1
|
Sleath H, Mognetti BM, Elani Y, Di Michele L. Haptotactic Motion of Multivalent Vesicles Along Ligand-Density Gradients. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:11474-11485. [PMID: 40300068 PMCID: PMC12080341 DOI: 10.1021/acs.langmuir.5c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 05/01/2025]
Abstract
Multivalent adhesion between cell-membrane receptors and surface- or particle-anchored ligands underpins a range of active cellular processes, such as cell crawling and pathogen invasion. In these circumstances, motion is often caused by gradients in ligand density, which constitutes a simple example of haptotaxis. To unravel the biophysics of a potential passive mechanism for haptotaxis, we have designed an experimental model system in which multivalent lipid vesicles adhere to a substrate and migrate toward higher ligand densities. Adhesion occurs via vesicle-anchored receptors and substrate-anchored ligands, both consisting of synthetic DNA linkers that allow precise control over binding strength. Experimental data, rationalized through numerical and theoretical models, reveal that motion directionality is correlated to both binding strength and vesicle size. Besides providing insights into a potential mechanism for adhesive haptotaxis, our results highlight design rules applicable to the future development of biomimetic systems capable of directed motion.
Collapse
Affiliation(s)
- Hannah Sleath
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, 82 Wood Lane, London W12
0BZ, U.K.
- fabriCELL, Imperial College London, Molecular Sciences Research
Hub, 82 Wood Lane, London W12 0BZ, U.K.
| | - Bortolo M. Mognetti
- Interdisciplinary
Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles (ULB), B-1050 Brussels, Belgium
| | - Yuval Elani
- fabriCELL, Imperial College London, Molecular Sciences Research
Hub, 82 Wood Lane, London W12 0BZ, U.K.
- Department
of Chemical Engineering, Imperial College
London, Imperial College
Road, London SW7 2AZ, U.K.
| | - Lorenzo Di Michele
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, 82 Wood Lane, London W12
0BZ, U.K.
- fabriCELL, Imperial College London, Molecular Sciences Research
Hub, 82 Wood Lane, London W12 0BZ, U.K.
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.
| |
Collapse
|
2
|
Camacho-Gomez D, Movilla N, Borau C, Martin A, Oñate Salafranca C, Pardo J, Gomez-Benito MJ, Garcia-Aznar JM. An agent-based method to estimate 3D cell migration trajectories from 2D measurements: Quantifying and comparing T vs CAR-T 3D cell migration. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 255:108331. [PMID: 39068872 DOI: 10.1016/j.cmpb.2024.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND AND OBJECTIVE Immune cell migration is one of the key features that enable immune cells to find invading pathogens, control tissue damage, and eliminate primary developing tumors. Chimeric antigen receptor (CAR) T-cell therapy is a novel strategy in the battle against various cancers. It has been successful in treating hematological tumors, yet it still faces many challenges in the case of solid tumors. In this work, we evaluate the three-dimensional (3D) migration capacity of T and CAR-T cells within dense collagen-based hydrogels. Quantifying three-dimensional (3D) cell migration requires microscopy techniques that may not be readily accessible. Thus, we introduce a straightforward mathematical model designed to infer 3D trajectories of cells from two-dimensional (2D) cell trajectories. METHODS We develop a 3D agent-based model (ABM) that simulates the temporal changes in the direction of migration with an inverse transform sampling method. Then, we propose an optimization procedure to accurately orient cell migration over time to reproduce cell migration from 2D experimental cell trajectories. With this model, we simulate cell migration assays of T and CAR-T cells in microfluidic devices conducted under hydrogels with different concentrations of type I collagen and validate our 3D cell migration predictions with light-sheet microscopy. RESULTS Our findings indicate that CAR-T cell migration is more sensitive to collagen concentration increases than T cells, resulting in a more pronounced reduction in their invasiveness. Moreover, our computational model reveals significant differences in 3D movement patterns between T and CAR-T cells. T cells exhibit migratory behavior in 3D whereas that CAR-T cells predominantly move within the XY plane, with limited movement in the Z direction. However, upon the introduction of a CXCL12 chemical gradient, CAR-T cells present migration patterns that closely resemble those of T cells. CONCLUSIONS This framework demonstrates that 2D projections of 3D trajectories may not accurately represent real migration patterns. Moreover, it offers a tool to estimate 3D migration patterns from 2D experimental data, which can be easily obtained with automatic quantification algorithms. This approach helps reduce the need for sophisticated and expensive microscopy equipment required in laboratories, as well as the computational burden involved in producing and analyzing 3D experimental data.
Collapse
Affiliation(s)
- Daniel Camacho-Gomez
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Nieves Movilla
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Carlos Borau
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain; Centro Universitario de la Defensa de Zaragoza, Zaragoza, 50090, Spain
| | - Alejandro Martin
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | | | - Julian Pardo
- Faculty of Medicine, University of Zaragoza/IIS Aragon, Spain; CIBER of Infectious diseases, IS Carlos III, Madrid, Spain
| | - Maria Jose Gomez-Benito
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - Jose Manuel Garcia-Aznar
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
3
|
3D collagen migration patterns reveal a SMAD3-dependent and TGF-β1-independent mechanism of recruitment for tumour-associated fibroblasts in lung adenocarcinoma. Br J Cancer 2023; 128:967-981. [PMID: 36572730 PMCID: PMC10006167 DOI: 10.1038/s41416-022-02093-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The TGF-β1 transcription factor SMAD3 is epigenetically repressed in tumour-associated fibroblasts (TAFs) from lung squamous cell carcinoma (SCC) but not adenocarcinoma (ADC) patients, which elicits a compensatory increase in SMAD2 that renders SCC-TAFs less fibrotic. Here we examined the effects of altered SMAD2/3 in fibroblast migration and its impact on the desmoplastic stroma formation in lung cancer. METHODS We used a microfluidic device to examine descriptors of early protrusions and subsequent migration in 3D collagen gels upon knocking down SMAD2 or SMAD3 by shRNA in control fibroblasts and TAFs. RESULTS High SMAD3 conditions as in shSMAD2 fibroblasts and ADC-TAFs exhibited a migratory advantage in terms of protrusions (fewer and longer) and migration (faster and more directional) selectively without TGF-β1 along with Erk1/2 hyperactivation. This enhanced migration was abrogated by TGF-β1 as well as low glucose medium and the MEK inhibitor Trametinib. In contrast, high SMAD2 fibroblasts were poorly responsive to TGF-β1, high glucose and Trametinib, exhibiting impaired migration in all conditions. CONCLUSIONS The basal migration advantage of high SMAD3 fibroblasts provides a straightforward mechanism underlying the larger accumulation of TAFs previously reported in ADC compared to SCC. Moreover, our results encourage using MEK inhibitors in ADC-TAFs but not SCC-TAFs.
