1
|
Chevigné A, Legler DF, Rot A, Sozzani S, Szpakowska M, Thelen M. International Union of Basic and Clinical Pharmacology. CXVIII. Update on the nomenclature for atypical chemokine receptors, including ACKR5. Pharmacol Rev 2025; 77:100012. [PMID: 39952689 DOI: 10.1124/pharmrev.124.001361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/26/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024] Open
Abstract
Chemokines signal through classical G protein-coupled receptors to induce cell migration during development, immune homeostasis, and multiple diseases. Over the last decade, a subfamily of atypical chemokine receptors (ACKRs) was delineated from G protein-coupled receptors based on their inability to trigger conventional G protein signaling or mediate cell migration in response to chemokines. These receptors nevertheless play an important role within the chemokine system by sequestering, transporting, or internalizing chemokines, thereby regulating their availability and shaping their gradients. GPR182, the recently deorphanized chemokine receptor, shares about 30% of sequence similarity with its closest relative ACKR3. GPR182 is mainly expressed on endothelial cells and was proposed to act as a scavenger regulating the availability of a large set of chemokines from the CXC, CC, and XC families and to act cooperatively with ACKR3 and ACKR4. Unlike other ACKRs, GPR182 was shown to have a strong constitutive interaction with β-arrestins that is required for intracellular receptor trafficking and chemokine scavenging. Chemokine ligation of GPR182 has no additional detectable impact on β-arrestin recruitment. Genetic ablation of GPR182 affects spleen size, myelopoiesis, and serum chemokine levels, indicating its role in chemokine homeostasis and immune regulation. GPR182 was also reported to regulate immune responses to bloodborne antigens and tumorigenesis. Taken together, compelling cumulative evidence indicates that GPR182 does not trigger G protein-mediated signaling but acts as a scavenger for chemokines in vitro and in vivo, strongly supporting its inclusion as ACKR5 in the systematic nomenclature of chemokine receptors. SIGNIFICANCE STATEMENT: The summarized presented findings strongly support the designation of GPR182 as ACKR5 and its formal inclusion in the family of ACKRs.
Collapse
Affiliation(s)
- Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Daniel F Legler
- Institute of Cell Biology and Immunology Thurgau (BITG), University of Konstanz, Kreuzlingen, Switzerland; Faculty of Biology, University of Konstanz, Konstanz, Germany; Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Antal Rot
- Centre for Microvascular Research, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom; Institute for Cardiovascular Prevention, Ludwig-Maximilians University, Munich, Germany
| | - Silvano Sozzani
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Institute Pasteur-Italia, Rome, Italy
| | - Martyna Szpakowska
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| | - Marcus Thelen
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.
| |
Collapse
|
2
|
Bonnavion R, Liu S, Kawase H, Roquid KA, Offermanns S. Large chemokine binding spectrum of human and mouse atypical chemokine receptor GPR182 (ACKR5). Front Pharmacol 2023; 14:1297596. [PMID: 38026988 PMCID: PMC10646305 DOI: 10.3389/fphar.2023.1297596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Atypical chemokine receptors (ACKRs) play pivotal roles in immune regulation by binding chemokines and regulating their spatial distribution without inducing G-protein activation. Recently, GPR182, provisionally named ACKR5, was identified as a novel ACKR expressed in microvascular and lymphatic endothelial cells, with functions in hematopoietic stem cell homeostasis. Here, we comprehensively investigated the chemokine binding profile of human and mouse GPR182. Competitive binding assays using flow cytometry revealed that besides CXCL10, CXCL12 and CXCL13, also human and mouse CXCL11, CXCL14 and CCL25, as well as human CCL1, CCL11, CCL19, CCL26, XCL1 and mouse CCL22, CCL24, CCL27 and CCL28 bind with an affinity of less than 100 nM to GPR182. In line with the binding affinity observed in vitro, elevated serum levels of CCL22, CCL24, CCL25, and CCL27 were observed in GPR182-deficient mice, underscoring the role of GPR182 in chemokine scavenging. These data show a broader chemokine binding repertoire of GPR182 than previously reported and they will be important for future work exploring the physiological and pathophysiological roles of GPR182, which we propose to be renamed atypical chemokine receptor 5 (ACKR5).
Collapse
Affiliation(s)
- Remy Bonnavion
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Cardiopulmonary Institute, Bad Nauheim, Germany
| | - Shangmin Liu
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Haruya Kawase
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Kenneth Anthony Roquid
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Cardiopulmonary Institute, Bad Nauheim, Germany
- Center for Molecular Medicine, Goethe University Frankfurt, Frankfurt, Germany
- German Center for Cardiovascular Research, Partner Site Frankfurt, Bad Nauheim, Germany
| |
Collapse
|
3
|
Torphy RJ, Yee EJ, Schulick RD, Zhu Y. Atypical chemokine receptors: emerging therapeutic targets in cancer. Trends Pharmacol Sci 2022; 43:1085-1097. [PMID: 36307250 PMCID: PMC9669249 DOI: 10.1016/j.tips.2022.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/05/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Atypical chemokine receptors (ACKRs) regulate the availability of chemokines via chemokine scavenging, while also having the capacity to elicit downstream function through β-arrestin coupling. This contrasts with conventional chemokine receptors that directly elicit immune cell migration through G protein-coupled signaling. The significance of ACKRs in cancer biology has previously been poorly understood, but recent findings have highlighted the multifaceted role of these receptors in tumorigenesis and immune response modulation within the tumor microenvironment (TME). Additionally, recent research has expanded our understanding of the function of several receptors including GPR182, CCRL2, GPR1, PITPNM3, and C5aR2 that share similarities with the ACKR family. In this review, we discuss these recent developments, and highlight the opportunities and challenges of pharmacologically targeting ACKRs in cancer.
