1
|
Kulkarni MM, Popovic B, Nolfi AL, Skillen CD, Brown BN. Distinct impacts of aging on the immune responses to extracellular matrix-based versus synthetic biomaterials. Biomaterials 2025; 320:123204. [PMID: 40056612 DOI: 10.1016/j.biomaterials.2025.123204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 03/10/2025]
Abstract
All implanted materials inevitably trigger an acute inflammatory response. The long-term outcome, however, is dependent on the trajectory of this response. This study investigates the effects of aging on the immune response to two commercially available biomaterials. Extracellular matrix-based urinary bladder matrix (UBM) and synthetic polypropylene mesh (PPM) were implanted in young (4 months) and aged (18 months) C57BL/6J mice. Overall, PPM led to a sustained inflammatory response regardless of the age of the mice. In contrast, UBM induced an initial inflammatory response that matured into a pro-regenerative/remodeling response with time, though aged mice exhibited a delayed resolution of inflammation. The PPM-induced response was predominantly pro-inflammatory with consistently higher M1-like macrophage phenotype, whereas the response to UBM was characterized by an anti-inflammatory M2-like phenotype, especially in young mice. RNA sequencing revealed marked age-related differences in gene transcription. At day 7 post-implantation, the young mice with UBM showed a robust upregulation of both pro- and anti-inflammatory pathways as compared to young mice implanted with PPM, however, by day 14, the gene expression profile transitioned into an anti-inflammatory profile. Intriguingly, in aged mice, the response to UBM was distinct with consistent downregulation of inflammatory genes compared to PPM, while the response to PPM in both young and aged animals was largely consistent. Upstream analysis identified cytokines as key drivers of the host response, with IL-4 and IL-13 in young mice, and TNF-α and IL-1β driving chronic inflammation in aged mice. These findings highlight the importance of host age in biomaterial outcome, and the potential of ECM-based materials to mount a favorable response even in the presence of age-related immune dysregulation.
Collapse
Affiliation(s)
- Mangesh M Kulkarni
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Branimir Popovic
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Alexis L Nolfi
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Clint D Skillen
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Bryan N Brown
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
2
|
Chen Y, Ke Z, Wang H, Zhang R, Zhou Y, Marsili E, Mei J. The environmental impact of extracellular matrix preparation. FEBS J 2025; 292:2208-2218. [PMID: 39756012 DOI: 10.1111/febs.17385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/26/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
The extracellular matrix (ECM) is a network of proteins and other molecules that encase and support cells and tissues in the body. As clinical and biotechnological uses of ECM are expanding, it is essential to assess the environmental impact associated with its production. Due to high levels of customization, various laboratories employ distinct methods; therefore, this study evaluates three common protocols. Life cycle assessment (LCA) methodology has been developed to evaluate the environmental impacts of products produced through diverse processes. Despite its widespread application in the pharmaceutical industry, LCA has seldom been utilized to estimate the environmental effects of laboratory protocols. This Viewpoint applies LCA to assess the functionality and environmental impacts of ECM produced via P1, P2, and P3. The results of this assessment indicate that the protocol with the highest impact generates approximately 43 times more CO2-equivalent emissions (CO2 eq) than that with the lowest impact, while the ECM produced using the least impactful protocol demonstrates the highest biocompatibility. Additional environmental indicators such as eutrophication, photochemical oxidation, and acidification also vary among the tested protocols. This work underscores the need to factor environmental impact in the development of novel biomedical materials.
Collapse
Affiliation(s)
- Ying Chen
- Institute of Biomaterials, The First Affiliated Hospital of Ningbo university, China
| | - Zihao Ke
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Ningbo university, China
| | - Haiyang Wang
- School of Basic Medical Science, Wenzhou Medical University, China
| | - Rui Zhang
- Institute of Biomaterials, The First Affiliated Hospital of Ningbo university, China
| | - Yingjie Zhou
- Institute of Biomaterials, The First Affiliated Hospital of Ningbo university, China
| | - Enrico Marsili
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo, China
| | - Jin Mei
- Institute of Biomaterials, The First Affiliated Hospital of Ningbo university, China
- School of Basic Medical Science, Wenzhou Medical University, China
| |
Collapse
|
3
|
Ibne Mahbub MS, Park M, Park SS, Won MJ, Lee BR, Kim HD, Lee BT. dECM and β-TCP incorporation effect on the highly porous injectable bio-glass bead for enhanced bone regeneration: In-vitro, in-vivo insights. Int J Biol Macromol 2025; 305:141040. [PMID: 39978514 DOI: 10.1016/j.ijbiomac.2025.141040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
This study presents the development of an innovative injectable bioactive material, BG-ETa, for bone regeneration. Porcine-derived dermal extracellular matrix (dECM) was decellularized and combined with beta-tri calcium phosphate (β-TCP) and porous bio-glass (BG) beads, followed by freeze-drying to produce surface-modified BG beads. Incorporating sodium alginate (SA) enhanced injectability of the system, enabling effective delivery to defect sites. Bio-glass promotes osteogenic support and osteogenesis. dECM, rich in essential proteins and growth factors, mimics the bone microenvironment to improve cell adhesion, proliferation, and differentiation. The bioactive dECM/β-TCP coating on the bead surface offers neovascularization and early mineralization properties which ultimately facilitates new bone formation. In vitro assays demonstrated BG-ETa's biocompatibility, antimicrobial properties, and potential for osteogenic differentiation, with significant results in alkaline phosphatase (ALP) activity, alizarin red staining (ARS), immunocytochemistry (ICC), and gene expression through real-time PCR. In vivo implantation in rabbit femoral defects revealed promising degradation and significant bone regeneration after 4 and 8 weeks, as observed by histological analysis and micro-CT imaging. This injectable BG-ETa system holds promise as an effective alternative to traditional grafts, providing bioactive environment for enhanced bone regeneration with the potential to overcome limitations associated with autologous or allogeneic grafting.
Collapse
Affiliation(s)
- Md Sowaib Ibne Mahbub
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Myeongki Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Seong-Su Park
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Mi Jin Won
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | | | - Hai-Doo Kim
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea.
| |
Collapse
|
4
|
Li D, Li S, He S, He H, Yuan G, Ma B, Zhang Y, Yuan C, Liu Z, Deng Z, Xu J. Restoring tendon microenvironment in tendinopathy: Macrophage modulation and tendon regeneration with injectable tendon hydrogel and tendon-derived stem cells exosomes. Bioact Mater 2025; 47:152-169. [PMID: 39906648 PMCID: PMC11791013 DOI: 10.1016/j.bioactmat.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/23/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
Tendinopathy is a common musculoskeletal disorder in which a significant number of patients do not attain effective therapeutic outcomes. The extent of the inflammatory response and the dynamics of collagen synthesis metabolism are critical factors that influence the intrinsic self-repair capacity of tendons. However, the poor microenvironment within the tendon significantly impedes the self-repair process in tendinopathy. In this study, an injectable tendon-derived decellularized extracellular matrix (tdECM) hydrogel was utilized to treat tendinopathy. This hydrogel provides a more cytocompatible microenvironment while retaining certain bioactive factors of native tendon extracellular matrix (ECM), compared to collagen hydrogel. Notably, it was discovered for the first time that the tdECM hydrogel promotes M2 macrophage polarization, thereby exerting an anti-inflammatory effect in vivo. Furthermore, utilizing tdECM as a carrier for the sustained release of tendon-derived stem cells exosomes (TDSCs-Exos), our findings from both in vitro and in vivo studies indicate that the tdECM hydrogel, in conjunction with exosomes, demonstrated a pronounced synergistic enhancement in modulating inflammation, promoting M2 macrophage polarization, and facilitating tendon regeneration and repair efficacy. These results suggest its potential as a promising therapeutic strategy for tendon disorders.
Collapse
Affiliation(s)
- Danmei Li
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shuai Li
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shukun He
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Hongpu He
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Guangxun Yuan
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Binbin Ma
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yijun Zhang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chengjie Yuan
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhiqin Liu
- Department of Orthopaedics, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, 412007, China
| | - Zhenhan Deng
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Geriatrics Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jian Xu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| |
Collapse
|
5
|
Morabito M, Thibodot P, Gigandet A, Compagnon P, Toso C, Berishvili E, Lacotte S, Peloso A. Liver Extracellular Matrix in Colorectal Liver Metastasis. Cancers (Basel) 2025; 17:953. [PMID: 40149289 PMCID: PMC11939972 DOI: 10.3390/cancers17060953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/29/2025] Open
Abstract
The liver is the most common site of metastasis of colorectal cancer (CRC), and colorectal liver metastasis is one of the major causes of CRC-related deaths worldwide. The tumor microenvironment, particularly the extracellular matrix (ECM), plays a critical role in CRC metastasis and chemoresistance. Based on findings from clinical and basic research, this review attempts to offer a complete understanding of the role of the ECM in colorectal liver metastasis and to suggest potential ways for therapeutic intervention. First, the ECMs' role in regulating cancer cell fate is explored. We then discuss the hepatic ECM fingerprint and its influence on the metastatic behavior of CRC cells, highlighting key molecular interactions that promote metastasis. In addition, we examine how changes in the ECM within the metastatic niche contribute to chemoresistance, focusing on ECM remodeling by ECM stiffening and the activation of specific signaling pathways. Understanding these mechanisms is crucial for the development of novel strategies to overcome metastasis and improve outcomes for CRC patients.
Collapse
Affiliation(s)
- Marika Morabito
- General, Emergency and Transplant Surgery Department, ASST Settelaghi, University Hospital and Faculty of Medicine of Insubria, 21100 Varese, Italy
| | - Pauline Thibodot
- Hepato-Biliary Center, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, 94800 Villejuif, France
| | - Anthony Gigandet
- School of Medecine, Faculty of Medecine, University of Geneva, 1211 Geneva, Switzerland
| | - Philippe Compagnon
- Division of Transplantation, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland;
| | - Christian Toso
- Division of Abdominal Surgery and Transplantation, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, 1211 Geneva, Switzerland;
| | - Stéphanie Lacotte
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Andrea Peloso
- Hepato-Biliary Center, Paul-Brousse Hospital, Assistance Publique-Hôpitaux de Paris, 94800 Villejuif, France
- Division of Transplantation, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland;
- Division of Abdominal Surgery and Transplantation, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, 1205 Geneva, Switzerland
| |
Collapse
|
6
|
Hayam R, Hamias S, Skitel Moshe M, Davidov T, Yen FC, Baruch L, Machluf M. Porcine Bone Extracellular Matrix Hydrogel as a Promising Graft for Bone Regeneration. Gels 2025; 11:173. [PMID: 40136879 PMCID: PMC11942433 DOI: 10.3390/gels11030173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Bone defects resulting from trauma, tumors, or congenital conditions pose significant challenges for natural healing and often require grafting solutions. While autografts remain the gold standard, their limitations, such as restricted availability and donor site complications, underscore the need for alternative approaches. The present research investigates the potential of porcine-derived bone extracellular matrix (pbECM) hydrogel as a highly promising bioactive scaffold for bone regeneration, comparing it to the human-derived bECM (hbECM). Porcine and human cancellous bones were decellularized and characterized in terms of their composition and structure. Further, the ECMs were processed into hydrogels, and their rheological properties and cytocompatibility were studied in vitro while their biocompatibility was studied in vivo using a mouse model. The potential of the pbECM hydrogel as a bone graft was evaluated in vivo using a rat femoral defect model. Our results demonstrated the excellent preservation of essential ECM components in both the pbECM and hbECM with more than 90% collagen out of all proteins. Rheological analyses revealed the superior mechanical properties of the pbECM hydrogel compared to the hbECM, with an approximately 10-fold higher storage modulus and a significantly later deformation point. These stronger gel properties of the pbECM were attributed to the higher content of structural proteins and residual minerals. Both the pbECM and hbECM effectively supported mesenchymal stem cell adhesion, viability, and proliferation, achieving a 20-fold increase in cell number within 10 days and highlighting their strong bioactive potential. In vivo, pbECM hydrogels elicited a minimal immunogenic response. Most importantly, when implanted in a rat femoral defect model, pbECM hydrogel had significantly enhanced bone regeneration through graft integration, stem cell recruitment, and differentiation. New bone formation was observed at an average of 50% of the defect volume, outperforming the commercial demineralized bone matrix (DBM), in which the new bone filled only 35% of the defect volume. These results position pbECM hydrogel as a highly effective and biocompatible scaffold for bone tissue engineering, offering a promising alternative to traditional grafting methods and paving the way for future clinical applications in bone repair.
Collapse
Affiliation(s)
- Rotem Hayam
- Faculty of Biotechnology & Food Engineering, Technion—Israel Institute of Technology (IIT), Haifa 3200003, Israel; (R.H.); (S.H.); (T.D.); (F.-C.Y.); (L.B.)
| | - Shani Hamias
- Faculty of Biotechnology & Food Engineering, Technion—Israel Institute of Technology (IIT), Haifa 3200003, Israel; (R.H.); (S.H.); (T.D.); (F.-C.Y.); (L.B.)
| | - Michal Skitel Moshe
- The Interdisciplinary Program for Biotechnology, Technion—Israel Institute of Technology, Haifa 3200003, Israel;
| | - Tzila Davidov
- Faculty of Biotechnology & Food Engineering, Technion—Israel Institute of Technology (IIT), Haifa 3200003, Israel; (R.H.); (S.H.); (T.D.); (F.-C.Y.); (L.B.)
| | - Feng-Chun Yen
- Faculty of Biotechnology & Food Engineering, Technion—Israel Institute of Technology (IIT), Haifa 3200003, Israel; (R.H.); (S.H.); (T.D.); (F.-C.Y.); (L.B.)
| | - Limor Baruch
- Faculty of Biotechnology & Food Engineering, Technion—Israel Institute of Technology (IIT), Haifa 3200003, Israel; (R.H.); (S.H.); (T.D.); (F.-C.Y.); (L.B.)
| | - Marcelle Machluf
- Faculty of Biotechnology & Food Engineering, Technion—Israel Institute of Technology (IIT), Haifa 3200003, Israel; (R.H.); (S.H.); (T.D.); (F.-C.Y.); (L.B.)
| |
Collapse
|
7
|
Lee HS, Samolyk BL, Pins GD. Extrusion-Based Printing of Myoblast-Loaded Fibrin Microthreads to Induce Myogenesis. J Funct Biomater 2025; 16:21. [PMID: 39852577 PMCID: PMC11765554 DOI: 10.3390/jfb16010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/19/2024] [Accepted: 01/04/2025] [Indexed: 01/26/2025] Open
Abstract
Large skeletal muscle injuries such as volumetric muscle loss (VML) disrupt native tissue structures, including biophysical and biochemical signaling cues that promote the regeneration of functional skeletal muscle. Various biofabrication strategies have been developed to create engineered skeletal muscle constructs that mimic native matrix and cellular microenvironments to enhance muscle regeneration; however, there remains a need to create scalable engineered tissues that provide mechanical stability as well as structural and spatiotemporal signaling cues to promote cell-mediated regeneration of contractile skeletal muscle. We describe a novel strategy for bioprinting multifunctional myoblast-loaded fibrin microthreads (myothreads) that recapitulate the cellular microniches to drive myogenesis and aligned myotube formation. We characterized myoblast alignment, myotube formation, and tensile properties of myothreads as a function of cell-loading density and culture time. We showed that increasing myoblast loading densities enhances myotube formation. Additionally, alignment analyses indicate that the bioprinting process confers myoblast alignment in the constructs. Finally, tensile characterizations suggest that myothreads possess the structural stability to serve as a potential platform for developing scalable muscle scaffolds. We anticipate that our myothread biofabrication approach will enable us to strategically investigate biophysical and biochemical signaling cues and cellular mechanisms that enhance functional skeletal muscle regeneration for the treatment of VML.
