1
|
Yi L, Xie H, Zhang X, Gu M, Zhang K, Xia T, Pan S, Yin H, Wu R, You Y, You B. LPAR3 and COL8A1, as matrix stiffness-related biomarkers, promote nasopharyngeal carcinoma metastasis by triggering EMT and angiogenesis. Cell Signal 2025; 131:111712. [PMID: 40049264 DOI: 10.1016/j.cellsig.2025.111712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/22/2025] [Accepted: 03/02/2025] [Indexed: 04/15/2025]
Abstract
Matrix stiffness affects the progression of nasopharyngeal carcinoma, but the underlying mechanism is still unknown. Here, we demonstrated that nasopharyngeal carcinoma tissues with distant metastasis contain large collagen deposits and strong matrix stiffness. First, we performed RNA-seq analysis of nasopharyngeal carcinoma cells cultured on polyacrylamide hydrogel systems and found that LPAR3 and COL8A1 are potential matrix stiffness markers. Based on in vivo and in vitro experiments, matrix stiffness mainly affected tumor metastasis rather than proliferation. Subsequently, we found that matrix stiffness triggers the formation of epithelial-mesenchymal transition by increasing the expression of LPAR3 in nasopharyngeal carcinoma, which is related to metastasis. In addition, matrix stiffness promotes the expression of COL8A1 secreted by nasopharyngeal carcinoma and is related to tumor angiogenesis. Simultaneous inhibition of LPAR3 and COL8A1 genes significantly reduced nasopharyngeal carcinoma invasion and metastasis. Based on the investigation, we confirmed that matrix stiffness governs the progression of nasopharyngeal carcinoma and that LPAR3 and COL8A1, as matrix stiffness related biomarkers, promote nasopharyngeal carcinoma metastasis by inducing epithelial-mesenchymal transition and angiogenesis. Overall, the in-depth exploration of matrix stiffness may provide a strategy for clinical treatment intervention and provide promising targets for clinical nasopharyngeal carcinoma treatment.
Collapse
MESH Headings
- Humans
- Epithelial-Mesenchymal Transition
- Nasopharyngeal Carcinoma/pathology
- Nasopharyngeal Carcinoma/metabolism
- Nasopharyngeal Carcinoma/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/genetics
- Receptors, Lysophosphatidic Acid/metabolism
- Receptors, Lysophosphatidic Acid/genetics
- Nasopharyngeal Neoplasms/pathology
- Nasopharyngeal Neoplasms/metabolism
- Nasopharyngeal Neoplasms/genetics
- Cell Line, Tumor
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Animals
- Extracellular Matrix/metabolism
- Neoplasm Metastasis
- Mice, Nude
- Mice
- Gene Expression Regulation, Neoplastic
- Mice, Inbred BALB C
- Cell Proliferation
- Female
- Male
- Angiogenesis
Collapse
Affiliation(s)
- Lu Yi
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China; Nantong University, Qixiu Road 19, Nantong 226001, Jiangsu Province, China
| | - Haijing Xie
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China
| | - Xin Zhang
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China; Nantong University, Qixiu Road 19, Nantong 226001, Jiangsu Province, China
| | - Miao Gu
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China
| | - Kaiwen Zhang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China
| | - Tian Xia
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China
| | - Si Pan
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China
| | - Haimeng Yin
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China; Nantong University, Qixiu Road 19, Nantong 226001, Jiangsu Province, China
| | - Rui Wu
- Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China; Nantong University, Qixiu Road 19, Nantong 226001, Jiangsu Province, China
| | - Yiwen You
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China.
| | - Bo You
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China; Institute of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Xisi Road 20, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
2
|
Wang S, Miao J, Zhu P, Xu L. Co-delivery of Liposomal Ketoconazole and Bevacizumab for Synergistical Inhibition of Angiogenesis Against Endometrial Cancer. Mol Biotechnol 2025; 67:2660-2672. [PMID: 39230827 DOI: 10.1007/s12033-024-01227-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 06/20/2024] [Indexed: 09/05/2024]
Abstract
In this study, we designed a novel formulation based on liposomes for the co-delivery of cancer-derived exosome inhibitor (ketoconazole, Keto) and angiogenesis inhibitor (bevacizumab, mAb). The designed Combo-Lipo formulation was systematically characterized, exhibiting a uniform average particle size of 100 nm, as well as excellent serum and long-term physical stabilities. The cell viability assay revealed that Combo-Lipo treatment significantly reduced the viability of cancer cells compared to free drugs. Moreover, liposomes effectively inhibited angiogenic mediators and reduced tumor immune suppressive factors. The Combo-Lipo formulation demonstrated potent downregulation of angiogenic factors and synergistic effects in suppressing their production. Furthermore, liposomes inhibited tumor-associated macrophages (TAMs), leading to decreased expression of tumor-promoting factors. Together, these findings highlighted the promising characteristics of Combo-Lipo as a therapeutic formulation, including optimal particle size, serum stability, and potent anti-cancer effects, as well as inhibition of angiogenic mediators and TAMs toward treating endometrial cancer.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of the First Obstetrics and Gynecology, Yantai Yuhuangding Hospital, Yantai, 264099, Shandong, China
| | - Jinglin Miao
- Department of the Third Obstetrics and Gynecology, Yantai Yuhuangding Hospital, No. 20 Yuhuangding East Road, Zhifu District, Yantai, 264099, Shandong, China
| | - Ping Zhu
- Department of Reproductive Medicine, Yantai Yuhuangding Hospital, No. 20 Yuhuangding East Road, Zhifu District, Yantai, 264099, Shandong, China.