Collapse
Affiliation(s)
- Robert J Torphy
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Elliott J Yee
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard D Schulick
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yuwen Zhu
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
4
|
Zhao Z, Wang C, Chu P, Lu X. Key Genes Associated with Tumor-Infiltrating Non-regulatory CD4- and CD8-Positive T Cells in Microenvironment of Hepatocellular Carcinoma. Biochem Genet 2022; 60:1762-1780. [PMID: 35092558 PMCID: PMC9470630 DOI: 10.1007/s10528-021-10175-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022]
Abstract
The immune microenvironment in hepatocellular carcinoma (HCC), especially T-cell infiltration, plays a key role in the prognosis and drug sensitivity of HCC. Our study aimed to analyze genes related to non-regulatory CD4+ and CD8+ T cell in HCC. Data of HCC samples were downloaded from The Cancer Genome Atlas (TCGA) database. According to stromal and immune score retrieved by Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data (ESTIMATE) algorithm, differentiated expressed genes (DEGs) between high and low stromal/immune scoring groups were collected. Using Cibersort algorithm, abundance of immune cells was calculated and genes related with CD4+ and CD8+ T cells were selected. Protein-protein interaction (PPI) networks and networks of microRNA (miRNA)-target gene interactions were illustrated, in which CD4+ and CD8+ T cell-related core genes were selected. Finally, Cox regression test and Kaplan-Meier (K-M) survival analysis were conducted. Totally, 1579 DEGs were identified, where 103 genes and 407 genes related with CD4+ and CD8+ T cell were selected, respectively. Each of 30 core genes related to CD4+ T cells and CD8+ T cells were selected by PPI network. Four genes each related with the two types of T cells had a significant impact on prognosis of HCC patients. Amongst, KLRB1 and IL18RAP were final two genes related to both two kinds of T cells and associated with overall survival of the HCC patients.
Collapse
Affiliation(s)
- Zijun Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Chaonan Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peishan Chu
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China.
| |
Collapse
|
5
|
GPR182 limits antitumor immunity via chemokine scavenging in mouse melanoma models. Nat Commun 2022; 13:97. [PMID: 35013216 PMCID: PMC8748779 DOI: 10.1038/s41467-021-27658-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/03/2021] [Indexed: 01/16/2023] Open
Abstract
For many solid tumors, immune checkpoint blockade therapy has become first line treatment, yet a large proportion of patients with immunologically cold tumors do not benefit due to the paucity of tumor infiltrating lymphocytes. Here we show that the orphan G Protein-Coupled Receptor 182 (GPR182) contributes to immunotherapy resistance in cancer via scavenging chemokines that are important for lymphocyte recruitment to tumors. GPR182 is primarily upregulated in melanoma-associated lymphatic endothelial cells (LECs) during tumorigenesis, and this atypical chemokine receptor endocytoses chemokines promiscuously. In GPR182-deficient mice, T cell infiltration into transplanted melanomas increases, leading to enhanced effector T cell function and improved antitumor immunity. Ablation of GPR182 leads to increased intratumoral concentrations of multiple chemokines and thereby sensitizes poorly immunogenic tumors to immune checkpoint blockade and adoptive cellular therapies. CXCR3 blockade reverses the improved antitumor immunity and T cell infiltration characteristic of GPR182-deficient mice. Our study thus identifies GPR182 as an upstream regulator of the CXCL9/CXCL10/CXCR3 axis that limits antitumor immunity and as a potential therapeutic target in immunologically cold tumors. Immunologically cold tumours don’t respond to immune checkpoint blockade inhibition due to poor recruitment of anti-tumour T cells. Authors show here that melanoma-associated lymphatic endothelial cells express G Protein-Coupled Receptor 182 that scavenges CXCL9 and other chemokines necessary for T cell recruitment.
Collapse
|
6
|
Yang Y, Sanders AJ, Dou QP, Jiang DG, Li AX, Jiang WG. The Clinical and Theranostic Values of Activated Leukocyte Cell Adhesion Molecule (ALCAM)/CD166 in Human Solid Cancers. Cancers (Basel) 2021; 13:cancers13205187. [PMID: 34680335 PMCID: PMC8533996 DOI: 10.3390/cancers13205187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary ALCAM (activated leukocyte cell adhesion molecule) is an important regulator in human cancers, particularly solid tumours. Its expression in cancer tissues has prognostic values depending on cancer types and is also linked to distant metastases. A truncated form, soluble form of ALCAM (sALCAM) in circulation has been suggested to be a prognostic indicator and a potential therapeutic tool. This article summarises recent findings and progress in ALCAM and its involvement in cancer, with a primary focus on its clinical connections and therapeutic values. Abstract Activated leukocyte cell adhesion molecule (ALCAM), also known as CD166, is a cell adhesion protein that is found in multiple cell types. ALCAM has multiple and diverse roles in various physiological and pathological conditions, including inflammation and cancer. There has been compelling evidence of ALCAM’s prognostic value in solid cancers, indicating that it is a potential therapeutic target. The present article overviews the recent findings and progress in ALCAM and its involvement in cancer, with a primary focus on its clinical connections in cancer and therapeutic values.
Collapse
Affiliation(s)
- Yiming Yang
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
| | - Andrew J. Sanders
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
- Correspondence: (A.J.S.); (W.G.J.)
| | - Q. Ping Dou
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
- Departments of Oncology, Pharmacology and Pathology School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201-2013, USA
| | - David G. Jiang
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
- Stoke Mandeville Hospital, Buckinghamshire Healthcare NHS Trust, Aylesbury HP21 8AL, UK
| | - Amber Xinyu Li
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
| | - Wen G. Jiang
- School of Medicine, Cardiff University, Henry Wellcome Building, Cardiff CF14 4XN, UK; (Y.Y.); (Q.P.D.); (D.G.J.); (A.X.L.)
- Correspondence: (A.J.S.); (W.G.J.)
| |
Collapse
|
7
|
In Silico Analysis to Explore Lineage-Independent and -Dependent Transcriptional Programs Associated with the Process of Endothelial and Neural Differentiation of Human Induced Pluripotent Stem Cells. J Clin Med 2021; 10:jcm10184161. [PMID: 34575270 PMCID: PMC8471316 DOI: 10.3390/jcm10184161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
Despite a major interest in understanding how the endothelial cell phenotype is established, the underlying molecular basis of this process is not yet fully understood. We have previously reported the generation of induced pluripotent stem cells (iPS) from human umbilical vein endothelial cells and differentiation of the resulting HiPS back to endothelial cells (Ec-Diff), as well as neural (Nn-Diff) cell lineage that contained both neurons and astrocytes. Furthermore, the identities of these cell lineages were established by gene array analysis. Here, we explored the same arrays to gain insight into the gene alteration processes that accompany the establishment of endothelial vs. non-endothelial neural cell phenotypes. We compared the expression of genes that code for transcription factors and epigenetic regulators when HiPS is differentiated into these endothelial and non-endothelial lineages. Our in silico analyses have identified cohorts of genes that are similarly up- or downregulated in both lineages, as well as those that exhibit lineage-specific alterations. Based on these results, we propose that genes that are similarly altered in both lineages participate in priming the stem cell for differentiation in a lineage-independent manner, whereas those that are differentially altered in endothelial compared to neural cells participate in a lineage-specific differentiation process. Specific GATA family members and their cofactors and epigenetic regulators (DNMT3B, PRDM14, HELLS) with a major role in regulating DNA methylation were among participants in priming HiPS for lineage-independent differentiation. In addition, we identified distinct cohorts of transcription factors and epigenetic regulators whose alterations correlated specifically with the establishment of endothelial vs. non-endothelial neural lineages.