Collapse
|
4
|
A Mutation in Mouse MT-ATP6 Gene Induces Respiration Defects and Opposed Effects on the Cell Tumorigenic Phenotype. Int J Mol Sci 2023; 24:ijms24021300. [PMID: 36674816 PMCID: PMC9865613 DOI: 10.3390/ijms24021300] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
As the last step of the OXPHOS system, mitochondrial ATP synthase (or complex V) is responsible for ATP production by using the generated proton gradient, but also has an impact on other important functions linked to this system. Mutations either in complex V structural subunits, especially in mtDNA-encoded ATP6 gene, or in its assembly factors, are the molecular cause of a wide variety of human diseases, most of them classified as neurodegenerative disorders. The role of ATP synthase alterations in cancer development or metastasis has also been postulated. In this work, we reported the generation and characterization of the first mt-Atp6 pathological mutation in mouse cells, an m.8414A>G transition that promotes an amino acid change from Asn to Ser at a highly conserved residue of the protein (p.N163S), located near the path followed by protons from the intermembrane space to the mitochondrial matrix. The phenotypic consequences of the p.N163S change reproduce the effects of MT-ATP6 mutations in human diseases, such as dependence on glycolysis, defective OXPHOS activity, ATP synthesis impairment, increased ROS generation or mitochondrial membrane potential alteration. These observations demonstrate that this mutant cell line could be of great interest for the generation of mouse models with the aim of studying human diseases caused by alterations in ATP synthase. On the other hand, mutant cells showed lower migration capacity, higher expression of MHC-I and slightly lower levels of HIF-1α, indicating a possible reduction of their tumorigenic potential. These results could suggest a protective role of ATP synthase inhibition against tumor transformation that could open the door to new therapeutic strategies in those cancer types relying on OXPHOS metabolism.
Collapse
|
5
|
Alamán‐Díez P, García‐Gareta E, Arruebo M, Pérez MÁ. A bone-on-a-chip collagen hydrogel-based model using pre-differentiated adipose-derived stem cells for personalized bone tissue engineering. J Biomed Mater Res A 2023; 111:88-105. [PMID: 36205241 PMCID: PMC9828068 DOI: 10.1002/jbm.a.37448] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/24/2022] [Accepted: 09/13/2022] [Indexed: 01/12/2023]
Abstract
Mesenchymal stem cells have contributed to the continuous progress of tissue engineering and regenerative medicine. Adipose-derived stem cells (ADSC) possess many advantages compared to other origins including easy tissue harvesting, self-renewal potential, and fast population doubling time. As multipotent cells, they can differentiate into osteoblastic cell linages. In vitro bone models are needed to carry out an initial safety assessment in the study of novel bone regeneration therapies. We hypothesized that 3D bone-on-a-chip models containing ADSC could closely recreate the physiological bone microenvironment and promote differentiation. They represent an intermedium step between traditional 2D-in vitro and in vivo experiments facilitating the screening of therapeutic molecules while saving resources. Herein, we have differentiated ADSC for 7 and 14 days and used them to fabricate in vitro bone models by embedding the pre-differentiated cells in a 3D collagen matrix placed in a microfluidic chip. Osteogenic markers such as alkaline phosphatase activity, calcium mineralization, changes on cell morphology, and expression of specific proteins (bone sialoprotein 2, dentin matrix acidic phosphoprotein-1, and osteocalcin) were evaluated to determine cell differentiation potential and evolution. This is the first miniaturized 3D-in vitro bone model created from pre-differentiated ADSC embedded in a hydrogel collagen matrix which could be used for personalized bone tissue engineering.
Collapse
Affiliation(s)
- Pilar Alamán‐Díez
- Multiscale in Mechanical and Biological Engineering, Aragón Institute of Engineering Research (I3A), Aragón Institute of Healthcare Research (IIS Aragón)University of ZaragozaZaragozaSpain
| | - Elena García‐Gareta
- Multiscale in Mechanical and Biological Engineering, Aragón Institute of Engineering Research (I3A), Aragón Institute of Healthcare Research (IIS Aragón)University of ZaragozaZaragozaSpain,Division of Biomaterials and Tissue Engineering, UCL Eastman Dental InstituteUniversity College LondonLondonUK
| | - Manuel Arruebo
- Aragón Institute of Nanoscience and Materials (INMA), Consejo Superior de Investigaciones Científicas (CSIC)University of ZaragozaZaragozaSpain,Department of Chemical EngineeringUniversity of ZaragozaZaragozaSpain
| | - María Ángeles Pérez
- Multiscale in Mechanical and Biological Engineering, Aragón Institute of Engineering Research (I3A), Aragón Institute of Healthcare Research (IIS Aragón)University of ZaragozaZaragozaSpain
| |
Collapse
|
6
|
Pawluchin A, Galic M. Moving through a changing world: Single cell migration in 2D vs. 3D. Front Cell Dev Biol 2022; 10:1080995. [PMID: 36605722 PMCID: PMC9810339 DOI: 10.3389/fcell.2022.1080995] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Migration of single adherent cells is frequently observed in the developing and adult organism and has been the subject of many studies. Yet, while elegant work has elucidated molecular and mechanical cues affecting motion dynamics on a flat surface, it remains less clear how cells migrate in a 3D setting. In this review, we explore the changing parameters encountered by cells navigating through a 3D microenvironment compared to cells crawling on top of a 2D surface, and how these differences alter subcellular structures required for propulsion. We further discuss how such changes at the micro-scale impact motion pattern at the macro-scale.
Collapse
Affiliation(s)
- Anna Pawluchin
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
- Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
- CIM-IMRPS Graduate Program, Münster, Germany
| | - Milos Galic
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
- Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| |
Collapse
|
7
|
Pérez-Rodríguez S, Borau C, García-Aznar JM, Gonzalo-Asensio J. A microfluidic-based analysis of 3D macrophage migration after stimulation by Mycobacterium, Salmonella and Escherichia. BMC Microbiol 2022; 22:211. [PMID: 36045335 PMCID: PMC9429415 DOI: 10.1186/s12866-022-02623-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Macrophages play an essential role in the process of recognition and containment of microbial infections. These immune cells are recruited to infectious sites to reach and phagocytose pathogens. Specifically, in this article, bacteria from the genus Mycobacterium, Salmonella and Escherichia, were selected to study the directional macrophage movement towards different bacterial fractions. We recreated a three-dimensional environment in a microfluidic device, using a collagen-based hydrogel that simulates the mechanical microarchitecture associated to the Extra Cellular Matrix (ECM). First, we showed that macrophage migration is affected by the collagen concentration of their environment, migrating greater distances at higher velocities with decreasing collagen concentrations. To recreate the infectious microenvironment, macrophages were exposed to lateral gradients of bacterial fractions obtained from the intracellular pathogens M. tuberculosis and S. typhimurium. Our results showed that macrophages migrated directionally, and in a concentration-dependent manner, towards the sites where bacterial fractions are located, suggesting the presence of attractants molecules in all the samples. We confirmed that purified M. tuberculosis antigens, as ESAT-6 and CFP-10, stimulated macrophage recruitment in our device. Finally, we also observed that macrophages migrate towards fractions from non-pathogenic bacteria, such as M. smegmatis and Escherichia coli. In conclusion, our microfluidic device is a useful tool which opens new perspectives to study the recognition of specific antigens by innate immune cells.
Collapse
|
8
|
Juste-Lanas Y, Guerrero PE, Camacho-Gomez D, Hervas-Raluy S, García-Aznar JM, Gómez-Benito MJ. Confined Cell Migration and Asymmetric Hydraulic Environments to Evaluate The Metastatic Potential of Cancer Cells. J Biomech Eng 2021; 144:1129080. [PMID: 34864878 DOI: 10.1115/1.4053143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 11/08/2022]
Abstract
Metastasis, a hallmark of cancer development, is also the leading reason for most cancer-related deaths. Furthermore, cancer cells are highly adaptable to microenvironments and can migrate along pre-existing channel-like tracks of anatomical structures. However, more representative three-dimensional models are required to reproduce the heterogeneity of metastatic cell migration in vivo to further understand the metastasis mechanism and develop novel therapeutic strategies against it. Here, we designed and fabricated different microfluidic-based devices that recreate confined migration and diverse environments with asymmetric hydraulic resistances. Our results show different migratory potential between metastatic and nonmetastatic cancer cells in confined environments. Moreover, although nonmetastatic cells have not been tested against barotaxis due to their low migration capacity, metastatic cells present an enhanced preference to migrate through the lowest resistance path, being sensitive to barotaxis. This device, approaching the study of metastasis capability based on confined cell migration and barotactic cell decisions, may pave the way for the implementation of such technology to determine and screen the metastatic potential of certain cancer cells.