Collapse
Affiliation(s)
| | | | - George D. Pins
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA; (H.S.L.); (B.L.S.)
| |
Collapse
|
8
|
Sriram G, Makkar H. Microfluidic organ-on-chip systems for periodontal research: advances and future directions. Front Bioeng Biotechnol 2025; 12:1490453. [PMID: 39840127 PMCID: PMC11747509 DOI: 10.3389/fbioe.2024.1490453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/12/2024] [Indexed: 01/23/2025] Open
Abstract
Advances in tissue engineering and microfluidic technologies have enabled the development of sophisticated in vitro models known as organ-on-a-chip (OoC) or microphysiological systems. These systems enable to potential to simulate the dynamic interactions between host tissues and their microenvironment including microbes, biomaterials, mechanical forces, pharmaceutical, and consumer-care products. These fluidic technologies are increasingly being utilized to investigate host-microbe and host-material interactions in oral health and disease. Of interest is their application in understanding periodontal disease, a chronic inflammatory condition marked by the progressive destruction of periodontal tissues, including gingiva, periodontal ligament, and alveolar bone. The pathogenesis of periodontal disease involves a complex interplay between microbial dysbiosis and host immune responses, which can lead to a loss of dental support structures and contribute to systemic conditions such as cardiovascular disease, diabetes, and inflammatory bowel disease. This provides a comprehensive overview of the latest developments in millifluidic and microfluidic systems designed to emulate periodontal host-microbe and host-material interactions. We discuss the critical engineering and biological considerations in designing these platforms, their applications in studying oral biofilms, periodontal tissue responses, and their potential to unravel disease mechanisms and therapeutic targets in periodontal disease.
Collapse
Affiliation(s)
- Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Hardik Makkar
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
- Center for Innovation & Precision Dentistry, School of Dental Medicine and School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
9
|
Brouki Milan P, Masoumi F, Biazar E, Zare Jalise S, Mehrabi A. Exploiting the Potential of Decellularized Extracellular Matrix (ECM) in Tissue Engineering: A Review Study. Macromol Biosci 2025; 25:e2400322. [PMID: 39412772 DOI: 10.1002/mabi.202400322] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/03/2024] [Indexed: 01/14/2025]
Abstract
While significant progress has been made in creating polymeric structures for tissue engineering, the therapeutic application of these scaffolds remains challenging owing to the intricate nature of replicating the conditions of native organs and tissues. The use of human-derived biomaterials for therapeutic purposes closely imitates the properties of natural tissue, thereby assisting in tissue regeneration. Decellularized extracellular matrix (dECM) scaffolds derived from natural tissues have become popular because of their unique biomimetic properties. These dECM scaffolds can enhance the body's ability to heal itself or be used to generate new tissues for restoration, expanding beyond traditional tissue transfers and transplants. Enhanced knowledge of how ECM scaffold materials affect the microenvironment at the injury site is expected to improve clinical outcomes. In this review, recent advancements in dECM scaffolds are explored and relevant perspectives are offered, highlighting the development and application of these scaffolds in tissue engineering for various organs, such as the skin, nerve, bone, heart, liver, lung, and kidney.
Collapse
Affiliation(s)
- Peiman Brouki Milan
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 144-961-4535, Iran
| | - Farimah Masoumi
- School of Medicine, Tonekabon Branch, Islamic Azad University, Tonekabon, 468-416-1167, Iran
| | - Esmaeil Biazar
- Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, 468-416-1167, Iran
| | - Saeedeh Zare Jalise
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, 371-364-9373, Iran
| | - Arezou Mehrabi
- School of Medicine, Tonekabon Branch, Islamic Azad University, Tonekabon, 468-416-1167, Iran
| |
Collapse
|
10
|
Singh A, Singh N, Jinugu ME, Thareja P, Bhatia D. Programmable soft DNA hydrogels stimulate cellular endocytic pathways and proliferation. BIOMATERIALS ADVANCES 2025; 166:214040. [PMID: 39293253 DOI: 10.1016/j.bioadv.2024.214040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
Hydrogels are pivotal in tissue engineering, regenerative medicine, and drug delivery applications. Existing hydrogel platforms are not easily customizable and often lack precise programmability, making them less suited for 3D tissue culture and programming of cells. DNA molecules stand out among other promising biomaterials due to their unparalleled precision, programmability, and customization. In this study, we introduced a palette of novel cellular scaffolding platforms made of pure DNA-based hydrogel systems while improving the shortcomings of the existing platforms. We showed a quick and easy one step synthesis of DNA hydrogels using thermal annealing based on sequence specific hybridization strategy. We also demonstrated the formation of multi-armed branched supramolecular scaffolds with custom mechanical stiffness, porosity, and network density by increasing or decreasing the number of branching arms. These mechanically tuneable DNA hydrogels proved to be a suitable suitable platform for modulating the physiological processes of retinal pigment epithelial cells (RPE1). In-vitro studies showed dynamic changes at multiple levels, ranging from a change in morphology to protein expression patterns, enhanced membrane traffic, and proliferation. The soft DNA hydrogels explored here are mechanically compliant and pliable, thus excellently suited for applications in cellular programming and reprogramming. This research lays the groundwork for developing a DNA hydrogel system with a higher dynamic range of stiffness, which will open exciting avenues for tissue engineering and beyond.
Collapse
Affiliation(s)
- Ankur Singh
- Department of Biological Sciences & Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Nihal Singh
- Department of Biological Sciences & Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Manasi Esther Jinugu
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Prachi Thareja
- Department of Chemical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India; Dr. Kiran C Patel Center for Sustainable Development (KPCSD), Indian Institute of Technology Gandhinagar, India
| | - Dhiraj Bhatia
- Department of Biological Sciences & Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| |
Collapse
|
11
|
Yang P, Xie F, Zhu L, Selvaraj JN, Zhang D, Cai J. Fabrication of chitin-fibrin hydrogels to construct the 3D artificial extracellular matrix scaffold for vascular regeneration and cardiac tissue engineering. J Biomed Mater Res A 2024; 112:2257-2272. [PMID: 39007419 DOI: 10.1002/jbm.a.37774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/07/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024]
Abstract
As the cornerstone of tissue engineering and regeneration medicine research, developing a cost-effective and bionic extracellular matrix (ECM) that can precisely modulate cellular behavior and form functional tissue remains challenging. An artificial ECM combining polysaccharides and fibrillar proteins to mimic the structure and composition of natural ECM provides a promising solution for cardiac tissue regeneration. In this study, we developed a bionic hydrogel scaffold by combining a quaternized β-chitin derivative (QC) and fibrin-matrigel (FM) in different ratios to mimic a natural ECM. We evaluated the stiffness of those composite hydrogels with different mixing ratios and their effects on the growth of human umbilical vein endothelial cells (HUVECs). The optimal hydrogels, QCFM1 hydrogels were further applied to load HUVECs into nude mice for in vivo angiogenesis. Besides, we encapsulated human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) into QCFM hydrogels and employed 3D bioprinting to achieve batch fabrication of human-engineered heart tissue (hEHT). Finally, the myocardial structure and electrophysiological function of hEHT were evaluated by immunofluorescence and optical mapping. Designed artificial ECM has a tunable modulus (220-1380 Pa), which determines the different cellular behavior of HUVECs when encapsulated in these. QCFM1 composite hydrogels with optimal stiffness (800 Pa) and porous architecture were finally identified, which could adapt for in vitro cell spreading and in vivo angiogenesis of HUVECs. Moreover, QCFM1 hydrogels were applied in 3D bioprinting successfully to achieve batch fabrication of both ring-shaped and patch-shaped hEHT. These QCFM1 hydrogels-based hEHTs possess organized sarcomeres and advanced function characteristics comparable to reported hEHTs. The chitin-derived hydrogels are first used for cardiac tissue engineering and achieve the batch fabrication of functionalized artificial myocardium. Specifically, these novel QCFM1 hydrogels provided a reliable and economical choice serving as ideal ECM for application in tissue engineering and regeneration medicine.
Collapse
Affiliation(s)
- Pengcheng Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Science, Hubei University, Wuhan, China
| | - Fang Xie
- Hubei Engineering Center of Natural Polymers-based Medical Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
- Institute of Hepatobiliary Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lihang Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Science, Hubei University, Wuhan, China
| | - Jonathan Nimal Selvaraj
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Science, Hubei University, Wuhan, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Science, Hubei University, Wuhan, China
| | - Jie Cai
- Hubei Engineering Center of Natural Polymers-based Medical Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
- Institute of Hepatobiliary Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Ayus-Martinez S, Meza-Morales W, Jimenez-Osorio J, Buendia-Otero M, López L, Cunci L, Freytes DO, Mora C. From isolation to detection, advancing insights into endothelial matrix-bound vesicles. EXTRACELLULAR VESICLE 2024; 4:100060. [PMID: 39866746 PMCID: PMC11759483 DOI: 10.1016/j.vesic.2024.100060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Matrix-bound vesicles (MBVs), an integral part of the extracellular matrix (ECM), are emerging as pivotal factors in ECM-driven molecular signaling. This study is the first to report the isolation of MBVs from porcine arterial endothelial cell basement membranes (A-MBVs) and thyroid cartilage (C-MBVs), the latter serving as a negative control due to its minimal vascular characteristics. Using Transmission Electron Microscopy (TEM), Nano-Tracking Analysis (NTA), Electrochemical Impedance Spectroscopy (EIS), and Atomic Force Microscopy (AFM), we orthogonally characterized the isolated MBVs. We detected the presence and preservation of vascular endothelial cadherin (CD144) in A-MBVs, its low to non-detetcted in C-MBVs, in which SOX9, a chondrocyte marker, was detected. Moreover, we developed a prototype of an immuno-functionalized screen-printed electrode designed for the immunoadsorption of CD144+ MBVs. This device facilitated the electrochemical detection of the targeted vesicles and allowed for their subsequent topological characterization using AFM, which verified the integrity and morphology of CD144+ MBVs post-immunoadsorption. These advancements enhance our comprehension of MBVs as conveyors of tissue-specific signals and pioneer new avenues for harnessing their cargo in biomedical applications. This research sets a significant precedent for future studies on the application of MBVs in regenerative medicine and ECM signaling.
Collapse
Affiliation(s)
- Sahimy Ayus-Martinez
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez, Route 108, Mayaguez, Puerto Rico, USA
| | - William Meza-Morales
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez, Route 108, Mayaguez, Puerto Rico, USA
| | - Jesus Jimenez-Osorio
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez, Route 108, Mayaguez, Puerto Rico, USA
| | - Maria Buendia-Otero
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez, Route 108, Mayaguez, Puerto Rico, USA
| | - Luis López
- Department of Chemistry, University of Puerto Rico-Rio Piedras, 601 Av. Universidad, San Juan, PR, USA
| | - Lisandro Cunci
- Department of Chemistry, University of Puerto Rico-Rio Piedras, 601 Av. Universidad, San Juan, PR, USA
| | - Donald O. Freytes
- The Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina at Chapel Hill, 4130 Engineering Building III, Campus Box 7115, Raleigh, NC, 27695, USA
| | - Camilo Mora
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez, Route 108, Mayaguez, Puerto Rico, USA
| |
Collapse
|
13
|
Sharma Y, Ghatak S, Sen CK, Mohanty S. Emerging technologies in regenerative medicine: The future of wound care and therapy. J Mol Med (Berl) 2024; 102:1425-1450. [PMID: 39358606 DOI: 10.1007/s00109-024-02493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Wound healing, an intricate biological process, comprises orderly phases of simple biological processed including hemostasis, inflammation, angiogenesis, cell proliferation, and ECM remodeling. The regulation of the shift in these phases can be influenced by systemic or environmental conditions. Any untimely transitions between these phases can lead to chronic wounds and scarring, imposing a significant socio-economic burden on patients. Current treatment modalities are largely supportive in nature and primarily involve the prevention of infection and controlling inflammation. This often results in delayed healing and wound complications. Recent strides in regenerative medicine and tissue engineering offer innovative and patient-specific solutions. Mesenchymal stem cells (MSCs) and their secretome have gained specific prominence in this regard. Additionally, technologies like tissue nano-transfection enable in situ gene editing, a need-specific approach without the requirement of complex laboratory procedures. Innovating approaches like 3D bioprinting and ECM bioscaffolds also hold the potential to address wounds at the molecular and cellular levels. These regenerative approaches target common healing obstacles, such as hyper-inflammation thereby promoting self-recovery through crucial signaling pathway stimulation. The rationale of this review is to examine the benefits and limitations of both current and emerging technologies in wound care and to offer insights into potential advancements in the field. The shift towards such patient-centric therapies reflects a paradigmatic change in wound care strategies.
Collapse
Affiliation(s)
- Yashvi Sharma
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Subhadip Ghatak
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- McGowan Institute of Regenerative Medicine, Department of Surgery, University of Pittsburgh, 419 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- McGowan Institute of Regenerative Medicine, Department of Surgery, University of Pittsburgh, 419 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| | - Sujata Mohanty
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India.
| |
Collapse
|
14
|
Zhang S, Guo Y, Lu Y, Liu F, Heng BC, Deng X. The considerations on selecting the appropriate decellularized ECM for specific regeneration demands. Mater Today Bio 2024; 29:101301. [PMID: 39498148 PMCID: PMC11532911 DOI: 10.1016/j.mtbio.2024.101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
An ideal biomaterial should create a customized tissue-specific microenvironment that can facilitate and guide the tissue repair process. Due to its good biocompatibility and similar biochemical properties to native tissues, decellularized extracellular matrix (dECM) generally yields enhanced regenerative outcomes, with improved morphological and functional recovery. By utilizing various decellularization techniques and post-processing protocols, dECM can be flexibly prepared in different states from various sources, with specifically customized physicochemical properties for different tissues. To initiate a well-orchestrated tissue-regenerative response, dECM exerts multiple effects at the wound site by activating various overlapping signaling pathways to promote cell adhesion, proliferation, and differentiation, as well as suppressing inflammation via modulation of various immune cells, including macrophages, T cells, and mastocytes. Functional tissue repair is likely the main aim when employing the optimized dECM biomaterials. Here, we review the current applications of different kinds of dECMs in an attempt to improve the efficiency of tissue regeneration, highlighting key considerations on developing dECM for specific tissue engineering applications.