| | - Li Xu
- Department of the Third Obstetrics and Gynecology, Yantai Yuhuangding Hospital, No. 20 Yuhuangding East Road, Zhifu District, Yantai, 264099, Shandong, China.
| |
Collapse
|
3
|
Jiang KC, Zhu YH, Jiang ZL, Liu Y, Hussain W, Luo HY, Sun WH, Ji XY, Li DX. Regulation of PEST-containing nuclear proteins in cancer cells: implications for cancer biology and therapy. Front Oncol 2025; 15:1548886. [PMID: 40330830 PMCID: PMC12052563 DOI: 10.3389/fonc.2025.1548886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/01/2025] [Indexed: 05/08/2025] Open
Abstract
The PEST-containing nuclear protein (PCNP) is a nuclear protein involved in the regulation of cell cycle progression, protein degradation, and tumorigenesis. PCNP contains a PEST sequence, a polypeptide structural motif rich in proline (P), glutamic acid (E), serine (S), and threonine (T), which serves as a proteolytic recognition signal. The degradation of specific proteins via the PEST sequence plays a crucial role in modulating signaling pathways that control cell growth, differentiation, apoptosis, and stress responses. PCNP is primarily degraded through the ubiquitin-proteasome system (UPS) and the calpain pathway, with phosphorylation of threonine and serine residues further accelerating its degradation. The ubiquitination of PCNP by the ring finger protein NIRF in an E3 ligase-dependent manner is well documented, along with its involvement in the MAPK and PI3K/AKT/mTOR signaling pathways. Additionally, PCNP is implicated in p53-mediated cell cycle arrest and apoptosis, which are essential for inhibiting tumor growth. To explore the role of PCNP in cancer, this review examines its effects on cell growth, differentiation, proliferation, and apoptosis in lung adenocarcinoma, thyroid cancer, ovarian cancer, and other malignancies derived from glandular epithelial cells. By focusing on PCNP and its regulatory mechanisms, this study provides a scientific basis for further research on the biological functions of the PEST sequence in tumor development and cancer progression.
Collapse
Affiliation(s)
- Kai-Chun Jiang
- Department of Traditional Chinese Medicine, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China
| | - Yong-Hao Zhu
- School of Stomatology, Henan University, Kaifeng, Henan, China
| | - Zhi-Liang Jiang
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
- Department of Urology, Institute of Urology, Sichuan University, Chengdu, China
| | - Yi Liu
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Wahab Hussain
- School of Stomatology, Henan University, Kaifeng, Henan, China
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
| | - Huang-Yin Luo
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
- Department of Urology, Institute of Urology, Sichuan University, Chengdu, China
| | - Wei-Hang Sun
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
- Department of Urology, Institute of Urology, Sichuan University, Chengdu, China
| | - Xin-Ying Ji
- Kaifeng Municipal Key Laboratory for Infection and Biosafety, Henan International Joint Laboratory of Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University College of Medicine, Kaifeng, Henan, China
- Department of Oncology, Huaxian County Hospital, Anyang, Henan, China
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, China
| | - Ding-Xi Li
- The Affiliated Cancer Hospital, Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
4
|
Li Y, Liu X, Dong Y, Zhou Y. Angiogenesis causes and vasculogenic mimicry formation in the context of cancer stem cells. Biochim Biophys Acta Rev Cancer 2025; 1880:189323. [PMID: 40239849 DOI: 10.1016/j.bbcan.2025.189323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 04/10/2025] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
Tumor occurrence, development, invasion, and metastasis are regulated by multiple mechanisms. Among these, angiogenesis promotes tumor progression mainly by supplying tumor tissue and providing channels for tumor metastasis. Cancer stem cells (CSCs) are another important factor affecting tumor progression by involving in tumor initiation and development, while remaining insensitive to conventional antitumor treatments. Among treatment strategies for them, owing to the existence of alternative angiogenic pathways or the risk of damaging normal stem cells, the clinical effect is not ideal. Angiogenesis and CSCs may influence each other in this process. Tumor angiogenesis can support CSC self-renewal by providing a suitable microenvironment, whereas CSCs can regulate tumor neovascularization and mediate drug resistance to anti-angiogenic therapy. This review summarized the role of vascular niche formed by angiogenesis in CSC self-renewal and stemness maintenance, and the function of CSCs in endothelial progenitor cell differentiation and pro-angiogenic factor upregulation. We also elucidated the malignant loop between CSCs and angiogenesis promoting tumor progression. Additionally, we summarized and proposed therapeutic targets, including blocking tumor-derived endothelial differentiation, inhibiting pro-angiogenic factor upregulation, and directly targeting endothelial-like cells comprising CSCs. And we analyzed the feasibility of these strategies to identify more effective methods to improve tumor treatment.
