1
|
Zhang Q, Dai J, Liu T, Rao W, Li D, Gu Z, Huang L, Wang J, Hou X. Targeting cardiac fibrosis with Chimeric Antigen Receptor-Engineered Cells. Mol Cell Biochem 2025; 480:2103-2116. [PMID: 39460827 DOI: 10.1007/s11010-024-05134-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Cardiac fibrosis poses a significant challenge in cardiovascular diseases due to its intricate pathogenesis, and there is currently no standardized and effective treatment approach. The fibrotic process entails the involvement of various cell types and molecular mechanisms, such as fibroblast activation and proliferation, increased collagen synthesis, and extracellular matrix rearrangement. Traditional therapies often fall short in efficacy or carry substantial side effects. However, recent studies have shown that Chimeric Antigen Receptor T (CAR-T) cells can selectively target and eliminate activated cardiac fibroblasts (CFs) in mice, leading to reduced cardiac fibrosis and improved myocardial tissue compliance. This breakthrough presents a new and promising avenue for treating cardiac fibrosis. Currently, CAR-T cell-based therapy for cardiac fibrosis is undergoing animal experimentation, indicating ample scope for enhancement. Future investigations could explore the application of CAR cell therapy in cardiac fibrosis treatment, including the potential of CAR-natural killer (CAR-NK) cells and CAR macrophages (CAR-M), offering novel insights and strategies for combating cardiac fibrosis.
Collapse
Affiliation(s)
- Qinghang Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, 200030, China
| | - Jinjie Dai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, 200030, China
| | - Tianbao Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, 200030, China
| | - Wutian Rao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, 200030, China
| | - Dan Li
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zhengying Gu
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xumin Hou
- Hospital's Office, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
2
|
Koceva H, Amiratashani M, Akbarimoghaddam P, Hoffmann B, Zhurgenbayeva G, Gresnigt MS, Marcelino VR, Eggeling C, Figge MT, Amorim MJ, Mosig AS. Deciphering respiratory viral infections by harnessing organ-on-chip technology to explore the gut-lung axis. Open Biol 2025; 15:240231. [PMID: 40037530 PMCID: PMC11879621 DOI: 10.1098/rsob.240231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/23/2025] [Indexed: 03/06/2025] Open
Abstract
The lung microbiome has recently gained attention for potentially affecting respiratory viral infections, including influenza A virus, respiratory syncytial virus (RSV) and SARS-CoV-2. We will discuss the complexities of the lung microenvironment in the context of viral infections and the use of organ-on-chip (OoC) models in replicating the respiratory tract milieu to aid in understanding the role of temporary microbial colonization. Leveraging the innovative capabilities of OoC, particularly through integrating gut and lung models, opens new avenues to understand the mechanisms linking inter-organ crosstalk and respiratory infections. We will discuss technical aspects of OoC lung models, ranging from the selection of cell substrates for extracellular matrix mimicry, mechanical strain, breathing mechanisms and air-liquid interface to the integration of immune cells and use of microscopy tools for algorithm-based image analysis and systems biology to study viral infection in vitro. OoC offers exciting new options to study viral infections across host species and to investigate human cellular physiology at a personalized level. This review bridges the gap between complex biological phenomena and the technical prowess of OoC models, providing a comprehensive roadmap for researchers in the field.
Collapse
Affiliation(s)
- Hristina Koceva
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
| | - Mona Amiratashani
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
| | - Parastoo Akbarimoghaddam
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Bianca Hoffmann
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Gaukhar Zhurgenbayeva
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technologies e.V., Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
| | - Mark S. Gresnigt
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Vanessa Rossetto Marcelino
- Melbourne Integrative Genomics, School of BioSciences, University of Melbourne, Parkville, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute, University of Melbourne, Parkville, Australia
| | - Christian Eggeling
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technologies e.V., Member of the Leibniz Centre for Photonics in Infection Research (LPI), Jena, Germany
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Jena, Germany
- Jena Center for Soft Matter, Jena, Germany
| | - Marc Thilo Figge
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Maria-João Amorim
- Católica Biomédical Research Centre, Católica Medical School, Universidade Católica Portuguesa, Lisbon, Portugal
| | - Alexander S. Mosig
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
- Jena Center for Soft Matter, Jena, Germany
- Center of Sepsis Control and Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
3
|
Lu C, Liu Y, Ren F, Zhang H, Hou Y, Zhang H, Chen Z, Du X. HO-1: An emerging target in fibrosis. J Cell Physiol 2025; 240:e31465. [PMID: 39420552 DOI: 10.1002/jcp.31465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/08/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Fibrosis, an aberrant reparative response to tissue injury, involves a disruption in the equilibrium between the synthesis and degradation of the extracellular matrix, leading to its excessive accumulation within normal tissues, and culminating in organ dysfunction. Manifesting in the terminal stages of nearly all chronic ailments, fibrosis carries a high mortality rate and poses a significant threat to human health. Heme oxygenase-1 (HO-1) emerges as an endogenous protective agent, mitigating tissue damage through its antioxidant, anti-inflammatory, and antiapoptotic properties. Numerous studies have corroborated HO-1's potential as a therapeutic target in anti-fibrosis treatment. This review delves into the structural and functional attributes, and the upstream and downstream pathways of HO-1. Additionally, the regulatory networks and mechanisms of HO-1 in cells associated with fibrosis are elucidated. The role of HO-1 in various fibrosis-related diseases is also explored. Collectively, this comprehensive information serves as a foundation for future research and augments the viability of HO-1 as a therapeutic target for fibrosis.
Collapse
Affiliation(s)
- Chenxi Lu
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Yuan Liu
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Feifei Ren
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Haoran Zhang
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Yafang Hou
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Hong Zhang
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Zhiyong Chen
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| | - Xia Du
- Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, China
| |
Collapse
|
4
|
Santos LA, Castro Dutra J, Malaquias LCC, Andrade ND, Gomes BN, Burger E. Paracoccidioides spp.: Escape mechanisms and their implications for the development of this mycosis. Microb Pathog 2024; 196:106951. [PMID: 39299555 DOI: 10.1016/j.micpath.2024.106951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Paracoccidioidomycosis (PCM) is a systemic granulomatous mycosis prevalent in individuals who carry out rural activities. Its etiological agent is a thermodimorphic fungus belonging to the genus; Paracoccidioides spp. Seven species of this fungus are known: Paracoccidioides brasiliensis, Paracoccidioides lutzii, Paracoccidioides americana, Paracoccidioides restrepiensis, Paracoccidioides venezuelensis, Paracoccidioides loboi and Paracoccidioides ceti. For a long time, Paracoccidioides brasiliensis was attributed as the only causal agent of this mycosis. What is known about adhesins, virulence, escape mechanisms and fungal involvement with the host's immune system is correlated with the species Paracoccidioides brasiliensis. Interactions between Paracoccidioides spp. and the host are complex and dynamic. The fungus needs nutrients for its needs and must adapt to a hostile environment, evading the host's immune system, thus enabling the development of the infectious process. On the other hand, the host's immune system recognizes Paracoccidioides spp. and employs all protective mechanisms to prevent fungal growth and consequently tissue invasion. Knowing this, understanding how Paracoccidioides spp. escapes the host's immune system, can help to understand the pathogenic mechanisms related to the development of the disease and, therefore, in the design of new specific treatment strategies. In this review we discuss these mechanisms and what are the adhesion molecules of Paracoccidioides spp. uses to escape the hostile environment imposed by the host's defense mechanisms; finally, we suggest how to neutralize them with new antifungal therapies.
Collapse
Affiliation(s)
- Lauana Aparecida Santos
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL, Alfenas, MG, CEP 37130-001, Brazil
| | - Julia Castro Dutra
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL, Alfenas, MG, CEP 37130-001, Brazil
| | - Luiz Cosme Cotta Malaquias
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL, Alfenas, MG, CEP 37130-001, Brazil
| | - Nayara Dias Andrade
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL, Alfenas, MG, CEP 37130-001, Brazil
| | - Bruno Nascimento Gomes
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL, Alfenas, MG, CEP 37130-001, Brazil
| | - Eva Burger
- Department of Microbiology and Immunology at Federal University of Alfenas - UNIFAL, Alfenas, MG, CEP 37130-001, Brazil.
| |
Collapse
|
5
|
Courreges F, Melloni B, Absi J. Design and comparison of computationally efficient uniaxial stress-strain models of the lung parenchyma for real-time applications. Comput Biol Med 2024; 180:108928. [PMID: 39089113 DOI: 10.1016/j.compbiomed.2024.108928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 07/01/2024] [Accepted: 07/18/2024] [Indexed: 08/03/2024]
Abstract
Real-time clinical applications such as robotic lung surgery, tumor localization, atelectasis diagnosis, tumor motion prediction for radiation therapy of lung cancer, or surgery training are in need of biomechanical models of lungs, not necessarily highly accurate, but with good computational properties. These properties can include one or several of the following: low computation time, low memory resource requirement, a low number of parameters, and ease of parameter identification in real-time. Among the numerous existing models of lung parenchyma, some may be well suited for real-time applications; however, they should be extensively assessed against both accuracy and computational efficiency criteria to make an informed choice depending on the requirements of the application. After demonstrating how to derive a real-time compliant force-indentation model from a unixial stress-strain model with rational expression, the core purpose of this paper is to propose such an evaluation of selected models in fitting human lung parenchyma experimental and synthetic data of uniaxial tension. Furthermore, new uniaxial stress-strain models are developed based on an empirical observation of the volumetric behavior of the lungs along with an emphasis on computational performance. These new proposed models are competitive with existing one in terms of computational efficiency and compliance with experimental and synthetic data. One of them reduces the prediction error by 2 compared to other investigated models while maintaining an excellent adjusted coefficient of determination between 0.999 and 1 across various datasets. It exhibits excellent real-time capabilities with an explicit rational expression, only 3 parameters and linear numerator and denominator in the parameters. It is computed with only 20 floating point operations (flops) while another proposed model even requires as few as 2 flops.
Collapse
Affiliation(s)
| | - Boris Melloni
- Dept of Pneumology, CHU Le Cluzeau - University of Limoges, France
| | - Joseph Absi
- Institute IRCER - CNRS - University of Limoges, France
| |
Collapse
|
6
|
Ahmed DW, Tan ML, Gabbard J, Liu Y, Hu MM, Stevens M, Midekssa FS, Han L, Zemans RL, Baker BM, Loebel C. Local photo-crosslinking of native tissue matrix regulates cell function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.10.607417. [PMID: 39149281 PMCID: PMC11326225 DOI: 10.1101/2024.08.10.607417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Within most tissues, the extracellular microenvironment provides mechanical cues that guide cell fate and function. Changes in the extracellular matrix such as aberrant deposition, densification and increased crosslinking are hallmarks of late-stage fibrotic diseases that often lead to organ dysfunction. Biomaterials have been widely used to mimic the mechanical properties of the fibrotic matrix and study cell function. However, the initiation of fibrosis has largely been overlooked, due to the challenges in recapitulating early fibrotic lesions within the native extracellular microenvironment. Using visible light mediated photochemistry, we induced local crosslinking and stiffening of extracellular matrix proteins within ex vivo murine and human tissue. In ex vivo lung tissue of epithelial cell lineage-traced mice, local matrix crosslinking mimicked early fibrotic lesions that increased alveolar epithelial cell spreading, differentiation and extracellular matrix remodeling. However, inhibition of cytoskeletal tension or integrin engagement reduced epithelial cell spreading and differentiation, resulting in alveolar epithelial cell dedifferentiation and reduced extracellular matrix deposition. Our findings emphasize the role of local extracellular matrix crosslinking and remodeling in early-stage tissue fibrosis and have implications for ex vivo disease modeling and applications to other tissues.