Collapse
Affiliation(s)
- Shihan Zhang
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yaru Guo
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yixuan Lu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Fangyong Liu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- NMPA Key Laboratory for Dental Materials, Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| |
Collapse
|
15
|
Cahn D, Stern A, Buckenmeyer M, Wolf M, Duncan GA. Extracellular Matrix Limits Nanoparticle Diffusion and Cellular Uptake in a Tissue-Specific Manner. ACS NANO 2024; 18:32045-32055. [PMID: 39499215 DOI: 10.1021/acsnano.4c10381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Overexpression and remodeling of the extracellular matrix (ECM) in cancer and other diseases may significantly reduce the ability of nanoparticles to reach target sites, preventing the effective delivery of therapeutic cargo. Here, we evaluate how tissue-specific properties of the ECM affect nanoparticle diffusion using fluorescence video microscopy and cellular uptake via flow cytometry. In addition, we determined how poly(ethylene glycol) (PEG) chain length and branching influence the ability of PEGylated nanoparticles to overcome the ECM barrier from different tissues. We found that purified collagen, in the absence of other ECM proteins and polysaccharides, presented a greater barrier to nanoparticle diffusion compared to the decellularized ECM from the liver, lung, and small intestine submucosa. Nanoparticles with dense PEG coatings achieved up to ∼2000-fold enhancements in diffusion rate and cellular uptake up to ∼5-fold greater than non-PEGylated nanoparticles in the presence of the ECM. We also found nanoparticle mobility in the ECM varied significantly between tissue types, and the optimal nanoparticle PEGylation strategy to enhance ECM penetration was strongly dependent on ECM concentration. Overall, our data support the use of low molecular weight PEG coatings which provide an optimal balance of nanoparticle penetration through the ECM and uptake in target cells. However, tissue-specific enhancements in ECM penetration and cellular uptake were observed for nanoparticles bearing a branched PEG coating. These studies provide insights into tissue specific ECM barrier functions, which can facilitate the design of nanoparticles that effectively transport through target tissues, improving their therapeutic efficacy.
Collapse
Affiliation(s)
- Devorah Cahn
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Cancer Biomaterials Engineering Section, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Alexa Stern
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Michael Buckenmeyer
- Cancer Biomaterials Engineering Section, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Matthew Wolf
- Cancer Biomaterials Engineering Section, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Gregg A Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
16
|
Zhang S, Jiang T, Li M, Sun H, Wu H, Wu W, Li Y, Jiang H. Graphene-Based Wound Dressings for Wound Healing: Mechanism, Technical Analysis, and Application Status. ACS Biomater Sci Eng 2024; 10:6790-6813. [PMID: 39467733 DOI: 10.1021/acsbiomaterials.4c01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The development of novel wound dressings is critical in medical care. Graphene and its derivatives possess excellent biomedical properties, making them highly suitable for various applications in medical dressings. This review provides a comprehensive technical analysis and the current application status of graphene-based medical dressings. Initially, we discuss the chemical structure and the fabrication method of graphene and its derivatives. We then provide a detailed summary of the mechanisms by which graphene materials promote wound repair across the four stages of wound healing. Subsequently, we categorize the types of graphene-based wound dressings and analyze corresponding characteristics. Finally, we analyze the challenges encountered at present and propose solutions regarding future development trends. This paper aims to serve as a reference for further research in skin tissue engineering and the development of innovative graphene-based medical dressings.
Collapse
Affiliation(s)
- Shanguo Zhang
- School of Mechatronics Engineering, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin 150001, People's Republic of China
| | - Tianyi Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin 150001, People's Republic of China
| | - Ming Li
- School of Mechatronics Engineering, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin 150001, People's Republic of China
| | - Haoxiu Sun
- School of Life Sciences, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin 150001, People's Republic of China
- School of Interdisciplinary Medicine and Engineering, Harbin Medical University, No. 157 Health Road, Harbin 150001, People's Republic of China
| | - Hao Wu
- School of Mechatronics Engineering, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin 150001, People's Republic of China
| | - Wenlong Wu
- School of Mechatronics Engineering, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin 150001, People's Republic of China
| | - Yu Li
- School of Life Sciences, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin 150001, People's Republic of China
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, No. 92 West Da-zhi Street, Harbin 150001, People's Republic of China
| |
Collapse
|
17
|
Francés-Herrero E, Lorenzo-Rebenaque L, Casto-Rebollo C, Vicente JS, Sebastian-Leon P, Bueno-Fernandez C, Rodríguez-Eguren A, Gómez-Álvarez M, Faus A, Diaz-Gimeno P, Marco-Jiménez F, Cervelló I. Oviductal extracellular matrix hydrogels enhance in vitro culture of rabbit embryos and reduce deficiencies during assisted reproductive technologies. Sci Rep 2024; 14:27579. [PMID: 39528559 PMCID: PMC11554825 DOI: 10.1038/s41598-024-77583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
In vitro embryo culture often falls short of mimicking the physiological dynamism occurring in the reproductive tract, prompting developmental plasticity in mammalian embryos with consequential genotypic and phenotypic deviations. Recent research highlights the potential of biological derivatives in in vitro culture to mitigate these effects, being the extracellular matrix (ECM) one of the most important components in retaining structural and biological signals derived from the native source tissue. Current bioengineering techniques could provide ECM-based biomaterials mimicking the native environment and offering optimal embryonic development. Rabbit oviducts (n = 24) were decellularized and solubilized to create tissue-specific ECM (OviECM) hydrogels. Following physicochemical characterization, these hydrogels were applied as coatings for the in vitro culture of two-cell embryos over 48 h, along with embryos cultured under In vitro control conditions (n = 218/group), which were subsequently transferred to recipient females. A subset of embryos was recovered on day 6 for transcriptomic analysis (n = 75-80/group), while the remaining embryos were used to assess implantation and birth rates. Rabbit weights were monitored over 20 weeks post-delivery, with blood tests conducted at weeks 8 and 20. Bayesian inference methods were used for statistical analysis. Differences were considered relevant if P ≥ 0.8 (80%). No differences in embryo development and morphology were detected between the OviECM coating and In vitro control conditions. However, embryos cultured on these coatings exhibited upregulation of pathways involved in antigen presentation and immune system activation, as well as, increased cellular response to external stimulus and intracellular protein transport. The implantation and live birth rates were significantly higher in the coating group than in the In vitro control group (30.8% vs. 26.1% and 21.2% vs. 18.1%, respectively). During the first 20 weeks of life, the animals from the coating group showed higher weights than the In vitro control group P0 > 0.8. The animals of both experimental groups showed normal blood parameters. Implementation of OviECM coatings allows for improving in vitro conditions and decreases postnatal phenotypic deviations after assisted reproductive technology (ART). This study could initiate a new embryo culture techniques era to guarantee that ART is utilized in the most efficient and safest possible practice.
Collapse
Affiliation(s)
- Emilio Francés-Herrero
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, Universitat de València, 46010, Valencia, Valencia, Spain
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026, Valencia, Valencia, Spain
| | - Laura Lorenzo-Rebenaque
- Institute for Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022, Valencia, Valencia, Spain
| | - Cristina Casto-Rebollo
- Institute for Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022, Valencia, Valencia, Spain
| | - José Salvador Vicente
- Institute for Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022, Valencia, Valencia, Spain
| | - Patricia Sebastian-Leon
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026, Valencia, Valencia, Spain
| | - Clara Bueno-Fernandez
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, Universitat de València, 46010, Valencia, Valencia, Spain
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026, Valencia, Valencia, Spain
| | - Adolfo Rodríguez-Eguren
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026, Valencia, Valencia, Spain
| | - María Gómez-Álvarez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026, Valencia, Valencia, Spain
| | - Amparo Faus
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026, Valencia, Valencia, Spain
| | - Patricia Diaz-Gimeno
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026, Valencia, Valencia, Spain
| | - Francisco Marco-Jiménez
- Institute for Animal Science and Technology (ICTA), Universitat Politècnica de València, 46022, Valencia, Valencia, Spain
| | - Irene Cervelló
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026, Valencia, Valencia, Spain.
| |
Collapse
|
18
|
Kisel AA, Stepanov VA, Isaeva EV, Demyashkin GA, Isaev EI, Smirnova EI, Yatsenko EM, Afonin GV, Ivanov SA, Atiakshin DA, Shegay PV, Kaprin AD, Klabukov ID, Baranovskii DS. Cartilage Laser Engraving for Fast-Track Tissue Engineering of Auricular Grafts. Int J Mol Sci 2024; 25:11538. [PMID: 39519090 PMCID: PMC11545928 DOI: 10.3390/ijms252111538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
In this study, the optimal engraving parameters were determined through the analysis of scanning electron microscopy (SEM) data, as follows: a laser power density of 5.5 × 105 W/cm2, an irradiation rate of 0.1 mm/s, a well radius of 60 μm, a distance between well centers of 200 μm, and a number of passes for each well of 20. After 1 week of in vitro cultivation, chondrocytes were located on the surface of the scaffolds, in the sockets and lacunae of decellularized cartilage. When implanted into animals, both cellular and acellular scaffolds were able to support cartilage in-growth and complete regeneration of the defect without clear boundaries with normal tissue. Nevertheless, the scaffolds populated with cells exhibited superior biocompatibility and were not subject to rejection, in contrast to cell-free constructs.
Collapse
Affiliation(s)
- Anastas A. Kisel
- National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia; (A.A.K.); (G.A.D.); (E.I.S.); (E.M.Y.); (G.V.A.); (S.A.I.); (P.V.S.); (A.D.K.); (I.D.K.)
| | - Vladimir A. Stepanov
- Department of Laser and Plasma Technologies, Obninsk Institute for Nuclear Power Engineering, National Research Nuclear University MEPhI, Studgorodok 1, 249036 Obninsk, Russia; (V.A.S.); (E.I.I.)
| | - Elena V. Isaeva
- National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia; (A.A.K.); (G.A.D.); (E.I.S.); (E.M.Y.); (G.V.A.); (S.A.I.); (P.V.S.); (A.D.K.); (I.D.K.)
| | - Grigory A. Demyashkin
- National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia; (A.A.K.); (G.A.D.); (E.I.S.); (E.M.Y.); (G.V.A.); (S.A.I.); (P.V.S.); (A.D.K.); (I.D.K.)
- Laboratory of Histology and Immunohistochemistry, Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | - Evgeny I. Isaev
- Department of Laser and Plasma Technologies, Obninsk Institute for Nuclear Power Engineering, National Research Nuclear University MEPhI, Studgorodok 1, 249036 Obninsk, Russia; (V.A.S.); (E.I.I.)
| | - Ekaterina I. Smirnova
- National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia; (A.A.K.); (G.A.D.); (E.I.S.); (E.M.Y.); (G.V.A.); (S.A.I.); (P.V.S.); (A.D.K.); (I.D.K.)
- Department of Laser and Plasma Technologies, Obninsk Institute for Nuclear Power Engineering, National Research Nuclear University MEPhI, Studgorodok 1, 249036 Obninsk, Russia; (V.A.S.); (E.I.I.)
| | - Elena M. Yatsenko
- National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia; (A.A.K.); (G.A.D.); (E.I.S.); (E.M.Y.); (G.V.A.); (S.A.I.); (P.V.S.); (A.D.K.); (I.D.K.)
| | - Grigoriy V. Afonin
- National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia; (A.A.K.); (G.A.D.); (E.I.S.); (E.M.Y.); (G.V.A.); (S.A.I.); (P.V.S.); (A.D.K.); (I.D.K.)
| | - Sergey A. Ivanov
- National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia; (A.A.K.); (G.A.D.); (E.I.S.); (E.M.Y.); (G.V.A.); (S.A.I.); (P.V.S.); (A.D.K.); (I.D.K.)
| | - Dmitrii A. Atiakshin
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), Mikluho-Maklaya St., 6, 117198 Moscow, Russia;
| | - Petr V. Shegay
- National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia; (A.A.K.); (G.A.D.); (E.I.S.); (E.M.Y.); (G.V.A.); (S.A.I.); (P.V.S.); (A.D.K.); (I.D.K.)
| | - Andrey D. Kaprin
- National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia; (A.A.K.); (G.A.D.); (E.I.S.); (E.M.Y.); (G.V.A.); (S.A.I.); (P.V.S.); (A.D.K.); (I.D.K.)
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), Mikluho-Maklaya St., 6, 117198 Moscow, Russia;
| | - Ilya D. Klabukov
- National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia; (A.A.K.); (G.A.D.); (E.I.S.); (E.M.Y.); (G.V.A.); (S.A.I.); (P.V.S.); (A.D.K.); (I.D.K.)
- Department of Laser and Plasma Technologies, Obninsk Institute for Nuclear Power Engineering, National Research Nuclear University MEPhI, Studgorodok 1, 249036 Obninsk, Russia; (V.A.S.); (E.I.I.)
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), Mikluho-Maklaya St., 6, 117198 Moscow, Russia;
| | - Denis S. Baranovskii
- National Medical Research Radiological Center, Koroleva St. 4, 249036 Obninsk, Russia; (A.A.K.); (G.A.D.); (E.I.S.); (E.M.Y.); (G.V.A.); (S.A.I.); (P.V.S.); (A.D.K.); (I.D.K.)
- Research and Educational Resource Center for Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis Innovative Technologies, Patrice Lumumba Peoples Friendship University of Russia (RUDN University), Mikluho-Maklaya St., 6, 117198 Moscow, Russia;
- Department of Biomedicine, University Hospital Basel, University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
19
|
Almeida GHDR, Gibin MS, Rinaldi JDC, Gonzaga VHDS, Thom CR, Iglesia RP, da Silva RS, Fernandes IC, Bergamo RO, Lima LS, Lopomo B, Santos GVC, Nesiyama TNG, Sato F, Baesso ML, Hernandes L, Meirelles FV, Carreira ACO. Development and Biocompatibility Assessment of Decellularized Porcine Uterine Extracellular Matrix-Derived Grafts. Tissue Eng Part C Methods 2024. [PMID: 39311629 DOI: 10.1089/ten.tec.2024.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Biomaterials derived from biological matrices have been widely investigated due to their great therapeutic potential in regenerative medicine, since they are able to induce cell proliferation, tissue remodeling, and angiogenesis in situ. In this context, highly vascularized and proliferative tissues, such as the uterine wall, present an interesting source to produce acellular matrices that can be used as bioactive materials to induce tissue regeneration. Therefore, this study aimed to establish an optimized protocol to generate decellularized uterine scaffolds (dUT), characterizing their structural, compositional, and biomechanical properties. In addition, in vitro performance and in vivo biocompatibility were also evaluated to verify their potential applications for tissue repair. Results showed that the protocol was efficient to promote cell removal, and dUT general structure and extracellular matrix composition remained preserved compared with native tissue. In addition, the scaffolds were cytocompatible, allowing cell growth and survival. In terms of biocompatibility, the matrices did not induce any signs of immune rejection in vivo in a model of subcutaneous implantation in immunocompetent rats, demonstrating an indication of tissue integration after 30 days of implantation. In summary, these findings suggest that dUT scaffolds could be explored as a biomaterial for regenerative purposes, which is beyond the studies in the reproductive field.