Collapse
Affiliation(s)
- Ying Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xiaofang Liu
- Department of Anus and Intestine Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yaodong Dong
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| | - Yingying Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
5
|
Liu W, Zou X, Zheng Y, Zhang Y, Cui G, Liu S, Sun C, Peng C. Aconiti Lateralis Radix Praeparata ameliorates heart failure via PI3K/AKT/Bnip3 pathway. Front Pharmacol 2025; 16:1526653. [PMID: 40206063 PMCID: PMC11979612 DOI: 10.3389/fphar.2025.1526653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Background Chronic heart failure (CHF) is one of the leading causes of high mortality worldwide. It is characterized by pathological hypertrophy and poses a major threat to human health. Aconiti Lateralis Radix Praeparata is widely used in ancient China to treat CHF. However, the pathology is obscured, necessitating further exploration. Methods Prospective targets were predicted by network analysis. A transverse aortic constriction (TAC) mice model was subsequently constructed to determine the effects of aqueous extract of Aconiti Lateralis Radix Praeparata (AEA) on CHF. The echocardiography was performed to investigate cardiac function. Histopathological analysis of cardiac tissue was conducted to assess myocardial fibrosis. Nontargeted metabolomics was performed to analyze serum metabolites. The phosphorylation level of PI3K and AKT, and downstream targets such as Bnip3, p62, Atg5, and LC3II were measured by Western blotting. In vitro, norepinephrine (NE) was used to stimulate cardiac hypertrophy. Parameters such as reactive oxygen species levels, mitochondrial membrane potential, ATP concentration, and CK/MB content were detected in H9c2 cells. Results AEA significantly alleviated CHF. Network analysis indicated the participation of AKT in CHF, and was modulated by Aconiti Lateralis Radix Praeparata. In vivo, AEA administration effectively ameliorated cardiac performance, evidenced by the elevation of ejection fraction. Histopathological analysis displayed a diminishment of collagen fiber. Metabolomics analysis showed that several metabolites such as tetrahydroxycorticosterone, decylubiquinone and taurocholic acid were increased in the TAC mice serum. Additionally, the phosphorylation levels of PI3K and AKT, and expression levels of Drp1, Opa1, Bnip3, p62, Atg5 and LC3II were altered in TAC group. In vitro, NE stimulation increased the cell surface area and deteriorated mitochondrial functions in H9c2 cells. However, AEA administration partially reversed such results, and the mechanism was associated with mitophagy. Conclusion This study revealed that AEA improved cardiac function via the PI3K/AKT/Bnip3 pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Yan X, Fan J, Qin W, Liao M, Li S, Suo L, Xie Y, Jiang X, Zou D, Liao W. Hypericin Nanoparticles-Associated Photodynamic Therapy Modulates the Biological Behavior of Hepatocellular Carcinoma by SERPINE1. Int J Nanomedicine 2025; 20:3713-3730. [PMID: 40130195 PMCID: PMC11932138 DOI: 10.2147/ijn.s507037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/12/2025] [Indexed: 03/26/2025] Open
Abstract
Background In recent years, photodynamic therapy (PDT) has gradually attracted the attention of researchers due to its therapeutic potential for treating malignant tumors. Hypericin (HC) is anticipated to enhance the therapeutic effect on tumors as an efficient photosensitizer (PS) for PDT. However, the role and mechanism of PDT in hepatocellular carcinoma (HCC) remain unclear. Methods In this study, we investigated the efficacy of hypericin nanoparticles (HC-NPs)-associated PDT (HC-NPs-PDT) on HCC to explore its anti-HCC mechanism both in vitro and in vivo. Cellular molecular experiments, as well as HCC mouse tumor models, were utilized to validate the impact of HC-NPs-PDT on HCC. Additionally, molecular docking and related experiments were employed to investigate its potential mechanism. Results Our findings demonstrated that HC-NPs-PDT effectively inhibits the viability, migration, and invasion abilities of HCC cells, as well as suppresses the growth of subcutaneous HCC tumors in BALB/C-nu nude mice. SERPINE1 (also known as PAI, PAI-1, PAI1, PLANH1) may be a key target of HC, as its mRNA and protein levels were significantly up-regulated following HC-NPs-PDT. This upregulation led to a decrease in mitochondrial membrane potential and promoted apoptosis of HCC cells. Additionally, inhibition of SERPINE1 partially restored changes in mitochondrial membrane potential. Conclusion These results suggest that HC-NPs-PDT may regulate the biological behavior of HCC by upregulating SERPINE1 expression, offering a new perspective for treating HCC.