Collapse
Affiliation(s)
- Donia W Ahmed
- Department of Biomedical Engineering University of Michigan
| | - Matthew L Tan
- Department of Materials Science and Engineering University of Michigan
| | | | - Yuchen Liu
- School of Biomedical Engineering, Science and Health Systems, Drexel University
| | - Michael M Hu
- Department of Biomedical Engineering University of Michigan
| | - Miriam Stevens
- Department of Biomedical Engineering University of Michigan
| | | | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University
| | - Rachel L Zemans
- Department of Internal Medicine, University of Michigan
- Cellular and Molecular Biology Program, University of Michigan
| | | | - Claudia Loebel
- Department of Biomedical Engineering University of Michigan
- Department of Materials Science and Engineering University of Michigan
| |
Collapse
|
7
|
Zhao M, Wang M, Chen X, Gao Y, Chen Q, Wang L, Bao Q, Sun D, Du W, Xu Y, Xie L, Jiang X, Zhang L, Peng L, Zhang B, Yao Y. Targeting progranulin alleviated silica particles-induced pulmonary inflammation and fibrosis via decreasing Il-6 and Tgf-β1/Smad. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133199. [PMID: 38103296 DOI: 10.1016/j.jhazmat.2023.133199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/12/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Long term exposure to silica particles leads to various diseases, among which silicosis is of great concern. Silicosis is an interstitial lung disease caused by inhalation of silica particles in production environments. However, the mechanisms underlying silicosis remains unclear. Our previous studies revealed that progranulin (Pgrn) promoted the expression of pro-inflammatory factors in alveolar macrophages treated with silica particles and the secretion of extracellular matrix of pulmonary fibroblasts. Nevertheless, the role of Pgrn in silica particles-induced silicosis in vivo was unknown. This study found that silica particles increased Pgrn expression in silicosis patients. Pgrn deficiency reduced lung inflammation and fibrosis in silica particles-induced silicosis mouse models. Subsequently, based on transcriptional sequencing and interleukin (Il) -6 knockout mouse models, results demonstrated that Pgrn deficiency might decrease silicosis inflammation by reducing the production of Il-6, thereby modulating pulmonary fibrosis in the early stage of silicosis mouse models. Furthermore, another mechanism through which Pgrn deficiency reduced fibrosis in silicosis mouse models was the regulation of the transforming growth factor (Tgf) -β1/Smad signaling pathway. Conclusively, Pgrn contributed to silicosis inflammation and fibrosis induced by silica particles, indicating that Pgrn could be a promising therapeutic target.
Collapse
Affiliation(s)
- Manyu Zhao
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Mengzhu Wang
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Xuxi Chen
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Gao
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Chen
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Liqun Wang
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Qixue Bao
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Donglei Sun
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Wen Du
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; West China Occupational Pneumoconiosis Cohort Study (WCOPCS) working group, Research Center For Prevention and Therapy of Occupational Disease, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yunyi Xu
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Linshen Xie
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; West China Occupational Pneumoconiosis Cohort Study (WCOPCS) working group, Research Center For Prevention and Therapy of Occupational Disease, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Xia Jiang
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; West China Occupational Pneumoconiosis Cohort Study (WCOPCS) working group, Research Center For Prevention and Therapy of Occupational Disease, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Ling Zhang
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; West China Occupational Pneumoconiosis Cohort Study (WCOPCS) working group, Research Center For Prevention and Therapy of Occupational Disease, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Lijun Peng
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; West China Occupational Pneumoconiosis Cohort Study (WCOPCS) working group, Research Center For Prevention and Therapy of Occupational Disease, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Ben Zhang
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; West China Occupational Pneumoconiosis Cohort Study (WCOPCS) working group, Research Center For Prevention and Therapy of Occupational Disease, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Departments of Cardiology, Neurology, and Oncology, Hainan General Hospital and Hainan Affiliated Hospital, Hainan Medical University, Haikou 570311, China.
| | - Yuqin Yao
- Molecular Toxicology Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; West China Occupational Pneumoconiosis Cohort Study (WCOPCS) working group, Research Center For Prevention and Therapy of Occupational Disease, West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
8
|
Kim B, Kim J, Lee S. Unleashing the Power of Undifferentiated Induced Pluripotent Stem Cell Bioprinting: Current Progress and Future Prospects. Int J Stem Cells 2024; 17:38-50. [PMID: 38164608 PMCID: PMC10899881 DOI: 10.15283/ijsc23146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Induced pluripotent stem cell (iPSC) technology has revolutionized various fields, including stem cell research, disease modeling, and regenerative medicine. The evolution of iPSC-based models has transitioned from conventional two-dimensional systems to more physiologically relevant three-dimensional (3D) models such as spheroids and organoids. Nonetheless, there still remain challenges including limitations in creating complex 3D tissue geometry and structures, the emergence of necrotic core in existing 3D models, and limited scalability and reproducibility. 3D bioprinting has emerged as a revolutionary technology that can facilitate the development of complex 3D tissues and organs with high scalability and reproducibility. This innovative approach has the potential to effectively bridge the gap between conventional iPSC models and complex 3D tissues in vivo. This review focuses on current trends and advancements in the bioprinting of iPSCs. Specifically, it covers the fundamental concepts and techniques of bioprinting and bioink design, reviews recent progress in iPSC bioprinting research with a specific focus on bioprinting undifferentiated iPSCs, and concludes by discussing existing limitations and future prospects.
Collapse
Affiliation(s)
- Boyoung Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Korea
| | - Jiyoon Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Korea
| | - Soah Lee
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
9
|
Furlani M, Riberti N, Gatto ML, Giuliani A. High-Resolution Phase-Contrast Tomography on Human Collagenous Tissues: A Comprehensive Review. Tomography 2023; 9:2116-2133. [PMID: 38133070 PMCID: PMC10748183 DOI: 10.3390/tomography9060166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Phase-contrast X-ray imaging is becoming increasingly considered since its first applications, which occurred almost 30 years ago. Particular emphasis was placed on studies that use this technique to investigate soft tissues, which cannot otherwise be investigated at a high resolution and in a three-dimensional manner, using conventional absorption-based settings. Indeed, its consistency and discrimination power in low absorbing samples, unified to being a not destructive analysis, are pushing interests on its utilization from researchers of different specializations, from botany, through zoology, to human physio-pathology research. In this regard, a challenging method for 3D imaging and quantitative analysis of collagenous tissues has spread in recent years: it is based on the unique characteristics of synchrotron radiation phase-contrast microTomography (PhC-microCT). In this review, the focus has been placed on the research based on the exploitation of synchrotron PhC-microCT for the investigation of collagenous tissue physio-pathologies from solely human samples. Collagen tissues' elasto-mechanic role bonds it to the morphology of the site it is extracted from, which could weaken the results coming from animal experimentations. Encouraging outcomes proved this technique to be suitable to access and quantify human collagenous tissues and persuaded different researchers to approach it. A brief mention was also dedicated to the results obtained on collagenous tissues using new and promising high-resolution phase-contrast tomographic laboratory-based setups, which will certainly represent the real step forward in the diffusion of this relatively young imaging technique.
Collapse
Affiliation(s)
- Michele Furlani
- Department DISCO, Università Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy;
| | - Nicole Riberti
- Neuroscience Imaging and Clinical Sciences Department, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Maria Laura Gatto
- Department DIISM, Università Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy;
| | - Alessandra Giuliani
- Department DISCO, Università Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy;
| |
Collapse
|
10
|
Parker JB, Valencia C, Akras D, DiIorio SE, Griffin MF, Longaker MT, Wan DC. Understanding Fibroblast Heterogeneity in Form and Function. Biomedicines 2023; 11:2264. [PMID: 37626760 PMCID: PMC10452440 DOI: 10.3390/biomedicines11082264] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Historically believed to be a homogeneous cell type that is often overlooked, fibroblasts are more and more understood to be heterogeneous in nature. Though the mechanisms behind how fibroblasts participate in homeostasis and pathology are just beginning to be understood, these cells are believed to be highly dynamic and play key roles in fibrosis and remodeling. Focusing primarily on fibroblasts within the skin and during wound healing, we describe the field's current understanding of fibroblast heterogeneity in form and function. From differences due to embryonic origins to anatomical variations, we explore the diverse contributions that fibroblasts have in fibrosis and plasticity. Following this, we describe molecular techniques used in the field to provide deeper insights into subpopulations of fibroblasts and their varied roles in complex processes such as wound healing. Limitations to current work are also discussed, with a focus on future directions that investigators are recommended to take in order to gain a deeper understanding of fibroblast biology and to develop potential targets for translational applications in a clinical setting.
Collapse
Affiliation(s)
- Jennifer B. Parker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caleb Valencia
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
| | - Deena Akras
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
| | - Sarah E. DiIorio
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle F. Griffin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
| | - Michael T. Longaker
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
| | - Derrick C. Wan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA (M.F.G.)
| |
Collapse
|
11
|
Gupta T, Sahu RP, Dabaghi M, Zhong LS, Shargall Y, Hirota JA, Richards CD, Puri IK. Biophysical and Biochemical Regulation of Cell Dynamics in Magnetically Assembled Cellular Structures. ACS OMEGA 2023; 8:19976-19986. [PMID: 37305294 PMCID: PMC10249138 DOI: 10.1021/acsomega.3c02052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/11/2023] [Indexed: 06/13/2023]
Abstract
Soluble signaling molecules and extracellular matrix (ECM) regulate cell dynamics in various biological processes. Wound healing assays are widely used to study cell dynamics in response to physiological stimuli. However, traditional scratch-based assays can damage the underlying ECM-coated substrates. Here, we use a rapid, non-destructive, label-free magnetic exclusion technique to form annular aggregates of bronchial epithelial cells on tissue-culture treated (TCT) and ECM-coated surfaces within 3 h. The cell-free areas enclosed by the annular aggregates are measured at different times to assess cell dynamics. The effects of various signaling molecules, including epidermal growth factor (EGF), oncostatin M, and interleukin 6, on cell-free area closures are investigated for each surface condition. Surface characterization techniques are used to measure the topography and wettability of the surfaces. Further, we demonstrate the formation of annular aggregates on human lung fibroblast-laden collagen hydrogel surfaces, which mimic the native tissue architecture. The cell-free area closures on hydrogels indicate that the substrate properties modulate EGF-mediated cell dynamics. The magnetic exclusion-based assay is a rapid and versatile alternative to traditional wound healing assays.
Collapse
Affiliation(s)
- Tamaghna Gupta
- School
of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Rakesh P. Sahu
- School
of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Department
of Mechanical Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Department
of Materials Science and Engineering, McMaster
University, Hamilton, Ontario L8S 4L8, Canada
| | - Mohammadhossein Dabaghi
- Firestone
Institute for Respiratory Health−Division of Respirology, Dept
of Medicine, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Lily Shengjia Zhong
- Integrated
Biomedical Engineering & Health Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Yaron Shargall
- Division
of Thoracic Surgery, Department of Surgery, McMaster University, St. Joseph’s Healthcare Hamilton, 50 Charlton Avenue East, Hamilton, Ontario L8N 4A6, Canada
| | - Jeremy A. Hirota
- School
of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Firestone
Institute for Respiratory Health−Division of Respirology, Dept
of Medicine, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Carl D. Richards
- McMaster
Immunology Research Centre, Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Ishwar K. Puri
- School
of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
- Department
of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California 90089, United States
- Mork
Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
12
|
Ligresti G, Raslan AA, Hong J, Caporarello N, Confalonieri M, Huang SK. Mesenchymal cells in the Lung: Evolving concepts and their role in fibrosis. Gene 2023; 859:147142. [PMID: 36603696 PMCID: PMC10068350 DOI: 10.1016/j.gene.2022.147142] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023]
Abstract
Mesenchymal cells in the lung are crucial during development, but also contribute to the pathogenesis of fibrotic disorders, including idiopathic pulmonary fibrosis (IPF), the most common and deadly form of fibrotic interstitial lung diseases. Originally thought to behave as supporting cells for the lung epithelium and endothelium with a singular function of producing basement membrane, mesenchymal cells encompass a variety of cell types, including resident fibroblasts, lipofibroblasts, myofibroblasts, smooth muscle cells, and pericytes, which all occupy different anatomic locations and exhibit diverse homeostatic functions in the lung. During injury, each of these subtypes demonstrate remarkable plasticity and undergo varying capacity to proliferate and differentiate into activated myofibroblasts. Therefore, these cells secrete high levels of extracellular matrix (ECM) proteins and inflammatory cytokines, which contribute to tissue repair, or in pathologic situations, scarring and fibrosis. Whereas epithelial damage is considered the initial trigger that leads to lung injury, lung mesenchymal cells are recognized as the ultimate effector of fibrosis and attempts to better understand the different functions and actions of each mesenchymal cell subtype will lead to a better understanding of why fibrosis develops and how to better target it for future therapy. This review summarizes current findings related to various lung mesenchymal cells as well as signaling pathways, and their contribution to the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Giovanni Ligresti
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, US.
| | - Ahmed A Raslan
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, US
| | - Jeongmin Hong
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, US
| | - Nunzia Caporarello
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, US
| | - Marco Confalonieri
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Steven K Huang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, US
| |
Collapse
|
13
|
Kuşoğlu A, Yangın K, Özkan SN, Sarıca S, Örnek D, Solcan N, Karaoğlu İC, Kızılel S, Bulutay P, Fırat P, Erus S, Tanju S, Dilege Ş, Öztürk E. Different Decellularization Methods in Bovine Lung Tissue Reveals Distinct Biochemical Composition, Stiffness, and Viscoelasticity in Reconstituted Hydrogels. ACS APPLIED BIO MATERIALS 2023; 6:793-805. [PMID: 36728815 PMCID: PMC9945306 DOI: 10.1021/acsabm.2c00968] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Extracellular matrix (ECM)-derived hydrogels are in demand for use in lung tissue engineering to mimic the native microenvironment of cells in vitro. Decellularization of native tissues has been pursued for preserving organotypic ECM while eliminating cellular content and reconstitution into scaffolds which allows re-cellularization for modeling homeostasis, regeneration, or diseases. Achieving mechanical stability and understanding the effects of the decellularization process on mechanical parameters of the reconstituted ECM hydrogels present a challenge in the field. Stiffness and viscoelasticity are important characteristics of tissue mechanics that regulate crucial cellular processes and their in vitro representation in engineered models is a current aspiration. The effect of decellularization on viscoelastic properties of resulting ECM hydrogels has not yet been addressed. The aim of this study was to establish bovine lung tissue decellularization for the first time via pursuing four different protocols and characterization of reconstituted decellularized lung ECM hydrogels for biochemical and mechanical properties. Our data reveal that bovine lungs provide a reproducible alternative to human lungs for disease modeling with optimal retention of ECM components upon decellularization. We demonstrate that the decellularization method significantly affects ECM content, stiffness, and viscoelastic properties of resulting hydrogels. Lastly, we examined the impact of these aspects on viability, morphology, and growth of lung cancer cells, healthy bronchial epithelial cells, and patient-derived lung organoids.