Collapse
Affiliation(s)
| | | | | | | | | | - Rebeca Piatniczka Iglesia
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Raquel Souza da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Iorrane Couto Fernandes
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Rafael Oliveira Bergamo
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Luan Stefani Lima
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Beatriz Lopomo
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | - Thais Naomi Gonçalves Nesiyama
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | - Francielle Sato
- Department of Physics, State University of Maringá, Maringá, Brazil
| | - Mauro Luciano Baesso
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Luzmarina Hernandes
- Department of Morphological Sciences, State University of Maringá, Maringá, Brazil
| | - Flávio Vieira Meirelles
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, Brazil
| |
Collapse
|
20
|
Kollmetz T, Castillo-Alcala F, Veale RWF, Taghavi N, van Heeswijk VM, Persenaire M, May BCH, Dempsey SG. Comparative Analysis of Commercially Available Extracellular Matrix Soft Tissue Bioscaffolds. Tissue Eng Part A 2024. [PMID: 39276103 DOI: 10.1089/ten.tea.2024.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024] Open
Abstract
Decellularized extracellular matrix (dECM) products are widely established for soft tissue repair, reconstruction, and reinforcement. These regenerative biomaterials mimic native tissue ECM with respect to structure and biology and are produced from a range of tissue sources and species. Optimal source tissue processing requires a balance between removal of cellular material and the preservation of structural and biological properties of tissue ECM. Despite the widespread clinical use of dECM products there is a lack of comparative information on these products. This study provides a comparative analysis of 12 commercially available dECM products. One group of products consisted of materials intended for dermal repair including ovine forestomach matrix (OFMm), porcine peritoneum (PPN), porcine placenta (PPC), and porcine small intestinal submucosa (SISu). The second group, intended for load-bearing reconstruction, consisted of material derived from ovine forestomach matrix (OFMo), porcine urinary bladder matrix (UBM), porcine small intestinal submucosa (SISb and SISz), human dermis (ADM), porcine dermis (PADM), and fetal/neonatal bovine dermis (BADM). A minimally processed product consisting of human placental tissue was included as a control. Products were compared histologically and by agarose gel electrophoreses to assess structural features and decellularization. Structurally, some dECM products showed a well-preserved collagen architecture with a broad porosity distribution, whereas others showed a significantly altered structure compared with native tissue. Decellularization varied across the products. Some materials surveyed (OFMm, PPN, PPC, OFMo, UBM, SISz, ADM, PADM, and BADM) were essentially devoid of nuclear bodies (mean count of <5 cells per high-powered field [HPF]), whereas others (SISu and SISb) demonstrated an abundance of nuclear bodies (>50 cells per HPF). Pathology assessment of the products demonstrated that OFMm, OFMo, and PADM had the highest qualitative assessment score for collagen fiber orientation and arrangement, matrix porosity, decellularization efficiency, and residual vascular channels scoring 10.5 ± 0.8, 12.8 ± 1.0, and 9.7 ± 0.7 out of a maximum total score of 16, respectively. This analysis of commercially available dECM products in terms of their structure and cellularity includes 12 different commercial materials. The findings highlight the variability of the products in terms of matrix structure and the efficacy of decellularization.
Collapse
Affiliation(s)
| | | | | | | | - Vonne M van Heeswijk
- Chemical and Materials Engineering, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
21
|
Antczak LAM, Moore KN, Hendrick TE, Heise RL. Binary fabrication of decellularized lung extracellular matrix hybridgels for in vitro chronic obstructive pulmonary disease modeling. Acta Biomater 2024; 185:190-202. [PMID: 39059731 PMCID: PMC11474825 DOI: 10.1016/j.actbio.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Limited treatments and a lack of appropriate animal models have spurred the study of scaffolds to mimic lung disease in vitro. Decellularized human lung and its application in extracellular matrix (ECM) hydrogels has advanced the development of these lung ECM models. Controlling the biochemical and mechanical properties of decellularized ECM hydrogels continues to be of interest due to inherent discrepancies of hydrogels when compared to their source tissue. To optimize the physiologic relevance of ECM hydrogel lung models without sacrificing the native composition we engineered a binary fabrication system to produce a Hybridgel composed of an ECM hydrogel reinforced with an ECM cryogel. Further, we compared the effect of ECM-altering disease on the properties of the gels using elastin poor Chronic Obstructive Pulmonary Disease (COPD) vs non-diseased (ND) human lung source tissue. Nanoindentation confirmed the significant loss of elasticity in hydrogels compared to that of ND human lung and further demonstrated the recovery of elastic moduli in ECM cryogels and Hybridgels. These findings were supported by similar observations in diseased tissue and gels. Successful cell encapsulation, distribution, cytotoxicity, and infiltration were observed and characterized via confocal microscopy. Cells were uniformly distributed throughout the Hybridgel and capable of survival for 7 days. Cell-laden ECM hybridgels were found to have elasticity similar to that of ND human lung. Compositional investigation into diseased and ND gels indicated the conservation of disease-specific elastin to collagen ratios. In brief, we have engineered a composited ECM hybridgel for the 3D study of cell-matrix interactions of varying lung disease states that optimizes the application of decellularized lung ECM materials to more closely mimic the human lung while conserving the compositional bioactivity of the native ECM. STATEMENT OF SIGNIFICANCE: The lack of an appropriate disease model for the study of chronic lung diseases continues to severely inhibit the advancement of treatments and preventions of these otherwise fatal illnesses due to the inability to recapture the biocomplexity of pathologic cell-ECM interactions. Engineering biomaterials that utilize decellularized lungs offers an opportunity to deconstruct, understand, and rebuild models that highlight and investigate how disease specific characteristics of the extracellular environment are involved in driving disease progression. We have advanced this space by designing a binary fabrication system for a ECM Hybridgel that retains properties from its source material required to observe native matrix interactions. This design simulates a 3D lung environment that is both mechanically elastic and compositionally relevant when derived from non-diseased tissue and pathologically diminished both mechanically and compositionally when derived from COPD tissue. Here we describe the ECM hybridgel as a model for the study of cell-ECM interactions involved in COPD.
Collapse
Affiliation(s)
- Leigh-Ann M Antczak
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Karah N Moore
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Taylor E Hendrick
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Rebecca L Heise
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA.
| |
Collapse
|
22
|
Yadav R, Kumar R, Kathpalia M, Ahmed B, Dua K, Gulati M, Singh S, Singh PJ, Kumar S, Shah RM, Deol PK, Kaur IP. Innovative approaches to wound healing: insights into interactive dressings and future directions. J Mater Chem B 2024; 12:7977-8006. [PMID: 38946466 DOI: 10.1039/d3tb02912c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The objective of this review is to provide an up-to-date and all-encompassing account of the recent advancements in the domain of interactive wound dressings. Considering the gap between the achieved and desired clinical outcomes with currently available or under-study wound healing therapies, newer more specific options based on the wound type and healing phase are reviewed. Starting from the comprehensive description of the wound healing process, a detailed classification of wound dressings is presented. Subsequently, we present an elaborate and significant discussion describing interactive (unconventional) wound dressings. Latter includes biopolymer-based, bioactive-containing and biosensor-based smart dressings, which are discussed in separate sections together with their applications and limitations. Moreover, recent (2-5 years) clinical trials, patents on unconventional dressings, marketed products, and other information on advanced wound care designs and techniques are discussed. Subsequently, the future research direction is highlighted, describing peptides, proteins, and human amniotic membranes as potential wound dressings. Finally, we conclude that this field needs further development and offers scope for integrating information on the healing process with newer technologies.
Collapse
Affiliation(s)
- Radhika Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Rohtash Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Muskan Kathpalia
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Bakr Ahmed
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Monica Gulati
- Discipline of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sachin Singh
- Discipline of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Pushvinder Jit Singh
- Tynor Orthotics Private Limited, Janta Industrial Estate, Mohali 160082, Punjab, India
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rohan M Shah
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora West, VIC 3083, Australia
| | - Parneet Kaur Deol
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India.
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
23
|
Moghaddas O, Seyedjafari E, Mahoutchi DS. Biological behavior of mesenchymal stem cells on two types of commercial dermal scaffolds: An in vitro study. JOURNAL OF ADVANCED PERIODONTOLOGY & IMPLANT DENTISTRY 2024; 16:133-138. [PMID: 39758268 PMCID: PMC11699267 DOI: 10.34172/japid.2024.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/30/2024] [Indexed: 01/07/2025]
Abstract
Background Acellular dermal matrix (ADM) has been introduced as an alternative to autogenous grafts. This study assessed the biological behavior of mesenchymal stem cells (MSCs) on two types of commercial ADM scaffolds. Methods The present in vitro study investigated the behavior of MSCs cultured on scaffold type I CenoDerm® (Tissue Regeneration Corporation) and type II Acellular Dermis (Iranian Tissue Product Co.) as the test groups and an empty well plate as the control group (n=78). Cell attachment was assessed after 12 hours of incubation using 6,4-diamidino-2-phenylindole (DAPI) staining and methyl thiazole tetrazolium (MTT) assay. Cell proliferation was assessed using the MTT assay at 24- and 84-hour and 7-day intervals. Cell morphology was also assessed under a scanning electron microscope (SEM) at 24 hours. MTT assay and DAPI staining were repeated for five samples in all the three groups. Mann-Whitney, ANOVA, and post hoc Tukey tests were used for statistical analysis. Results The DAPI staining and MTT assay showed similar results concerning cell attachment between all the groups at 12 hours (P=0.4). At 24 hours, cell proliferation was significantly higher in scaffold groups (P<0.001). At seven days, the lowest cell proliferation was noted in the scaffold II group, with a significant difference between the groups (P=0.01). At 24 hours, cell expansion was greater in the control group, followed by the scaffold I group. Conclusion Both scaffolds were similar in MSC attachment, but scaffold I appeared superior to scaffold II in terms of MSC proliferation and morphology in vitro.
Collapse
Affiliation(s)
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Donya Sadat Mahoutchi
- Department of Periodontics, Faculty of Dentistry, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
24
|
Hosty L, Heatherington T, Quondamatteo F, Browne S. Extracellular matrix-inspired biomaterials for wound healing. Mol Biol Rep 2024; 51:830. [PMID: 39037470 PMCID: PMC11263448 DOI: 10.1007/s11033-024-09750-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Diabetic foot ulcers (DFU) are a debilitating and life-threatening complication of Diabetes Mellitus. Ulceration develops from a combination of associated diabetic complications, including neuropathy, circulatory dysfunction, and repetitive trauma, and they affect approximately 19-34% of patients as a result. The severity and chronic nature of diabetic foot ulcers stems from the disruption to normal wound healing, as a result of the molecular mechanisms which underly diabetic pathophysiology. The current standard-of-care is clinically insufficient to promote healing for many DFU patients, resulting in a high frequency of recurrence and limb amputations. Biomaterial dressings, and in particular those derived from the extracellular matrix (ECM), have emerged as a promising approach for the treatment of DFU. By providing a template for cell infiltration and skin regeneration, ECM-derived biomaterials offer great hope as a treatment for DFU. A range of approaches exist for the development of ECM-derived biomaterials, including the use of purified ECM components, decellularisation and processing of donor/ animal tissues, or the use of in vitro-deposited ECM. This review discusses the development and assessment of ECM-derived biomaterials for the treatment of chronic wounds, as well as the mechanisms of action through which ECM-derived biomaterials stimulate wound healing.
Collapse
Affiliation(s)
- Louise Hosty
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
| | - Thomas Heatherington
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
| | - Fabio Quondamatteo
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland.
| | - Shane Browne
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland.
- CÙRAM, Centre for Research in Medical Devices, University of Galway, Galway, H91 W2TY, Ireland.
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
25
|
Wan S, Aregueta Robles U, Poole-Warren L, Esrafilzadeh D. Advances in 3D tissue models for neural engineering: self-assembled versus engineered tissue models. Biomater Sci 2024; 12:3522-3549. [PMID: 38829222 DOI: 10.1039/d4bm00317a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Neural tissue engineering has emerged as a promising field that aims to create functional neural tissue for therapeutic applications, drug screening, and disease modelling. It is becoming evident in the literature that this goal requires development of three-dimensional (3D) constructs that can mimic the complex microenvironment of native neural tissue, including its biochemical, mechanical, physical, and electrical properties. These 3D models can be broadly classified as self-assembled models, which include spheroids, organoids, and assembloids, and engineered models, such as those based on decellularized or polymeric scaffolds. Self-assembled models offer advantages such as the ability to recapitulate neural development and disease processes in vitro, and the capacity to study the behaviour and interactions of different cell types in a more realistic environment. However, self-assembled constructs have limitations such as lack of standardised protocols, inability to control the cellular microenvironment, difficulty in controlling structural characteristics, reproducibility, scalability, and lengthy developmental timeframes. Integrating biomimetic materials and advanced manufacturing approaches to present cells with relevant biochemical, mechanical, physical, and electrical cues in a controlled tissue architecture requires alternate engineering approaches. Engineered scaffolds, and specifically 3D hydrogel-based constructs, have desirable properties, lower cost, higher reproducibility, long-term stability, and they can be rapidly tailored to mimic the native microenvironment and structure. This review explores 3D models in neural tissue engineering, with a particular focus on analysing the benefits and limitations of self-assembled organoids compared with hydrogel-based engineered 3D models. Moreover, this paper will focus on hydrogel based engineered models and probe their biomaterial components, tuneable properties, and fabrication techniques that allow them to mimic native neural tissue structures and environment. Finally, the current challenges and future research prospects of 3D neural models for both self-assembled and engineered models in neural tissue engineering will be discussed.
Collapse
Affiliation(s)
- Shuqian Wan
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Ulises Aregueta Robles
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - Laura Poole-Warren
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
- Tyree Foundation Institute of Health Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
26
|
Almeida GHDR, da Silva RS, Gibin MS, Gonzaga VHDS, dos Santos H, Igleisa RP, Fernandes LA, Fernandes IC, Nesiyama TNG, Sato F, Baesso ML, Hernandes L, Rinaldi JDC, Meirelles FV, Astolfi-Ferreira CS, Ferreira AJP, Carreira ACO. Region-Specific Decellularization of Porcine Uterine Tube Extracellular Matrix: A New Approach for Reproductive Tissue-Engineering Applications. Biomimetics (Basel) 2024; 9:382. [PMID: 39056823 PMCID: PMC11274565 DOI: 10.3390/biomimetics9070382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The uterine tube extracellular matrix is a key component that regulates tubal tissue physiology, and it has a region-specific structural distribution, which is directly associated to its functions. Considering this, the application of biological matrices in culture systems is an interesting strategy to develop biomimetic tubal microenvironments and enhance their complexity. However, there are no established protocols to produce tubal biological matrices that consider the organ morphophysiology for such applications. Therefore, this study aimed to establish region-specific protocols to obtain decellularized scaffolds derived from porcine infundibulum, ampulla, and isthmus to provide suitable sources of biomaterials for tissue-engineering approaches. Porcine uterine tubes were decellularized in solutions of 0.1% SDS and 0.5% Triton X-100. The decellularization efficiency was evaluated by DAPI staining and DNA quantification. We analyzed the ECM composition and structure by optical and scanning electronic microscopy, FTIR, and Raman spectroscopy. DNA and DAPI assays validated the decellularization, presenting a significative reduction in cellular content. Structural and spectroscopy analyses revealed that the produced scaffolds remained well structured and with the ECM composition preserved. YS and HEK293 cells were used to attest cytocompatibility, allowing high cell viability rates and successful interaction with the scaffolds. These results suggest that such matrices are applicable for future biotechnological approaches in the reproductive field.
Collapse
Affiliation(s)
- Gustavo Henrique Doná Rodrigues Almeida
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
| | - Raquel Souza da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
| | - Mariana Sversut Gibin
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Victória Hellen de Souza Gonzaga
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Henrique dos Santos
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Rebeca Piatniczka Igleisa
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA;
| | - Leticia Alves Fernandes
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
| | - Iorrane Couto Fernandes
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
| | - Thais Naomi Gonçalves Nesiyama
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo 05508-270, Brazil; (T.N.G.N.); (F.V.M.)
| | - Francielle Sato
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Mauro Luciano Baesso
- Department of Physics, State University of Maringá, Maringá 87020-900, Brazil; (M.S.G.); (V.H.d.S.G.); (H.d.S.); (F.S.); (M.L.B.)
| | - Luzmarina Hernandes
- Department of Morphological Sciences, State University of Maringá, Maringá 87020-900, Brazil; (L.H.); (J.d.C.R.)
| | | | - Flávio Vieira Meirelles
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo 05508-270, Brazil; (T.N.G.N.); (F.V.M.)
| | - Claudete S. Astolfi-Ferreira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (C.S.A.-F.); (A.J.P.F.)
| | - Antonio José Piantino Ferreira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (C.S.A.-F.); (A.J.P.F.)