Collapse
Affiliation(s)
- Yago Juste-Lanas
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain; Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - Pedro E Guerrero
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - Daniel Camacho-Gomez
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - Silvia Hervas-Raluy
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - J M García-Aznar
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - María José Gómez-Benito
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
9
|
Pérez-Rodríguez S, Huang SA, Borau C, García-Aznar JM, Polacheck WJ. Microfluidic model of monocyte extravasation reveals the role of hemodynamics and subendothelial matrix mechanics in regulating endothelial integrity. BIOMICROFLUIDICS 2021; 15:054102. [PMID: 34548891 PMCID: PMC8443302 DOI: 10.1063/5.0061997] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/26/2021] [Indexed: 05/08/2023]
Abstract
Extravasation of circulating cells is an essential process that governs tissue inflammation and the body's response to pathogenic infection. To initiate anti-inflammatory and phagocytic functions within tissues, immune cells must cross the vascular endothelial barrier from the vessel lumen to the subluminal extracellular matrix. In this work, we present a microfluidic approach that enables the recreation of a three-dimensional, perfused endothelial vessel formed by human endothelial cells embedded within a collagen-rich matrix. Monocytes are introduced into the vessel perfusate, and we investigate the role of luminal flow and collagen concentration on extravasation. In vessels conditioned with the flow, increased monocyte adhesion to the vascular wall was observed, though fewer monocytes extravasated to the collagen hydrogel. Our results suggest that the lower rates of extravasation are due to the increased vessel integrity and reduced permeability of the endothelial monolayer. We further demonstrate that vascular permeability is a function of collagen hydrogel mass concentration, with increased collagen concentrations leading to elevated vascular permeability and increased extravasation. Collectively, our results demonstrate that extravasation of monocytes is highly regulated by the structural integrity of the endothelial monolayer. The microfluidic approach developed here allows for the dissection of the relative contributions of these cues to further understand the key governing processes that regulate circulating cell extravasation and inflammation.
Collapse
Affiliation(s)
| | - Stephanie A. Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
10
|
Roncato F, Regev O, Yadav SK, Alon R. Microtubule destabilization is a critical checkpoint of chemotaxis and transendothelial migration in melanoma cells but not in T cells. Cell Adh Migr 2021; 15:166-179. [PMID: 34152257 PMCID: PMC8218694 DOI: 10.1080/19336918.2021.1934958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Microtubules (MTs) control cell shape and intracellular cargo transport. The role of MT turnover in the migration of slow-moving cells through endothelial barriers remains unclear. To irreversibly interfere with MT disassembly, we have used the MT-stabilizing agent zampanolide (ZMP) in Β16F10 melanoma as amodel of slow-moving cells. ZMP-treated B16 cells failed to follow chemotactic gradients across rigid confinements and could not generate stable sub-endothelial pseudopodia under endothelial monolayers. In vivo, ZMP-treated Β16 cells failed to extravasate though lung capillaries. In contrast to melanoma cells, the chemotaxis and transendothelial migration of ZMP-treated Tcells were largely conserved. This is afirst demonstration that MT disassembly is akey checkpoint in the directional migration of cancer cells but not of lymphocytes.
Collapse
Affiliation(s)
- Francesco Roncato
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Ofer Regev
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Ronen Alon
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
11
|
Mansoorifar A, Gordon R, Bergan R, Bertassoni LE. Bone-on-a-chip: microfluidic technologies and microphysiologic models of bone tissue. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2006796. [PMID: 35422682 PMCID: PMC9007546 DOI: 10.1002/adfm.202006796] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Indexed: 05/07/2023]
Abstract
Bone is an active organ that continuously undergoes an orchestrated process of remodeling throughout life. Bone tissue is uniquely capable of adapting to loading, hormonal, and other changes happening in the body, as well as repairing bone that becomes damaged to maintain tissue integrity. On the other hand, diseases such as osteoporosis and metastatic cancers disrupt normal bone homeostasis leading to compromised function. Historically, our ability to investigate processes related to either physiologic or diseased bone tissue has been limited by traditional models that fail to emulate the complexity of native bone. Organ-on-a-chip models are based on technological advances in tissue engineering and microfluidics, enabling the reproduction of key features specific to tissue microenvironments within a microfabricated device. Compared to conventional in-vitro and in-vivo bone models, microfluidic models, and especially organs-on-a-chip platforms, provide more biomimetic tissue culture conditions, with increased predictive power for clinical assays. In this review, we will report microfluidic and organ-on-a-chip technologies designed for understanding the biology of bone as well as bone-related diseases and treatments. Finally, we discuss the limitations of the current models and point toward future directions for microfluidics and organ-on-a-chip technologies in bone research.
Collapse
Affiliation(s)
- Amin Mansoorifar
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
| | - Ryan Gordon
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Raymond Bergan
- Division of Hematology/Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Luiz E. Bertassoni
- Department of Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, OR, USA
- Center for Regenerative Medicine, School of Medicine, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, USA
- Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Portland, OR, USA
| |
Collapse
|
12
|
Gonçalves IG, Garcia-Aznar JM. Extracellular matrix density regulates the formation of tumour spheroids through cell migration. PLoS Comput Biol 2021; 17:e1008764. [PMID: 33635856 PMCID: PMC7968691 DOI: 10.1371/journal.pcbi.1008764] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 03/17/2021] [Accepted: 02/02/2021] [Indexed: 11/18/2022] Open
Abstract
In this work, we show how the mechanical properties of the cellular microenvironment modulate the growth of tumour spheroids. Based on the composition of the extracellular matrix, its stiffness and architecture can significantly vary, subsequently influencing cell movement and tumour growth. However, it is still unclear exactly how both of these processes are regulated by the matrix composition. Here, we present a centre-based computational model that describes how collagen density, which modulates the steric hindrance properties of the matrix, governs individual cell migration and, consequently, leads to the formation of multicellular clusters of varying size. The model was calibrated using previously published experimental data, replicating a set of experiments in which cells were seeded in collagen matrices of different collagen densities, hence producing distinct mechanical properties. At an initial stage, we tracked individual cell trajectories and speeds. Subsequently, the formation of multicellular clusters was also analysed by quantifying their size. Overall, the results showed that our model could accurately replicate what was previously seen experimentally. Specifically, we showed that cells seeded in matrices with low collagen density tended to migrate more. Accordingly, cells strayed away from their original cluster and thus promoted the formation of small structures. In contrast, we also showed that high collagen densities hindered cell migration and produced multicellular clusters with increased volume. In conclusion, this model not only establishes a relation between matrix density and individual cell migration but also showcases how migration, or its inhibition, modulates tumour growth.