Collapse
Affiliation(s)
- Alican Kuşoğlu
- Engineered Cancer and Organ Models Laboratory, Koç University, Istanbul 34450, Turkey.,Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Kardelen Yangın
- Engineered Cancer and Organ Models Laboratory, Koç University, Istanbul 34450, Turkey.,Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Sena N Özkan
- Engineered Cancer and Organ Models Laboratory, Koç University, Istanbul 34450, Turkey.,Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Sevgi Sarıca
- Engineered Cancer and Organ Models Laboratory, Koç University, Istanbul 34450, Turkey.,Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Deniz Örnek
- Engineered Cancer and Organ Models Laboratory, Koç University, Istanbul 34450, Turkey.,Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Nuriye Solcan
- Engineered Cancer and Organ Models Laboratory, Koç University, Istanbul 34450, Turkey.,Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - İsmail C Karaoğlu
- Chemical and Biological Engineering, Koç University, Istanbul 34450, Turkey
| | - Seda Kızılel
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey.,Chemical and Biological Engineering, Koç University, Istanbul 34450, Turkey
| | - Pınar Bulutay
- Department of Pathology, School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Pınar Fırat
- Department of Pathology, School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Suat Erus
- Department of Thoracic Surgery, School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Serhan Tanju
- Department of Thoracic Surgery, School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Şükrü Dilege
- Department of Thoracic Surgery, School of Medicine, Koç University, Istanbul 34450, Turkey
| | - Ece Öztürk
- Engineered Cancer and Organ Models Laboratory, Koç University, Istanbul 34450, Turkey.,Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey.,Department of Medical Biology, School of Medicine, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
14
|
Hoffman ET, Uhl FE, Asarian L, Deng B, Becker C, Uriarte JJ, Downs I, Young B, Weiss DJ. Regional and disease specific human lung extracellular matrix composition. Biomaterials 2023; 293:121960. [PMID: 36580718 PMCID: PMC9868084 DOI: 10.1016/j.biomaterials.2022.121960] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/25/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022]
Abstract
Chronic lung diseases, such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF), are characterized by regional extracellular matrix (ECM) remodeling which contributes to disease progression. Previous proteomic studies on whole decellularized lungs have provided detailed characterization on the impact of COPD and IPF on total lung ECM composition. However, such studies are unable to determine the differences in ECM composition between individual anatomical regions of the lung. Here, we employ a post-decellularization dissection method to compare the ECM composition of whole decellularized lungs (wECM) and specific anatomical lung regions, including alveolar-enriched ECM (aECM), airway ECM (airECM), and vasculature ECM (vECM), between non-diseased (ND), COPD, and IPF human lungs. We demonstrate, using mass spectrometry, that individual regions possess a unique ECM signature characterized primarily by differences in collagen composition and basement-membrane associated proteins, including ECM glycoproteins. We further demonstrate that both COPD and IPF lead to alterations in lung ECM composition in a region-specific manner, including enrichment of type-III collagen and fibulin in IPF aECM. Taken together, this study provides methodology for future studies, including isolation of region-specific lung biomaterials, as well as a dataset that may be applied for the identification of novel ECM targets for therapeutics.
Collapse
Affiliation(s)
- Evan T. Hoffman
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Franziska E. Uhl
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Loredana Asarian
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Bin Deng
- Department of Biology, University of Vermont, Burlington, VT, 05405, USA
| | - Chloe Becker
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Juan J. Uriarte
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40506, USA
| | - Isaac Downs
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Brad Young
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Daniel J. Weiss
- Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| |
Collapse
|
15
|
Abstract
Organoids are powerful systems to facilitate the study of individuals' disorders and personalized treatments because they mimic the structural and functional characteristics of organs. However, the full potential of organoids in research has remained unrealized and the clinical applications have been limited. One of the reasons is organoids are most efficient grown in reconstituted extracellular matrix hydrogels from mouse-derived, whose poorly defined, batch-to-batch variability and immunogenicity. Another reason is that organoids lack host conditions. As a component of the tumor microenvironment, microbiota and metabolites can regulate the development and treatment in several human malignancies. Here, we introduce several engineering matrix materials and review recent advances in the coculture of organoids with microbiota and their metabolites. Finally, we discuss current trends and future possibilities to build more complex cocultures.
Collapse
Affiliation(s)
- Zhiyuan Xie
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Linghao Wang
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yan Zhang
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China,State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China,Address for correspondence Yan Zhang Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong UniversityNo.1954 Huashan Road, Shanghai 200030People's Republic of China
| |
Collapse
|
16
|
Shakir S, Hackett TL, Mostaço-Guidolin LB. Bioengineering lungs: An overview of current methods, requirements, and challenges for constructing scaffolds. Front Bioeng Biotechnol 2022; 10:1011800. [PMID: 36394026 PMCID: PMC9649450 DOI: 10.3389/fbioe.2022.1011800] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/17/2022] [Indexed: 09/28/2023] Open
Abstract
Chronic respiratory diseases remain a significant health burden worldwide. The only option for individuals with end-stage lung failure remains Lung Transplantation. However, suitable organ donor shortages and immune rejection following transplantation remain a challenge. Since alternative options are urgently required to increase tissue availability for lung transplantation, researchers have been exploring lung bioengineering extensively, to generate functional, transplantable organs and tissue. Additionally, the development of physiologically-relevant artificial tissue models for testing novel therapies also represents an important step toward finding a definite clinical solution for different chronic respiratory diseases. This mini-review aims to highlight some of the most common methodologies used in bioengineering lung scaffolds, as well as the benefits and disadvantages associated with each method in conjunction with the current areas of research devoted to solving some of these challenges in the area of lung bioengineering.
Collapse
Affiliation(s)
- Shahad Shakir
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON, Canada
| | - Tillie Louise Hackett
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
17
|
Kang D, Lee H, Jung S. Use of a 3D inkjet-printed model to access dust particle toxicology in the human alveolar barrier. Biotechnol Bioeng 2022; 119:3668-3677. [PMID: 36043483 DOI: 10.1002/bit.28220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/20/2022] [Accepted: 08/26/2022] [Indexed: 11/11/2022]
Abstract
Fine dust particles in the air travel into our body via the airway tract and cause severe respiratory diseases. Thus, the analysis of the effects of dust particles on the respiratory system has been receiving significant research interest. However, most studies on the toxicity of dust particles involve two-dimensional (2D) cell cultures, animal models, and epidemiology. Here, we inkjet-printed an three-dimensional (3D) alveolar barrier model to study how dust particles cause respiratory diseases. The three-layered in vitro model was exposed to A2 fine test dust with varying concentrations and exposure durations. The results highlighted the destruction of the tissue architecture along with apoptosis in the bioprinted alveolar barrier. The damage at the cellular level induced an increase in the amount of pro-inflammatory cytokines secreted, followed by triggering of the signal transduction pathway and activation of transcription factors. As a consequence of the release of cytokines, the extracellular matrix was degraded, which led to the collapse of the cell structure, loss of cell polarity, and a decrease in the barrier tightness. Further, the pulmonary surfactant protein-related genes in the dust-treated alveolar tissue were investigated to evaluate the possible role of dust particles in pulmonary surfactant dysfunction. This study demonstrated the use of 3D-printed tissue model to evaluate the physiological impact of fine dust particles on cytotoxicity, alveolar barrier rigidity, and surfactant secretion of an alveolar barrier. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dayoon Kang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Hyomin Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Sungjune Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.,Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.,Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| |
Collapse
|
18
|
Asadi Jozani K, Kouthouridis S, Hirota JA, Zhang B. Next generation preclinical models of lung development, physiology and disease. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kimia Asadi Jozani
- School of Biomedical Engineering, McMaster University 1280 Main Street West, Hamilton Ontario Canada
| | - Sonya Kouthouridis
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
| | - Jeremy Alexander Hirota
- School of Biomedical Engineering, McMaster University 1280 Main Street West, Hamilton Ontario Canada
- Department of Medicine, Division of Respirology McMaster University Hamilton Ontario Canada
- Firestone Institute for Respiratory Health St. Joseph’s Hospital, Hamilton Ontario Canada
| | - Boyang Zhang
- School of Biomedical Engineering, McMaster University 1280 Main Street West, Hamilton Ontario Canada
- Department of Chemical Engineering McMaster University Hamilton Ontario Canada
| |
Collapse
|
19
|
Blanco-Fernandez B, Rey-Vinolas S, Bağcı G, Rubi-Sans G, Otero J, Navajas D, Perez-Amodio S, Engel E. Bioprinting Decellularized Breast Tissue for the Development of Three-Dimensional Breast Cancer Models. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29467-29482. [PMID: 35735173 PMCID: PMC9264314 DOI: 10.1021/acsami.2c00920] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The tumor extracellular matrix (ECM) plays a vital role in tumor progression and drug resistance. Previous studies have shown that breast tissue-derived matrices could be an important biomaterial to recreate the complexity of the tumor ECM. We have developed a method for decellularizing and delipidating a porcine breast tissue (TDM) compatible with hydrogel formation. The addition of gelatin methacrylamide and alginate allows this TDM to be bioprinted by itself with good printability, shape fidelity, and cytocompatibility. Furthermore, this bioink has been tuned to more closely recreate the breast tumor by incorporating collagen type I (Col1). Breast cancer cells (BCCs) proliferate in both TDM bioinks forming cell clusters and spheroids. The addition of Col1 improves the printability of the bioink as well as increases BCC proliferation and reduces doxorubicin sensitivity due to a downregulation of HSP90. TDM bioinks also allow a precise three-dimensional printing of scaffolds containing BCCs and stromal cells and could be used to fabricate artificial tumors. Taken together, we have proven that these novel bioinks are good candidates for biofabricating breast cancer models.
Collapse
|
20
|
Nho RS, Ballinger MN, Rojas MM, Ghadiali SN, Horowitz JC. Biomechanical Force and Cellular Stiffness in Lung Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:750-761. [PMID: 35183510 PMCID: PMC9088200 DOI: 10.1016/j.ajpath.2022.02.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/25/2022] [Accepted: 02/08/2022] [Indexed: 01/10/2023]
Abstract
Lung fibrosis is characterized by the continuous accumulation of extracellular matrix (ECM) proteins produced by apoptosis-resistant (myo)fibroblasts. Lung epithelial injury promotes the recruitment and activation of fibroblasts, which are necessary for tissue repair and restoration of homeostasis. However, under pathologic conditions, a vicious cycle generated by profibrotic growth factors/cytokines, multicellular interactions, and matrix-associated signaling propagates the wound repair response and promotes lung fibrosis characterized not only by increased quantities of ECM proteins but also by changes in the biomechanical properties of the matrix. Importantly, changes in the biochemical and biomechanical properties of the matrix itself can serve to perpetuate fibroblast activity and propagate fibrosis, even in the absence of the initial stimulus of injury. The development of novel experimental models and methods increasingly facilitates our ability to interrogate fibrotic processes at the cellular and molecular levels. The goal of this review is to discuss the impact of ECM conditions in the development of lung fibrosis and to introduce new approaches to more accurately model the in vivo fibrotic microenvironment. This article highlights the pathologic roles of ECM in terms of mechanical force and the cellular interactions while reviewing in vitro and ex vivo models of lung fibrosis. The improved understanding of the fundamental mechanisms that contribute to lung fibrosis holds promise for identification of new therapeutic targets and improved outcomes.