Collapse
|
8
|
GPR182 is an endothelium-specific atypical chemokine receptor that maintains hematopoietic stem cell homeostasis. Proc Natl Acad Sci U S A 2021; 118:2021596118. [PMID: 33875597 PMCID: PMC8092405 DOI: 10.1073/pnas.2021596118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
G protein–coupled receptors (GPCRs) are important regulators of cellular and biological functions and are primary targets of therapeutic drugs. About 100 mammalian GPCRs are still considered orphan receptors because they lack a known endogenous ligand. We report the deorphanization of GPR182, which is expressed in endothelial cells of the microvasculature. We show that GPR182 is an atypical chemokine receptor, which binds CXCL10, 12, and 13. However, binding does not induce downstream signaling. Consistent with a scavenging function of GPR182, mice lacking GPR182 have increased plasma levels of chemokines. In line with the crucial role of CXCL12 in hematopoietic stem cell homeostasis, we found that loss of GPR182 results in increased egress of hematopoietic stem cells from the bone marrow. G protein–coupled receptor 182 (GPR182) has been shown to be expressed in endothelial cells; however, its ligand and physiological role has remained elusive. We found GPR182 to be expressed in microvascular and lymphatic endothelial cells of most organs and to bind with nanomolar affinity the chemokines CXCL10, CXCL12, and CXCL13. In contrast to conventional chemokine receptors, binding of chemokines to GPR182 did not induce typical downstream signaling processes, including Gq- and Gi-mediated signaling or β-arrestin recruitment. GPR182 showed relatively high constitutive activity in regard to β-arrestin recruitment and rapidly internalized in a ligand-independent manner. In constitutive GPR182-deficient mice, as well as after induced endothelium-specific loss of GPR182, we found significant increases in the plasma levels of CXCL10, CXCL12, and CXCL13. Global and induced endothelium-specific GPR182-deficient mice showed a significant decrease in hematopoietic stem cells in the bone marrow as well as increased colony-forming units of hematopoietic progenitors in the blood and the spleen. Our data show that GPR182 is a new atypical chemokine receptor for CXCL10, CXCL12, and CXCL13, which is involved in the regulation of hematopoietic stem cell homeostasis.
Collapse
|
9
|
Kwon HB, Mackie DI, Bonnavion R, Mercier AL, Helker CSM, Son T, Guenter S, Serafin DS, Kim KW, Offermanns S, Caron KM, Stainier DYR. The Orphan G-Protein Coupled Receptor 182 Is a Negative Regulator of Definitive Hematopoiesis through Leukotriene B4 Signaling. ACS Pharmacol Transl Sci 2020; 3:676-689. [PMID: 32832870 PMCID: PMC7432686 DOI: 10.1021/acsptsci.0c00020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Indexed: 12/12/2022]
Abstract
![]()
The
G protein-coupled receptor 182 (GPR182) is an orphan GPCR,
the expression of which is enriched in embryonic endothelial cells
(ECs). However, the physiological role and molecular mechanism of
action of GPR182 are unknown. Here, we show that GPR182 negatively
regulates definitive hematopoiesis in zebrafish and mice. In zebrafish, gpr182 expression is enriched in the hemogenic endothelium
(HE), and gpr182–/– display
an increased expression of HE and hematopoietic stem cell (HSC) marker
genes. Notably, we find an increased number of myeloid cells in gpr182–/– compared to wild-type.
Further, by time-lapse imaging of zebrafish embryos during the endothelial-to-hematopoietic
transition, we find that HE/HSC cell numbers are increased in gpr182–/– compared to wild-type. GPR182–/– mice also exhibit an
increased number of myeloid cells compared to wild-type, indicating
a conserved role for GPR182 in myelopoiesis. Using cell-based small
molecule screening and transcriptomic analyses, we further find that
GPR182 regulates the leukotriene B4 (LTB4) biosynthesis pathway. Taken
together, these data indicate that GPR182 is a negative regulator
of definitive hematopoiesis in zebrafish and mice, and provide further
evidence for LTB4 signaling in HSC biology.
Collapse
Affiliation(s)
- Hyouk-Bum Kwon
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany.,Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Duncan I Mackie
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Remy Bonnavion
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Alan Le Mercier
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Christian S M Helker
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany.,Philipps-University Marburg, Faculty of Biology, Cell Signaling and Dynamics, Marburg, 35043, Germany
| | - Taekwon Son
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Stefan Guenter
- ECCPS Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - D Stephen Serafin
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kyu-Won Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| | - Kathleen M Caron
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, 61231, Germany
| |
Collapse
|
10
|
Mukaida N, Sasaki SI, Baba T. CCL4 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1231:23-32. [PMID: 32060843 DOI: 10.1007/978-3-030-36667-4_3] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CCL4, a CC chemokine, previously known as macrophage inflammatory protein (MIP)-1β, has diverse effects on various types of immune and nonimmune cells by the virtue of its interaction with its specific receptor, CCR5, in collaboration with related but distinct CC chemokines such as CCL3 and CCL5, which can also bind CCR5. Several lines of evidence indicate that CCL4 can promote tumor development and progression by recruiting regulatory T cells and pro-tumorigenic macrophages, and acting on other resident cells present in the tumor microenvironment, such as fibroblasts and endothelial cells, to facilitate their pro-tumorigenic capacities. These observations suggest the potential efficacy of CCR5 antagonists for cancer treatment. On the contrary, under some situations, CCL4 can enhance tumor immunity by recruiting cytolytic lymphocytes and macrophages with phagocytic ability. Thus, presently, the clinical application of CCR5 antagonists warrants more detailed analysis of the role of CCL4 and other CCR5-binding chemokines in the tumor microenvironment.