Collapse
Affiliation(s)
- Inês G. Gonçalves
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Mechanical Engineering Department, University of Zaragoza, Zaragoza, Spain
| | - Jose Manuel Garcia-Aznar
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Mechanical Engineering Department, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
13
|
Li Z, Bratlie KM. Fibroblasts treated with macrophage conditioned medium results in phenotypic shifts and changes in collagen organization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111915. [PMID: 33641908 DOI: 10.1016/j.msec.2021.111915] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/30/2020] [Accepted: 01/23/2021] [Indexed: 01/08/2023]
Abstract
In tissue regeneration, the goal is to regenerate tissue similar to what was damaged or missing while preventing fibrotic scarring, which may lead to decreased mechanical strength and dissimilar tissue characteristics compared to native tissue. We believe collagen orientation plays a critical role in wound contraction and scarring and that it is modulated by myofibroblasts. We used macrophage conditioned medium to simulate complex events that can influence the fibroblast phenotype during the wound healing process. In addition to examining the effect of macrophage phenotype on fibroblasts, we inhibited focal adhesion kinase (FAK), Rho-associated protein kinase (ROCK), and myosin II for fibroblasts cultured on both tissue culture plastic and methacrylated gellan gum to understand how different pathways and materials influence fibroblast responses. Collagen orientation, α-SMA expression, focal adhesion area, and cell migration were altered by inhibition of FAK, ROCK, or myosin II and macrophage phenotype, along with the substrate. An increase in either focal adhesion area or α-smooth muscle actin (α-SMA) expression correlated with an aligned collagen orientation. Gellan gum hydrogels upregulated α-SMA expression in ROCK inhibited conditioned media and downregulated the FAK area in FAK and ROCK inhibited conditioned media. Myosin II had no impact on the α-SMA expression on the substrate compared to coverslip except for M2 conditioned medium. Gellan gum hydrogel significantly increased cell migration under FAK and Myosin II mediated conditioned media and unconditioned media. Collectively, our study examined how macrophage phenotype influences fibroblast response, which would be beneficial in controlling scar tissue formation.
Collapse
Affiliation(s)
- Zhuqing Li
- Department of Materials Science & Engineering, Iowa State University, Ames, IA 50011, USA
| | - Kaitlin M Bratlie
- Department of Materials Science & Engineering, Iowa State University, Ames, IA 50011, USA; Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
14
|
Ayuso JM, Park KY, Virumbrales-Muñoz M, Beebe DJ. Toward improved in vitro models of human cancer. APL Bioeng 2021; 5:010902. [PMID: 33532672 PMCID: PMC7822630 DOI: 10.1063/5.0026857] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is a leading cause of death across the world and continues to increase in incidence. Despite years of research, multiple tumors (e.g., glioblastoma, pancreatic cancer) still have limited treatment options in the clinic. Additionally, the attrition rate and cost of drug development have continued to increase. This trend is partly explained by the poor predictive power of traditional in vitro tools and animal models. Moreover, multiple studies have highlighted that cell culture in traditional Petri dishes commonly fail to predict drug sensitivity. Conversely, animal models present differences in tumor biology compared with human pathologies, explaining why promising therapies tested in animal models often fail when tested in humans. The surging complexity of patient management with the advent of cancer vaccines, immunotherapy, and precision medicine demands more robust and patient-specific tools to better inform our understanding and treatment of human cancer. Advances in stem cell biology, microfluidics, and cell culture have led to the development of sophisticated bioengineered microscale organotypic models (BMOMs) that could fill this gap. In this Perspective, we discuss the advantages and limitations of patient-specific BMOMs to improve our understanding of cancer and how these tools can help to confer insight into predicting patient response to therapy.
Collapse
Affiliation(s)
| | - Keon-Young Park
- Department of Surgery, University of California San Francisco, San Francisco, California 94143, USA
| | | | | |
Collapse
|
15
|
Serrano-Alcalde F, García-Aznar JM, Gómez-Benito MJ. Cell biophysical stimuli in lobopodium formation: a computer based approach. Comput Methods Biomech Biomed Engin 2020; 24:496-505. [PMID: 33111554 DOI: 10.1080/10255842.2020.1836622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Different cell migration modes have been identified in 3D environments, e.g., modes incorporating lamellopodia or blebs. Recently, a new type of cellular migration has been investigated: lobopodia-based migration, which appears only in three-dimensional matrices under certain conditions. The cell creates a protrusion through which the nucleus slips, dividing the cell into two parts (front and rear) with different hydrostatic pressures. In this work, we elucidate the mechanical conditions that favour this type of migration.One of the hypotheses about this type of migration is that it depends on the mechanical properties of the extracellular matrix. That is, lobopodia-based migration is dependent on whether the extracellular matrix is linearly elastic or non-linearly elastic.To determine whether the mechanical properties of the extracellular matrix are crucial in the choice of cell migration mode and which mechanotransduction mechanism the cell might use, we develop a finite element model. From our simulations, we identify two different possible mechanotransduction mechanisms that could regulate the cell to switch from a lobopodial to a lamellipodial migration mode. The first relies on a differential pressure increase inside the cytoplasm while the cell contracts, and the second relies on a change in the fluid flow direction in non-linearly elastic extracellular matrices but not in linearly elastic matrices. The biphasic nature of the cell has been determined to mediate this mechanism and the different behaviours of cells in linearly elastic and non-linearly elastic matrices.
Collapse
Affiliation(s)
- Francisco Serrano-Alcalde
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - José Manuel García-Aznar
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - María José Gómez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
16
|
Yamahira S, Satoh T, Yanagawa F, Tamura M, Takagi T, Nakatani E, Kusama Y, Sumaru K, Sugiura S, Kanamori T. Stepwise construction of dynamic microscale concentration gradients around hydrogel-encapsulated cells in a microfluidic perfusion culture device. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200027. [PMID: 32874617 PMCID: PMC7428233 DOI: 10.1098/rsos.200027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Inside living organisms, concentration gradients dynamically change over time as biological processes progress. Therefore, methods to construct dynamic microscale concentration gradients in a spatially controlled manner are needed to provide more realistic research environments. Here, we report a novel method for the construction of dynamic microscale concentration gradients in a stepwise manner around cells in micropatterned hydrogel. In our method, cells are encapsulated in a photodegradable hydrogel formed inside a microfluidic perfusion culture device, and perfusion microchannels are then fabricated in the hydrogel by micropatterned photodegradation. The cells in the micropatterned hydrogel can then be cultured by perfusing culture medium through the fabricated microchannels. By using this method, we demonstrate the simultaneous construction of two dynamic concentration gradients, which allowed us to expose the cells encapsulated in the hydrogel to a dynamic microenvironment.
Collapse
Affiliation(s)
- Shinya Yamahira
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Taku Satoh
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Fumiki Yanagawa
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Masato Tamura
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Toshiyuki Takagi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Eri Nakatani
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Yuta Kusama
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
- Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Kimio Sumaru
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Shinji Sugiura
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Toshiyuki Kanamori
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| |
Collapse
|
17
|
Vaeyens MM, Jorge-Peñas A, Barrasa-Fano J, Shapeti A, Roeffaers M, Van Oosterwyck H. Actomyosin-dependent invasion of endothelial sprouts in collagen. Cytoskeleton (Hoboken) 2020; 77:261-276. [PMID: 32588525 DOI: 10.1002/cm.21624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/11/2020] [Accepted: 06/22/2020] [Indexed: 12/30/2022]
Abstract
During sprouting angiogenesis-the growth of blood vessels from the existing vasculature-endothelial cells (ECs) adopt an elongated invasive form and exert forces at cell-cell and cell-matrix interaction sites. These cell shape changes and cellular tractions require extensive reorganizations of the actomyosin network. However, the respective roles of actin and myosin for endothelial sprouting are not fully elucidated. In this study, we further investigate these roles by treating 2D-migrating and 3D-sprouting ECs with chemical compounds targeting either myosin or actin. These treatments affected the endothelial cytoskeleton drastically and reduced the invasive response in a compound-specific manner; pointing toward a tight control of the actin and myosin activity during sprouting. Clusters in the data further illustrate that endothelial sprout morphology is sensitive to the in vitro model mechanical microenvironment and directs future research toward mechanical substrate guidance as a strategy for promoting engineered tissue vascularization. In summary, our results add to a growing corpus of research highlighting a key role of the cytoskeleton for sprouting angiogenesis.