Collapse
Affiliation(s)
- Richard S Nho
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| | - Megan N Ballinger
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Mauricio M Rojas
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Samir N Ghadiali
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Jeffrey C Horowitz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
21
|
Functional, transcriptional, and microbial shifts associated with healthy pulmonary aging in rhesus macaques. Cell Rep 2022; 39:110725. [PMID: 35443183 PMCID: PMC9096119 DOI: 10.1016/j.celrep.2022.110725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/09/2022] [Accepted: 03/30/2022] [Indexed: 01/04/2023] Open
Abstract
Older individuals are at increased risk of developing severe respiratory infections. However, our understanding of the impact of aging on the respiratory tract remains limited as samples from healthy humans are challenging to obtain and results can be confounded by variables such as smoking and diet. Here, we carry out a comprehensive cross-sectional study (n = 34 adult, n = 49 aged) to define the consequences of aging on the lung using the rhesus macaque model. Pulmonary function testing establishes similar age and sex differences as humans. Additionally, we report increased abundance of alveolar and infiltrating macrophages and a concomitant decrease in T cells were in aged animals. scRNAseq reveals shifts from GRZMB to IFN expressing CD8+ T cells in the lungs. These data provide insight into age-related changes in the lungs’ functional, microbial, and immunological landscape that explain increased prevalence and severity of respiratory diseases in the elderly. Rhoades et al. describe age-associated functional, microbial, and immunological changes in the lung using the rhesus macaque model. These data will support further studies aimed at designing and testing interventions to mitigate the impact of age-associated shifts in the lung environment to reduce age-related pulmonary disease in the elderly.
Collapse
|
22
|
Varghese B, Ling Z, Ren X. Reconstructing the pulmonary niche with stem cells: a lung story. Stem Cell Res Ther 2022; 13:161. [PMID: 35410254 PMCID: PMC8996210 DOI: 10.1186/s13287-022-02830-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/23/2022] [Indexed: 12/25/2022] Open
Abstract
The global burden of pulmonary disease highlights an overwhelming need in improving our understanding of lung development, disease, and treatment. It also calls for further advances in our ability to engineer the pulmonary system at cellular and tissue levels. The discovery of human pluripotent stem cells (hPSCs) offsets the relative inaccessibility of human lungs for studying developmental programs and disease mechanisms, all the while offering a potential source of cells and tissue for regenerative interventions. This review offers a perspective on where the lung stem cell field stands in terms of accomplishing these ambitious goals. We will trace the known stages and pathways involved in in vivo lung development and how they inspire the directed differentiation of stem and progenitor cells in vitro. We will also recap the efforts made to date to recapitulate the lung stem cell niche in vitro via engineered cell-cell and cell-extracellular matrix (ECM) interactions.
Collapse
Affiliation(s)
- Barbie Varghese
- Department of Biomedical Engineering, Carnegie Mellon University, Scott Hall 4N111, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Zihan Ling
- Department of Biomedical Engineering, Carnegie Mellon University, Scott Hall 4N111, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Scott Hall 4N111, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
23
|
Nallet C, Pazart L, Cochet C, Vidal C, Metz JP, Jacquet E, Gorincour G, Mottet N. Prenatal quantification of human foetal lung and liver elasticities between 24 and 39 weeks of gestation using 2D shear wave elastography. Eur Radiol 2022; 32:5559-5567. [PMID: 35267093 PMCID: PMC9279217 DOI: 10.1007/s00330-022-08654-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 01/18/2023]
Abstract
Objectives To quantify and model normal foetal lung and liver elasticities between 24 and 39 weeks of gestation (WG) using two-dimensional shear wave elastography (2D-SWE). To assess the impact of the distance between the probe and the target organ on the estimation of elasticity values. Methods Measurements of normal foetal lungs and liver elasticity were prospectively repeated monthly between 24 and 39 WG in 72 foetuses using 2D-SWE. Elasticity was quantified in the proximal lung and in the region inside the hepatic portal sinus. The distance between the probe and the target organ was recorded. Trajectories representing foetal lung and liver maturation from at least 3 measurements over time were modelled. Results The average elasticity for the lung and liver was significantly different from 24 WG to 36 WG (p < 0.01). Liver elasticity increased during gestation (3.86 kPa at 24 WG versus 4.45 kPa at 39 WG). From 24 WG to 32 WG, lung elasticity gradually increased (4.12kPa at 24 WG, 4.91kPa at 28 WG, 5.03kPa at 32 WG, p < 0.002). After 32 WG, lung elasticity decreased to 4.54kPa at 36 WG and 3.94kPa at 39 WG. The dispersion of the average elasticity values was greater for the lung than for the liver (p < 0.0001). Variation in the elasticity values was less important for the liver than for the lung. The values were considered valid and repeatable except for a probe-lung distance above 8cm. Conclusion Foetal lung and liver elasticities evolve differently through gestation. This could reflect the tissue maturation of both organs during gestation. Trial registration clinicaltrials.gov identifier: NCT03834805 Key Points • Prenatal quantification of foetal lung elasticity using 2D shear wave elastography could be a new prenatal parameter for exploring foetal lung maturity. • Liver elasticity increased progressively from 24 weeks of gestation (WG) to 39 WG, while lung elasticity increased first between 24 and 32 WG and then decreased after 32 WG. • The values of elasticity are considered valid and repeatable except for a probe-lung distance above 8cm.
Collapse
Affiliation(s)
- Camille Nallet
- Pôle Mère-Femme, Department of Obstetrics and Gynecology, University Hospital of Besancon, University of Franche-Comte, Boulevard Alexandre Fleming, 25000, Besançon, France.
| | - Lionel Pazart
- Centre d'investigation Clinique-Innovation Technologique 1431, INSERM, University Hospital of Besançon, 25000, Besançon, France
| | - Claire Cochet
- Pôle Mère-Femme, Department of Obstetrics and Gynecology, University Hospital of Besancon, University of Franche-Comte, Boulevard Alexandre Fleming, 25000, Besançon, France
| | - Chrystelle Vidal
- Centre d'investigation Clinique-Innovation Technologique 1431, INSERM, University Hospital of Besançon, 25000, Besançon, France
| | - Jean-Patrick Metz
- Pôle Mère-Femme, Department of Obstetrics and Gynecology, University Hospital of Besancon, University of Franche-Comte, Boulevard Alexandre Fleming, 25000, Besançon, France
| | - Emmanuelle Jacquet
- Department of Applied Mechanics, Université de Bourgogne Franche-Comté, FEMTO-ST Institute, UFC/CNRS/ENSMM/UTBM, 25000, Besançon, France
| | - Guillaume Gorincour
- Institut Méditerranéen d'Imagerie Médicale Appliquée à la Gynécologie, la Grossesse et l'Enfance (IMAGE 2), 6 Rue Rocca, 13008, Marseille, France
| | - Nicolas Mottet
- Pôle Mère-Femme, Department of Obstetrics and Gynecology, University Hospital of Besancon, University of Franche-Comte, Boulevard Alexandre Fleming, 25000, Besançon, France
- Nanomedicine Lab, Imagery and Therapeutics, EA4662, University of Franche-Comte, 25000, Besancon, France
| |
Collapse
|
24
|
Hackett TL, Vriesde NRTF, AL-Fouadi M, Mostaco-Guidolin L, Maftoun D, Hsieh A, Coxson N, Usman K, Sin DD, Booth S, Osei ET. The Role of the Dynamic Lung Extracellular Matrix Environment on Fibroblast Morphology and Inflammation. Cells 2022; 11:cells11020185. [PMID: 35053300 PMCID: PMC8773771 DOI: 10.3390/cells11020185] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 12/24/2022] Open
Abstract
The extracellular matrix (ECM) supports lung tissue architecture and physiology by providing mechanical stability and elastic recoil. Over the last several decades, it has become increasingly clear that the stiffness of the ECM governs many cellular processes, including cell-phenotype and functions during development, healing, and disease. Of all the lung ECM proteins, collagen-I is the most abundant and provides tensile strength. In many fibrotic lung diseases, the expression of collagen is increased which affects the stiffness of the surrounding environment. The goal of this study was to assess the effect on fibroblast morphology, cell death, and inflammation when exposed to 2D and 3D low (0.4 mg/mL) versus high (2.0 mg/mL) collagen-I-matrix environments that model the mechanics of the breathing lung. This study demonstrates that human fetal lung fibroblasts (HFL1), grown in a 3D collagen type-I environment compared to a 2D one, do not form cells with a myofibroblast morphology, express less F-actin stress fibers, exhibit less cell death, and significantly produce less pro-inflammatory IL-6 and IL-8 cytokines. Exposure to mechanical strain to mimic breathing (0.2 Hz) led to the loss of HFL1 fibroblast dendritic extensions as well as F-actin stress fibers within the cell cytoskeleton, but did not influence cytokine production or cell death. This dynamic assay gives researchers the ability to consider the assessment of the mechanodynamic nature of the lung ECM environment in disease-relevant models and the potential of mechano-pharmacology to identify therapeutic targets for treatment.
Collapse
Affiliation(s)
- Tillie-Louise Hackett
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V5Z 1M9, Canada; (T.-L.H.); (N.R.T.F.V.); (M.A.-F.); (D.M.); (A.H.); (N.C.); (K.U.); (D.D.S.); (S.B.)
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Noamie R. T. F. Vriesde
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V5Z 1M9, Canada; (T.-L.H.); (N.R.T.F.V.); (M.A.-F.); (D.M.); (A.H.); (N.C.); (K.U.); (D.D.S.); (S.B.)
| | - May AL-Fouadi
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V5Z 1M9, Canada; (T.-L.H.); (N.R.T.F.V.); (M.A.-F.); (D.M.); (A.H.); (N.C.); (K.U.); (D.D.S.); (S.B.)
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Leila Mostaco-Guidolin
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Delaram Maftoun
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V5Z 1M9, Canada; (T.-L.H.); (N.R.T.F.V.); (M.A.-F.); (D.M.); (A.H.); (N.C.); (K.U.); (D.D.S.); (S.B.)
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Aileen Hsieh
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V5Z 1M9, Canada; (T.-L.H.); (N.R.T.F.V.); (M.A.-F.); (D.M.); (A.H.); (N.C.); (K.U.); (D.D.S.); (S.B.)
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Nicole Coxson
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V5Z 1M9, Canada; (T.-L.H.); (N.R.T.F.V.); (M.A.-F.); (D.M.); (A.H.); (N.C.); (K.U.); (D.D.S.); (S.B.)
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Kauna Usman
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V5Z 1M9, Canada; (T.-L.H.); (N.R.T.F.V.); (M.A.-F.); (D.M.); (A.H.); (N.C.); (K.U.); (D.D.S.); (S.B.)
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Don D. Sin
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V5Z 1M9, Canada; (T.-L.H.); (N.R.T.F.V.); (M.A.-F.); (D.M.); (A.H.); (N.C.); (K.U.); (D.D.S.); (S.B.)
- Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Steve Booth
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V5Z 1M9, Canada; (T.-L.H.); (N.R.T.F.V.); (M.A.-F.); (D.M.); (A.H.); (N.C.); (K.U.); (D.D.S.); (S.B.)
| | - Emmanuel T. Osei
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V5Z 1M9, Canada; (T.-L.H.); (N.R.T.F.V.); (M.A.-F.); (D.M.); (A.H.); (N.C.); (K.U.); (D.D.S.); (S.B.)
- Department of Biology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Correspondence:
| |
Collapse
|
25
|
The bright side of fibroblasts: molecular signature and regenerative cues in major organs. NPJ Regen Med 2021; 6:43. [PMID: 34376677 PMCID: PMC8355260 DOI: 10.1038/s41536-021-00153-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is a pathologic process characterized by the replacement of parenchymal tissue by large amounts of extracellular matrix, which may lead to organ dysfunction and even death. Fibroblasts are classically associated to fibrosis and tissue repair, and seldom to regeneration. However, accumulating evidence supports a pro-regenerative role of fibroblasts in different organs. While some organs rely on fibroblasts for maintaining stem cell niches, others depend on fibroblast activity, particularly on secreted molecules that promote cell adhesion, migration, and proliferation, to guide the regenerative process. Herein we provide an up-to-date overview of fibroblast-derived regenerative signaling across different organs and discuss how this capacity may become compromised with aging. We further introduce a new paradigm for regenerative therapies based on reverting adult fibroblasts to a fetal/neonatal-like phenotype.