Collapse
Affiliation(s)
- Xuanzhi Yan
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, People’s Republic of China
| | - Jiaxing Fan
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, People’s Republic of China
| | - Wanying Qin
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, People’s Republic of China
| | - Minjun Liao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, People’s Republic of China
- Peking University People’s Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Disease, Beijing, 100044, People’s Republic of China
| | - Siming Li
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, People’s Republic of China
| | - Liya Suo
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, People’s Republic of China
| | - Yujin Xie
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, People’s Republic of China
| | - Xin Jiang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, People’s Republic of China
| | - Dengfeng Zou
- Guangxi Key Laboratory of Drug Discovery and Optimization, School of Pharmacy, Guilin Medical University, Guilin, Guangxi, 541199, People’s Republic of China
| | - Weijia Liao
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, People’s Republic of China
| |
Collapse
|
7
|
Ghosh R, Bhowmik A, Biswas S, Samanta P, Sarkar R, Pakhira S, Mondal M, Hajra S, Saha P. Natural flavonoid Orientin restricts 5-Fluorouracil induced cancer stem cells mediated angiogenesis by regulating HIF1α and VEGFA in colorectal cancer. Mol Med 2025; 31:85. [PMID: 40045186 PMCID: PMC11881437 DOI: 10.1186/s10020-024-01032-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/06/2024] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Cancer stem cells are a small subpopulation of cells which are responsible for tumor metastasis, angiogenesis, drug resistance etc. 5-Fluorouracil (5FU), a common therapeutic drug used in colorectal cancer treatment is reported to enrich CSCs, tumor recurrence and induces severe organ toxicities resulting in poor clinical outcome in patients. Therefore, we introduced a natural flavonoid Orientin in combination with 5FU to mitigate the CSC mediated angiogenesis and induced toxicities. METHODS Tumorosphere generation, flow cytometry, immunofluorescence assay, and western blotting were performed by using 5FU and Orientin individually and both treated colorectal cells and CSCs. In silico study was carried out to check the interaction between HIF1α and Orientin. In ovo chorioallantoic membrane (CAM) assay and tube formation assay using HUVECs were performed to monitor CSC mediated angiogenesis. In vivo CT26 syngeneic mice model was used to validate in silico and ex vivo results. RESULTS We found that 5FU treatment significantly increased the CD44+/CD133+ CSC population. In contrast, this CSC population in CSC enriched spheres (CES) derived from HCT116 cells were decreased by combination of Orientin and 5FU. Decrease of CSC's stemness properties was also noted, as evidenced by the downregulation of NANOG, SOX2 and OCT4. This new therapeutic strategy also inhibited CSC mediated angiogenesis by downregulating 5FU induced ROS, NO and LPO in those tumorospheres. Combination of Orientin and 5FU significantly reduced CSC mediated angiogenesis in HUVEC and CAM. Additionally, in silico study predicted that Orientin can bind to the PAS domain of HIF1α, a crucial factor for promoting angiogenesis. Expression of HIF1α and VEGFA were also decreased when the CESs were exposed to the combinatorial treatment. Additionally, we found that treatment with 5FU alone resulted reduction in tumor volume but it enriched CSCs and produced nephrotoxicity and hepatotoxicity in vivo. Combined treatment also considerably reduced the CD44+/CD133+ CSC population and hindered angiogenesis in a therapeutic in vivo model in BALB/c mice. CONCLUSIONS This novel treatment strategy of "Orientin with 5FU" is likely to improve the efficiency of conventional chemotherapy and may suppress disease recurrence in colorectal cancer by limiting CSC mediated angiogenesis.
Collapse
Affiliation(s)
- Rituparna Ghosh
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Arijit Bhowmik
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India.
| | - Souradeep Biswas
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Priya Samanta
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Rupali Sarkar
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Shampa Pakhira
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Mrinmoyee Mondal
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Subhadip Hajra
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India
| | - Prosenjit Saha
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute (CNCI), 37, Shyama Prasad Mukherjee Rd, Bakul Bagan, Bhowanipore, Kolkata, West Bengal, 700026, India.
| |
Collapse
|
8
|
Weng J, Shan Y, Chang Q, Cao C, Liu X. Research progress on N 6-Methyladenosine modification in angiogenesis, vasculogenic mimicry, and therapeutic implications in breast cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:57-70. [PMID: 39710080 DOI: 10.1016/j.pbiomolbio.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
N6-methyladenosine (m6A) modification is the most common epitranscriptomic modification in eukaryotic RNA and has garnered extensive attention in the context of breast cancer research. The m6A modification significantly impacts tumorigenesis and tumor progression by regulating RNA stability, splicing, translation, and degradation. In this review we summarize recent advances in understanding the roles of m6A modification in the mechanisms underlying angiogenesis and vasculogenic mimicry in breast cancer. We review how m6A modification and associated transcripts influence relevant factors by affecting key factors and signaling pathways, highlighting the interactions among m6A "writers," "erasers," and "readers," and their overall impact on tumor angiogenesis and vasculogenic mimicry, as well as potential new therapeutic targets.