Collapse
Affiliation(s)
- Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan.
| | - So-Ichiro Sasaki
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Tomohisa Baba
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
11
|
McCann JV, Xiao L, Kim DJ, Khan OF, Kowalski PS, Anderson DG, Pecot CV, Azam SH, Parker JS, Tsai YS, Wolberg AS, Turner SD, Tatsumi K, Mackman N, Dudley AC. Endothelial miR-30c suppresses tumor growth via inhibition of TGF-β-induced Serpine1. J Clin Invest 2019; 129:1654-1670. [PMID: 30855280 DOI: 10.1172/jci123106] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 02/01/2019] [Indexed: 12/15/2022] Open
Abstract
In tumors, extravascular fibrin forms provisional scaffolds for endothelial cell (EC) growth and motility during angiogenesis. We report that fibrin-mediated angiogenesis was inhibited and tumor growth delayed following postnatal deletion of Tgfbr2 in the endothelium of Cdh5-CreERT2 Tgfbr2fl/fl mice (Tgfbr2iECKO mice). ECs from Tgfbr2iECKO mice failed to upregulate the fibrinolysis inhibitor plasminogen activator inhibitor 1 (Serpine1, also known as PAI-1), due in part to uncoupled TGF-β-mediated suppression of miR-30c. Bypassing TGF-β signaling with vascular tropic nanoparticles that deliver miR-30c antagomiRs promoted PAI-1-dependent tumor growth and increased fibrin abundance, whereas miR-30c mimics inhibited tumor growth and promoted vascular-directed fibrinolysis in vivo. Using single-cell RNA-Seq and a NanoString miRNA array, we also found that subtypes of ECs in tumors showed spectrums of Serpine1 and miR-30c expression levels, suggesting functional diversity in ECs at the level of individual cells; indeed, fresh EC isolates from lung and mammary tumor models had differential abilities to degrade fibrin and launch new vessel sprouts, a finding that was linked to their inverse expression patterns of miR-30c and Serpine1 (i.e., miR-30chi Serpine1lo ECs were poorly angiogenic and miR-30clo Serpine1hi ECs were highly angiogenic). Thus, by balancing Serpine1 expression in ECs downstream of TGF-β, miR-30c functions as a tumor suppressor in the tumor microenvironment through its ability to promote fibrin degradation and inhibit blood vessel formation.
Collapse
Affiliation(s)
- James V McCann
- Department of Cell Biology and Physiology, University of North Carolina (UNC) at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lin Xiao
- Children's Cancer Institute, Kensington, New South Wales, Australia
| | - Dae Joong Kim
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, Virginia, USA
| | - Omar F Khan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT).,Department of Chemical Engineering
| | - Piotr S Kowalski
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT)
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT).,Department of Chemical Engineering.,Harvard-MIT Division of Health Sciences and Technology, and.,Institute for Medical Engineering and Science, MIT, Cambridge, Massachusetts, USA
| | - Chad V Pecot
- Lineberger Comprehensive Cancer Center.,School of Medicine
| | | | - Joel S Parker
- Lineberger Comprehensive Cancer Center.,School of Medicine.,Department of Genetics, and
| | | | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine, UNC McAllister Heart Institute, UNC at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephen D Turner
- Department of Public Health Sciences, and.,Bioinformatics Core, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Kohei Tatsumi
- Department of Medicine, Division of Hematology and Oncology, UNC McAllister Heart Institute, UNC at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nigel Mackman
- Department of Medicine, Division of Hematology and Oncology, UNC McAllister Heart Institute, UNC at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Andrew C Dudley
- Department of Microbiology, Immunology, and Cancer Biology, The University of Virginia, Charlottesville, Virginia, USA.,Emily Couric Cancer Center, The University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
12
|
Suppression of TGFβ-mediated conversion of endothelial cells and fibroblasts into cancer associated (myo)fibroblasts via HDAC inhibition. Br J Cancer 2018; 118:1359-1368. [PMID: 29695769 PMCID: PMC5959903 DOI: 10.1038/s41416-018-0072-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/05/2018] [Accepted: 03/09/2018] [Indexed: 01/05/2023] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) support tumour progression and invasion, and they secrete abundant extracellular matrix (ECM) that may shield tumour cells from immune checkpoint or kinase inhibitors. Targeting CAFs using drugs that revert their differentiation, or inhibit their tumour-supportive functions, has been considered as an anti-cancer strategy. Methods We have used human and murine cell culture models, atomic force microscopy (AFM), microarray analyses, CAF/tumour cell spheroid co-cultures and transgenic fibroblast reporter mice to study how targeting HDACs using small molecule inhibitors or siRNAs re-directs CAF differentiation and function in vitro and in vivo. Results From a small molecule screen, we identified Scriptaid, a selective inhibitor of HDACs 1/3/8, as a repressor of TGFβ-mediated CAF differentiation. Scriptaid inhibits ECM secretion, reduces cellular contraction and stiffness, and impairs collective cell invasion in CAF/tumour cell spheroid co-cultures. Scriptaid also reduces CAF abundance and delays tumour growth in vivo. Conclusions Scriptaid is a well-tolerated and effective HDACi that reverses many of the functional and phenotypic properties of CAFs. Impeding or reversing CAF activation/function by altering the cellular epigenetic regulatory machinery could control tumour growth and invasion, and be beneficial in combination with additional therapies that target cancer cells or immune cells directly.