Collapse
|
26
|
Varone A, Nguyen JK, Leng L, Barrile R, Sliz J, Lucchesi C, Wen N, Gravanis A, Hamilton GA, Karalis K, Hinojosa CD. A novel organ-chip system emulates three-dimensional architecture of the human epithelia and the mechanical forces acting on it. Biomaterials 2021; 275:120957. [PMID: 34130145 DOI: 10.1016/j.biomaterials.2021.120957] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 05/22/2021] [Accepted: 05/29/2021] [Indexed: 12/22/2022]
Abstract
Successful translation of in vivo experimental data to human patients is an unmet need and a bottleneck in the development of effective therapeutics. Organ-on-Chip technology aims to address this need by leveraging recent significant advancements in microfabrication and biomaterials, which enable modeling of organs and their functionality. These microengineered chips offer researchers the possibility to recreate critical elements of native tissue architecture such as in vivo relevant tissue-tissue interface, air-liquid interface, and mechanical forces, including mechanical stretch and fluidic shear stress, which are crucial to recapitulate tissue level functions. Here, we present the development of a new, comprehensive 3D cell-culture system, where we combined our proprietary Organ-Chip technology with the advantages offered by three-dimensional organotypic culture. Leveraging microfabrication techniques, we engineered a flexible chip that consists of a chamber containing an organotypic epithelium, surrounded by two vacuum channels that can be actuated to stretch the hydrogel throughout its thickness. Furthermore, the ceiling of this chamber is a removable lid with a built-in microchannel that can be perfused with liquid or air and removed as needed for direct access to the tissue. The bottom part of this chamber is made from a porous flexible membrane which allows diffusive mass transport to and from the microfluidic channel positioned below the membrane. This additional microfluidic channel can be coated with endothelial cells to emulate a blood vessel and recapitulate endothelial interactions. Our results show that the Open-Top Chip design successfully addresses common challenges associated with the Organs-on-Chip technology, including the capability to incorporate a tissue-specific extracellular matrix gel seeded with primary stromal cells, to reproduce the architectural complexity of tissues by micropatterning the gel, and to extract the gel for H&E staining. We also provide proof-of-concept data on the feasibility of using the system with primary human skin and alveolar epithelial cells.
Collapse
Affiliation(s)
- Antonio Varone
- Emulate Inc., 27 Drydock Avenue, 5th Floor, Boston, MA, 02210, USA; University of Crete Medical School, Department of Pharmacology, Heraklion, 71110, Greece.
| | - Justin Ke Nguyen
- Emulate Inc., 27 Drydock Avenue, 5th Floor, Boston, MA, 02210, USA
| | - Lian Leng
- Emulate Inc., 27 Drydock Avenue, 5th Floor, Boston, MA, 02210, USA
| | - Riccardo Barrile
- University of Cincinnati, Department of Biomedical Engineering, Cincinnati, OH, 45221, USA
| | - Josiah Sliz
- Emulate Inc., 27 Drydock Avenue, 5th Floor, Boston, MA, 02210, USA
| | | | - Norman Wen
- Emulate Inc., 27 Drydock Avenue, 5th Floor, Boston, MA, 02210, USA
| | - Achille Gravanis
- University of Crete Medical School, Department of Pharmacology, Heraklion, 71110, Greece
| | | | - Katia Karalis
- Emulate Inc., 27 Drydock Avenue, 5th Floor, Boston, MA, 02210, USA
| | | |
Collapse
|
27
|
Wanczyk H, Jensen T, Weiss DJ, Finck C. Advanced single-cell technologies to guide the development of bioengineered lungs. Am J Physiol Lung Cell Mol Physiol 2021; 320:L1101-L1117. [PMID: 33851545 DOI: 10.1152/ajplung.00089.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung transplantation remains the only viable option for individuals suffering from end-stage lung failure. However, a number of current limitations exist including a continuing shortage of suitable donor lungs and immune rejection following transplantation. To address these concerns, engineering a decellularized biocompatible lung scaffold from cadavers reseeded with autologous lung cells to promote tissue regeneration is being explored. Proof-of-concept transplantation of these bioengineered lungs into animal models has been accomplished. However, these lungs were incompletely recellularized with resulting epithelial and endothelial leakage and insufficient basement membrane integrity. Failure to repopulate lung scaffolds with all of the distinct cell populations necessary for proper function remains a significant hurdle for the progression of current engineering approaches and precludes clinical translation. Advancements in 3D bioprinting, lung organoid models, and microfluidic device and bioreactor development have enhanced our knowledge of pulmonary lung development, as well as important cell-cell and cell-matrix interactions, all of which will help in the path to a bioengineered transplantable lung. However, a significant gap in knowledge of the spatiotemporal interactions between cell populations as well as relative quantities and localization within each compartment of the lung necessary for its proper growth and function remains. This review will provide an update on cells currently used for reseeding decellularized scaffolds with outcomes of recent lung engineering attempts. Focus will then be on how data obtained from advanced single-cell analyses, coupled with multiomics approaches and high-resolution 3D imaging, can guide current lung bioengineering efforts for the development of fully functional, transplantable lungs.
Collapse
Affiliation(s)
- Heather Wanczyk
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut
| | - Todd Jensen
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut
| | - Daniel J Weiss
- Department of Medicine, University of Vermont, Burlington, Vermont
| | - Christine Finck
- Department of Pediatrics, University of Connecticut Health Center, Farmington, Connecticut.,Department of Surgery, Connecticut Children's Medical Center, Hartford, Connecticut
| |
Collapse
|
28
|
Zamprogno P, Thoma G, Cencen V, Ferrari D, Putz B, Michler J, Fantner GE, Guenat OT. Mechanical Properties of Soft Biological Membranes for Organ-on-a-Chip Assessed by Bulge Test and AFM. ACS Biomater Sci Eng 2021; 7:2990-2997. [PMID: 33651947 DOI: 10.1021/acsbiomaterials.0c00515] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Advanced in vitro models called "organ-on-a-chip" can mimic the specific cellular environment found in various tissues. Many of these models include a thin, sometimes flexible, membrane aimed at mimicking the extracellular matrix (ECM) scaffold of in vivo barriers. These membranes are often made of polydimethylsiloxane (PDMS), a silicone rubber that poorly mimics the chemical and physical properties of the basal membrane. However, the ECM and its mechanical properties play a key role in the homeostasis of a tissue. Here, we report about biological membranes with a composition and mechanical properties similar to those found in vivo. Two types of collagen-elastin (CE) membranes were produced: vitrified and nonvitrified (called "hydrogel membrane"). Their mechanical properties were characterized using the bulge test method. The results were compared using atomic force microscopy (AFM), a standard technique used to evaluate the Young's modulus of soft materials at the nanoscale. Our results show that CE membranes with stiffnesses ranging from several hundred of kPa down to 1 kPa can be produced by tuning the CE ratio, the production mode (vitrified or not), and/or certain parameters such as temperature. The Young's modulus can easily be determined using the bulge test. This method is a robust and reproducible to determine membrane stiffness, even for soft membranes, which are more difficult to assess by AFM. Assessment of the impact of substrate stiffness on the spread of human fibroblasts on these surfaces showed that cell spread is lower on softer surfaces than on stiffer surfaces.
Collapse
Affiliation(s)
- Pauline Zamprogno
- Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern 3008, Switzerland
| | - Giuditta Thoma
- Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern 3008, Switzerland
| | - Veronika Cencen
- Laboratory for Bio- and Nano- Instrumentation, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Dario Ferrari
- Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern 3008, Switzerland
| | - Barbara Putz
- Laboratory for Mechanics of Materials and Nanostructures, EMPA Swiss Federal Laboratories for Materials Science and Technology, Thun 3602, Switzerland
| | - Johann Michler
- Laboratory for Mechanics of Materials and Nanostructures, EMPA Swiss Federal Laboratories for Materials Science and Technology, Thun 3602, Switzerland
| | - Georg E Fantner
- Laboratory for Bio- and Nano- Instrumentation, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Olivier T Guenat
- Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern 3008, Switzerland.,Department of Pulmonary Medicine, University Hospital of Bern, Bern 3008, Switzerland.,Department of General Thoracic Surgery, University Hospital of Bern, Bern 3008, Switzerland
| |
Collapse
|
29
|
Shirani A, Ganji F, Golmohammadi M, Hashemi SM, Mozafari M, Amoabediny G, Karkuki Osguei N, Samadikuchaksaraei A. Cross-linked acellular lung for application in tissue engineering: Effects on biocompatibility, mechanical properties and immunological responses. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111938. [PMID: 33641926 DOI: 10.1016/j.msec.2021.111938] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/10/2021] [Accepted: 01/31/2021] [Indexed: 12/18/2022]
Abstract
The concept of providing tissue engineering scaffolds with natural physical properties and minimal immunogenicity has not been systematically approached for the lungs yet. Here, the rat acellular lung tissue (ALT) was cross-linked to provide either EDC/NHS cross-linked tissue (EDC/NHS-CLT) or tannic acid cross-linked tissue (TA-CLT). Young's modulus revealed that EDC/NHS-CLT had mechanical properties similar to the native lung and culture of lung mesenchymal cells showed a higher potential of cell proliferation on EDC/NHS-CLT versus TA-CLT and ALT. The in vitro immunogenicity tests showed a strong induction of T-cell proliferation by TA-CLT and an attenuated macrophage induction by TA-CLT. Processed rat lungs were implanted xenogenically into the mouse peritoneal cavity and the host-implant interactions showed that tannic acid is not released from TA-CLT in a physiologically effective dose. The profile of peritoneal fluid proinflammatory (TNFα, IL-1β, IL-12p70 and IL-17) and anti-inflammatory (IL-10 and TGFβ1) cytokines, and CD3+ T-lymphocytes and CD11b+ macrophages revealed that apart from induction of high levels of IL-17 during the first week and IL-10 during the second to third weeks after implantation by TA-CLT, other indicators of immune reactions to cross-linked tissues were not significantly different from ALT. Also, a high fibrotic reaction to TA-CLT was observed on the weeks 2-3, but alveolar structures were preserved in EDC/NHS-CLT. Our findings show that by controlled EDC/NHS cross-linking, an acellular lung scaffold could be provided with mechanical properties similar to native lung, which promotes mesenchymal lung cells proliferation and does not stimulate recipient's immune system more than a non-cross-linked tissue.
Collapse
Affiliation(s)
- Ali Shirani
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ganji
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahtab Golmohammadi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ghassem Amoabediny
- Department of Biomedical Engineering, Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| | | | - Ali Samadikuchaksaraei
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Zamprogno P, Wüthrich S, Achenbach S, Thoma G, Stucki JD, Hobi N, Schneider-Daum N, Lehr CM, Huwer H, Geiser T, Schmid RA, Guenat OT. Second-generation lung-on-a-chip with an array of stretchable alveoli made with a biological membrane. Commun Biol 2021; 4:168. [PMID: 33547387 PMCID: PMC7864995 DOI: 10.1038/s42003-021-01695-0] [Citation(s) in RCA: 168] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/12/2021] [Indexed: 02/07/2023] Open
Abstract
The air-blood barrier with its complex architecture and dynamic environment is difficult to mimic in vitro. Lung-on-a-chips enable mimicking the breathing movements using a thin, stretchable PDMS membrane. However, they fail to reproduce the characteristic alveoli network as well as the biochemical and physical properties of the alveolar basal membrane. Here, we present a lung-on-a-chip, based on a biological, stretchable and biodegradable membrane made of collagen and elastin, that emulates an array of tiny alveoli with in vivo-like dimensions. This membrane outperforms PDMS in many ways: it does not absorb rhodamine-B, is biodegradable, is created by a simple method, and can easily be tuned to modify its thickness, composition and stiffness. The air-blood barrier is reconstituted using primary lung alveolar epithelial cells from patients and primary lung endothelial cells. Typical alveolar epithelial cell markers are expressed, while the barrier properties are preserved for up to 3 weeks.
