondroitinase ABC-treated group only had a significant impact on the single layer orientations, decreasing the failure stress and strain (intralaminar group). The digested properties described provide insights into the laminar mechanical behavior and the role of the molecular components to the annular mechanical behavior. Understanding annular mechanics may prove insightful in diagnosis, prevention and repair of debilitating intervertebral disc disorders and manufacturing of tissue-engineered annulus.
Collapse
|
42
|
Nimeskern L, van Osch GJ, Müller R, Stok KS. Quantitative Evaluation of Mechanical Properties in Tissue-Engineered Auricular Cartilage. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:17-27. [DOI: 10.1089/ten.teb.2013.0117] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Luc Nimeskern
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Gerjo J.V.M. van Osch
- Departments of Otorhinolaryngology and Orthopaedics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
43
|
Microstructural and compositional features of the fibrous and hyaline cartilage on the medial tibial plateau imply a unique role for the hopping locomotion of kangaroo. PLoS One 2013; 8:e74303. [PMID: 24058543 PMCID: PMC3776843 DOI: 10.1371/journal.pone.0074303] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/30/2013] [Indexed: 01/21/2023] Open
Abstract
Hopping provides efficient and energy saving locomotion for kangaroos, but it results in great forces in the knee joints. A previous study has suggested that a unique fibrous cartilage in the central region of the tibial cartilage could serve to decrease the peak stresses generated within kangaroo tibiofemoral joints. However, the influences of the microstructure, composition and mechanical properties of the central fibrous and peripheral hyaline cartilage on the function of the knee joints are still to be defined. The present study showed that the fibrous cartilage was thicker and had a lower chondrocyte density than the hyaline cartilage. Despite having a higher PG content in the middle and deep zones, the fibrous cartilage had an inferior compressive strength compared to the peripheral hyaline cartilage. The fibrous cartilage had a complex three dimensional collagen meshwork with collagen bundles parallel to the surface in the superficial zone, and with collagen bundles both parallel and perpendicular to the surface in the middle and deep zones. The collagen in the hyaline cartilage displayed a typical Benninghoff structure, with collagen fibres parallel to the surface in the superficial zone and collagen fibres perpendicular to the surface in the deep zone. Elastin fibres were found throughout the entire tissue depth of the fibrous cartilage and displayed a similar alignment to the adjacent collagen bundles. In comparison, the elastin fibres in the hyaline cartilage were confined within the superficial zone. This study examined for the first time the fibrillary structure, PG content and compressive properties of the central fibrous cartilage pad and peripheral hyaline cartilage within the kangaroo medial tibial plateau. It provided insights into the microstructure and composition of the fibrous and peripheral hyaline cartilage in relation to the unique mechanical properties of the tissues to provide for the normal activities of kangaroos.
Collapse
|
44
|
He B, Wu JP, Chen HH, Kirk TB, Xu J. Elastin fibers display a versatile microfibril network in articular cartilage depending on the mechanical microenvironments. J Orthop Res 2013; 31:1345-53. [PMID: 23649803 DOI: 10.1002/jor.22384] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/11/2013] [Indexed: 02/04/2023]
Abstract
Elastin fibers are major extracellular matrix macromolecules that are critical in maintaining the elasticity and resilience of tissues such as blood vessels, lungs and skins. However, the role of elastin in articular cartilage is poorly defined. The present study investigated the organization of elastin fiber in articular cartilage, its relationship to collagen fibers and the architecture of elastin fibers from different mechanical environments by using a kangaroo model. Five morphologies of elastin fibers were identified: Straight fiber, straight fiber with branches, branching fibers directly associated with chondrocyte, wave fiber and fine elastin. The architecture of the elastin network varied significantly with cartilage depth. In the most superficial layer of tibial plateau articular cartilage, dense elastin fibers formed a distinctive cobweb-like meshwork which was parallel to the cartilage surface. In the superficial zone, elastin fibers were well organized in a preferred orientation which was parallel to collagen fibers. In the deep zone, no detectable elastin fiber was found. Moreover, differences in the organization of elastin fibers were also observed between articular cartilage from the tibial plateau, femoral condyle, and distal humerus. This study unravels the detailed microarchitecture of elastin fibers which display a well-organized three-dimensional versatile network in articular cartilage. Our findings imply that elastin fibers may play a crucial role in maintaining the integrity, elasticity, and the mechanical properties of articular cartilage, and that the local mechanical environment affects the architectural development of elastin fibers.