Collapse
|
13
|
A vascular disrupting agent overcomes tumor multidrug resistance by skewing macrophage polarity toward the M1 phenotype. Cancer Lett 2018; 418:239-249. [PMID: 29337108 DOI: 10.1016/j.canlet.2018.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/01/2018] [Accepted: 01/08/2018] [Indexed: 12/12/2022]
Abstract
Multidrug resistance (MDR) mediated by ATP-binding cassette (ABC) transporters is the major obstacle for chemotherapeutic success. Although attempts have been made to circumvent ABC transporter-mediated MDR in past decades, there is still no effective agent in clinic. Here, we identified a vascular disrupting agent, Z-GP-DAVLBH, that significantly inhibited the growth of multidrug-resistant human hepatoma HepG2/ADM and human breast cancer MCF-7/ADR tumor xenografts, although these cells were insensitive to Z-GP-DAVLBH in vitro. Z-GP-DAVLBH increased the secretion of granulocyte-macrophage colony-stimulating factor in tumor tissues and serum of tumor-bearing mice to skew tumor-associated macrophages from the pro-tumor M2 phenotype to the antitumor M1 phenotype, thereby contributing to the induction of HepG2/ADM and MCF-7/ADR cell apoptosis. Our findings shed new light on the underlying mechanisms of VDAs in the treatment of drug-resistant tumors and provide strong evidence that Z-GP-DAVLBH should be a promising agent for overcoming MDR.
Collapse
|
14
|
Seaman S, Zhu Z, Saha S, Zhang XM, Yang MY, Hilton MB, Morris K, Szot C, Morris H, Swing DA, Tessarollo L, Smith SW, Degrado S, Borkin D, Jain N, Scheiermann J, Feng Y, Wang Y, Li J, Welsch D, DeCrescenzo G, Chaudhary A, Zudaire E, Klarmann KD, Keller JR, Dimitrov DS, St Croix B. Eradication of Tumors through Simultaneous Ablation of CD276/B7-H3-Positive Tumor Cells and Tumor Vasculature. Cancer Cell 2017; 31:501-515.e8. [PMID: 28399408 PMCID: PMC5458750 DOI: 10.1016/j.ccell.2017.03.005] [Citation(s) in RCA: 301] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/28/2017] [Accepted: 03/13/2017] [Indexed: 12/20/2022]
Abstract
Targeting the tumor vasculature with antibody-drug conjugates (ADCs) is a promising anti-cancer strategy that in order to be realized must overcome several obstacles, including identification of suitable targets and optimal warheads. Here, we demonstrate that the cell-surface protein CD276/B7-H3 is broadly overexpressed by multiple tumor types on both cancer cells and tumor-infiltrating blood vessels, making it a potentially ideal dual-compartment therapeutic target. In preclinical studies CD276 ADCs armed with a conventional MMAE warhead destroyed CD276-positive cancer cells, but were ineffective against tumor vasculature. In contrast, pyrrolobenzodiazepine-conjugated CD276 ADCs killed both cancer cells and tumor vasculature, eradicating large established tumors and metastases, and improving long-term overall survival. CD276-targeted dual-compartment ablation could aid in the development of highly selective broad-acting anti-cancer therapies.
Collapse
Affiliation(s)
- Steven Seaman
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Zhongyu Zhu
- Protein Interactions Section, Cancer and Inflammation Program (CIP), NCI, NIH, Frederick, MD 21702, USA
| | - Saurabh Saha
- BioMed Valley Discoveries, Inc, Kansas City, MO 64111, USA
| | | | - Mi Young Yang
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Mary Beth Hilton
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA; Basic Research Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Karen Morris
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA; Basic Research Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Christopher Szot
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Holly Morris
- Transgenic Core Facility, MCGP, NCI, NIH, Frederick, MD 21702, USA
| | - Deborah A Swing
- Transgenic Core Facility, MCGP, NCI, NIH, Frederick, MD 21702, USA
| | - Lino Tessarollo
- Neural Development Section, MCGP, NCI, NIH, Frederick, MD 21702, USA
| | | | | | | | | | | | - Yang Feng
- Protein Interactions Section, Cancer and Inflammation Program (CIP), NCI, NIH, Frederick, MD 21702, USA
| | - Yanping Wang
- Protein Interactions Section, Cancer and Inflammation Program (CIP), NCI, NIH, Frederick, MD 21702, USA
| | - Jinyu Li
- Protein Interactions Section, Cancer and Inflammation Program (CIP), NCI, NIH, Frederick, MD 21702, USA
| | - Dean Welsch
- BioMed Valley Discoveries, Inc, Kansas City, MO 64111, USA
| | | | - Amit Chaudhary
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Enrique Zudaire
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA
| | - Kimberly D Klarmann
- Basic Research Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI, Frederick, MD 21702, USA; Hematopoiesis and Stem Cell Biology Section, MCGP, NCI, NIH, Frederick, MD 21702, USA
| | - Jonathan R Keller
- Basic Research Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI, Frederick, MD 21702, USA; Hematopoiesis and Stem Cell Biology Section, MCGP, NCI, NIH, Frederick, MD 21702, USA
| | - Dimiter S Dimitrov
- Protein Interactions Section, Cancer and Inflammation Program (CIP), NCI, NIH, Frederick, MD 21702, USA
| | - Brad St Croix
- Tumor Angiogenesis Unit, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702, USA.
| |
Collapse
|
15
|
Kechele DO, Blue RE, Zwarycz B, Espenschied ST, Mah AT, Siegel MB, Perou CM, Ding S, Magness ST, Lund PK, Caron KM. Orphan Gpr182 suppresses ERK-mediated intestinal proliferation during regeneration and adenoma formation. J Clin Invest 2017; 127:593-607. [PMID: 28094771 DOI: 10.1172/jci87588] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 11/22/2016] [Indexed: 12/16/2022] Open
Abstract
Orphan GPCRs provide an opportunity to identify potential pharmacological targets, yet their expression patterns and physiological functions remain challenging to elucidate. Here, we have used a genetically engineered knockin reporter mouse to map the expression pattern of the Gpr182 during development and adulthood. We observed that Gpr182 is expressed at the crypt base throughout the small intestine, where it is enriched in crypt base columnar stem cells, one of the most active stem cell populations in the body. Gpr182 knockdown had no effect on homeostatic intestinal proliferation in vivo, but led to marked increases in proliferation during intestinal regeneration following irradiation-induced injury. In the ApcMin mouse model, which forms spontaneous intestinal adenomas, reductions in Gpr182 led to more adenomas and decreased survival. Loss of Gpr182 enhanced organoid growth efficiency ex vivo in an EGF-dependent manner. Gpr182 reduction led to increased activation of ERK1/2 in basal and challenge models, demonstrating a potential role for this orphan GPCR in regulating the proliferative capacity of the intestine. Importantly, GPR182 expression was profoundly reduced in numerous human carcinomas, including colon adenocarcinoma. Together, these results implicate Gpr182 as a negative regulator of intestinal MAPK signaling-induced proliferation, particularly during regeneration and adenoma formation.