Collapse
Affiliation(s)
- Pauline Zamprogno
- Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Simon Wüthrich
- Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Sven Achenbach
- Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Giuditta Thoma
- Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Janick D Stucki
- Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
- AlveoliX AG, Bern, Switzerland
| | - Nina Hobi
- Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
- AlveoliX AG, Bern, Switzerland
| | - Nicole Schneider-Daum
- Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | - Claus-Michael Lehr
- Drug Delivery (DDEL), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | - Hanno Huwer
- SHG Clinics, Department of Cardiothoracic Surgery, Völklingen Heart Center, Völklingen, Germany
| | - Thomas Geiser
- Department of Pulmonary Medicine, University Hospital of Bern, Bern, Switzerland
| | - Ralph A Schmid
- Department of General Thoracic Surgery, University Hospital of Bern, Bern, Switzerland
| | - Olivier T Guenat
- Organs-on-Chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland.
- Department of Pulmonary Medicine, University Hospital of Bern, Bern, Switzerland.
- Department of General Thoracic Surgery, University Hospital of Bern, Bern, Switzerland.
| |
Collapse
|
31
|
Adams W, Espicha T, Estipona J. Getting Your Neutrophil: Neutrophil Transepithelial Migration in the Lung. Infect Immun 2021; 89:IAI.00659-20. [PMID: 33526562 DOI: 10.1128/iai.00659-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neutrophil transepithelial migration is a fundamental process that facilitates the rapid trafficking of neutrophils to inflammatory foci and occurs across a diverse range of tissues. For decades there has been widespread interest in understanding the mechanisms that drive this migratory process in response to different pathogens and organ systems. This has led to the successful integration of key findings on neutrophil transepithelial migration from the intestines, lungs, liver, genitourinary tract, and other tissues into a single, cohesive model. However, recent studies have identified organ specific differences in neutrophil transepithelial migration. These findings support a model where the tissue in concert with the pro-inflammatory stimuli dictate a unique collection of signals that drive neutrophil trafficking. This review focuses on the mechanisms that drive neutrophil transepithelial migration in response to microbial infection of a single organ, the lung. Herein we provide a detailed analysis of the adhesion molecules and chemoattractants that contribute to the recruitment of neutrophil into the airways. We also highlight important advances in experimental models for studying neutrophil transepithelial migration in the lung over the last decade.
Collapse
Affiliation(s)
- Walter Adams
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192 USA
| | - Taylor Espicha
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192 USA
| | - Janine Estipona
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192 USA
| |
Collapse
|
32
|
Azimi B, Sorayani Bafqi MS, Fusco A, Ricci C, Gallone G, Bagherzadeh R, Donnarumma G, Uddin MJ, Latifi M, Lazzeri A, Danti S. Electrospun ZnO/Poly(Vinylidene Fluoride-Trifluoroethylene) Scaffolds for Lung Tissue Engineering. Tissue Eng Part A 2020; 26:1312-1331. [DOI: 10.1089/ten.tea.2020.0172] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Bahareh Azimi
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
- Interuniversity Consortium of Materials Science and Technology (INSTM), Florence, Italy
| | | | - Alessandra Fusco
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Claudio Ricci
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Giuseppe Gallone
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| | - Roohollah Bagherzadeh
- Institute for Advanced Textile Materials and Technologies (ATMT), Amirkabir University of Technology, Tehran, Iran
| | - Giovanna Donnarumma
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli,” Naples, Italy
| | - Mohammed Jasim Uddin
- Department of Chemistry, Photonics and Energy Research Laboratory, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Masoud Latifi
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Andrea Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| |
Collapse
|
33
|
IL-33-ST2 axis regulates myeloid cell differentiation and activation enabling effective club cell regeneration. Nat Commun 2020; 11:4786. [PMID: 32963227 PMCID: PMC7508874 DOI: 10.1038/s41467-020-18466-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
Evidence points to an indispensable function of macrophages in tissue regeneration, yet the underlying molecular mechanisms remain elusive. Here we demonstrate a protective function for the IL-33-ST2 axis in bronchial epithelial repair, and implicate ST2 in myeloid cell differentiation. ST2 deficiency in mice leads to reduced lung myeloid cell infiltration, abnormal alternatively activated macrophage (AAM) function, and impaired epithelial repair post naphthalene-induced injury. Reconstitution of wild type (WT) AAMs to ST2-deficient mice completely restores bronchial re-epithelialization. Central to this mechanism is the direct effect of IL-33-ST2 signaling on monocyte/macrophage differentiation, self-renewal and repairing ability, as evidenced by the downregulation of key pathways regulating myeloid cell cycle, maturation and regenerative function of the epithelial niche in ST2−/− mice. Thus, the IL-33-ST2 axis controls epithelial niche regeneration by activating a large multi-cellular circuit, including monocyte differentiation into competent repairing AAMs, as well as group-2 innate lymphoid cell (ILC2)-mediated AAM activation. Signaling of IL-33 via its receptor, ST2, has been implicated in macrophage function in tissue repair. Here the authors show, using genetic mouse models and single-cell transcriptomic data, that the IL-33/ST2 axis regulates both ILC2-derived IL-13 and macrophage differentiation/reparative function required for club cell regeneration.
Collapse
|
34
|
Xu P, Gärtner F, Gihring A, Liu C, Burster T, Wabitsch M, Knippschild U, Paschke S. Influence of obesity on remodeling of lung tissue and organization of extracellular matrix after blunt thorax trauma. Respir Res 2020; 21:238. [PMID: 32943048 PMCID: PMC7496205 DOI: 10.1186/s12931-020-01502-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/06/2020] [Indexed: 12/15/2022] Open
Abstract
Background Previously, it has been shown that obesity is a risk factor for recovery, regeneration, and tissue repair after blunt trauma and can affect the rate of muscle recovery and collagen deposition after trauma. To date, lung tissue regeneration and extracellular matrix regulation in obese mice after injury has not been investigated in detail yet. Methods This study uses an established blunt thorax trauma model to analyze morphological changes and alterations on gene and protein level in lean or obese (diet-induced obesity for 16 ± 1 week) male C57BL/6 J mice at various time-points after trauma induction (1 h, 6 h, 24 h, 72 h and 192 h). Results Morphological analysis after injury showed lung parenchyma damage at early time-points in both lean and obese mice. At later time-points a better regenerative capacity of lean mice was observed, since obese animals still exhibited alveoli collapse, wall thickness as well as remaining filled alveoli structures. Although lean mice showed significantly increased collagen and fibronectin gene levels, analysis of collagen deposition showed no difference based on colorimetric quantification of collagen and visual assessment of Sirius red staining. When investigating the organization of the ECM on gene level, a decreased response of obese mice after trauma regarding extracellular matrix composition and organization was detectable. Differences in the lung tissue between the diets regarding early responding MMPs (MMP8/9) and late responding MMPs (MMP2) could be observed on gene and protein level. Obese mice show differences in regulation of extracellular matrix components compared to normal weight mice, which results in a decreased total MMP activity in obese animals during the whole regeneration phase. Starting at 6 h post traumatic injury, lean mice show a 50% increase in total MMP activity compared to control animals, while MMP activity in obese mice drops to 50%. Conclusions In conclusion, abnormal regulation of the levels of extracellular matrix genes in the lung may contribute to an aberrant regeneration after trauma induction with a delay of repair and pathological changes of the lung tissue in obese mice.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of General and Visceral Surgery, Surgery Center; Ulm University Medical Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Fabian Gärtner
- Department of General and Visceral Surgery, Surgery Center; Ulm University Medical Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Adrian Gihring
- Department of General and Visceral Surgery, Surgery Center; Ulm University Medical Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Congxing Liu
- Department of General and Visceral Surgery, Surgery Center; Ulm University Medical Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| | - Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr Ave., 53, Nur-Sultan, 010000, Republic of Kazakhstan
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Ulm University Hospital for Pediatrics and Adolescent Medicine, Eythstraße 24, 89075, Ulm, Germany.
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center; Ulm University Medical Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany.
| | - Stephan Paschke
- Department of General and Visceral Surgery, Surgery Center; Ulm University Medical Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
| |
Collapse
|
35
|
Gihring A, Gärtner F, Liu C, Hoenicka M, Wabitsch M, Knippschild U, Xu P. Influence of Obesity on the Organization of the Extracellular Matrix and Satellite Cell Functions After Combined Muscle and Thorax Trauma in C57BL/6J Mice. Front Physiol 2020; 11:849. [PMID: 32848828 PMCID: PMC7399228 DOI: 10.3389/fphys.2020.00849] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022] Open
Abstract
Obesity has been described as a major factor of health risk in modern society. Next to intricately linked comorbidities like coronary artery disease or diabetes, an influence of obesity on regeneration after muscle injury has been described previously. However, the influence of obesity on tissue regeneration in a combined trauma, merging the more systemic influence of a blunt lung trauma and the local blunt muscle trauma, has not been investigated yet. Therefore, the aim of this study was to investigate the influence of obesity on regeneration in a mouse model that combined both muscle and thorax trauma. Using gene expression analysis, a focus was put on the structure as well as the organization of the extracellular matrix and on functional satellite cell physiology. An increased amount of debris in the lung of obese mice compared to normal weight mice up to 192 h after combined trauma based on visual assessment can be reported which is accompanied by a decreased response of Mmp2 in obese mice. Additionally, a delayed and elongated response of inhibitor genes like Timp1 has been revealed in obese mice. This elongated response to the trauma in obese mice can also be seen in plasma based on increased levels of pro-inflammatory chemo- and cytokines (IL-6, MCP-1, and IL 23) 192 h post trauma. In addition to changes in the lung, morphological analysis of the injured extensor iliotibialis anticus of the left hind leg in lean and diet-induced obese mice revealed deposition of fat in the regenerating muscle in obese animals hindering the structure of a compact muscle. Additionally, decreased activation of satellite cells and changes in organization and build-up of the ECM could be detected, finally leading to a decreased stability of the regenerated muscle in obese mice. Both factors contribute to an attenuated response to the trauma by obese mice which is reflected by a statistically significant decrease in muscle force of obese mice compared to lean mice 192 h post trauma induction.
Collapse
Affiliation(s)
- Adrian Gihring
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - Fabian Gärtner
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - Congxing Liu
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - Markus Hoenicka
- Department of Cardio-Thoracic and Vascular Surgery, Ulm University Medical Center, Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| | - Pengfei Xu
- Department of General and Visceral Surgery, Surgery Center, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
36
|
Dorrello NV, Vunjak-Novakovic G. Bioengineering of Pulmonary Epithelium With Preservation of the Vascular Niche. Front Bioeng Biotechnol 2020; 8:269. [PMID: 32351946 PMCID: PMC7174601 DOI: 10.3389/fbioe.2020.00269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
The shortage of transplantable donor organs directly affects patients with end-stage lung disease, for which transplantation remains the only definitive treatment. With the current acceptance rate of donor lungs of only 20%, rescuing even one half of the rejected donor lungs would increase the number of transplantable lungs threefold, to 60%. We review recent advances in lung bioengineering that have potential to repair the epithelial and vascular compartments of the lung. Our focus is on the long-term support and recovery of the lung ex vivo, and the replacement of defective epithelium with healthy therapeutic cells. To this end, we first review the roles of the lung epithelium and vasculature, with focus on the alveolar-capillary membrane, and then discuss the available and emerging technologies for ex vivo bioengineering of the lung by decellularization and recellularization. While there have been many meritorious advances in these technologies for recovering marginal quality lungs to the levels needed to meet the standards for transplantation – many challenges remain, motivating further studies of the extended ex vivo support and interventions in the lung. We propose that the repair of injured epithelium with preservation of quiescent vasculature will be critical for the immediate blood supply to the lung and the lung survival and function following transplantation.
Collapse
Affiliation(s)
- N Valerio Dorrello
- Department of Pediatrics, Columbia University, New York, NY, United States
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY, United States.,Department of Medicine, Columbia University, New York, NY, United States
| |
Collapse
|
37
|
Basil MC, Morrisey EE. Lung regeneration: a tale of mice and men. Semin Cell Dev Biol 2020; 100:88-100. [PMID: 31761445 PMCID: PMC7909713 DOI: 10.1016/j.semcdb.2019.11.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 01/11/2023]
Abstract
The respiratory system is the main site of gas exchange with the external environment in complex terrestrial animals. Within the trachea and lungs are multiple different tissue niches each consisting of a myriad of cells types with critical roles in air conduction, gas exchange, providing important niche specific cell-cell interactions, connection to the cardiovascular system, and immune surveillance. How the respiratory system responds to external insults and executes the appropriate regenerative response remains challenging to study given the plethora of cell and tissue interactions for this to occur properly. This review will examine the various cell types and tissue niches found within the respiratory system and provide a comparison between mouse and human lungs and trachea to highlight important similarities and differences. Defining the critical gaps in knowledge in human lung and tracheal regeneration is critical for future development of therapies directed towards respiratory diseases.