Collapse
Affiliation(s)
- Bo He
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, 6009, Australia.
| | | | | | | | | |
Collapse
|
45
|
Baldit A, Ambard D, Cherblanc F, Royer P. Experimental analysis of the transverse mechanical behaviour of annulus fibrosus tissue. Biomech Model Mechanobiol 2013; 13:643-52. [DOI: 10.1007/s10237-013-0524-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 08/10/2013] [Indexed: 11/24/2022]
|
46
|
Hayes AJ, Smith SM, Melrose J. Comparative immunolocalisation of fibrillin-1 and perlecan in the human foetal, and HS-deficient hspg2 exon 3 null mutant mouse intervertebral disc. Histochem Cell Biol 2012; 139:1-11. [PMID: 23104139 DOI: 10.1007/s00418-012-1041-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2012] [Indexed: 12/20/2022]
Abstract
The aim of this study was to examine the comparative localisations of fibrillin-1 and perlecan in the foetal human, wild-type C57BL/6 and HS-deficient hspg2Δ³⁻/Δ³⁻ exon 3 null mouse intervertebral disc (IVD) using fluorescent laser scanning confocal microscopy. Fibrillin-1 fibrils were prominent components of the outer posterior and anterior annulus fibrosus (AF) of the foetal human IVD. Finer fibrillin-1 fibrils were evident in the inner AF where they displayed an arcade-type arrangement in the developing lamellae. Relatively short but distinct fibrillin-1 fibrils were evident in the central region of the IVD and presumptive cartilaginous endplate and defined the margins of the nuclear sheath in the developing nucleus pulposus (NP). Fibrillin-1 was also demonstrated in the AF of C57BL/6 wild-type mice but to a far lesser extent in the HS-deficient hspg2Δ³⁻/Δ³⁻ exon 3 null mouse. This suggested that the HS chains of perlecan may have contributed to fibrillin-1 assembly or its deposition in the IVD. The cell-matrix interconnections provided by the fibrillin fibrils visualised in this study may facilitate communication between disc cells and their local biomechanical microenvironment in mechanosensory processes which regulate tissue homeostasis. The ability of fibrillin-1 to sequester TGF-β a well-known anabolic growth factor in the IVD also suggests potential roles in disc development and/or remodelling.
Collapse
Affiliation(s)
- Anthony J Hayes
- Confocal Microscopy Unit, Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3US, Wales, UK
| | | | | |
Collapse
|
47
|
Ayturk UM, Gadomski B, Schuldt D, Patel V, Puttlitz CM. Modeling Degenerative Disk Disease in the Lumbar Spine: A Combined Experimental, Constitutive, and Computational Approach. J Biomech Eng 2012; 134:101003. [DOI: 10.1115/1.4007632] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Using a continuum approach for modeling the constitutive mechanical behavior of the intervertebral disk’s annulus fibrosus holds the potential for facilitating the correlation of morphology and biomechanics of this clinically important tissue. Implementation of a continuum representation of the disk’s tissues into computational models would yield a particularly valuable tool for investigating the effects of degenerative disease. However, to date, relevant efforts in the literature towards this goal have been limited due to the lack of a computationally tractable and implementable constitutive function. In order to address this, annular specimens harvested from a total of 15 healthy and degenerated intervertebral disks were tested under planar biaxial tension. Predictions of a strain energy function, which was previously shown to be unconditionally convex, were fit to the experimental data, and the optimized coefficients were used to modify a previously validated finite element model of the L4/L5 functional spinal unit. Optimization of material coefficients based on experimental results indicated increases in the micro-level orientation dispersion of the collagen fibers and the mechanical nonlinearity of these fibers due to degeneration. On the other hand, the finite element model predicted a progressive increase in the stress generation in annulus fibrosus due to stepwise degeneration of initially the nucleus and then the entire disk. Range of motion was predicted to initially increase with the degeneration of the nucleus and then decrease with the degeneration of the annulus in all rotational loading directions, except for axial rotation. Overall, degeneration was observed to specifically impact the functional effectiveness of the collagen fiber network of the annulus, leading to changes in the biomechanical behavior at both the tissue level and the motion-segment level.