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (R.S.d.S.); (L.A.F.); (I.C.F.); (A.C.O.C.)
- Centre for Natural and Human Sciences, Federal University of ABC, Santo André 09040-902, Brazil
| |
Collapse
|
27
|
Abraham ME, Martin J, Ciacci JD. Addressing challenges for repairing adult spinal cord with insights from neonates. Cell Stem Cell 2024; 31:585-586. [PMID: 38701752 DOI: 10.1016/j.stem.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024]
Abstract
Stem cell therapy has emerged as a promising area of scientific investigation, sparking considerable interest, especially in spinal cord injury (SCI). Sun et al.1 discover that the extracellular matrix (ECM) from the neonatal spinal cord transmits biochemical signals to endogenous axons, thus promoting axonal regeneration.
Collapse
Affiliation(s)
- Mickey E Abraham
- Department of Neurological Surgery, University of California, San Diego, La Jolla, CA 92037, USA.
| | - Joel Martin
- Department of Neurological Surgery, Orlando Health, Orlando, FL, USA
| | - Joseph D Ciacci
- Department of Neurological Surgery, University of California, San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
28
|
Lai Z, Niu X, Chen X, Lu F, Zhang Y, Yuan Y. Composite Microparticles of Fat Graft and GFR Matrigel Improved Volume Retention by Promoting Cell Migration and Vessel Regeneration. Aesthetic Plast Surg 2024; 48:1993-2001. [PMID: 38302709 DOI: 10.1007/s00266-022-03145-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/09/2022] [Indexed: 02/03/2024]
Abstract
BACKGROUND The retention volume of autologous fat grafts decreases after transplantation due to limited nutrition infiltration and insufficient blood supply. Structural fat grafts and the 3M (multipoint, multitunnel, and multilayer) injection technique have been considered to improve the survival of grafts; however, it is difficult for surgeons to practice in the clinic because grafts tend to gather into a cluster, especially in large volume fat grafting. Therefore, we hypothesize that prefabricated microparticle fat grafts (PFMG) may improve the retention rate. METHODS The C57BL/6 mouse fat particles were embedded in growth factor-reduced (GFR)-Matrigel to detect cell migration by immunofluorescence staining in vitro. PFMG was prepared by mixing mouse fat particles and GFR Matrigel in a 1:1 volume ratio and injected subcutaneously into C57BL/6 mice. Fat particles mixed with PBS in equal volume served as control group. The grafts were harvested at 1, 4, 8, and 12 weeks after sacrifice. The retention rate of grafts at each time point was measured, and the structural alterations were detected by SEM. Fat necrosis and blood vessel density were evaluated by histological analysis. RESULTS CD34+ cells are migrated from the PFMG and formed a tree-like tubular network in the in vitro study. The retention rate was higher in the PFMG group than in the control group at week 12 (38% vs. 30%, p < 0.05). After transplantation, the dissociated structure of fat particles was maintained in PFMG by SEM analysis. Histological analysis of PFMG confirmed less fat necrosis and more blood vessel density in the PFMG group at the early stage than in the control group. The GFR Matrigel was displaced by adipose tissue with time. CONCLUSIONS In this study, we developed a novel fat grafting method, PFMG that dispersed fat grafts and maintained the structure after transplantation. High volume retention volume of PFMG was achieved by promoting cell migration and vessel regeneration. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Zhuhao Lai
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, 219 Moganshan Road, 310005, Hangzhou, People's Republic of China
| | - Xingtang Niu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Xihang Chen
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Feng Lu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Yuchen Zhang
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.
| | - Yi Yuan
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
29
|
de Melo LF, Almeida GHDR, Azarias FR, Carreira ACO, Astolfi-Ferreira C, Ferreira AJP, Pereira EDSBM, Pomini KT, Marques de Castro MV, Silva LMD, Maria DA, Rici REG. Decellularized Bovine Skeletal Muscle Scaffolds: Structural Characterization and Preliminary Cytocompatibility Evaluation. Cells 2024; 13:688. [PMID: 38667303 PMCID: PMC11048772 DOI: 10.3390/cells13080688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Skeletal muscle degeneration is responsible for major mobility complications, and this muscle type has little regenerative capacity. Several biomaterials have been proposed to induce muscle regeneration and function restoration. Decellularized scaffolds present biological properties that allow efficient cell culture, providing a suitable microenvironment for artificial construct development and being an alternative for in vitro muscle culture. For translational purposes, biomaterials derived from large animals are an interesting and unexplored source for muscle scaffold production. Therefore, this study aimed to produce and characterize bovine muscle scaffolds to be applied to muscle cell 3D cultures. Bovine muscle fragments were immersed in decellularizing solutions for 7 days. Decellularization efficiency, structure, composition, and three-dimensionality were evaluated. Bovine fetal myoblasts were cultured on the scaffolds for 10 days to attest cytocompatibility. Decellularization was confirmed by DAPI staining and DNA quantification. Histological and immunohistochemical analysis attested to the preservation of main ECM components. SEM analysis demonstrated that the 3D structure was maintained. In addition, after 10 days, fetal myoblasts were able to adhere and proliferate on the scaffolds, attesting to their cytocompatibility. These data, even preliminary, infer that generated bovine muscular scaffolds were well structured, with preserved composition and allowed cell culture. This study demonstrated that biomaterials derived from bovine muscle could be used in tissue engineering.
Collapse
Affiliation(s)
- Luana Félix de Melo
- Graduate Program in Anatomy of Domestic and Wild Animals, University of São Paulo, São Paulo 03828-000, Brazil; (L.F.d.M.); (A.C.O.C.); (R.E.G.R.)
| | | | - Felipe Rici Azarias
- Graduate Program of Medical Sciences, College of Medicine, University of São Paulo, São Paulo 03828-000, Brazil;
| | - Ana Claudia Oliveira Carreira
- Graduate Program in Anatomy of Domestic and Wild Animals, University of São Paulo, São Paulo 03828-000, Brazil; (L.F.d.M.); (A.C.O.C.); (R.E.G.R.)
- Center of Human and Natural Sciences, Federal University of ABC, Santo André 09210-170, Brazil
| | - Claudete Astolfi-Ferreira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (C.A.-F.); (A.J.P.F.)
| | - Antônio José Piantino Ferreira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 03828-000, Brazil; (C.A.-F.); (A.J.P.F.)
| | - Eliana de Souza Bastos Mazuqueli Pereira
- Graduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (E.d.S.B.M.P.); (K.T.P.); (M.V.M.d.C.); (L.M.D.S.)
| | - Karina Torres Pomini
- Graduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (E.d.S.B.M.P.); (K.T.P.); (M.V.M.d.C.); (L.M.D.S.)
| | - Marcela Vialogo Marques de Castro
- Graduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (E.d.S.B.M.P.); (K.T.P.); (M.V.M.d.C.); (L.M.D.S.)
| | - Laira Mireli Dias Silva
- Graduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (E.d.S.B.M.P.); (K.T.P.); (M.V.M.d.C.); (L.M.D.S.)
| | | | - Rose Eli Grassi Rici
- Graduate Program in Anatomy of Domestic and Wild Animals, University of São Paulo, São Paulo 03828-000, Brazil; (L.F.d.M.); (A.C.O.C.); (R.E.G.R.)
- Graduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marília (UNIMAR), Marília 17525-902, Brazil; (E.d.S.B.M.P.); (K.T.P.); (M.V.M.d.C.); (L.M.D.S.)
| |
Collapse
|
30
|
Pal S, Chaudhari R, Baurceanu I, Hill BJ, Nagy BA, Wolf MT. Extracellular Matrix Scaffold-Assisted Tumor Vaccines Induce Tumor Regression and Long-Term Immune Memory. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309843. [PMID: 38302823 PMCID: PMC11009079 DOI: 10.1002/adma.202309843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Injectable scaffold delivery is a strategy to enhance the efficacy of cancer vaccine immunotherapy. The choice of scaffold biomaterial is crucial, impacting both vaccine release kinetics and immune stimulation via the host response. Extracellular matrix (ECM) scaffolds prepared from decellularized tissues facilitate a pro-healing inflammatory response that promotes local cancer immune surveillance. Here, an ECM scaffold-assisted therapeutic cancer vaccine that maintains an immune microenvironment consistent with tissue reconstruction is engineered. Several immune-stimulating adjuvants are screened to develop a cancer vaccine formulated with decellularized small intestinal submucosa (SIS) ECM scaffold co-delivery. It is found that the STING pathway agonist cyclic di-AMP most effectively induces cytotoxic immunity in an ECM scaffold vaccine, without compromising key interleukin 4 (IL-4) mediated immune pathways associated with healing. ECM scaffold delivery enhances therapeutic vaccine efficacy, curing 50-75% of established E.G-7OVA lymphoma tumors in mice, while none are cured with soluble vaccine. SIS-ECM scaffold-assisted vaccination prolonged antigen exposure is dependent on CD8+ cytotoxic T cells and generates long-term antigen-specific immune memory for at least 10 months post-vaccination. This study shows that an ECM scaffold is a promising delivery vehicle to enhance cancer vaccine efficacy while being orthogonal to characteristics of pro-healing immune hallmarks.
Collapse
Affiliation(s)
- Sanjay Pal
- Cancer Biomaterial Engineering Section, Cancer Innovation
Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD
21702
| | - Rohan Chaudhari
- Cancer Biomaterial Engineering Section, Cancer Innovation
Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD
21702
- OHSU School of Medicine, Oregon Health & Science
University, Portland, OR 97239
| | - Iris Baurceanu
- Cancer Biomaterial Engineering Section, Cancer Innovation
Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD
21702
| | - Brenna J. Hill
- AIDS and Cancer Virus Program, Frederick National
Laboratory for Cancer Research, Frederick, MD 21702
| | - Bethany A. Nagy
- Laboratory Animal Sciences Program (LASP), National Cancer
Institute, Frederick, MD 21702
| | - Matthew T. Wolf
- Cancer Biomaterial Engineering Section, Cancer Innovation
Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD
21702
| |
Collapse
|
31
|
Bernini M, Gigliucci G, Cassetti D, Tommasi C, Gaggelli I, Arlia L, Becherini C, Salvestrini V, Visani L, Nori Cucchiari J, De Benedetto D, Di Naro F, Bicchierai G, Bellini C, Bianchi S, Orzalesi L, Livi L, Meattini I. Pre-pectoral breast reconstruction with tissue expander entirely covered by acellular dermal matrix: feasibility, safety and histological features resulting from the first 64 procedures. Gland Surg 2024; 13:297-306. [PMID: 38601291 PMCID: PMC11002490 DOI: 10.21037/gs-23-432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/20/2024] [Indexed: 04/12/2024]
Abstract
Background Reconstructive options that can be used following conservative mastectomy, skin-, nipple-sparing and skin-reducing mastectomies, allow a remarkable variety of safe methods to restore the natural shape and aesthetics of the breast mound. In case of two-stage breast reconstruction, tissue expanders (TEs) are usually placed in a subpectoral position. The purpose of this retrospective cohort study is to evaluate the feasibility and safety of two-step reconstruction with TE in pre-pectoral position covered by acellular dermal matrix (ADM). Methods Between March 2021 and May 2023, at the Azienda Ospedaliero Universitaria Careggi, University of Florence, 55 patients with BRCA 1/2 mutations or early breast cancer underwent conservative mastectomy with immediate pre-pectoral reconstruction using TE covered with ADM, followed by a second surgery with replacement of the expander with definitive prosthesis. Demographic, oncological, and histological data along with surgical complications were recorded. Results A total of 64 conservative mastectomies were performed. In 2 patients (3.1%) complications were found that required reintervention and, in both cases, the TE had to be removed. Two patients developed hematoma and one patient developed seroma. Two patients showed wound dehiscence, both healed after conservative treatment and without implant exposure. No case of necrosis of the skin or nipple-areola complex has been observed, neither of capsular contracture. Capsule formed around TE was populated with cells and blood vessels and showed a thin area of synovial metaplasia. Conclusions In selected cases it may be more cautious to perform a two-stage breast reconstruction after radical breast surgery by means of TEs. The placement of TEs in pre-pectoral position combines the excellent aesthetic and functional results of the pre-pectoral philosophy with a quite safer and more prudent two-step approach. Our experience reports optimistic results: the ADM covering the TE is seen successfully integrating during tissue expansion and becoming a vascularised new self-tissue. Complications rates are low and such ADM-assisted two-stage pre-pectoral reconstructive technique is a safe, practical, and reproducible method.
Collapse
Affiliation(s)
- Marco Bernini
- Breast Surgery Unit, Azienda Ospedaliero Universitaria Careggi - University of Florence, Florence, Italy
| | - Giacomo Gigliucci
- Breast Surgery Unit, Azienda Ospedaliero Universitaria Careggi - University of Florence, Florence, Italy
| | - Dario Cassetti
- Breast Surgery Unit, Azienda Ospedaliero Universitaria Careggi - University of Florence, Florence, Italy
| | - Cinzia Tommasi
- Breast Surgery Unit, Azienda Ospedaliero Universitaria Careggi - University of Florence, Florence, Italy
| | - Ilaria Gaggelli
- Breast Surgery Unit, Azienda Ospedaliero Universitaria Careggi - University of Florence, Florence, Italy
| | - Lorenzo Arlia
- Breast Surgery Unit, Azienda Ospedaliero Universitaria Careggi - University of Florence, Florence, Italy
| | - Carlotta Becherini
- Radiotherapy Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Viola Salvestrini
- Radiotherapy Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Luca Visani
- Radiotherapy Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Jacopo Nori Cucchiari
- Diagnostic Senology, Azienda Ospedaliero Universitaria Careggi, University of Florence, Florence, Italy
| | - Diego De Benedetto
- Diagnostic Senology, Azienda Ospedaliero Universitaria Careggi, University of Florence, Florence, Italy
| | - Federica Di Naro
- Diagnostic Senology, Azienda Ospedaliero Universitaria Careggi, University of Florence, Florence, Italy
| | - Giulia Bicchierai
- Diagnostic Senology, Azienda Ospedaliero Universitaria Careggi, University of Florence, Florence, Italy
| | - Chiara Bellini
- Diagnostic Senology, Azienda Ospedaliero Universitaria Careggi, University of Florence, Florence, Italy
| | - Simonetta Bianchi
- Pathology Division, Azienda Ospedaliero Universitaria Careggi - University of Florence, Florence, Italy
| | - Lorenzo Orzalesi
- Breast Surgery Unit, Azienda Ospedaliero Universitaria Careggi - University of Florence, Florence, Italy
| | - Lorenzo Livi
- Radiotherapy Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Icro Meattini
- Radiotherapy Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| |
Collapse
|
32
|
Kim BS, Kim JU, Lee JW, Ryu KM, Koh RH, So KH, Hwang NS. Comparative analysis of supercritical fluid-based and chemical-based decellularization techniques for nerve tissue regeneration. Biomater Sci 2024; 12:1847-1863. [PMID: 38411258 DOI: 10.1039/d3bm02072j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Axon regeneration and Schwann cell proliferation are critical processes in the repair and functional recovery of damaged neural tissues. Biomaterials can play a crucial role in facilitating cell proliferative processes that can significantly impact the target tissue repair. Chemical decellularization and supercritical fluid-based decellularization methods are similar approaches that eliminate DNA from native tissues for tissue-mimetic biomaterial production by using different solvents and procedures to achieve the final products. In this study, we conducted a comparative analysis of these two methods in the context of nerve regeneration and neuron cell differentiation efficiency. We evaluated the efficacy of each method in terms of biomaterial quality, preservation of extracellular matrix components, promotion of neuronal cell differentiation and nerve tissue repair ability in vivo. Our results indicate that while both methods produce high-quality biomaterials, supercritical fluid-based methods have several advantages over conventional chemical decellularization, including better preservation of extracellular matrix components and mechanical properties and superior promotion of cellular responses. We conclude that supercritical fluid-based methods show great promise for biomaterial production for nerve regeneration and neuron cell differentiation applications.