Collapse
Affiliation(s)
- Maria C Basil
- Department of Medicine; Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Edward E Morrisey
- Department of Medicine; Department of Cell and Developmental Biology; Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
38
|
Abstract
Recently, respiratory systems are increasingly threatened by high levels of environmental pollution. Organ-on-a-chip technology has the advantage of enabling more accurate preclinical experiments by reproducing in vivo organ physiology. To investigate disease mechanisms and treatment options, respiratory-physiology-on-a-chip systems have been studied for the last decade. Here, we delineate the strategic approaches to develop respiratory-physiology-on-a-chip that can recapitulate respiratory system in vitro. The state-of-the-art biofabrication methods and biomaterials are considered as key contributions to constructing the chips. We also explore the vascularization strategies to investigate complicated pathophysiological phenomena including inflammation and immune responses, which are the critical aggravating factors causing the complications in the respiratory diseases. In addition, challenges and future research directions are delineated to improve the mimicry of respiratory systems in terms of both structural and biological behaviors.
Collapse
|
39
|
Young BM, Shankar K, Tho CK, Pellegrino AR, Heise RL. Laminin-driven Epac/Rap1 regulation of epithelial barriers on decellularized matrix. Acta Biomater 2019; 100:223-234. [PMID: 31593773 DOI: 10.1016/j.actbio.2019.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 12/28/2022]
Abstract
Decellularized tissues offer a unique tool for developing regenerative biomaterials or in vitro platforms for the study of cell-extracellular matrix (ECM) interactions. One main challenge associated with decellularized lung tissue is that ECM components can be stripped away or altered by the detergents used to remove cellular debris. Without characterizing the composition of lung decellularized ECM (dECM) and the cellular response caused by the altered composition, it is difficult to utilize dECM for regeneration and specifically, engineering the complexities of the alveolar-capillary barrier. This study takes steps towards uncovering if dECM must be enhanced with lost ECM proteins to achieve proper epithelial barrier formation. To achieve this, the epithelial barrier function was assessed on dECM coatings with and without the systematic addition of several key basement membrane proteins. After comparing barrier function on collagen I, fibronectin, laminin, and dECM in varying combinations as an in vitro coating, the alveolar epithelium exhibited superior barrier function when dECM was supplemented with laminin as evidenced by trans-epithelial electrical resistance (TEER) and permeability assays. Increased barrier resistance with laminin addition was associated with upregulation of Claudin-18, E-cadherin, and junction adhesion molecule (JAM)-A, and stabilization of zonula occludens (ZO)-1 at junction complexes. The Epac/Rap1 pathway was observed to play a role in the ECM-mediated barrier function determined by protein expression and Epac inhibition. These findings revealed potential ECM coatings and molecular therapeutic targets for improved regeneration with decellularized scaffolds. STATEMENT OF SIGNIFICANCE: Efforts to produce a transplantable organ-scale biomaterial for lung regeneration has not been entirely successful to date, due to incomplete cell-cell junction formation, ultimately leading to severe edema in vivo. To fully understand the process of alveolar junction formation on ECM-derived biomaterials, this research has characterized and tailored decellularized ECM (dECM) to mitigate reductions in barrier strength or cell attachment caused by abnormal ECM compositions or detergent damage to dECM. These results indicate that laminin-driven Epac signaling plays a vital role in the stabilization of the alveolar barrier. Addition of laminin or Epac agonists during alveolar regeneration can reduce epithelial permeability within bioengineered lungs.
Collapse
Affiliation(s)
- Bethany M Young
- Department of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh St, Room 1071, Richmond, VA 23219, United States
| | - Keerthana Shankar
- Department of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh St, Room 1071, Richmond, VA 23219, United States
| | - Cindy K Tho
- Department of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh St, Room 1071, Richmond, VA 23219, United States
| | - Amanda R Pellegrino
- Department of Biomedical Engineering and Nursing, Duquesne University, 600 Forbes Ave, Pittsburg, Pennsylvania 15282, United States
| | - Rebecca L Heise
- Department of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh St, Room 1071, Richmond, VA 23219, United States; Department of Physiology and Biophysics, Virginia Commonwealth University School of Medicine, 1101 East Marshall St, Richmond, Virginia 23298, United States.
| |
Collapse
|
40
|
Elowsson Rendin L, Löfdahl A, Åhrman E, Müller C, Notermans T, Michaliková B, Rosmark O, Zhou XH, Dellgren G, Silverborn M, Bjermer L, Malmström A, Larsson-Callerfelt AK, Isaksson H, Malmström J, Westergren-Thorsson G. Matrisome Properties of Scaffolds Direct Fibroblasts in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2019; 20:ijms20164013. [PMID: 31426504 PMCID: PMC6719040 DOI: 10.3390/ijms20164013] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 12/21/2022] Open
Abstract
In idiopathic pulmonary fibrosis (IPF) structural properties of the extracellular matrix (ECM) are altered and influence cellular responses through cell-matrix interactions. Scaffolds (decellularized tissue) derived from subpleural healthy and IPF lungs were examined regarding biomechanical properties and ECM composition of proteins (the matrisome). Scaffolds were repopulated with healthy fibroblasts cultured under static stretch with heavy isotope amino acids (SILAC), to examine newly synthesized proteins over time. IPF scaffolds were characterized by increased tissue density, stiffness, ultimate force, and differential expressions of matrisome proteins compared to healthy scaffolds. Collagens, proteoglycans, and ECM glycoproteins were increased in IPF scaffolds, however while specific basement membrane (BM) proteins such as laminins and collagen IV were decreased, nidogen-2 was also increased. Findings were confirmed with histology, clearly showing a disorganized BM. Fibroblasts produced scaffold-specific proteins mimicking preexisting scaffold composition, where 11 out of 20 BM proteins were differentially expressed, along with increased periostin and proteoglycans production. We demonstrate how matrisome changes affect fibroblast activity using novel approaches to study temporal differences, where IPF scaffolds support a disorganized BM and upregulation of disease-associated proteins. These matrix-directed cellular responses emphasize the IPF matrisome and specifically the BM components as important factors for disease progression.
Collapse
Affiliation(s)
- Linda Elowsson Rendin
- Lung Biology, Department of Experimental Medical Sciences, Lund University, BMC C12, Lund 221 84, Sweden.
| | - Anna Löfdahl
- Lung Biology, Department of Experimental Medical Sciences, Lund University, BMC C12, Lund 221 84, Sweden
| | - Emma Åhrman
- Division of Infection Medicine Proteomics, Department Clinical Sciences, Lund University, Lund 221 84, Sweden
| | - Catharina Müller
- Lung Biology, Department of Experimental Medical Sciences, Lund University, BMC C12, Lund 221 84, Sweden
| | - Thomas Notermans
- Department of Biomedical engineering, Lund University, Lund 221 84, Sweden
| | - Barbora Michaliková
- Lung Biology, Department of Experimental Medical Sciences, Lund University, BMC C12, Lund 221 84, Sweden
| | - Oskar Rosmark
- Lung Biology, Department of Experimental Medical Sciences, Lund University, BMC C12, Lund 221 84, Sweden
| | - Xiao-Hong Zhou
- Bioscience Department, Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca, Mölndal 431 53, Sweden
| | - Göran Dellgren
- Department of Cardiothoracic Surgery and Transplant Institute, Sahlgrenska University Hospital, Gothenburg 413 45, Sweden
| | - Martin Silverborn
- Department of Cardiothoracic Surgery and Transplant Institute, Sahlgrenska University Hospital, Gothenburg 413 45, Sweden
| | - Leif Bjermer
- Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund University, Lund 221 85, Sweden
| | - Anders Malmström
- Lung Biology, Department of Experimental Medical Sciences, Lund University, BMC C12, Lund 221 84, Sweden
| | | | - Hanna Isaksson
- Department of Biomedical engineering, Lund University, Lund 221 84, Sweden
| | - Johan Malmström
- Division of Infection Medicine Proteomics, Department Clinical Sciences, Lund University, Lund 221 84, Sweden
| | | |
Collapse
|
41
|
Gorman DE, Wu T, Gilpin SE, Ott HC. A Fully Automated High-Throughput Bioreactor System for Lung Regeneration. Tissue Eng Part C Methods 2019; 24:671-678. [PMID: 30362896 DOI: 10.1089/ten.tec.2018.0259] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
IMPACT STATEMENT This work presents methods for ex vivo lung recellularization and biomimetic culture in a high-throughput and consistent manner. These methods allow for the testing of multiple variables, all of which are simultaneously controlled and monitored on a single fully automated pump system, and subsequent assessment of both epithelial and endothelial repair and tissue regeneration. This system provides a controlled environment for tissue repair, wherein key variables can be modified, monitored, reproduced, and optimized to advance the goal of ex vivo tissue regeneration based on native organ scaffolds.
Collapse
Affiliation(s)
- Daniel E Gorman
- 1 Center for Regenerative Medicine , Massachusetts General Hospital, Boston, Massachusetts
| | - Tong Wu
- 1 Center for Regenerative Medicine , Massachusetts General Hospital, Boston, Massachusetts.,2 Harvard Medical School , Boston, Massachusetts
| | - Sarah E Gilpin
- 1 Center for Regenerative Medicine , Massachusetts General Hospital, Boston, Massachusetts.,2 Harvard Medical School , Boston, Massachusetts
| | - Harald C Ott
- 1 Center for Regenerative Medicine , Massachusetts General Hospital, Boston, Massachusetts.,2 Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
42
|
Nawroth JC, Barrile R, Conegliano D, van Riet S, Hiemstra PS, Villenave R. Stem cell-based Lung-on-Chips: The best of both worlds? Adv Drug Deliv Rev 2019; 140:12-32. [PMID: 30009883 PMCID: PMC7172977 DOI: 10.1016/j.addr.2018.07.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/06/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023]
Abstract
Pathologies of the respiratory system such as lung infections, chronic inflammatory lung diseases, and lung cancer are among the leading causes of morbidity and mortality, killing one in six people worldwide. Development of more effective treatments is hindered by the lack of preclinical models of the human lung that can capture the disease complexity, highly heterogeneous disease phenotypes, and pharmacokinetics and pharmacodynamics observed in patients. The merger of two novel technologies, Organs-on-Chips and human stem cell engineering, has the potential to deliver such urgently needed models. Organs-on-Chips, which are microengineered bioinspired tissue systems, recapitulate the mechanochemical environment and physiological functions of human organs while concurrent advances in generating and differentiating human stem cells promise a renewable supply of patient-specific cells for personalized and precision medicine. Here, we discuss the challenges of modeling human lung pathophysiology in vitro, evaluate past and current models including Organs-on-Chips, review the current status of lung tissue modeling using human pluripotent stem cells, explore in depth how stem-cell based Lung-on-Chips may advance disease modeling and drug testing, and summarize practical consideration for the design of Lung-on-Chips for academic and industry applications.
Collapse
Affiliation(s)
| | | | | | - Sander van Riet
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, the Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, the Netherlands
| | | |
Collapse
|
43
|
Efficient methodology for the extraction and analysis of lipids from porcine pulmonary artery by supercritical fluid chromatography coupled to mass spectrometry. J Chromatogr A 2019; 1592:173-182. [PMID: 30709622 DOI: 10.1016/j.chroma.2019.01.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 12/30/2022]
Abstract
Pulmonary artery grafts are needed as cardiovascular bioprosthetics. For successful tissue recellularization after transplantation, lipids have to be removed from the donor artery. Developing a selective process to remove lipids without damaging the extracellular matrix greatly depends on knowing the amount and type of lipid compounds in the specific tissue. Here we present an efficient methodology for the study of lipids present in porcine pulmonary arteries. The performance of six extraction methods to recover lipids from artery was evaluated. For this purpose, a supercritical fluid chromatography method coupled to quadrupole time-of-flight mass spectrometry detection (UHPSFC/QTOF-MS) was adapted. The method enabled separation of lipids of a wide range of polarity according to lipid class in less than 7 min. One dichloromethane-based extraction method was shown to be the most efficient one for the recovery of lipids from pulmonary artery. However, one MTBE-based extraction method was able to show the highest fatty acid extraction yields (to the expense of longer extraction times). Lipids were relative quantified according to class, and the major species within each class were identified. Triacylglycerols and glycerophospholipids were the most abundant classes, followed by sphingomyelins, monoacylglycerols and fatty acyls. The matrix effect exerted no interference on the analytical method, except for some few combinations of extraction method and lipid class. These results are of relevance for lipidomic studies from solid tissue, in particular for studies on pulmonary and cardiovascular diseases. Finally, our work sets the basis for the further development of a selective processes to remove lipids from pulmonary artery without damaging the tissue prior to transplantation.