Collapse
Affiliation(s)
- Ugur M. Ayturk
- Department of Orthopaedic Surgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Benjamin Gadomski
- Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523
| | - Dieter Schuldt
- Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523
| | - Vikas Patel
- The Spine Center, Department of Orthopaedics, University of Colorado Denver, Denver, CO 80045
| | - Christian M. Puttlitz
- Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering and School of Biomedical Engineering, Colorado State University, 1374 Campus Delivery, Fort Collins, CO 80523
| |
Collapse
|
48
|
Gregory DE, Callaghan JP. An examination of the mechanical properties of the annulus fibrosus: The effect of vibration on the intra-lamellar matrix strength. Med Eng Phys 2012; 34:472-7. [DOI: 10.1016/j.medengphy.2011.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 08/06/2011] [Accepted: 08/12/2011] [Indexed: 02/01/2023]
|
49
|
Havey RM, Voronov LI, Tsitsopoulos PP, Carandang G, Ghanayem AJ, Lorenz MA, Zindrick MR, Patwardhan AG. Relaxation response of lumbar segments undergoing disc-space distraction: implications to the stability of anterior lumbar interbody implants. Spine (Phila Pa 1976) 2012; 37:733-40. [PMID: 21912319 DOI: 10.1097/brs.0b013e3182323adc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A biomechanical study of human cadaveric lumbar spine segments undergoing disc-space distraction for insertion of anterior lumbar interbody implants. OBJECTIVE To measure the distraction force and its relaxation during a period of up to 3 hours after disc-space distraction as a function of the distraction magnitude and disc level. SUMMARY OF BACKGROUND DATA Interbody implants depend on compressive preload produced by disc-space distraction (annular pretension) for initial stabilization of the implant-bone interface. However, the amount of preload produced by disc-space distraction due to insertion of the implant and its subsequent relaxation have not been quantified. METHODS Twenty-two fresh human lumbar motion segments (age: 51 ± 14.8 years) were used. An anterior lumbar discectomy was performed. The distraction test battery consisted of a tension stiffness test performed before and after each relaxation test, 2 distraction magnitudes of 2 and 4 mm, and a recovery period before each distraction input. The distraction forces and lordosis angles were measured. RESULTS.: Peak distraction force was significantly larger for the 4-mm distraction (431.8 ± 116.4 N) than for the 2-mm distraction (204.9 ± 55.5 N) (P < 0.01). The distraction force significantly decreased over time (P < 0.01), approximating steady-state values of 146.1 ± 47.3 N at 2-mm distraction and 289.8 ± 92.8 N at 4-mm distraction, respectively. The distraction force reduced in magnitude by more than 20% of peak value in the first 15 minutes and reduced by approximately 30% of the peak value at the end of the testing period. The spine segment relaxed by the same amount of force, regardless of the disc level (P > 0.05). CONCLUSION The "tightness of fit" that the surgeon notes immediately after interbody device insertion in the disc space degrades in the very early postoperative period, which could compromise the stability of the bone-implant interface.
Collapse
Affiliation(s)
- Robert M Havey
- Musculoskeletal Biomechanics Laboratory, Department of Veterans Affairs, Edward Hines Jr. VA Hospital, Hines, IL, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Degenerative changes in the material properties of nucleus pulposus and anulus fibrosus promote changes in viscoelastic properties of the whole disc. Volume, pressure and hydration loss in the nucleus pulposus, disk height decreases and fissures in the anulus fibrosus, are some of the signs of the degenerative cascade that advances with age and affect, among others, spinal function and its stability. Much remains to be learned about how these changes affect the function of the motion segment and relate to symptoms such as low back pain and altered spinal biomechanics.
Collapse
Affiliation(s)
- Nozomu Inoue
- Department of Orthopedic Surgery and Director of Spine Biomechanics Laboratory, Rush University Medical Center, Chicago, IL
| | | |
Collapse
|