Collapse
Affiliation(s)
- Jiachen Weng
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China
| | - Yisi Shan
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China
| | - Qingyu Chang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China
| | - Chenyan Cao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China
| | - Xuemin Liu
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China.
| |
Collapse
|
9
|
Zhang Y, Wang H, Dai F, He K, Tuo Z, Wang J, Bi L, Chen X. A pan-cancer analysis of the oncogenic and immunological roles of RGS5 in clear cell renal cell carcinomas based on in vitro experiment validation. Hum Genomics 2025; 19:14. [PMID: 39985100 PMCID: PMC11846387 DOI: 10.1186/s40246-025-00717-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/15/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND RGS5, the first gene identified in tumor-resident pericytes, plays a crucial role in angiogenesis. However, its effects on immunology and prognosis in human cancer are still mostly unknown. This study investigates the carcinogenic and immunological roles of RGS5 through a comprehensive pan-cancer analysis. METHODS A standardized pan-cancer dataset for RGS5 was obtained from the public database. R software and relevant packages were utilized to analyze the oncogenic and immunological roles. Clinical samples and cellular experiments were conducted to validate RGS5 expression and its biological function in renal cancer. RESULTS Bioinformatics analysis revealed that RGS5 is dysregulated in a variety of human malignancies and is significantly associated with patient prognosis. Additionally, RGS5 expression is closely linked to tumor heterogeneity and stemness indicators across different cancer types. Co-expression of RGS5 with genes involved in MHC, immune activation, immunosuppressive proteins, chemokines, and chemokine receptors was observed in various tumors. High expression of RGS5 predicts a good prognosis in patients with renal cancer. In the renal cancer cohort, RGS5 expression strongly correlated with the distribution of tumor-associated fibroblasts. Silencing RGS5 expression can affect the proliferation, migration, and invasion of renal carcinoma cells. CONCLUSIONS RGS5 expression in tumors is intricately associated with various clinical features, particularly concerning tumor progression and patient prognosis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Huming Wang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Fang Dai
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Ke He
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Zhouting Tuo
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Jinyou Wang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.
| | - Liangkuan Bi
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, People's Republic of China.
| | - Xin Chen
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.
| |
Collapse
|
10
|
Hong R, Han Y, Chen S. Advances in micro- and nano- delivery systems for increasing the stability, bioavailability and bioactivity of coenzyme Q 10. Crit Rev Food Sci Nutr 2025:1-18. [PMID: 39819160 DOI: 10.1080/10408398.2025.2450543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Coenzyme Q10 acts as a liposoluble quinone compound in mitochondrial oxidative phosphorylation, serving as an electron carrier and protecting the cell membrane structure as an antioxidant. Coenzyme Q10 has notable health benefits, including anti-aging, anti-inflammatory, prevention of cardiovascular diseases, and assistance in cancer treatment. However, its poor water solubility, unstable chemical properties, and low bioavailability significantly limit its application. This article reviewed the design and development processes of various delivery systems for coenzyme Q10, discussing the advantages and disadvantages of different delivery systems and their improvement strategies, including improvements in the stability and accessibility of emulsions, achieving higher penetration rates for oleogels, and reducing the use of toxic substances in the production process of liposomes. The mechanisms behind coenzyme Q10's low stability and bioavailability were analyzed, and the bioactivity and research prospects of coenzyme Q10 were also discussed. In summary, this review offered valuable insights into the design and application of delivery systems for coenzyme Q10, which may provide a reference for its development and application in pharmaceuticals, cosmetics, health products, and other industries in the future.
Collapse
Affiliation(s)
- Ruoxuan Hong
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
- School of Public Health, Wuhan University, Wuhan, Hubei, China
| | - Yahong Han
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Shuai Chen
- School of Public Health, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
11
|
Panda VK, Mishra B, Mahapatra S, Swain B, Malhotra D, Saha S, Khanra S, Mishra P, Majhi S, Kumari K, Nath AN, Saha S, Jena S, Kundu GC. Molecular Insights on Signaling Cascades in Breast Cancer: A Comprehensive Review. Cancers (Basel) 2025; 17:234. [PMID: 39858015 PMCID: PMC11763662 DOI: 10.3390/cancers17020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/27/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
The complex signaling network within the breast tumor microenvironment is crucial for its growth, metastasis, angiogenesis, therapy escape, stem cell maintenance, and immunomodulation. An array of secretory factors and their receptors activate downstream signaling cascades regulating breast cancer progression and metastasis. Among various signaling pathways, the EGFR, ER, Notch, and Hedgehog signaling pathways have recently been identified as crucial in terms of breast cancer proliferation, survival, differentiation, maintenance of CSCs, and therapy failure. These receptors mediate various downstream signaling pathways such as MAPK, including MEK/ERK signaling pathways that promote common pro-oncogenic signaling, whereas dysregulation of PI3K/Akt, Wnt/β-catenin, and JAK/STAT activates key oncogenic events such as drug resistance, CSC enrichment, and metabolic reprogramming. Additionally, these cascades orchestrate an intricate interplay between stromal cells, immune cells, and tumor cells. Metabolic reprogramming and adaptations contribute to aggressive breast cancer and are unresponsive to therapy. Herein, recent insights into the novel signaling pathways operating within the breast TME that aid in their advancement are emphasized and current developments in practices targeting the breast TME to enhance treatment efficacy are reviewed.