Collapse
|
16
|
Kraehling JR, Chidlow JH, Rajagopal C, Sugiyama MG, Fowler JW, Lee MY, Zhang X, Ramírez CM, Park EJ, Tao B, Chen K, Kuruvilla L, Larriveé B, Folta-Stogniew E, Ola R, Rotllan N, Zhou W, Nagle MW, Herz J, Williams KJ, Eichmann A, Lee WL, Fernández-Hernando C, Sessa WC. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells. Nat Commun 2016; 7:13516. [PMID: 27869117 PMCID: PMC5121336 DOI: 10.1038/ncomms13516] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/11/2016] [Indexed: 12/31/2022] Open
Abstract
In humans and animals lacking functional LDL receptor (LDLR), LDL from plasma still readily traverses the endothelium. To identify the pathways of LDL uptake, a genome-wide RNAi screen was performed in endothelial cells and cross-referenced with GWAS-data sets. Here we show that the activin-like kinase 1 (ALK1) mediates LDL uptake into endothelial cells. ALK1 binds LDL with lower affinity than LDLR and saturates only at hypercholesterolemic concentrations. ALK1 mediates uptake of LDL into endothelial cells via an unusual endocytic pathway that diverts the ligand from lysosomal degradation and promotes LDL transcytosis. The endothelium-specific genetic ablation of Alk1 in Ldlr-KO animals leads to less LDL uptake into the aortic endothelium, showing its physiological role in endothelial lipoprotein metabolism. In summary, identification of pathways mediating LDLR-independent uptake of LDL may provide unique opportunities to block the initiation of LDL accumulation in the vessel wall or augment hepatic LDLR-dependent clearance of LDL. Atherosclerosis is caused by low-density lipoprotein (LDL) buildup in the vessel wall, a process thought to be mediated by LDL receptor alone. Here, the authors show that the endothelium can uptake LDL via ALK1, a TGFβ signalling receptor, suggesting new therapies for blocking LDL accumulation in the vessel wall.
Collapse
Affiliation(s)
- Jan R Kraehling
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - John H Chidlow
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Chitra Rajagopal
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Michael G Sugiyama
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Joseph W Fowler
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Monica Y Lee
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Xinbo Zhang
- Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Cristina M Ramírez
- Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Eon Joo Park
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Bo Tao
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Keyang Chen
- Division of Endocrinology, Department of Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | - Leena Kuruvilla
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Bruno Larriveé
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Ewa Folta-Stogniew
- W.M. Keck Biotechnology Resource Laboratory, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Roxana Ola
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Noemi Rotllan
- Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Wenping Zhou
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Michael W Nagle
- Human Genetics &Computational Biomedicine, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, USA
| | - Joachim Herz
- Departments of Molecular Genetics, Neuroscience, Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kevin Jon Williams
- Division of Endocrinology, Department of Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.,Department of Molecular and Clinical Medicine, Sahlgrenska Academy of the University of Gothenburg, Göteborg 41345, Sweden
| | - Anne Eichmann
- Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Warren L Lee
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada M5B 1W8.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,Departments of Biochemistry and Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - William C Sessa
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.,Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
17
|
Kechele DO, Dunworth WP, Trincot CE, Wetzel-Strong SE, Li M, Ma H, Liu J, Caron KM. Endothelial Restoration of Receptor Activity-Modifying Protein 2 Is Sufficient to Rescue Lethality, but Survivors Develop Dilated Cardiomyopathy. Hypertension 2016; 68:667-77. [PMID: 27402918 DOI: 10.1161/hypertensionaha.116.07191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/03/2016] [Indexed: 12/20/2022]
Abstract
RAMPs (receptor activity-modifying proteins) serve as oligomeric modulators for numerous G-protein-coupled receptors, yet elucidating the physiological relevance of these interactions remains complex. Ramp2 null mice are embryonic lethal, with cardiovascular developmental defects similar to those observed in mice null for canonical adrenomedullin/calcitonin receptor-like receptor signaling. We aimed to genetically rescue the Ramp2(-/-) lethality in order to further delineate the spatiotemporal requirements for RAMP2 function during development and thereby enable the elucidation of an expanded repertoire of RAMP2 functions with family B G-protein-coupled receptors in adult homeostasis. Endothelial-specific expression of Ramp2 under the VE-cadherin promoter resulted in the partial rescue of Ramp2(-/-) mice, demonstrating that endothelial expression of Ramp2 is necessary and sufficient for survival. The surviving Ramp2(-/-) Tg animals lived to adulthood and developed spontaneous hypotension and dilated cardiomyopathy, which was not observed in adult mice lacking calcitonin receptor-like receptor. Yet, the hearts of Ramp2(-/-) Tg animals displayed dysregulation of family B G-protein-coupled receptors, including parathyroid hormone and glucagon receptors, as well as their downstream signaling pathways. These data suggest a functional requirement for RAMP2 in the modulation of additional G-protein-coupled receptor pathways in vivo, which is critical for sustained cardiovascular homeostasis. The cardiovascular importance of RAMP2 extends beyond the endothelium and canonical adrenomedullin/calcitonin receptor-like receptor signaling, in which future studies could elucidate novel and pharmacologically tractable pathways for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Daniel O Kechele