Collapse
Affiliation(s)
- Marie-Mo Vaeyens
- Biomechanics Section (BMe), Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Alvaro Jorge-Peñas
- Biomechanics Section (BMe), Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Jorge Barrasa-Fano
- Biomechanics Section (BMe), Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Apeksha Shapeti
- Biomechanics Section (BMe), Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Maarten Roeffaers
- Department of Microbial and Molecular Systems (M2S), Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Leuven, Belgium
| | - Hans Van Oosterwyck
- Biomechanics Section (BMe), Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.,Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Movilla N, Valero C, Borau C, García-Aznar JM. Matrix degradation regulates osteoblast protrusion dynamics and individual migration. Integr Biol (Camb) 2020; 11:404-413. [PMID: 31922533 DOI: 10.1093/intbio/zyz035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 09/06/2019] [Accepted: 10/19/2019] [Indexed: 01/21/2023]
Abstract
Protrusions are one of the structures that cells use to sense their surrounding environment in a probing and exploratory manner as well as to communicate with other cells. In particular, osteoblasts embedded within a 3D matrix tend to originate a large number of protrusions compared to other type of cells. In this work, we study the role that mechanochemical properties of the extracellular matrix (ECM) play on the dynamics of these protrusions, namely, the regulation of the size and number of emanating structures. In addition, we also determine how the dynamics of the protrusions may lead the 3D movement of the osteoblasts. Significant differences were found in protrusion size and cell velocity, when degradation activity due to metalloproteases was blocked by means of an artificial broad-spectrum matrix metalloproteinase inhibitor, whereas stiffening of the matrix by introducing transglutaminase crosslinking, only induced slight changes in both protrusion size and cell velocity, suggesting that the ability of cells to create a path through the matrix is more critical than the matrix mechanical properties themselves. To confirm this, we developed a cell migration computational model in 3D including both the mechanical and chemical properties of the ECM as well as the protrusion mechanics, obtaining good agreement with experimental results.
Collapse
Affiliation(s)
- Nieves Movilla
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Clara Valero
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Carlos Borau
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Jose Manuel García-Aznar
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
19
|
Pham QL, Tong A, Rodrigues LN, Zhao Y, Surblyte M, Ramos D, Brito J, Rahematpura A, Voronov RS. Ranking migration cue contributions to guiding individual fibroblasts faced with a directional decision in simple microfluidic bifurcations. Integr Biol (Camb) 2020; 11:208-220. [PMID: 31251334 DOI: 10.1093/intbio/zyz018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/04/2019] [Accepted: 05/21/2019] [Indexed: 01/02/2023]
Abstract
Directed cell migration in complex micro-environments, such as in vivo pores, is important for predicting locations of artificial tissue growth and optimizing scaffold architectures. Yet, the directional decisions of cells facing multiple physiochemical cues have not been characterized. Hence, we aim to provide a ranking of the relative importance of the following cues to the decision-making of individual fibroblast cells: chemoattractant concentration gradient, channel width, mitosis, and contact-guidance. In this study, bifurcated micro-channels with branches of different widths were created. Fibroblasts were then allowed to travel across these geometries by following a gradient of platelet-derived growth factor-BB (PDGF-BB) established inside the channels. Subsequently, a combination of statistical analysis and image-based diffusion modeling was used to report how the presence of multiple complex migration cues, including cell-cell influences, affect the fibroblast decision-making. It was found that the cells prefer wider channels over a higher chemoattractant gradient when choosing between asymmetric bifurcated branches. Only when the branches were symmetric in width did the gradient become predominant in directing which path the cell will take. Furthermore, when both the gradient and the channels were symmetric, contact guidance became important for guiding the cells in making directional choices. Based on these results we were able to rank these directional cues from most influential to the least as follows: mitosis > channel width asymmetry > chemoattractant gradient difference > and contact-guidance. It is expected that these results will benefit the fields of regenerative medicine, wound healing and developmental biology.
Collapse
Affiliation(s)
- Quang Long Pham
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Anh Tong
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Lydia N Rodrigues
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Yang Zhao
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Migle Surblyte
- Ying Wu College of Computing Sciences, Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Diomar Ramos
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - John Brito
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Adwik Rahematpura
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Roman S Voronov
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
20
|
|
21
|
Matellan C, Del Río Hernández AE. Engineering the cellular mechanical microenvironment - from bulk mechanics to the nanoscale. J Cell Sci 2019; 132:132/9/jcs229013. [PMID: 31040223 DOI: 10.1242/jcs.229013] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The field of mechanobiology studies how mechanical properties of the extracellular matrix (ECM), such as stiffness, and other mechanical stimuli regulate cell behaviour. Recent advancements in the field and the development of novel biomaterials and nanofabrication techniques have enabled researchers to recapitulate the mechanical properties of the microenvironment with an increasing degree of complexity on more biologically relevant dimensions and time scales. In this Review, we discuss different strategies to engineer substrates that mimic the mechanical properties of the ECM and outline how these substrates have been applied to gain further insight into the biomechanical interaction between the cell and its microenvironment.
Collapse
Affiliation(s)
- Carlos Matellan
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Armando E Del Río Hernández
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
22
|
Rieu C, Parisi C, Mosser G, Haye B, Coradin T, Fernandes FM, Trichet L. Topotactic Fibrillogenesis of Freeze-Cast Microridged Collagen Scaffolds for 3D Cell Culture. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14672-14683. [PMID: 30913387 DOI: 10.1021/acsami.9b03219] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Type I collagen is the main component of the extracellular matrix (ECM). In vitro, under a narrow window of physicochemical conditions, type I collagen self-assembles to form complex supramolecular architectures reminiscent of those found in native ECM. Presently, a major challenge in collagen-based biomaterials is to couple the delicate collagen fibrillogenesis events with a controlled shaping process in non-denaturating conditions. In this work, an ice-templating approach promoting the structuration of collagen into macroporous monoliths is used. Instead of common solvent removal procedures, a new topotactic conversion approach yielding self-assembled ordered fibrous materials is implemented. These collagen-only, non-cross-linked scaffolds exhibit uncommon mechanical properties in the wet state, with a Young's modulus of 33 ± 12 kPa, an ultimate tensile stress of 33 ± 6 kPa, and a strain at failure of 105 ± 28%. With the help of the ice-patterned microridge features, normal human dermal fibroblasts and C2C12 murine myoblasts successfully migrate and form highly aligned populations within the resulting three-dimensional (3D) collagen scaffolds. These results open a new pathway to the development of new tissue engineering scaffolds ordered across various organization levels from the molecule to the macropore and are of particular interest for biomedical applications where large-scale 3D cell alignment is needed such as for muscular or nerve reconstruction.