Collapse
Affiliation(s)
- Venketesh K. Panda
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
- School of Applied Sciences, KIIT Deemed to Be University, Bhubaneswar 751024, India
| | - Barnalee Mishra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Samikshya Mahapatra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Biswajit Swain
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Suryendu Saha
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Sinjan Khanra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Priyanka Mishra
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Sambhunath Majhi
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Kavita Kumari
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Angitha N. Nath
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Swarnali Saha
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Sarmistha Jena
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
| | - Gopal C. Kundu
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (S.M.); (B.S.); (D.M.); (S.S.); (S.K.); (P.M.); (S.M.); (K.K.); (A.N.N.); (S.S.); (S.J.)
- School of Applied Sciences, KIIT Deemed to Be University, Bhubaneswar 751024, India
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to Be University, Bhubaneswar 751024, India
| |
Collapse
|
12
|
Xu Y, Zhang YX, Chen HY, Chang LS, Gou XJ, Chen WL. Integrating Network Pharmacology and In vivo Experimental Validation to Reveal the Mechanism of FuZheng YiLiu Formula on Estrogen Receptor Positive Breast Cancer. Comb Chem High Throughput Screen 2025; 28:49-63. [PMID: 37957900 DOI: 10.2174/0113862073255044231027061742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/04/2023] [Accepted: 09/14/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND AND PURPOSE FuZheng YiLiu Formula (FZYL) is a commonly used formula for postoperative estrogen receptor-positive (ER+) breast cancer and post-radiotherapy deficiency of both Qi and Yin. FZYL has been used in clinical practice for decades because of its ability to effectively improve the symptoms of deficiency in cancer patients. However, its mechanism needs to be further clarified. In this paper, we will observe the effect of FZYL on mice with ER+ breast cancer and explore the mechanism by which it improves the symptoms of ER+ breast cancer. MATERIALS AND METHODS A tumor xenograft mouse model was established to detect tumor growth in vivo in order to evaluate the pharmacological effects of FZYL on ER+ breast cancer. The main targets of FZYL were identified by extracting the FZYL components and the corresponding potential target genes of breast cancer from the established database and constructing a proteinprotein interaction network of shared genes using the string database. GO functional annotation and KEGG pathway enrichment analysis were performed, and molecular docking, molecular dynamics simulations, western blotting analysis, and RT-qPCR were performed to confirm the validity of targets in the relevant pathways. RESULTS FZYL was able to significantly reduce the size of tumors in vivo and had a significant therapeutic effect on tumor xenograft mice. GO and KEGG pathway enrichment analyses indicated that the effects of FZYL may be mediated by oxidative stress levels, apoptotic signaling pathways, and cell cycle proliferation. By RT-qPCR and protein blotting assays, FZYL targeted the key targets of TP53, JUN, ESR1, RELA, MYC, and MAPK1 to exert its effects. The key active components of FZYL are quercetin, luteolin, stigmasterol, and glycitein. Molecular docking and molecular dynamics simulation results further demonstrated that the key active components of FZYL are stably bound to the core targets. CONCLUSION In this study, the potential active ingredients, potential core targets, key biological pathways, and signaling pathways involved in the treatment of breast cancer with FZYL were identified, providing a theoretical basis for further anti ER+ breast cancer research.
Collapse
Affiliation(s)
- Yuan Xu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
- Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai 201999, China
| | - Ying-Xuan Zhang
- Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai 201999, China
| | - Hong-Yu Chen
- Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai 201999, China
| | - Li-Sheng Chang
- Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai 201999, China
| | - Xiao-Jun Gou
- Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai 201999, China
| | - Wen-Li Chen
- Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai 201999, China
| |
Collapse
|
13
|
Wei J, Li W, Zhang P, Guo F, Liu M. Current trends in sensitizing immune checkpoint inhibitors for cancer treatment. Mol Cancer 2024; 23:279. [PMID: 39725966 DOI: 10.1186/s12943-024-02179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have dramatically transformed the treatment landscape for various malignancies, achieving notable clinical outcomes across a wide range of indications. Despite these advances, resistance to immune checkpoint blockade (ICB) remains a critical clinical challenge, characterized by variable response rates and non-durable benefits. However, growing research into the complex intrinsic and extrinsic characteristics of tumors has advanced our understanding of the mechanisms behind ICI resistance, potentially improving treatment outcomes. Additionally, robust predictive biomarkers are crucial for optimizing patient selection and maximizing the efficacy of ICBs. Recent studies have emphasized that multiple rational combination strategies can overcome immune checkpoint resistance and enhance susceptibility to ICIs. These findings not only deepen our understanding of tumor biology but also reveal the unique mechanisms of action of sensitizing agents, extending clinical benefits in cancer immunotherapy. In this review, we will explore the underlying biology of ICIs, discuss the significance of the tumor immune microenvironment (TIME) and clinical predictive biomarkers, analyze the current mechanisms of resistance, and outline alternative combination strategies to enhance the effectiveness of ICIs, including personalized strategies for sensitizing tumors to ICIs.