Collapse
Affiliation(s)
- Beom-Seok Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong-Uk Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Woo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung Min Ryu
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Rachel H Koh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyoung-Ha So
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
33
|
Buckenmeyer MJ, Brooks EA, Taylor MS, Yang L, Holewinski RJ, Meyer TJ, Galloux M, Garmendia-Cedillos M, Pohida TJ, Andresson T, Croix B, Wolf MT. Engineering Tumor Stroma Morphogenesis Using Dynamic Cell-Matrix Spheroid Assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585805. [PMID: 38903106 PMCID: PMC11188064 DOI: 10.1101/2024.03.19.585805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The tumor microenvironment consists of resident tumor cells organized within a compositionally diverse, three-dimensional (3D) extracellular matrix (ECM) network that cannot be replicated in vitro using bottom-up synthesis. We report a new self-assembly system to engineer ECM-rich 3D MatriSpheres wherein tumor cells actively organize and concentrate microgram quantities of decellularized ECM dispersions which modulate cell phenotype. 3D colorectal cancer (CRC) MatriSpheres were created using decellularized small intestine submucosa (SIS) as an orthotopic ECM source that had greater proteomic homology to CRC tumor ECM than traditional ECM formulations such as Matrigel. SIS ECM was rapidly concentrated from its environment and assembled into ECM-rich 3D stroma-like regions by mouse and human CRC cell lines within 4-5 days via a mechanism that was rheologically distinct from bulk hydrogel formation. Both ECM organization and transcriptional regulation by 3D ECM cues affected programs of malignancy, lipid metabolism, and immunoregulation that corresponded with an in vivo MC38 tumor cell subpopulation identified via single cell RNA sequencing. This 3D modeling approach stimulates tumor specific tissue morphogenesis that incorporates the complexities of both cancer cell and ECM compartments in a scalable, spontaneous assembly process that may further facilitate precision medicine.
Collapse
Affiliation(s)
- Michael J. Buckenmeyer
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Elizabeth A. Brooks
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Madison S. Taylor
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Liping Yang
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Ronald J. Holewinski
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mélissa Galloux
- Independent Bioinformatician, Marseille, Provence-Alpes-Côte d’Azur, France
| | - Marcial Garmendia-Cedillos
- Instrumentation Development and Engineering Application Solutions, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thomas J. Pohida
- Instrumentation Development and Engineering Application Solutions, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Brad Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Matthew T. Wolf
- Cancer Biomaterials Engineering Laboratory, Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| |
Collapse
|
34
|
Muccioli Casadei R, Corezzola ME, Monticelli A. A High-biocompatibility Interface for the Breast Implant: First Report of a Novel Biological Matrix-assisted Technique in Aesthetic Revision Surgery. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e5628. [PMID: 38410624 PMCID: PMC10896469 DOI: 10.1097/gox.0000000000005628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/11/2024] [Indexed: 02/28/2024]
Abstract
Development of human-compatible tissues is an active field of research that is leading to the production of optimized biological scaffolds to support regenerative medicine. Xenogenic acellular matrices are known to have strongly influenced the field of breast surgery, playing an integral role in wound healing and in preventing the foreign body reaction to silicone implants. Here, we present our experience in using a biological matrix for aesthetic revision surgery with malposition and severe capsular contracture. Revisions were performed using the new MASQUE equine acellular-pericardium-matrix (APM) as an anterior cover for the synthetic prosthesis. Acting as an internal support, the thin APM layer provides a biological and biocompatible interface between the synthetic implant and living tissues, exerting a protective function against fibrotic responses and capsular contracture. The role of an APM in matrix-assisted mammoplasty has yet to be fully established. Our early experience of APM-assisted aesthetic revision surgery shows promising results, laying the foundations for equine biological matrices as a valid tool for the management of capsular contracture-susceptible patients.
Collapse
|
35
|
Chen L, Yang J, Wang D, Jiang J, Zhang B, Zhao Z, Chen X, Lv D. Multicenter effect analysis of one-step acellular dermis combined with autologous ultra-thin split thickness skin composite transplantation in treating burn and traumatic wounds. Int Wound J 2024; 21:e14341. [PMID: 37548136 PMCID: PMC10777748 DOI: 10.1111/iwj.14341] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023] Open
Abstract
To evaluate the efficacy of one-step acellular dermis combined with autologous split thickness skin grafting in the treatment of burn or trauma wounds by a multicenter controlled study. In patients with extensive burns, it is even difficult to repair the wounds due to the shortage of autologous skin. The traditional skin grafting method has the disadvantages of large damage to the donor site, insufficient skin source and unsatisfactory appearance, wear resistance and elasticity of the wound tissue after skin grafting. One-step acellular dermis combined with autologous ultra-thin split thickness skin graft can achieve better healing effect in the treatment of burn and trauma wounds. A total of 1208 patients who underwent single-layer skin grafting and one-step composite skin grafting in the First Affiliated Hospital of Wannan Medical College, Wuhan Third People's Hospital and Lu 'an People's Hospital from 2019 to 2022 were retrospectively analysed. The total hospitalization cost, total operation cost, hospitalization days after surgery, wound healing rate after 1 week of skin grafting and scar follow-up at 6 months after discharge were compared and studied. The total cost of hospitalization and operation in the composite skin grafting group was significantly higher than those in the single-layer autologous skin grafting group. The wound healing rate after 1 week of skin grafting and the VSS score of scar in the follow-up of 6 months after discharge were better than those in the single-layer skin grafting group. One-step acellular dermis combined with autologous ultra-thin split thickness skin graft has high wound healing rate, less scar, smooth appearance and good elasticity in repairing burn and trauma wounds, which can provide an ideal repair method for wounds.
Collapse
Affiliation(s)
- Lei Chen
- Department of Burn and Plastic SurgeryFirst Affiliated Hospital of Wannan Medical CollegeWuhuPR China
- Department of BurnsFirst Affiliated Hospital of Anhui Medical UniversityHefeiPR China
| | - Jing Yang
- Department of Burn and Plastic SurgeryFirst Affiliated Hospital of Wannan Medical CollegeWuhuPR China
| | - De‐yun Wang
- Department of Burn and Plastic SurgeryWuhan Third HospitalWuhanPR China
| | - Jun‐mei Jiang
- Department of Burn and Plastic SurgeryWuhan Third HospitalWuhanPR China
| | - Bao‐de Zhang
- Department of Burn and Plastic SurgeryLu'an People's HospitalLu'anPR China
| | - Zun‐jiang Zhao
- Department of Burn and Plastic SurgeryFirst Affiliated Hospital of Wannan Medical CollegeWuhuPR China
| | - Xu‐Lin Chen
- Department of BurnsFirst Affiliated Hospital of Anhui Medical UniversityHefeiPR China
| | - Da‐lun Lv
- Department of Burn and Plastic SurgeryFirst Affiliated Hospital of Wannan Medical CollegeWuhuPR China
| |
Collapse
|
36
|
Sato H, Kohyama K, Uchibori T, Takanari K, Huard J, Badylak SF, D'Amore A, Wagner WR. Creating and Transferring an Innervated, Vascularized Muscle Flap Made from an Elastic, Cellularized Tissue Construct Developed In Situ. Adv Healthc Mater 2023; 12:e2301335. [PMID: 37499214 DOI: 10.1002/adhm.202301335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Reanimating facial structures following paralysis and muscle loss is a surgical objective that would benefit from improved options for harvesting appropriately sized muscle flaps. The objective of this study is to apply electrohydrodynamic processing to generate a cellularized, elastic, biocomposite scaffold that could develop and mature as muscle in a prepared donor site in vivo, and then be transferred as a thin muscle flap with a vascular and neural pedicle. First, an effective extracellular matrix (ECM) gel type is selected for the biocomposite scaffold from three types of ECM combined with poly(ester urethane)urea microfibers and evaluated in rat abdominal wall defects. Next, two types of precursor cells (muscle-derived and adipose-derived) are compared in constructs placed in rat hind limb defects for muscle regeneration capacity. Finally, with a construct made from dermal ECM and muscle-derived stem cells, protoflaps are implanted in one hindlimb for development and then microsurgically transferred as a free flap to the contralateral limb where stimulated muscle function is confirmed. This construct generation and in vivo incubation procedure may allow the generation of small-scale muscle flaps appropriate for transfer to the face, offering a new strategy for facial reanimation.
Collapse
Affiliation(s)
- Hideyoshi Sato
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Keishi Kohyama
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Takafumi Uchibori
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Keisuke Takanari
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
| | - Johnny Huard
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, 181 West Meadow Dr., Vail, CO, 81657, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
- Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Benedum Hall of Engineering, Pittsburgh, PA, 15261, USA
| | - Antonio D'Amore
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
- Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Benedum Hall of Engineering, Pittsburgh, PA, 15261, USA
- Fondazione Ri.MED, Palermo, 90133, Italy
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Dr., Pittsburgh, PA, 15219, USA
- Department of Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA, 15213, USA
- Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Benedum Hall of Engineering, Pittsburgh, PA, 15261, USA
- Department of Chemical Engineering, University of Pittsburgh, 3700 O'Hara Street, Benedum Hall of Engineering, Pittsburgh, PA, 15261, USA
| |
Collapse
|
37
|
Krishtul S, Skitel Moshe M, Kovrigina I, Baruch L, Machluf M. ECM-based bioactive microencapsulation significantly improves islet function and graft performance. Acta Biomater 2023; 171:249-260. [PMID: 37708927 DOI: 10.1016/j.actbio.2023.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
Microencapsulation is a promising strategy to prolong the survival and function of transplanted pancreatic islets for diabetes therapy, albeit its translation has been impeded by incoherent graft performance. The use of decellularized ECM has lately gained substantial research momentum due to its innate capacity to augment the function of cells originating from the same tissue type. In the present study, the advantages of both these approaches are leveraged in a porcine pancreatic ECM (pECM)-based microencapsulation platform, thus significantly enhancing murine pancreatic islet performance. pECM-encapsulated islets sustain high insulin secretion levels in vitro, surpassing those of islets encapsulated in conventional alginate microcapsules. Moreover, pECM-encapsulated islet cells proliferate and produce an enriched intra-islet ECM framework, displaying a distinctive structural rearrangement. The beneficial effect of pECM encapsulation is further reinforced by the temporary protection against cytokine-induced cytotoxicity. In-vivo, this platform significantly improves glucose tolerance and achieves glycemic correction in 100% of immunocompetent diabetic mice without any immunosuppression, compared to only 50% mice achieved glycemic correction by alginate encapsulation. Altogether, the results presented herein reveal that pECM-based microencapsulation offers a natural pancreatic niche that can restore the function of isolated pancreatic islets and deliver them safely, avoiding the need for immunosuppression. STATEMENT OF SIGNIFICANCE: Aiming to improve pancreatic islet transplantation outcomes in diabetic patients, we developed a microencapsulation platform based on pancreatic extracellular matrix (pECM). In these microcapsules the islets are entrapped within a pECM hydrogel that mimics the natural pancreatic microenvironment. We show that pECM encapsulation supports the islets' viability and function in culture, and provides temporal protection against cytokine-induced stress. In a diabetic mouse model, pECM encapsulation significantly improved glucose tolerance and achieved glycemic correction without any immunosuppression. These results reveal the potential of pECM encapsulation as a viable treatment for diabetes, providing a solid scientific basis for more advanced preclinical studies.
Collapse
Affiliation(s)
- Stasia Krishtul
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Michal Skitel Moshe
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Inna Kovrigina
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Limor Baruch
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Marcelle Machluf
- Faculty of Biotechnology & Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
38
|
Cazzato V, Renzi N, Bottosso S, De Grazia A, Pasquali S, Di Lecce C, Martellani F, Zanconati F, Ramella V, Papa G. How Porcine Acellular Dermal Matrix Influences the Development of the Breast Capsule 1 Year after Implantation: A Histopathological Analysis. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2023; 11:e5400. [PMID: 38025625 PMCID: PMC10656090 DOI: 10.1097/gox.0000000000005400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/20/2023] [Indexed: 12/01/2023]
Abstract
Background In prepectoral breast reconstruction (PPBR) the acellular dermal matrix (ADM)'s integration capacity into the tissue is known. The aim of this study was to analyze the effect of the ADM on development and composition of the peri-implant breast capsule in a dynamic setting of breast tissue expansion during two-stage prepectoral breast reconstruction. Methods This is a prospective single-center study in which 50 patients who underwent mastectomy and breast reconstruction with prepectoral tissue expander and Braxon ADM (group A) and submuscular tissue expander (group B) were enrolled. One-year post implantation hematoxylin & eosin (H&E) staining and immunohistochemistry analyses were done on capsule tissue samples. Results The analysis conducted on H&E-stained samples showed a significant reduction of cellular density and a decrease of the cellular infiltration in capsules of ADM-covered expanders compared with naked expander capsules (P < 0.05). The immunohistochemical analyses showed that group A capsules presented significantly less M1 CD68+ macrophages (P < 0.05), lower alfa-SMA expression levels, and a lower number of myofibroblasts (P < 0.05) compared with group B capsules. Presence of lymphatic vessels was minimally detected in both groups. Conclusions The ADM presence around the prepectoral tissue expander influences the development of the peri-implant capsule, causing a significant reduction of the number of cells and inflammatory infiltrate, especially M1 macrophages and myofibroblasts. The ADM Braxon is therefore effective in creating a noninflamed capsule around the implant and in dynamic tissue conditions, and such an environment is maintained in time.