Collapse
Affiliation(s)
- Clément Rieu
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, Pierre and Marie Curie Campus , 4 place Jussieu , 75252 Paris Cedex 05 , France
| | - Cleo Parisi
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, Pierre and Marie Curie Campus , 4 place Jussieu , 75252 Paris Cedex 05 , France
| | - Gervaise Mosser
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, Pierre and Marie Curie Campus , 4 place Jussieu , 75252 Paris Cedex 05 , France
| | - Bernard Haye
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, Pierre and Marie Curie Campus , 4 place Jussieu , 75252 Paris Cedex 05 , France
| | - Thibaud Coradin
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, Pierre and Marie Curie Campus , 4 place Jussieu , 75252 Paris Cedex 05 , France
| | - Francisco M Fernandes
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, Pierre and Marie Curie Campus , 4 place Jussieu , 75252 Paris Cedex 05 , France
| | - Léa Trichet
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, Pierre and Marie Curie Campus , 4 place Jussieu , 75252 Paris Cedex 05 , France
| |
Collapse
|
23
|
Taale M, Schütt F, Carey T, Marx J, Mishra YK, Stock N, Fiedler B, Torrisi F, Adelung R, Selhuber-Unkel C. Biomimetic Carbon Fiber Systems Engineering: A Modular Design Strategy To Generate Biofunctional Composites from Graphene and Carbon Nanofibers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5325-5335. [PMID: 30600988 PMCID: PMC6369718 DOI: 10.1021/acsami.8b17627] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/02/2019] [Indexed: 05/21/2023]
Abstract
Carbon-based fibrous scaffolds are highly attractive for all biomaterial applications that require electrical conductivity. It is additionally advantageous if such materials resembled the structural and biochemical features of the natural extracellular environment. Here, we show a novel modular design strategy to engineer biomimetic carbon fiber-based scaffolds. Highly porous ceramic zinc oxide (ZnO) microstructures serve as three-dimensional (3D) sacrificial templates and are infiltrated with carbon nanotubes (CNTs) or graphene dispersions. Once the CNTs and graphene coat the ZnO template, the ZnO is either removed by hydrolysis or converted into carbon by chemical vapor deposition. The resulting 3D carbon scaffolds are both hierarchically ordered and free-standing. The properties of the microfibrous scaffolds were tailored with a high porosity (up to 93%), a high Young's modulus (ca. 0.027-22 MPa), and an electrical conductivity of ca. 0.1-330 S/m, as well as different surface compositions. Cell viability, fibroblast proliferation rate and protein adsorption rate assays have shown that the generated scaffolds are biocompatible and have a high protein adsorption capacity (up to 77.32 ± 6.95 mg/cm3) so that they are able to resemble the extracellular matrix not only structurally but also biochemically. The scaffolds also allow for the successful growth and adhesion of fibroblast cells, showing that we provide a novel, highly scalable modular design strategy to generate biocompatible carbon fiber systems that mimic the extracellular matrix with the additional feature of conductivity.
Collapse
Affiliation(s)
- Mohammadreza Taale
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials,
Institute for Materials Science, Kiel University, Kaiserstraße 2, D-24143 Kiel, Germany
| | - Fabian Schütt
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials,
Institute for Materials Science, Kiel University, Kaiserstraße 2, D-24143 Kiel, Germany
| | - Tian Carey
- Cambridge
Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, U.K.
| | - Janik Marx
- Institute
of Polymer and Composites, Hamburg University
of Technology, Denickestraße
15, D-21073 Hamburg, Germany
| | - Yogendra Kumar Mishra
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials,
Institute for Materials Science, Kiel University, Kaiserstraße 2, D-24143 Kiel, Germany
| | - Norbert Stock
- Institute
of Inorganic Chemistry, Kiel University, Max-Eyth Straße 2, D-24118 Kiel, Germany
| | - Bodo Fiedler
- Institute
of Polymer and Composites, Hamburg University
of Technology, Denickestraße
15, D-21073 Hamburg, Germany
| | - Felice Torrisi
- Cambridge
Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, U.K.
| | - Rainer Adelung
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials,
Institute for Materials Science, Kiel University, Kaiserstraße 2, D-24143 Kiel, Germany
| | - Christine Selhuber-Unkel
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials,
Institute for Materials Science, Kiel University, Kaiserstraße 2, D-24143 Kiel, Germany
| |
Collapse
|
24
|
Merino-Casallo F, Gomez-Benito MJ, Juste-Lanas Y, Martinez-Cantin R, Garcia-Aznar JM. Integration of in vitro and in silico Models Using Bayesian Optimization With an Application to Stochastic Modeling of Mesenchymal 3D Cell Migration. Front Physiol 2018; 9:1246. [PMID: 30271351 PMCID: PMC6142046 DOI: 10.3389/fphys.2018.01246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/17/2018] [Indexed: 11/13/2022] Open
Abstract
Cellular migration plays a crucial role in many aspects of life and development. In this paper, we propose a computational model of 3D migration that is solved by means of the tau-leaping algorithm and whose parameters have been calibrated using Bayesian optimization. Our main focus is two-fold: to optimize the numerical performance of the mechano-chemical model as well as to automate the calibration process of in silico models using Bayesian optimization. The presented mechano-chemical model allows us to simulate the stochastic behavior of our chemically reacting system in combination with mechanical constraints due to the surrounding collagen-based matrix. This numerical model has been used to simulate fibroblast migration. Moreover, we have performed in vitro analysis of migrating fibroblasts embedded in 3D collagen-based fibrous matrices (2 mg/ml). These in vitro experiments have been performed with the main objective of calibrating our model. Nine model parameters have been calibrated testing 300 different parametrizations using a completely automatic approach. Two competing evaluation metrics based on the Bhattacharyya coefficient have been defined in order to fit the model parameters. These metrics evaluate how accurately the in silico model is replicating in vitro measurements regarding the two main variables quantified in the experimental data (number of protrusions and the length of the longest protrusion). The selection of an optimal parametrization is based on the balance between the defined evaluation metrics. Results show how the calibrated model is able to predict the main features observed in the in vitro experiments.
Collapse
Affiliation(s)
- Francisco Merino-Casallo
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, Aragón Institute of Engineering Research, Universidad de Zaragoza, Zaragoza, Spain
| | - Maria J Gomez-Benito
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, Aragón Institute of Engineering Research, Universidad de Zaragoza, Zaragoza, Spain
| | - Yago Juste-Lanas
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, Aragón Institute of Engineering Research, Universidad de Zaragoza, Zaragoza, Spain
| | - Ruben Martinez-Cantin
- Centro Universitario de la Defensa, Zaragoza, Spain.,SigOpt, Inc., San Francisco, CA, United States
| | - Jose M Garcia-Aznar
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, Aragón Institute of Engineering Research, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
25
|
Plou J, Juste-Lanas Y, Olivares V, Del Amo C, Borau C, García-Aznar JM. From individual to collective 3D cancer dissemination: roles of collagen concentration and TGF-β. Sci Rep 2018; 8:12723. [PMID: 30143683 PMCID: PMC6109049 DOI: 10.1038/s41598-018-30683-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer cells have the ability to migrate from the primary (original) site to other places in the body. The extracellular matrix affects cancer cell migratory capacity and has been correlated with tissue-specific spreading patterns. However, how the matrix orchestrates these behaviors remains unclear. Here, we investigated how both higher collagen concentrations and TGF-β regulate the formation of H1299 cell (a non-small cell lung cancer cell line) spheroids within 3D collagen-based matrices and promote cancer cell invasive capacity. We show that at low collagen concentrations, tumor cells move individually and have moderate invasive capacity, whereas when the collagen concentration is increased, the formation of cell clusters is promoted. In addition, when the concentration of TGF-β in the microenvironment is lower, most of the clusters are aggregates of cancer cells with a spheroid-like morphology and poor migratory capacity. In contrast, higher concentrations of TGF-β induced the formation of clusters with a notably higher invasive capacity, resulting in clear strand-like collective cell migration. Our results show that the concentration of the extracellular matrix is a key regulator of the formation of tumor clusters that affects their development and growth. In addition, chemical factors create a microenvironment that promotes the transformation of idle tumor clusters into very active, invasive tumor structures. These results collectively demonstrate the relevant regulatory role of the mechano-chemical microenvironment in leading the preferential metastasis of tumor cells to specific tissues with high collagen concentrations and TFG-β activity.