Collapse
Grants
- ZYJC21043 the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- ZYJC21043 the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- ZYJC21043 the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- ZYJC21043 the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- ZYJC21043 the 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- 2023YFS0111 Social Development Science and Technology Project of Sichuan Province on Science and Technology
- 2023YFS0111 Social Development Science and Technology Project of Sichuan Province on Science and Technology
- 2023YFS0111 Social Development Science and Technology Project of Sichuan Province on Science and Technology
- 2023YFS0111 Social Development Science and Technology Project of Sichuan Province on Science and Technology
- 2023YFS0111 Social Development Science and Technology Project of Sichuan Province on Science and Technology
Collapse
Affiliation(s)
- Jing Wei
- Department of Medical Oncology, Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Wenke Li
- Department of Medical Oncology, Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Pengfei Zhang
- Department of Medical Oncology, Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Ming Liu
- Department of Medical Oncology, Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
14
|
Chen S, Hu X, Yi X, Deng X, Xiong T, Ou Y, Liu S, Li C, Yan X, Hao L. USP22 Promotes Osteosarcoma Progression by Stabilising β-Catenin and Upregulating HK2 and Glycolysis. J Cell Mol Med 2024; 28:e70239. [PMID: 39661501 PMCID: PMC11633763 DOI: 10.1111/jcmm.70239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/26/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024] Open
Abstract
Osteosarcoma is a primary malignancy that is difficult to treat and is prone to developing resistance to chemotherapy. As such, it is necessary to continuously explore novel therapeutic targets. Ubiquitin-specific protease 22 (USP22) is an ubiquitin-specific protease that has been demonstrated to have potent carcinogenic effects on a variety of cancers and is involved in several biological processes. Studies have demonstrated that reprogramming of glucose metabolism is a major factor in the development and progression of osteosarcoma, and that USP22 is strongly associated with the metabolism of glucose in osteosarcoma. However, it is still unknown how precisely USP22 works in osteosarcoma. To further elucidate the expression and specific molecular mechanisms of USP22 in osteosarcoma. The results of Western blot analysis and quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed that the expression of USP22 in osteosarcoma tissues was significantly higher than that in adjacent healthy tissues. In addition, the expression of USP22 promotes the proliferation of osteosarcoma cells in a glycolytic dependent manner both in vitro and in vivo, while the knockout of USP22 is the opposite. In addition, USP22 knockout reduced the protein expression of β-catenin and hexokinase 2 (HK2) in osteosarcoma cells. In addition, the regulation of HK2 expression induced by USP22 depends on β-catenin. Mechanistically, USP22 regulates HK2 by deubiquitination and stabilising the expression of β-catenin, thereby controlling glycolysis in osteosarcoma cells.
Collapse
Affiliation(s)
- Shenliang Chen
- Department of Orthopedics, the 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- University of NanchangNanchangChina
| | - Xin Hu
- Jiangxi Pingxiang People's HospitalPingxiangChina
| | - Xuan Yi
- Department of Orthopedics, the 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Xueqiang Deng
- Department of Orthopedics, the 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Ting Xiong
- Department of Orthopedics, the 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- University of NanchangNanchangChina
| | - Yanghuan Ou
- Department of Orthopedics, the 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- University of NanchangNanchangChina
| | - Shuaigang Liu
- Department of Orthopedics, the 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Chen Li
- Department of Orthopedics, the 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Xiaohua Yan
- University of NanchangNanchangChina
- Department of Biochemistry and Molecular Biology, School of Basic Medical SciencesNanchang University Jiangxi Medical CollegeNanchangChina
| | - Liang Hao
- Department of Orthopedics, the 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| |
Collapse
|
15
|
Yao Y, Qian R, Gao H, Dai Y, Shi Y, An P, Xin B, Liu Z, Zhang N, Wan Y, He Y, Hu X. LSD1 deficiency in breast cancer cells promotes the formation of pre-metastatic niches. NPJ Precis Oncol 2024; 8:260. [PMID: 39528717 PMCID: PMC11555121 DOI: 10.1038/s41698-024-00751-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Lysine-specific demethylase 1 (LSD1), a histone demethylating enzyme, plays a crucial role in cancer metastasis. Studies show LSD1 knockout promotes breast cancer lung metastasis, but it's unknown if it alters the lung microenvironment for metastasis. In this study, we investigated the effects of exosomes from LSD1-knockdown (LSD1 KD) breast cancer cells on pre-metastatic niche formation. Injecting exosomes from LSD1 KD cells in mice resulted in a substantial increase in lung colonization by breast cancer cells, while treatment with exosomes derived from LSD1 KD cells decreased the expression of the ZO-1 and occludin, leading to increased vascular permeability. The LSD1 KD reduced the expression of circDOCK1, which augmented the levels of miR-1270 in exosomes. And miR-1270 inhibited ZO-1 expression in human endothelial cells, which enhanced their permeability. Our study uncovered a novel mechanism in which the LSD1 promotes the formation of pre-metastatic niches via the regulation of exosomal miRNA.