Collapse
Affiliation(s)
- Vito Cazzato
- From the Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- Department of Plastic and Reconstructive Surgery, Azienda Sanitaria Universitaria Giuliano-Isontina, Trieste University Hospital, Trieste, Italy
| | - Nadia Renzi
- Department of Plastic and Reconstructive Surgery, Azienda Sanitaria Universitaria Giuliano-Isontina, Trieste University Hospital, Trieste, Italy
| | - Stefano Bottosso
- Department of Plastic and Reconstructive Surgery, Azienda Sanitaria Universitaria Giuliano-Isontina, Trieste University Hospital, Trieste, Italy
| | - Alessia De Grazia
- From the Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Silvia Pasquali
- From the Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Claudia Di Lecce
- Department of Pathology, Azienda Sanitaria Universitaria Giuliano-Isontina, Trieste University Hospital, Trieste, Italy
| | - Fulvia Martellani
- Department of Pathology, Azienda Sanitaria Universitaria Giuliano-Isontina, Trieste University Hospital, Trieste, Italy
| | - Fabrizio Zanconati
- From the Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- Department of Pathology, Azienda Sanitaria Universitaria Giuliano-Isontina, Trieste University Hospital, Trieste, Italy
| | - Vittorio Ramella
- From the Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- Department of Plastic and Reconstructive Surgery, Azienda Sanitaria Universitaria Giuliano-Isontina, Trieste University Hospital, Trieste, Italy
| | - Giovanni Papa
- From the Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- Department of Plastic and Reconstructive Surgery, Azienda Sanitaria Universitaria Giuliano-Isontina, Trieste University Hospital, Trieste, Italy
| |
Collapse
|
39
|
Tai L, Saffery NS, Chin SP, Cheong SK. Secretome profile of TNF-α-induced human umbilical cord mesenchymal stem cells unveils biological processes relevant to skin wound healing. Regen Med 2023; 18:839-856. [PMID: 37671699 DOI: 10.2217/rme-2023-0085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
Aim: To profile and study the proteins responsible for the beneficial effect of the TNF-α-induced human umbilical cord mesenchymal stem cells (hUCMSCs) secretome in wound healing. Methods: The hUCMSCs secretome was generated with (induced) or without (uninduced) TNF-α and was subsequently analyzed by liquid chromatography-mass spectrometry, immunoassay and in vitro scratch assay. Results: Proteomic analysis revealed approximately 260 proteins, including 51 and 55 unique proteins in the induced and uninduced secretomes, respectively. Gene ontology analysis disclosed that differential proteins in the induced secretome mainly involved inflammation-related terms. The induced secretome, consisting of higher levels of FGFb, VEGF, PDGF and IL-6, significantly accelerated wound closure and enhanced MMP-13 secretion in HaCaT keratinocytes. Conclusion: The secretome from induced hUCMSCs includes factors that promote wound closure.
Collapse
Affiliation(s)
- Lihui Tai
- Cytopeutics Sdn Bhd, Suite 2-3 2nd floor, Bio-X Centre, Persiaran Cyberpoint Selatan, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia
| | - Nik Syazana Saffery
- Cytopeutics Sdn Bhd, Suite 2-3 2nd floor, Bio-X Centre, Persiaran Cyberpoint Selatan, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia
| | - Sze Piaw Chin
- Cytopeutics Sdn Bhd, Suite 2-3 2nd floor, Bio-X Centre, Persiaran Cyberpoint Selatan, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia
| | - Soon Keng Cheong
- Cytopeutics Sdn Bhd, Suite 2-3 2nd floor, Bio-X Centre, Persiaran Cyberpoint Selatan, Cyber 8, 63000, Cyberjaya, Selangor, Malaysia
- M. Kandiah Faculty of Medicine & Health Sciences (MK FMHS), Universiti Tunku Abdul Rahman Sungai Long City Campus, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
40
|
Turan Sorhun D, Kuşoğlu A, Öztürk E. Developing Bovine Brain-Derived Extracellular Matrix Hydrogels: a Screen of Decellularization Methods for Their Impact on Biochemical and Mechanical Properties. ACS OMEGA 2023; 8:36933-36947. [PMID: 37841171 PMCID: PMC10569007 DOI: 10.1021/acsomega.3c04064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
Tissue models that recapitulate the key biochemical and physical aspects of the brain have been highly pursued in neural tissue engineering. Decellularization of native organs offers the advantage of preserving the composition of native extracellular matrix (ECM). Brain ECM has distinct features which play a major role in neural cell behavior. Cell instructive ligands and mechanical properties take part in the regulation of cellular processes in homeostasis and diseases. One of the main challenges in decellularization is maintaining mechanical integrity in reconstituted hydrogels and achieving physiologically relevant stiffness. The effect of the decellularization process on different mechanical aspects, particularly the viscoelasticity of brain-derived hydrogels, has not been addressed. In this study, we developed bovine brain-derived hydrogels for the first time. We pursued seven protocols for decellularization and screened their effect on biochemical content, hydrogel formation, and mechanical characteristics. We show that bovine brain offers an easily accessible alternative for in vitro brain tissue modeling. Our data demonstrate that the choice of decellularization method strongly alters gelation as well as the stiffness and viscoelasticity of the resulting hydrogels. Lastly, we investigated the cytocompatibility of brain ECM hydrogels and the effect of modulated mechanical properties on the growth and morphological features of neuroblastoma cells.
Collapse
Affiliation(s)
- Duygu Turan Sorhun
- Engineered
Cancer and Organ Models Laboratory, Koç
University, Istanbul 34450, Turkey
- Research
Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Alican Kuşoğlu
- Engineered
Cancer and Organ Models Laboratory, Koç
University, Istanbul 34450, Turkey
- Research
Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
| | - Ece Öztürk
- Engineered
Cancer and Organ Models Laboratory, Koç
University, Istanbul 34450, Turkey
- Research
Center for Translational Medicine (KUTTAM), Koç University, Istanbul 34450, Turkey
- Department
of Medical Biology, School of Medicine, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
41
|
Choi J, Lee EJ, Jang WB, Kwon SM. Development of Biocompatible 3D-Printed Artificial Blood Vessels through Multidimensional Approaches. J Funct Biomater 2023; 14:497. [PMID: 37888162 PMCID: PMC10607080 DOI: 10.3390/jfb14100497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Within the human body, the intricate network of blood vessels plays a pivotal role in transporting nutrients and oxygen and maintaining homeostasis. Bioprinting is an innovative technology with the potential to revolutionize this field by constructing complex multicellular structures. This technique offers the advantage of depositing individual cells, growth factors, and biochemical signals, thereby facilitating the growth of functional blood vessels. Despite the challenges in fabricating vascularized constructs, bioprinting has emerged as an advance in organ engineering. The continuous evolution of bioprinting technology and biomaterial knowledge provides an avenue to overcome the hurdles associated with vascularized tissue fabrication. This article provides an overview of the biofabrication process used to create vascular and vascularized constructs. It delves into the various techniques used in vascular engineering, including extrusion-, droplet-, and laser-based bioprinting methods. Integrating these techniques offers the prospect of crafting artificial blood vessels with remarkable precision and functionality. Therefore, the potential impact of bioprinting in vascular engineering is significant. With technological advances, it holds promise in revolutionizing organ transplantation, tissue engineering, and regenerative medicine. By mimicking the natural complexity of blood vessels, bioprinting brings us one step closer to engineering organs with functional vasculature, ushering in a new era of medical advancement.
Collapse
Affiliation(s)
- Jaewoo Choi
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Eun Ji Lee
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Woong Bi Jang
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (J.C.); (E.J.L.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
42
|
Phogat S, Thiam F, Al Yazeedi S, Abokor FA, Osei ET. 3D in vitro hydrogel models to study the human lung extracellular matrix and fibroblast function. Respir Res 2023; 24:242. [PMID: 37798767 PMCID: PMC10552248 DOI: 10.1186/s12931-023-02548-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
The pulmonary extracellular matrix (ECM) is a macromolecular structure that provides mechanical support, stability and elastic recoil for different pulmonary cells including the lung fibroblasts. The ECM plays an important role in lung development, remodeling, repair, and the maintenance of tissue homeostasis. Biomechanical and biochemical signals produced by the ECM regulate the phenotype and function of various cells including fibroblasts in the lungs. Fibroblasts are important lung structural cells responsible for the production and repair of different ECM proteins (e.g., collagen and fibronectin). During lung injury and in chronic lung diseases such as asthma, idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), an abnormal feedback between fibroblasts and the altered ECM disrupts tissue homeostasis and leads to a vicious cycle of fibrotic changes resulting in tissue remodeling. In line with this, using 3D hydrogel culture models with embedded lung fibroblasts have enabled the assessment of the various mechanisms involved in driving defective (fibrotic) fibroblast function in the lung's 3D ECM environment. In this review, we provide a summary of various studies that used these 3D hydrogel models to assess the regulation of the ECM on lung fibroblast phenotype and function in altered lung ECM homeostasis in health and in chronic respiratory disease.
Collapse
Affiliation(s)
- Sakshi Phogat
- Department of Biology, Okanagan Campus, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Fama Thiam
- Department of Biology, Okanagan Campus, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Safiya Al Yazeedi
- Department of Biology, Okanagan Campus, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Filsan Ahmed Abokor
- Department of Biology, Okanagan Campus, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - Emmanuel Twumasi Osei
- Department of Biology, Okanagan Campus, University of British Columbia, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada.
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada.
| |
Collapse
|
43
|
Natale BV, Kotadia R, Gustin K, Harihara A, Min S, Kreisman MJ, Breen KM, Natale DR. Extracellular Matrix Influences Gene Expression and Differentiation of Mouse Trophoblast Stem Cells. Stem Cells Dev 2023; 32:622-637. [PMID: 37463089 PMCID: PMC10561768 DOI: 10.1089/scd.2022.0290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 07/14/2023] [Indexed: 07/20/2023] Open
Abstract
Trophoblast stem (TS) cells were first isolated from the mouse placenta; however, little is known about their maintenance and niche in vivo. TS cells, like other stem cells, have a unique microenvironment in which the extracellular matrix (ECM) is a component. Placental pathology is associated with ECM change. However, how these changes and the individual ECM components impact the maintenance or differentiation of TS cells has not been established. This study identified which ECM component(s) maintain the greatest expression of markers associated with undifferentiated mouse trophoblast stem (mTS) cells and which alter the profile of markers of differentiation based on mRNA analysis. mTS cells cultured on individual ECM components and subsequent quantitative polymerase chain reaction analysis revealed that laminin promoted the expression of markers associated with undifferentiated TS cells, fibronectin promoted gene expression associated with syncytiotrophoblast (SynT) layer II cells, and collagen IV promoted the expression of genes associated with differentiated trophoblast. To investigate whether pathological placental ECM influenced the expression of genes associated with different trophoblast subtypes, the mouse model of streptozotocin (STZ)-induced pancreatic β cell ablation and diabetes was used. Female mice administered STZ (blood glucose ≥300 mg/dL) or control (blood glucose ≤150 mg/dL) were mated. Placental pathology at embryonic day (E)14.5 was confirmed with reduced fetal blood space area, reduced expression of the pericyte marker αSMA, and decreased expression of ECM proteins. mTS cells cultured on ECM isolated from STZ placenta were associated with reduced expression of undifferentiated mTS markers and increased expression of genes associated with terminally differentiated trophoblast [Gcm-1 and SynA (SynT) and junctional zone Tpbpa and Prl2c2]. Altogether, these results support the value of using ECM isolated from the placenta as a tool for understanding trophoblast contribution to placental pathology.
Collapse
Affiliation(s)
- Bryony V. Natale
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - Ramie Kotadia
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - Katarina Gustin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - Anirudha Harihara
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - Sarah Min
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - Michael J. Kreisman
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - Kellie M. Breen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| | - David R.C. Natale
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
44
|
Cormican MT, Creel NJ, Bosque BA, Dowling SG, Rideout PP, Vassy WM. Ovine Forestomach Matrix in the Surgical Management of Complex Volumetric Soft Tissue Defects: A Retrospective Pilot Case Series. EPLASTY 2023; 23:e66. [PMID: 38045101 PMCID: PMC10690777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background Volumetric soft tissue loss is an urgent surgical issue and can frequently lead to suboptimal outcomes for patients due to significant soft tissue loss, compromised vital structures, and contamination. Ovine forestomach matrix (OFM) has demonstrated clinical success in the surgical management of soft tissue defects, especially in contaminated fields, and provides an effective option for immediate coverage of exposed vital structures before definitive closure. Methods This retrospective pilot case series (n = 13 defects) evaluated the clinical effectiveness of OFM (graft and/or particulate formats) in the surgical management of contaminated volumetric soft tissue defects. Patients presented with significant soft tissue loss, often with exposed viscera, tendon, bone, or muscle, and were treated with OFM as part of their inpatient surgical management. All patients had at least 1 significant comorbidity with the potential to complicate their healing trajectory. The primary study endpoint was time to 100% granulation tissue coverage (days), and the secondary endpoint was any device-related postoperative complications. Results A total of 13 volumetric soft tissue defects were evaluated in 10 patients who underwent surgical reconstruction. Mean defect age was 3.5 ± 5.6 weeks, and mean area was 217.3 ± 77.9 cm2. Most defects had exposed structures (85%), and all defects were Centers for Disease Control and Prevention grade 2 or higher. Mean time to 100% granulation tissue formation was 23.4 ± 9.2 days, with a median product application of 1.0. Staged reconstruction was used in 7 of 13 defects, with the remainder (6 of 13) left to heal via secondary intention using standard wound care protocols. There were no major postoperative infections or adverse events (mean follow-up, 7.4 ± 2.4 weeks.). Conclusions This retrospective pilot case series builds on a growing body of evidence that OFM can be utilized to facilitate the formation of functional, well-vascularized soft tissue in large contaminated volumetric soft tissue defects.
Collapse
Affiliation(s)
- Michael T Cormican
- Northeast Georgia Medical Center, Department of Trauma and Acute Care Surgery, Gainesville, Georgia
| | - Nathan J Creel
- Northeast Georgia Medical Center, Department of Trauma and Acute Care Surgery, Gainesville, Georgia
| | | | | | - Phillip P Rideout
- Northeast Georgia Medical Center, Northeast Georgia Physicians Group Vascular Center, Gainesville, Georgia
| | - William M Vassy
- Northeast Georgia Medical Center, Department of Trauma and Acute Care Surgery, Gainesville, Georgia
| |
Collapse
|
45
|
Nayak VV, Tovar N, Khan D, Pereira AC, Mijares DQ, Weck M, Durand A, Smay JE, Torroni A, Coelho PG, Witek L. 3D Printing Type 1 Bovine Collagen Scaffolds for Tissue Engineering Applications-Physicochemical Characterization and In Vitro Evaluation. Gels 2023; 9:637. [PMID: 37623094 PMCID: PMC10454336 DOI: 10.3390/gels9080637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
Collagen, an abundant extracellular matrix protein, has shown hemostatic, chemotactic, and cell adhesive characteristics, making it an attractive choice for the fabrication of tissue engineering scaffolds. The aim of this study was to synthesize a fibrillar colloidal gel from Type 1 bovine collagen, as well as three dimensionally (3D) print scaffolds with engineered pore architectures. 3D-printed scaffolds were also subjected to post-processing through chemical crosslinking (in N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide) and lyophilization. The scaffolds were physicochemically characterized through Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis, Differential Scanning Calorimetry, and mechanical (tensile) testing. In vitro experiments using Presto Blue and Alkaline Phosphatase assays were conducted to assess cellular viability and the scaffolds' ability to promote cellular proliferation and differentiation. Rheological analysis indicated shear thinning capabilities in the collagen gels. Crosslinked and lyophilized 3D-printed scaffolds were thermally stable at 37 °C and did not show signs of denaturation, although crosslinking resulted in poor mechanical strength. PB and ALP assays showed no signs of cytotoxicity as a result of crosslinking. Fibrillar collagen was successfully formulated into a colloidal gel for extrusion through a direct inkjet writing printer. 3D-printed scaffolds promoted cellular attachment and proliferation, making them a promising material for customized, patient-specific tissue regenerative applications.
Collapse
Affiliation(s)
- Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (V.V.N.); (P.G.C.)
| | - Nick Tovar
- Biomaterials Division, NYU College of Dentistry, New York, NY 10010, USA; (N.T.); (D.K.); (A.C.P.); (D.Q.M.)