Collapse
|
44
|
Zeng YY, Hu WP, Zuo YH, Wang XR, Zhang J. Altered serum levels of type I collagen turnover indicators accompanied by IL-6 and IL-8 release in stable COPD. Int J Chron Obstruct Pulmon Dis 2019; 14:163-168. [PMID: 30655663 PMCID: PMC6322508 DOI: 10.2147/copd.s188139] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND COPD, characterized by chronic inflammation and airway remodeling, has significant pathological alterations in composition and deposition of the extracellular matrix. The expression of procollagen 1 C-terminal peptide (PICP) and collagen type 1 C-terminal telopeptide (ICTP), two major by-products in the synthesis and degradation of collagen, was shown to be positively correlated with inflammatory mediator levels in previous studies. PURPOSE In this study, we investigated whether the serum concentrations of PICP and ICTP were associated with the inflammation level for patients with stable COPD. PATIENTS AND METHODS We collected serum samples from 25 control subjects and 20 patients with stable COPD from December 2011 to October 2012 in Shanghai Zhongshan Hospital and Shanghai Dahua Hospital. We determined concentrations of PICP, ICTP, C-reactive protein (CRP), IL-6, IL-8, and tumor necrosis factor (TNF)-α by using enzyme-linked immunosorbent assay methods. RESULTS Demographic characteristics were comparable between the two groups. In patients with stable COPD, serum levels of CRP, IL-6, IL-8, and TNF-α were all elevated compared to control subjects, but only changes of IL-6 achieved statistical significance. Serum concentration of PICP was significantly elevated in patients with COPD, and level of ICTP was slightly decreased. Moreover, serum concentrations of PICP were positively correlated with the levels of both IL-6 and IL-8. CONCLUSION The increased levels of serum PICP in COPD might indicate the condition of airway remodeling, and IL-6 and/or IL-8 might play an important role in stimulating collagen synthesis.
Collapse
Affiliation(s)
- Ying-Ying Zeng
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China,
| | - Wei-Ping Hu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China,
| | - Yi-Hui Zuo
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China,
| | - Xiao-Ru Wang
- Department of Pulmonary Medicine, Dahua Hospital, Shanghai, China
| | - Jing Zhang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China,
| |
Collapse
|
45
|
Bracaglia LG, Winston S, Powell DA, Fisher JP. Synthetic polymer coatings diminish chronic inflammation risk in large ECM-based materials. J Biomed Mater Res A 2018; 107:494-504. [DOI: 10.1002/jbm.a.36564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/28/2018] [Accepted: 10/09/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Laura G. Bracaglia
- Fischell Department of Bioengineering; University of Maryland; College Park Maryland
- Center for Engineering Complex Tissues; University of Maryland; College Park Maryland
| | - Shira Winston
- Fischell Department of Bioengineering; University of Maryland; College Park Maryland
- Center for Engineering Complex Tissues; University of Maryland; College Park Maryland
| | - Douglas A. Powell
- Department of Laboratory Animal Resources; University of Maryland; College Park Maryland
| | - John P. Fisher
- Fischell Department of Bioengineering; University of Maryland; College Park Maryland
- Center for Engineering Complex Tissues; University of Maryland; College Park Maryland
| |
Collapse
|
46
|
Gu BH, Madison MC, Corry D, Kheradmand F. Matrix remodeling in chronic lung diseases. Matrix Biol 2018; 73:52-63. [PMID: 29559389 PMCID: PMC6141350 DOI: 10.1016/j.matbio.2018.03.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/08/2018] [Accepted: 03/15/2018] [Indexed: 12/11/2022]
Abstract
Multicellular organisms synthesize and renew components of their subcellular and scaffolding proteins, collectively known as the extracellular matrix molecules (ECMs). In the lung, ECMs maintain tensile strength, elasticity, and dictate the specialized function of multiple cell lineages. These functions are critical in lung homeostatic processes including cellular migration and proliferation during morphogenesis or in response to repair. Alterations in lung ECMs that expose cells to new cryptic fragments, generated in response to endogenous proteinases or exogenous toxins, are associated with the development of several common respiratory diseases. How lung ECMs provide or relay vital signals to epithelial and mesenchymal cells has shed new light on development and progression of several common chronic respiratory diseases. This review will consider how ECMs regulate lung homeostasis and their reorganization under pathological conditions that can modulate the inflammatory diseases asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). Better understanding of changes in the distribution of lung ECM could provide novel therapeutic approaches to treat chronic lung diseases.
Collapse
Affiliation(s)
- Bon-Hee Gu
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew C Madison
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Interdepartmental Program in Translational Biology and Molecular Medicine Houston, TX 77030, USA
| | - David Corry
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Interdepartmental Program in Translational Biology and Molecular Medicine Houston, TX 77030, USA; Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA, Houston, TX 77030, USA; Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Farrah Kheradmand
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Interdepartmental Program in Translational Biology and Molecular Medicine Houston, TX 77030, USA; Center for Translational Research in Inflammatory Diseases, Michael E. DeBakey VA, Houston, TX 77030, USA; Biology of Inflammation Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
47
|
Seshadri DR, Ramamurthi A. Nanotherapeutics to Modulate the Compromised Micro-Environment for Lung Cancers and Chronic Obstructive Pulmonary Disease. Front Pharmacol 2018; 9:759. [PMID: 30061830 PMCID: PMC6054931 DOI: 10.3389/fphar.2018.00759] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/22/2018] [Indexed: 11/13/2022] Open
Abstract
The use of nanomaterials to modulate the tumor microenvironment has great potential to advance outcomes in patients with lung cancer. Nanomaterials can be used to prolong the delivery time of therapeutics enabling their specific targeting to tumors while minimizing and potentially eliminating cytotoxic effects. Using nanomaterials to deliver small-molecule inhibitors for oncogene targeted therapy and cancer immunotherapy while concurrently enabling regeneration of the extracellular matrix could enhance our therapeutic reach and improve outcomes for patients with non-small cell lung cancer (NSCLC) and chronic obstructive pulmonary disease (COPD). The objective of this review is to highlight the role nanomedicines play in improving and reversing adverse outcomes in the tumor microenvironment for advancing treatments for targeting both diseases.
Collapse
Affiliation(s)
- Dhruv R. Seshadri
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, United States
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Anand Ramamurthi
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, United States
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
48
|
Bellezzia MA, Cruz FF, Martins V, de Castro LL, Lopes-Pacheco M, Vilanova EP, Mourão PA, Rocco PRM, Silva PL. Impact of different intratracheal flows during lung decellularization on extracellular matrix composition and mechanics. Regen Med 2018; 13:519-530. [DOI: 10.2217/rme-2018-0008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Aim: To evaluate different intratracheal flow rates on extracellular matrix content and lung mechanics in an established lung decellularization protocol. Materials & methods: Healthy mice were used: 15 for decellularization and five to serve as controls. Fluids were instilled at 5, 10 and 20 ml/min flow rates through tracheal cannula and right ventricular cavity (0.5 ml/min) in all groups. Results: The 20 ml/min rate better preserved collagen content in decellularized lungs. Elastic fiber content decreased at 5 and 10 ml/min, but not at 20 ml/min, compared with controls. Chondroitin, heparan and dermatan content was reduced after decellularization. Conclusion: An intratracheal flow rate of 20 ml/min was associated with lower resistance and greater preservation of collagen to that observed in ex vivo control lungs.
Collapse
Affiliation(s)
- Mariana Alves Bellezzia
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, RJ, Brazil
- National Institute of Science & Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, RJ, Brazil
- National Institute of Science & Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Vanessa Martins
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, RJ, Brazil
- Laboratory of Histomorphometry & Lung Genomics, University of São Paulo Faculty of Medicine, São Paulo, SP, Brazil
| | - Lígia Lins de Castro
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, RJ, Brazil
- National Institute of Science & Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, RJ, Brazil
- National Institute of Science & Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Eduardo Prata Vilanova
- Glycobiology Program, Leopoldo de Meis Medical Biochemistry Institute, Connective Tissue Laboratory, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, RJ, Brazil
| | - Paulo A Mourão
- Glycobiology Program, Leopoldo de Meis Medical Biochemistry Institute, Connective Tissue Laboratory, Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, RJ, Brazil
| | - Patricia RM Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, RJ, Brazil
- National Institute of Science & Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, RJ, Brazil
- National Institute of Science & Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
49
|
Shankar J, Tiwari S, Shishodia SK, Gangwar M, Hoda S, Thakur R, Vijayaraghavan P. Molecular Insights Into Development and Virulence Determinants of Aspergilli: A Proteomic Perspective. Front Cell Infect Microbiol 2018; 8:180. [PMID: 29896454 PMCID: PMC5986918 DOI: 10.3389/fcimb.2018.00180] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/09/2018] [Indexed: 12/25/2022] Open
Abstract
Aspergillus species are the major cause of health concern worldwide in immunocompromised individuals. Opportunistic Aspergilli cause invasive to allergic aspergillosis, whereas non-infectious Aspergilli have contributed to understand the biology of eukaryotic organisms and serve as a model organism. Morphotypes of Aspergilli such as conidia or mycelia/hyphae helped them to survive in favorable or unfavorable environmental conditions. These morphotypes contribute to virulence, pathogenicity and invasion into hosts by excreting proteins, enzymes or toxins. Morphological transition of Aspergillus species has been a critical step to infect host or to colonize on food products. Thus, we reviewed proteins from Aspergilli to understand the biological processes, biochemical, and cellular pathways that are involved in transition and morphogenesis. We majorly analyzed proteomic studies on A. fumigatus, A. flavus, A. terreus, and A. niger to gain insight into mechanisms involved in the transition from conidia to mycelia along with the role of secondary metabolites. Proteome analysis of morphotypes of Aspergilli provided information on key biological pathways required to exit conidial dormancy, consortia of virulent factors and mycotoxins during the transition. The application of proteomic approaches has uncovered the biological processes during development as well as intermediates of secondary metabolite biosynthesis pathway. We listed key proteins/ enzymes or toxins at different morphological types of Aspergillus that could be applicable in discovery of novel therapeutic targets or metabolite based diagnostic markers.
Collapse
Affiliation(s)
- Jata Shankar
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Shraddha Tiwari
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Sonia K Shishodia
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Manali Gangwar
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Shanu Hoda
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Raman Thakur
- Genomic Laboratory, Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | | |
Collapse
|
50
|
Fakoya AOJ, Otohinoyi DA, Yusuf J. Current Trends in Biomaterial Utilization for Cardiopulmonary System Regeneration. Stem Cells Int 2018; 2018:3123961. [PMID: 29853910 PMCID: PMC5949153 DOI: 10.1155/2018/3123961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/15/2017] [Accepted: 03/01/2018] [Indexed: 12/28/2022] Open
Abstract
The cardiopulmonary system is made up of the heart and the lungs, with the core function of one complementing the other. The unimpeded and optimal cycling of blood between these two systems is pivotal to the overall function of the entire human body. Although the function of the cardiopulmonary system appears uncomplicated, the tissues that make up this system are undoubtedly complex. Hence, damage to this system is undesirable as its capacity to self-regenerate is quite limited. The surge in the incidence and prevalence of cardiopulmonary diseases has reached a critical state for a top-notch response as it currently tops the mortality table. Several therapies currently being utilized can only sustain chronically ailing patients for a short period while they are awaiting a possible transplant, which is also not devoid of complications. Regenerative therapeutic techniques now appear to be a potential approach to solve this conundrum posed by these poorly self-regenerating tissues. Stem cell therapy alone appears not to be sufficient to provide the desired tissue regeneration and hence the drive for biomaterials that can support its transplantation and translation, providing not only physical support to seeded cells but also chemical and physiological cues to the cells to facilitate tissue regeneration. The cardiac and pulmonary systems, although literarily seen as just being functionally and spatially cooperative, as shown by their diverse and dissimilar adult cellular and tissue composition has been proven to share some common embryological codevelopment. However, necessitating their consideration for separate review is the immense adult architectural difference in these systems. This review also looks at details on new biological and synthetic biomaterials, tissue engineering, nanotechnology, and organ decellularization for cardiopulmonary regenerative therapies.
Collapse
Affiliation(s)
| | | | - Joshua Yusuf
- All Saints University School of Medicine, Roseau, Dominica
- All Saints University School of Medicine, Kingstown, Saint Vincent and the Grenadines
| |
Collapse
|