Collapse
Affiliation(s)
- J Plou
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research (I3A), Department of Mechanical Engineering, University of Zaragoza, 50018, Zaragoza, Spain.
| | - Y Juste-Lanas
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research (I3A), Department of Mechanical Engineering, University of Zaragoza, 50018, Zaragoza, Spain
| | - V Olivares
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research (I3A), Department of Mechanical Engineering, University of Zaragoza, 50018, Zaragoza, Spain
| | - C Del Amo
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research (I3A), Department of Mechanical Engineering, University of Zaragoza, 50018, Zaragoza, Spain
| | - C Borau
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research (I3A), Department of Mechanical Engineering, University of Zaragoza, 50018, Zaragoza, Spain
| | - J M García-Aznar
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research (I3A), Department of Mechanical Engineering, University of Zaragoza, 50018, Zaragoza, Spain.
| |
Collapse
|
26
|
3D Cell Migration Studies for Chemotaxis on Microfluidic-Based Chips: A Comparison between Cardiac and Dermal Fibroblasts. Bioengineering (Basel) 2018; 5:bioengineering5020045. [PMID: 29895736 PMCID: PMC6027294 DOI: 10.3390/bioengineering5020045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 11/16/2022] Open
Abstract
Fibroblast migration to damaged zones in different tissues is crucial to regenerate and recuperate their functional activity. However, fibroblast migration patterns have hardly been studied in disease terms. Here, we study this fundamental process in dermal and cardiac fibroblasts by means of microfluidic-based experiments, which simulate a three-dimensional matrix in which fibroblasts are found in physiological conditions. Cardiac fibroblasts show a higher mean and effective speed, as well as greater contractile force, in comparison to dermal fibroblasts. In addition, we generate chemical gradients to study fibroblast response to platelet derived growth factor (PDGF) and transforming growth factor beta (TGF-β) gradients. Dermal fibroblasts were attracted to PDGF, whereas cardiac fibroblasts are not. Notwithstanding, cardiac fibroblasts increased their mean and effective velocity in the presence of TGF-β. Therefore, given that we observe that the application of these growth factors does not modify fibroblasts’ morphology, these alterations in the migration patterns may be due to an intracellular regulation.
Collapse
|
27
|
Combined experimental and computational characterization of crosslinked collagen-based hydrogels. PLoS One 2018; 13:e0195820. [PMID: 29664953 PMCID: PMC5903660 DOI: 10.1371/journal.pone.0195820] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 04/01/2018] [Indexed: 12/24/2022] Open
Abstract
Collagen hydrogels are widely used for in-vitro experiments and tissue engineering applications. Their use has been extended due to their biocompatibility with cells and their capacity to mimic biological tissues; nevertheless their mechanical properties are not always optimal for these purposes. Hydrogels are formed by a network of polymer filaments embedded on an aqueous substrate and their mechanical properties are mainly defined by the filament network architecture and the individual filament properties. To increase properties of native collagen, such as stiffness or strain-stiffening, these networks can be modified by adding crosslinking agents that alter the network architecture, increasing the unions between filaments. In this work, we have investigated the effect of one crosslinking agent, transglutaminase, in collagen hydrogels with varying collagen concentration. We have observed a linear dependency of the gel rigidity on the collagen concentration. Moreover, the addition of transglutaminase has induced an earlier strain-stiffening of the collagen gels. In addition, to better understand the mechanical implications of collagen concentration and crosslinkers inclusion, we have adapted an existing computational model, based on the worm-like chain model (WLC), to reproduce the mechanical behavior of the collagen gels. With this model we can estimate the parameters of the biopolymer networks without more sophisticated techniques, such as image processing or network reconstruction, or, inversely, predict the mechanical properties of a defined collagen network.
Collapse
|
28
|
Del Amo C, Olivares V, Cóndor M, Blanco A, Santolaria J, Asín J, Borau C, García-Aznar JM. Matrix architecture plays a pivotal role in 3D osteoblast migration: The effect of interstitial fluid flow. J Mech Behav Biomed Mater 2018; 83:52-62. [PMID: 29677555 DOI: 10.1016/j.jmbbm.2018.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 03/28/2018] [Accepted: 04/09/2018] [Indexed: 12/22/2022]
Abstract
Osteoblast migration is a crucial process in bone regeneration, which is strongly regulated by interstitial fluid flow. However, the exact role that such flow exerts on osteoblast migration is still unclear. To deepen the understanding of this phenomenon, we cultured human osteoblasts on 3D microfluidic devices under different fluid flow regimes. Our results show that a slow fluid flow rate by itself is not able to alter the 3D migratory patterns of osteoblasts in collagen-based gels but that at higher fluid flow rates (increased flow velocity) may indirectly influence cell movement by altering the collagen microstructure. In fact, we observed that high fluid flow rates (1 µl/min) are able to alter the collagen matrix architecture and to indirectly modulate the migration pattern. However, when these collagen scaffolds were crosslinked with a chemical crosslinker, specifically, transglutaminase II, we did not find significant alterations in the scaffold architecture or in osteoblast movement. Therefore, our data suggest that high interstitial fluid flow rates can regulate osteoblast migration by means of modifying the orientation of collagen fibers. Together, these results highlight the crucial role of the matrix architecture in 3D osteoblast migration. In addition, we show that interstitial fluid flow in conjunction with the matrix architecture regulates the osteoblast morphology in 3D.
Collapse
Affiliation(s)
- Cristina Del Amo
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain; Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain
| | - Vanesa Olivares
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain; Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain
| | - Mar Cóndor
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain; Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain
| | - Alejandro Blanco
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain; Department of Design and Manufacturing Engineering, University of Zaragoza, Zaragoza, Spain
| | - Jorge Santolaria
- Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain; Department of Design and Manufacturing Engineering, University of Zaragoza, Zaragoza, Spain
| | - Jesús Asín
- Department of Statistical Methods, University of Zaragoza, Zaragoza, Spain
| | - Carlos Borau
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain; Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain
| | - José Manuel García-Aznar
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain; Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
29
|
A hybrid computational model for collective cell durotaxis. Biomech Model Mechanobiol 2018; 17:1037-1052. [DOI: 10.1007/s10237-018-1010-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/17/2018] [Indexed: 12/17/2022]
|
30
|
Movilla N, Borau C, Valero C, García-Aznar JM. Degradation of extracellular matrix regulates osteoblast migration: A microfluidic-based study. Bone 2018; 107:10-17. [PMID: 29107125 DOI: 10.1016/j.bone.2017.10.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 10/17/2017] [Accepted: 10/25/2017] [Indexed: 01/06/2023]
Abstract
Bone regeneration is strongly dependent on the capacity of cells to move in a 3D microenvironment, where a large cascade of signals is activated. To improve the understanding of this complex process and to advance in the knowledge of the role of each specific signal, it is fundamental to analyze the impact of each factor independently. Microfluidic-based cell culture is an appropriate technology to achieve this objective, because it allows recreating realistic 3D local microenvironments by taking into account the extracellular matrix, cells and chemical gradients in an independent or combined scenario. The main aim of this work is to analyze the impact of extracellular matrix properties and growth factor gradients on 3D osteoblast movement, as well as the role of cell matrix degradation. For that, we used collagen-based hydrogels, with and without crosslinkers, under different chemical gradients, and eventually inhibiting metalloproteinases to tweak matrix degradation. We found that osteoblast's 3D migratory patterns were affected by the hydrogel properties and the PDGF-BB gradient, although the strongest regulatory factor was determined by the ability of cells to remodel the matrix.