- From the Department of Cell Biology and Physiology (D.O.K., S.E.W.-S., M.L., K.M.C.), Curriculum in Genetics and Molecular Biology (W.P.D., C.E.T., K.M.C.), Department of Pathology and Laboratory Medicine (H.M., J.L.), and McAllister Heart Institute (H.M., J.L., K.M.C.), The University of North Carolina, Chapel Hill
| | - William P Dunworth
- From the Department of Cell Biology and Physiology (D.O.K., S.E.W.-S., M.L., K.M.C.), Curriculum in Genetics and Molecular Biology (W.P.D., C.E.T., K.M.C.), Department of Pathology and Laboratory Medicine (H.M., J.L.), and McAllister Heart Institute (H.M., J.L., K.M.C.), The University of North Carolina, Chapel Hill
| | - Claire E Trincot
- From the Department of Cell Biology and Physiology (D.O.K., S.E.W.-S., M.L., K.M.C.), Curriculum in Genetics and Molecular Biology (W.P.D., C.E.T., K.M.C.), Department of Pathology and Laboratory Medicine (H.M., J.L.), and McAllister Heart Institute (H.M., J.L., K.M.C.), The University of North Carolina, Chapel Hill
| | - Sarah E Wetzel-Strong
- From the Department of Cell Biology and Physiology (D.O.K., S.E.W.-S., M.L., K.M.C.), Curriculum in Genetics and Molecular Biology (W.P.D., C.E.T., K.M.C.), Department of Pathology and Laboratory Medicine (H.M., J.L.), and McAllister Heart Institute (H.M., J.L., K.M.C.), The University of North Carolina, Chapel Hill
| | - Manyu Li
- From the Department of Cell Biology and Physiology (D.O.K., S.E.W.-S., M.L., K.M.C.), Curriculum in Genetics and Molecular Biology (W.P.D., C.E.T., K.M.C.), Department of Pathology and Laboratory Medicine (H.M., J.L.), and McAllister Heart Institute (H.M., J.L., K.M.C.), The University of North Carolina, Chapel Hill
| | - Hong Ma
- From the Department of Cell Biology and Physiology (D.O.K., S.E.W.-S., M.L., K.M.C.), Curriculum in Genetics and Molecular Biology (W.P.D., C.E.T., K.M.C.), Department of Pathology and Laboratory Medicine (H.M., J.L.), and McAllister Heart Institute (H.M., J.L., K.M.C.), The University of North Carolina, Chapel Hill
| | - Jiandong Liu
- From the Department of Cell Biology and Physiology (D.O.K., S.E.W.-S., M.L., K.M.C.), Curriculum in Genetics and Molecular Biology (W.P.D., C.E.T., K.M.C.), Department of Pathology and Laboratory Medicine (H.M., J.L.), and McAllister Heart Institute (H.M., J.L., K.M.C.), The University of North Carolina, Chapel Hill
| | - Kathleen M Caron
- From the Department of Cell Biology and Physiology (D.O.K., S.E.W.-S., M.L., K.M.C.), Curriculum in Genetics and Molecular Biology (W.P.D., C.E.T., K.M.C.), Department of Pathology and Laboratory Medicine (H.M., J.L.), and McAllister Heart Institute (H.M., J.L., K.M.C.), The University of North Carolina, Chapel Hill.
| |
Collapse
|
18
|
Xiao L, McCann JV, Dudley AC. Isolation and Culture Expansion of Tumor-specific Endothelial Cells. J Vis Exp 2015:e53072. [PMID: 26554446 DOI: 10.3791/53072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Freshly isolated tumor-specific endothelial cells (TEC) can be used to explore molecular mechanisms of tumor angiogenesis and serve as an in vitro model for developing new angiogenesis inhibitors for cancer. However, long-term in vitro expansion of murine endothelial cells (EC) is challenging due to phenotypic drift in culture (endothelial-to-mesenchymal transition) and contamination with non-EC. This is especially true for TEC which are readily outcompeted by co-purified fibroblasts or tumor cells in culture. Here, a high fidelity isolation method that takes advantage of immunomagnetic enrichment coupled with colony selection and in vitro expansion is described. This approach generates pure EC fractions that are entirely free of contaminating stromal or tumor cells. It is also shown that lineage-traced Cdh5(cre):ZsGreen(l/s/l) reporter mice, used with the protocol described herein, are a valuable tool to verify cell purity as the isolated EC colonies from these mice show durable and brilliant ZsGreen fluorescence in culture.
Collapse
Affiliation(s)
- Lin Xiao
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill
| | - James V McCann
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill
| | - Andrew C Dudley
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill; McAllister Heart Institute, University of North Carolina at Chapel Hill;
| |
Collapse
|
19
|
Sarver AE, Sarver AL, Thayanithy V, Subramanian S. Identification, by systematic RNA sequencing, of novel candidate biomarkers and therapeutic targets in human soft tissue tumors. J Transl Med 2015; 95:1077-88. [PMID: 26121316 DOI: 10.1038/labinvest.2015.80] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/17/2015] [Accepted: 05/11/2015] [Indexed: 01/14/2023] Open
Abstract
Human sarcomas comprise a heterogeneous group of more than 50 subtypes broadly classified into two groups: bone and soft tissue sarcomas. Such heterogeneity and their relative rarity have made them challenging targets for classification, biomarker identification, and development of improved treatment strategies. In this study, we used RNA sequencing to analyze 35 primary human tissue samples representing 13 different sarcoma subtypes, along with benign schwannoma, and normal bone and muscle tissues. For each sarcoma subtype, we detected unique messenger RNA (mRNA) expression signatures, which we further subjected to bioinformatic functional analysis, upstream regulatory analysis, and microRNA (miRNA) targeting analysis. We found that, for each sarcoma subtype, significantly upregulated genes and their deduced upstream regulators included not only previously implicated known players but also novel candidates not previously reported to be associated with sarcoma. For example, the schwannoma samples were characterized by high expression of not only the known associated proteins GFAP and GAP43 but also the novel player GJB6. Further, when we integrated our expression profiles with miRNA expression data from each sarcoma subtype, we were able to deduce potential key miRNA-gene regulator relationships for each. In the Ewing's sarcoma and fibromatosis samples, two sarcomas where miR-182-5p is significantly downregulated, multiple predicted targets were significantly upregulated, including HMCN1, NKX2-2, SCNN1G, and SOX2. In conclusion, despite the small number of samples per sarcoma subtype, we were able to identify key known players; concurrently, we discovered novel genes that may prove to be important in the molecular classification of sarcomas and in the development of novel treatments.