- Department of Oral and Maxillofacial Surgery, New York University, Langone Medical Center and Bellevue Hospital Center, New York, NY 10016, USA
| | - Doha Khan
- Biomaterials Division, NYU College of Dentistry, New York, NY 10010, USA; (N.T.); (D.K.); (A.C.P.); (D.Q.M.)
| | - Angel Cabrera Pereira
- Biomaterials Division, NYU College of Dentistry, New York, NY 10010, USA; (N.T.); (D.K.); (A.C.P.); (D.Q.M.)
| | - Dindo Q. Mijares
- Biomaterials Division, NYU College of Dentistry, New York, NY 10010, USA; (N.T.); (D.K.); (A.C.P.); (D.Q.M.)
| | - Marcus Weck
- Department of Chemistry and Molecular Design Institute, New York University, New York, NY 10003, USA;
| | - Alejandro Durand
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA;
| | - James E. Smay
- School of Materials Science and Engineering, Oklahoma State University, Tulsa, OK 74106, USA;
| | - Andrea Torroni
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA;
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (V.V.N.); (P.G.C.)
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lukasz Witek
- Biomaterials Division, NYU College of Dentistry, New York, NY 10010, USA; (N.T.); (D.K.); (A.C.P.); (D.Q.M.)
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA;
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA;
| |
Collapse
|
46
|
Lombardi J, Stec E, Edwards M, Connell T, Sandor M. Comparison of mechanical properties and host tissue response to OviTex™ and Strattice™ surgical meshes. Hernia 2023; 27:987-997. [PMID: 37031315 PMCID: PMC10374700 DOI: 10.1007/s10029-023-02769-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 03/01/2023] [Indexed: 04/10/2023]
Abstract
PURPOSE This study compared the in vitro/benchtop and in vivo mechanical properties and host biologic response to ovine rumen-derived/polymer mesh hybrid OviTex™ with porcine-derived acellular dermal matrix Strattice™ Firm. METHODS OviTex 2S Resorbable (OviTex 2S-R) and Strattice morphology were examined in vitro using histology and scanning electron microscopy; mechanical properties were assessed via tensile test; in vivo host biologic response and explant mechanics were evaluated in a rodent subcutaneous model. Separately, OviTex 1S Permanent (OviTex 1S-P) and Strattice were evaluated in a primate abdominal wall repair model. RESULTS OviTex 2S-R demonstrated layer separation, whereas Strattice retained its structural integrity and demonstrated higher maximum load than OviTex 2S-R out-of-package (124.8 ± 11.1 N/cm vs 37.9 ± 5.5 N/cm, p < 0.001), 24 h (55.7 ± 7.4 N/cm vs 5.6 ± 3.8 N/cm, p < 0.001), 48 h (45.3 ± 14.8 N/cm vs 2.8 ± 2.6 N/cm, p = 0.003), and 72 h (29.2 ± 10.5 N/cm vs 3.2 ± 3.1 N/cm, p = 0.006) following collagenase digestion. In rodents, inflammatory cell infiltration was observed between OviTex 2S-R layers, while Strattice induced a minimal inflammatory response. Strattice retained higher maximum load at 3 (46.3 ± 27.4 N/cm vs 9.5 ± 3.2 N/cm, p = 0.041) and 6 weeks (28.6 ± 14.1 N/cm vs 7.0 ± 3.0 N/cm, p = 0.029). In primates, OviTex 1S-P exhibited loss of composite mesh integrity whereas Strattice integrated into host tissue with minimal inflammation and retained higher maximum load at 1 month than OviTex 1S-P (66.8 ± 43.4 N/cm vs 9.6 ± 4.4 N/cm; p = 0.151). CONCLUSIONS Strattice retained greater mechanical strength as shown by lower susceptibility to collagenase degradation than OviTex 2S-R in vitro, as well as higher maximum load and improved host biologic response than OviTex 2S-R in rodents and OviTex 1S-P in primates.
Collapse
Affiliation(s)
- J Lombardi
- Allergan Aesthetics, an AbbVie Company, 4 Millennium Way, Branchburg, NJ, 08876, USA
| | - E Stec
- Allergan Aesthetics, an AbbVie Company, 4 Millennium Way, Branchburg, NJ, 08876, USA
| | - M Edwards
- Allergan Aesthetics, an AbbVie Company, 4 Millennium Way, Branchburg, NJ, 08876, USA
| | - T Connell
- Allergan Aesthetics, an AbbVie Company, 4 Millennium Way, Branchburg, NJ, 08876, USA
| | - M Sandor
- Allergan Aesthetics, an AbbVie Company, 4 Millennium Way, Branchburg, NJ, 08876, USA.
| |
Collapse
|
47
|
Sadeghi E, Rezazadeh Valojerdi M, Salehnia M. Co-Culture of Mouse Blastocysts on A Human Recellularized Endometrial Scaffold: An In Vitro Model for Future Implantation Studies. CELL JOURNAL 2023; 25:579-590. [PMID: 37641420 PMCID: PMC10542203 DOI: 10.22074/cellj.2023.1989926.1236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/25/2023] [Accepted: 06/25/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVE This study evaluates the interaction of mouse blastocysts as a surrogate embryo on a recellularized endometrial scaffold by seeding human endometrial mesenchymal cells (hEMCs). MATERIALS AND METHODS In this experimental study, prepared decellularized human endometrial tissues were characterized by morphological staining, DNA content analysis, and scanning electron microscopic (SEM) analysis. The scaffolds were subsequently recellularized by hEMCs. After seven days of cultivation, the mouse blastocysts were co-cultured on the recellularized scaffolds for 48 hours. Embryo attachment and implantation within these scaffolds were evaluated at the morphological, ultrastructural, molecular, and hormonal levels. RESULTS There was no morphological evidence of cells and nuclei in the decellularized scaffold. DNA content significantly decreased by 89.92% compared to the control group (P<0.05). Both decellularized and native tissues had similar patterns of collagen bundles and elastin fibers, and glycosaminoglycan (GAGs) distribution in the stroma. After recellularization, the hEMCs attached to the scaffold surface and penetrated different parts of these scaffolds. In the co-cultured group, the embryo attached to the surface of the scaffold after 24 hours and penetrated the recellularized endometrial tissue after 48 hours. We observed multi-layered organoid-like structures formed by hEMC proliferation. The relative expressions of epithelial-related genes, ZO-1 and COL4A1, and SSP1, MMP2, and PRL, as decidualizationrelated genes, were significantly higher in the recellularized group on day 9 in the presence of the embryo compared to the other groups (P<0.05). Beta human chorionic gonadotropin (β-hCG) and prolactin were statistically increased in the recellularized group on day 9 group (P<0.05). CONCLUSION hEMCs and mouse embryo co-cultured on a decellularized endometrial scaffold provides an alternative model to study embryo implantation and the earlier stage of embryo development.
Collapse
Affiliation(s)
- Elham Sadeghi
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mojdeh Salehnia
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
48
|
Cottrill E, Pennington Z, Wolf MT, Dirckx N, Ehresman J, Perdomo-Pantoja A, Rajkovic C, Lin J, Maestas DR, Mageau A, Lambrechts D, Stewart V, Sciubba DM, Theodore N, Elisseeff JH, Witham T. Creation and preclinical evaluation of a novel mussel-inspired, biomimetic, bioactive bone graft scaffold: direct comparison with Infuse bone graft using a rat model of spinal fusion. J Neurosurg Spine 2023; 39:113-121. [PMID: 37021767 PMCID: PMC10758288 DOI: 10.3171/2023.2.spine22936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/20/2023] [Indexed: 04/03/2023]
Abstract
OBJECTIVE Infuse bone graft is a widely used osteoinductive adjuvant; however, the simple collagen sponge scaffold used in the implant has minimal inherent osteoinductive properties and poorly controls the delivery of the adsorbed recombinant human bone morphogenetic protein-2 (rhBMP-2). In this study, the authors sought to create a novel bone graft substitute material that overcomes the limitations of Infuse and compare the ability of this material with that of Infuse to facilitate union following spine surgery in a clinically translatable rat model of spinal fusion. METHODS The authors created a polydopamine (PDA)-infused, porous, homogeneously dispersed solid mixture of extracellular matrix and calcium phosphates (BioMim-PDA) and then compared the efficacy of this material directly with Infuse in the setting of different concentrations of rhBMP-2 using a rat model of spinal fusion. Sixty male Sprague Dawley rats were randomly assigned to each of six equal groups: 1) collagen + 0.2 µg rhBMP-2/side, 2) BioMim-PDA + 0.2 µg rhBMP-2/side, 3) collagen + 2.0 µg rhBMP-2/side, 4) BioMim-PDA + 2.0 μg rhBMP-2/side, 5) collagen + 20 µg rhBMP-2/side, and 6) BioMim-PDA + 20 µg rhBMP-2/side. All animals underwent posterolateral intertransverse process fusion at L4-5 using the assigned bone graft. Animals were euthanized 8 weeks postoperatively, and their lumbar spines were analyzed via microcomputed tomography (µCT) and histology. Spinal fusion was defined as continuous bridging bone bilaterally across the fusion site evaluated via µCT. RESULTS The fusion rate was 100% in all groups except group 1 (70%) and group 4 (90%). Use of BioMim-PDA with 0.2 µg rhBMP-2 led to significantly greater results for bone volume (BV), percentage BV, and trabecular number, as well as significantly smaller trabecular separation, compared with the use of the collagen sponge with 2.0 µg rhBMP-2. The same results were observed when the use of BioMim-PDA with 2.0 µg rhBMP-2 was compared with the use of the collagen sponge with 20 µg rhBMP-2. CONCLUSIONS Implantation of rhBMP-2-adsorbed BioMim-PDA scaffolds resulted in BV and bone quality superior to that afforded by treatment with rhBMP-2 concentrations 10-fold higher implanted on a conventional collagen sponge. Using BioMim-PDA (vs a collagen sponge) for rhBMP-2 delivery could significantly lower the amount of rhBMP-2 required for successful bone grafting clinically, improving device safety and decreasing costs.
Collapse
Affiliation(s)
- Ethan Cottrill
- Department of Neurosurgery, University School of Medicine, Baltimore, Maryland
- Department of Biomedical Engineering, University School of Medicine, Baltimore, Maryland
- Department of Orthopaedic Surgery, Duke University Health System, Durham, North Carolina
| | - Zach Pennington
- Department of Neurosurgery, University School of Medicine, Baltimore, Maryland
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Matthew T. Wolf
- Department of Biomedical Engineering, University School of Medicine, Baltimore, Maryland
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Naomi Dirckx
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeff Ehresman
- Department of Neurosurgery, University School of Medicine, Baltimore, Maryland
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, Arizona
| | | | - Christian Rajkovic
- Department of Neurosurgery, University School of Medicine, Baltimore, Maryland
| | - Jessica Lin
- Department of Neurosurgery, University School of Medicine, Baltimore, Maryland
| | - David R. Maestas
- Department of Biomedical Engineering, University School of Medicine, Baltimore, Maryland
| | - Ashlie Mageau
- Department of Biomedical Engineering, University School of Medicine, Baltimore, Maryland
| | - Dennis Lambrechts
- Department of Biomedical Engineering, University School of Medicine, Baltimore, Maryland
| | - Veronica Stewart
- Department of Chemistry, University, Baltimore, Maryland
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Daniel M. Sciubba
- Department of Neurosurgery, University School of Medicine, Baltimore, Maryland
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Hempstead, New York
| | - Nicholas Theodore
- Department of Neurosurgery, University School of Medicine, Baltimore, Maryland
| | - Jennifer H. Elisseeff
- Department of Biomedical Engineering, University School of Medicine, Baltimore, Maryland
| | - Timothy Witham
- Department of Neurosurgery, University School of Medicine, Baltimore, Maryland
| |
Collapse
|
49
|
de Paula AP, de Lima JD, Bastos TSB, Czaikovski AP, dos Santos Luz RB, Yuasa BS, Smanioto CCS, Robert AW, Braga TT. Decellularized Extracellular Matrix: The Role of This Complex Biomaterial in Regeneration. ACS OMEGA 2023; 8:22256-22267. [PMID: 37396215 PMCID: PMC10308580 DOI: 10.1021/acsomega.2c06216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/12/2023] [Indexed: 07/04/2023]
Abstract
Organ transplantation is understood as a technique where an organ from a donor patient is transferred to a recipient patient. This practice gained strength in the 20th century and ensured advances in areas of knowledge such as immunology and tissue engineering. The main problems that comprise the practice of transplants involve the demand for viable organs and immunological aspects related to organ rejection. In this review, we address advances in tissue engineering for reversing the current challenges of transplants, focusing on the possible use of decellularized tissues in tissue engineering. We address the interaction of acellular tissues with immune cells, especially macrophages and stem cells, due to their potential use in regenerative medicine. Our goal is to exhibit data that demonstrate the use of decellularized tissues as alternative biomaterials that can be applied clinically as partial or complete organ substitutes.
Collapse
Affiliation(s)
| | - Jordana Dinorá de Lima
- Department
of Pathology, Federal University of Parana, Curitiba, Parana 80060-000, Brazil
| | | | | | | | - Bruna Sadae Yuasa
- Department
of Pathology, Federal University of Parana, Curitiba, Parana 80060-000, Brazil
| | | | - Anny Waloski Robert
- Stem
Cells Basic Biology Laboratory, Carlos Chagas
Institute − FIOCRUZ/PR, Curitiba, Parana 81350-010, Brazil
| | - Tárcio Teodoro Braga
- Department
of Pathology, Federal University of Parana, Curitiba, Parana 80060-000, Brazil
- Graduate
Program in Biosciences and Biotechnology, Institute Carlos Chagas, Fiocruz, Parana 81310-020, Brazil
| |
Collapse
|
50
|
Zhao YQ, Deng XW, Xu GQ, Lin J, Lu HZ, Chen J. Mechanical homeostasis imbalance in hepatic stellate cells activation and hepatic fibrosis. Front Mol Biosci 2023; 10:1183808. [PMID: 37152902 PMCID: PMC10157180 DOI: 10.3389/fmolb.2023.1183808] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Chronic liver disease or repeated damage to hepatocytes can give rise to hepatic fibrosis. Hepatic fibrosis (HF) is a pathological process of excessive sedimentation of extracellular matrix (ECM) proteins such as collagens, glycoproteins, and proteoglycans (PGs) in the hepatic parenchyma. Changes in the composition of the ECM lead to the stiffness of the matrix that destroys its inherent mechanical homeostasis, and a mechanical homeostasis imbalance activates hepatic stellate cells (HSCs) into myofibroblasts, which can overproliferate and secrete large amounts of ECM proteins. Excessive ECM proteins are gradually deposited in the Disse gap, and matrix regeneration fails, which further leads to changes in ECM components and an increase in stiffness, forming a vicious cycle. These processes promote the occurrence and development of hepatic fibrosis. In this review, the dynamic process of ECM remodeling of HF and the activation of HSCs into mechanotransduction signaling pathways for myofibroblasts to participate in HF are discussed. These mechanotransduction signaling pathways may have potential therapeutic targets for repairing or reversing fibrosis.
Collapse
Affiliation(s)
- Yuan-Quan Zhao
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xi-Wen Deng
- Graduate School of Youjiang Medical University for Nationalities, Baise, China
| | - Guo-Qi Xu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jie Lin
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hua-Ze Lu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jie Chen
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|