Collapse
Affiliation(s)
- N Movilla
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| | - C Borau
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| | - C Valero
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| | - J M García-Aznar
- Multiscale in Mechanical and Biological Engineering, Aragon Institute of Engineering Research, Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain.
| |
Collapse
|
31
|
Shin K, Yu H, Kim J. Determination of diffusion coefficient and partition coefficient of photoinitiator 2-hydroxy-2-methylpropiophenone in nanoporous polydimethylsiloxane network and aqueous poly(ethylene glycol) diacrylate solution. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Del Amo C, Borau C, Movilla N, Asín J, García-Aznar JM. Quantifying 3D chemotaxis in microfluidic-based chips with step gradients of collagen hydrogel concentrations. Integr Biol (Camb) 2017; 9:339-349. [PMID: 28300261 DOI: 10.1039/c7ib00022g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cell migration is an essential process involved in crucial stages of tissue formation, regeneration or immune function as well as in pathological processes including tumor development or metastasis. During the last few years, the effect of gradients of soluble molecules on cell migration has been widely studied, and complex systems have been used to analyze cell behavior under simultaneous mechano-chemical stimuli. Most of these chemotactic assays have, however, focused on specific substrates in 2D. The aim of the present work is to develop a novel microfluidic-based chip that allows the long-term chemoattractant effect of growth factors (GFs) on 3D cell migration to be studied, while also providing the possibility to analyze the influence of the interface generated between different adjacent hydrogels. Namely, 1.5, 2, 2.5 and 4 mg ml-1 concentrations of collagen type I were alternatively combined with 5, 10 or 50 ng ml-1 concentrations of PDGF and VEGF (as a negative control). To achieve this goal, we have designed a new microfluidic device including three adjacent chambers to introduce hydrogels that allow the generation of a collagen concentration step gradient. This versatile and simple platform was tested by using dermal human fibroblasts embedded in 3D collagen matrices. Images taken over a week were processed to quantify the number of cells in each zone. We found, in terms of cell distribution, that the presence of PDGF, especially in small concentrations, was a strong chemoattractant for dermal human fibroblasts across the gels regardless of their collagen concentration and step gradient direction, whereas the effects of VEGF or collagen step gradient concentrations alone were negligible.
Collapse
Affiliation(s)
- C Del Amo
- Aragón Institute of Engineering Research (I3A), Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain.
| | | | | | | | | |
Collapse
|
33
|
Ribeiro FO, Gómez-Benito MJ, Folgado J, Fernandes PR, García-Aznar JM. Computational model of mesenchymal migration in 3D under chemotaxis. Comput Methods Biomech Biomed Engin 2017; 20:59-74. [PMID: 27336322 PMCID: PMC5061084 DOI: 10.1080/10255842.2016.1198784] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/03/2016] [Indexed: 11/10/2022]
Abstract
Cell chemotaxis is an important characteristic of cellular migration, which takes part in crucial aspects of life and development. In this work, we propose a novel in silico model of mesenchymal 3D migration with competing protrusions under a chemotactic gradient. Based on recent experimental observations, we identify three main stages that can regulate mesenchymal chemotaxis: chemosensing, dendritic protrusion dynamics and cell-matrix interactions. Therefore, each of these features is considered as a different module of the main regulatory computational algorithm. The numerical model was particularized for the case of fibroblast chemotaxis under a PDGF-bb gradient. Fibroblasts migration was simulated embedded in two different 3D matrices - collagen and fibrin - and under several PDGF-bb concentrations. Validation of the model results was provided through qualitative and quantitative comparison with in vitro studies. Our numerical predictions of cell trajectories and speeds were within the measured in vitro ranges in both collagen and fibrin matrices. Although in fibrin, the migration speed of fibroblasts is very low, because fibrin is a stiffer and more entangling matrix. Testing PDGF-bb concentrations, we noticed that an increment of this factor produces a speed increment. At 1 ng mL-1 a speed peak is reached after which the migration speed diminishes again. Moreover, we observed that fibrin exerts a dampening behavior on migration, significantly affecting the migration efficiency.
Collapse
Affiliation(s)
- F. O. Ribeiro
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragón Institute of Engineering Research (I3A), Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza, Spain
| | - M. J. Gómez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragón Institute of Engineering Research (I3A), Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza, Spain
| | - J. Folgado
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - P. R. Fernandes
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - J. M. García-Aznar
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragón Institute of Engineering Research (I3A), Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
34
|
Weihs D, Gefen A, Vermolen FJ. Review on experiment-based two- and three-dimensional models for wound healing. Interface Focus 2016; 6:20160038. [PMID: 27708762 DOI: 10.1098/rsfs.2016.0038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Traumatic and chronic wounds are a considerable medical challenge that affects many populations and their treatment is a monetary and time-consuming burden in an ageing society to the medical systems. Because wounds are very common and their treatment is so costly, approaches to reveal the responses of a specific wound type to different medical procedures and treatments could accelerate healing and reduce patient suffering. The effects of treatments can be forecast using mathematical modelling that has the predictive power to quantify the effects of induced changes to the wound-healing process. Wound healing involves a diverse and complex combination of biophysical and biomechanical processes. We review a wide variety of contemporary approaches of mathematical modelling of gap closure and wound-healing-related processes, such as angiogenesis. We provide examples of the understanding and insights that may be garnered using those models, and how those relate to experimental evidence. Mathematical modelling-based simulations can provide an important visualization tool that can be used for illustrational purposes for physicians, patients and researchers.
Collapse
Affiliation(s)
- Daphne Weihs
- Faculty of Biomedical Engineering , Technion-Israel Institute of Technology , Haifa 3200003 , Israel
| | - Amit Gefen
- Department of Biomedical Engineering, Faculty of Engineering , Tel Aviv University , Tel Aviv 6997801 , Israel
| | - Fred J Vermolen
- Department of Applied Mathematics , Delft University of Technology , Delft , The Netherlands
| |
Collapse
|
35
|
Abstract
Molecular diffusive membranes or materials are important for biological applications in microfluidic systems. Hydrogels are typical materials that offer several advantages, such as free diffusion for small molecules, biocompatibility with most cells, temperature sensitivity, relatively low cost, and ease of production. With the development of microfluidic applications, hydrogels can be integrated into microfluidic systems by soft lithography, flow-solid processes or UV cure methods. Due to their special properties, hydrogels are widely used as fluid control modules, biochemical reaction modules or biological application modules in different applications. Although hydrogels have been used in microfluidic systems for more than ten years, many hydrogels' properties and integrated techniques have not been carefully elaborated. Here, we systematically review the physical properties of hydrogels, general methods for gel-microfluidics integration and applications of this field. Advanced topics and the outlook of hydrogel fabrication and applications are also discussed. We hope this review can help researchers choose suitable methods for their applications using hydrogels.
Collapse
Affiliation(s)
- Xuanqi Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| | | | | |
Collapse
|