Collapse
Affiliation(s)
- Anne E Sarver
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Aaron L Sarver
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Venugopal Thayanithy
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN, USA
| | - Subbaya Subramanian
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
20
|
Xiao L, Kim DJ, Davis CL, McCann JV, Dunleavey JM, Vanderlinden AK, Xu N, Pattenden SG, Frye SV, Xu X, Onaitis M, Monaghan-Benson E, Burridge K, Dudley AC. Tumor Endothelial Cells with Distinct Patterns of TGFβ-Driven Endothelial-to-Mesenchymal Transition. Cancer Res 2015; 75:1244-54. [PMID: 25634211 DOI: 10.1158/0008-5472.can-14-1616] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 01/02/2015] [Indexed: 12/27/2022]
Abstract
Endothelial-to-mesenchymal transition (EndMT) occurs during development and underlies the pathophysiology of multiple diseases. In tumors, unscheduled EndMT generates cancer-associated myofibroblasts that fuel inflammation and fibrosis, and may contribute to vascular dysfunction that promotes tumor progression. We report that freshly isolated subpopulations of tumor-specific endothelial cells (TEC) from a spontaneous mammary tumor model undergo distinct forms of EndMT in response to TGFβ stimulation. Although some TECs strikingly upregulate α smooth muscle actin (SMA), a principal marker of EndMT and activated myofibroblasts, counterpart normal mammary gland endothelial cells (NEC) showed little change in SMA expression after TGFβ treatment. Compared with NECs, SMA(+) TECs were 40% less motile in wound-healing assays and formed more stable vascular-like networks in vitro when challenged with TGFβ. Lineage tracing using ZsGreen(Cdh5-Cre) reporter mice confirmed that only a fraction of vessels in breast tumors contain SMA(+) TECs, suggesting that not all endothelial cells (EC) respond identically to TGFβ in vivo. Indeed, examination of 84 TGFβ-regulated target genes revealed entirely different genetic signatures in TGFβ-stimulated NEC and TEC cultures. Finally, we found that basic FGF (bFGF) exerts potent inhibitory effects on many TGFβ-regulated genes but operates in tandem with TGFβ to upregulate others. ECs challenged with TGFβ secrete bFGF, which blocks SMA expression in secondary cultures, suggesting a cell-autonomous or lateral-inhibitory mechanism for impeding mesenchymal differentiation. Together, our results suggest that TGFβ-driven EndMT produces a spectrum of EC phenotypes with different functions that could underlie the plasticity and heterogeneity of the tumor vasculature.
Collapse
Affiliation(s)
- Lin Xiao
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Dae Joong Kim
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Clayton L Davis
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - James V McCann
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - James M Dunleavey
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alissa K Vanderlinden
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nuo Xu
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Samantha G Pattenden
- Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Stephen V Frye
- Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Xia Xu
- Department of Surgery, Duke University, Durham, North Carolina
| | - Mark Onaitis
- Department of Surgery, Duke University, Durham, North Carolina
| | - Elizabeth Monaghan-Benson
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Keith Burridge
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina. McAllister Heart Institute, Chapel Hill, North Carolina
| | - Andrew C Dudley
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina. McAllister Heart Institute, Chapel Hill, North Carolina.
| |
Collapse
|
21
|
Andersson S, Nilsson K, Fagerberg L, Hallström BM, Sundström C, Danielsson A, Edlund K, Uhlen M, Asplund A. The transcriptomic and proteomic landscapes of bone marrow and secondary lymphoid tissues. PLoS One 2014; 9:e115911. [PMID: 25541736 PMCID: PMC4277406 DOI: 10.1371/journal.pone.0115911] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 11/28/2014] [Indexed: 01/05/2023] Open
Abstract
Background The sequencing of the human genome has opened doors for global gene expression profiling, and the immense amount of data will lay an important ground for future studies of normal and diseased tissues. The Human Protein Atlas project aims to systematically map the human gene and protein expression landscape in a multitude of normal healthy tissues as well as cancers, enabling the characterization of both housekeeping genes and genes that display a tissue-specific expression pattern. This article focuses on identifying and describing genes with an elevated expression in four lymphohematopoietic tissue types (bone marrow, lymph node, spleen and appendix), based on the Human Protein Atlas-strategy that combines high throughput transcriptomics with affinity-based proteomics. Results An enriched or enhanced expression in one or more of the lymphohematopoietic tissues, compared to other tissue-types, was seen for 693 out of 20,050 genes, and the highest levels of expression were found in bone marrow for neutrophilic and erythrocytic genes. A majority of these genes were found to constitute well-characterized genes with known functions in lymphatic or hematopoietic cells, while others are not previously studied, as exemplified by C19ORF59. Conclusions In this paper we present a strategy of combining next generation RNA-sequencing with in situ affinity-based proteomics in order to identify and describe new gene targets for further research on lymphatic or hematopoietic cells and tissues. The results constitute lists of genes with enriched or enhanced expression in the four lymphohematopoietic tissues, exemplified also on protein level with immunohistochemical images.
Collapse
Affiliation(s)
- Sandra Andersson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Kenneth Nilsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Linn Fagerberg
- Science for Life Laboratory, Royal Institute of Technology, Stockholm, Sweden
| | - Björn M. Hallström
- Science for Life Laboratory, Royal Institute of Technology, Stockholm, Sweden
| | - Christer Sundström
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Angelika Danielsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karolina Edlund
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Leibniz Research Centre for Working Environment and Human Factors (IfADo) at Dortmund TU, Dortmund, Germany
| | - Mathias Uhlen
- Science for Life Laboratory, Royal Institute of Technology, Stockholm, Sweden
| | - Anna Asplund
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
22
|
Vascular channels formed by subpopulations of PECAM1+ melanoma cells. Nat Commun 2014; 5:5200. [PMID: 25335460 PMCID: PMC4261234 DOI: 10.1038/ncomms6200] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 09/09/2014] [Indexed: 12/18/2022] Open
Abstract
Targeting the vasculature remains a promising approach for treating solid tumors; however, the mechanisms of tumor neovascularization are diverse and complex. Here we uncover a new subpopulation of melanoma cells that express the vascular cell adhesion molecule PECAM1, but not VEGFR-2, and participate in a PECAM1-dependent form of vasculogenic mimicry (VM). Clonally-derived PECAM1+ tumor cells coalesce to form PECAM1-dependent networks in vitro and they generate well-perfused, VEGF-independent channels in mice. The neural crest specifier AP-2α is diminished in PECAM1+ melanoma cells and is a transcriptional repressor of PECAM1. Reintroduction of AP-2α into PECAM1+ tumor cells represses PECAM1 and abolishes tube-forming ability whereas AP-2α knockdown in PECAM1− tumor cells up-regulates PECAM1 expression and promotes tube formation. Thus, VM-competent subpopulations, rather than all cells within a tumor, may instigate VM, supplant host-derived endothelium, and form PECAM1-dependent conduits that are not diminished by neutralizing VEGF.
Collapse
|