Collapse
Affiliation(s)
- Yutong Yao
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Rui Qian
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Hanwei Gao
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Yonghao Dai
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Yueru Shi
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Peipei An
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Benkai Xin
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Ziyu Liu
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Nan Zhang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Youzhong Wan
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Yuquan He
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Xin Hu
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
16
|
Niebora J, Data K, Domagała D, Józkowiak M, Barrett S, Norizadeh Abbariki T, Bryja A, Kulus M, Woźniak S, Ziemak H, Piotrowska-Kempisty H, Antosik P, Bukowska D, Mozdziak P, Dzięgiel P, Kempisty B. Avian Models for Human Carcinogenesis-Recent Findings from Molecular and Clinical Research. Cells 2024; 13:1797. [PMID: 39513904 PMCID: PMC11544849 DOI: 10.3390/cells13211797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Birds, especially the chick and hen, have been important biomedical research models for centuries due to the accessibility of the avian embryo and the early discovery of avian viruses. Comprehension of avian tumor virology was a milestone in basic cancer research, as was that of non-viral genesis, as it enabled the discovery of oncogenes. Furthermore, studies on avian viruses provided initial insights into Kaposi's sarcoma and EBV-induced diseases. However, the role of birds in human carcinogenesis extends beyond the realm of virology research. Utilization of CAM, the chorioallantoic membrane, an easily accessible extraembryonic tissue with rich vasculature, has enabled studies on tumor-induced angiogenesis and metastasis and the efficient screening of potential anti-cancer compounds. Also, the chick embryo alone is an effective preclinical in vivo patient-derived xenograft model, which is important for the development of personalized therapies. Furthermore, adult birds may also closely resemble human oncogenesis, as evidenced by the laying hen, which is the only animal model of a spontaneous form of ovarian cancer. Avian models may create an interesting alternative compared with mammalian models, enabling the creation of a relatively cost-effective and easy-to-maintain platform to address key questions in cancer biology.
Collapse
Affiliation(s)
- Julia Niebora
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
| | - Dominika Domagała
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
| | - Małgorzata Józkowiak
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
| | - Saoirse Barrett
- Human Clinical Embryology & Assisted Conception, School of Medicine, University of Dundee, Dundee DD1 4HN, UK
| | | | - Artur Bryja
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Sławomir Woźniak
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
| | - Hanna Ziemak
- Veterinary Clinic of the Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
- Department of Basic and Preclinical Science, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland (D.D.); (M.J.)
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27695, USA
- Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic
| |
Collapse
|
17
|
Liu S, Teng F, Lu Y, Zhu Y, Liang X, Wu F, Liu J, Zhou W, Su C, Cao Y. Ethoxy-erianin phosphate inhibits angiogenesis in colorectal cancer by regulating the TMPO-AS1/miR-126-3p/PIK3R2 axis and inactivating the PI3k/AKT signaling pathway. BMC Cancer 2024; 24:1275. [PMID: 39402462 PMCID: PMC11476319 DOI: 10.1186/s12885-024-12893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy, with increasing prevalence and mortality. How the ethoxy-erianin phosphate (EBTP) mediates CRC development remains unclear. Therefore, the current study evaluated the effects of EBTP on the proliferation, migration, and angiogenesis of CRC cells using CCK-8, Wound-healing, Transwell, and Tube formation assays. RNA sequencing and molecular docking techniques helped predict that EBTP could inhibit angiogenesis by regulating PIK3R2 expression while clarifying the mechanism behind EBTP-mediated CRC angiogenesis. Subsequently, several in vitro experiments indicated that PIK3R2 overexpression significantly improved the proliferation, migration, and angiogenesis of CRC cells while knocking down PIK3R2 expression inhibited their proliferation, migration, and angiogenesis. Simultaneously, PIK3R2 expression in CRC cells gradually decreased with increased EBTP concentration and action duration. Moreover, PIK3R2 overexpression in CRC cells could reverse the inhibitory EBTP effect in angiogenesis. Mouse experiments also depicted that EBTP inhibited CRC angiogenesis by down-regulating PIK3R2 expression. In addition, EBTP could inhibit PI3K/AKT pathway activity and indirectly control PIK3R2 expression through the lncRNA TMPO-AS1/miR-126-3p axis. Our findings highlighted that EBTP could inhibit CRC angiogenesis using the TMPO-AS1/miR-126-3p/PIK3R2/PI3k/AKT axis, providing a novel strategy for anti-angiogenic therapy in CRC.
Collapse
Affiliation(s)
- Shaoqun Liu
- Department of Gastrointestinal Surgery, Minhang Hospital, Fudan University, Shanghai, China
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China
| | - Fei Teng
- Department of Gastrointestinal Surgery, Minhang Hospital, Fudan University, Shanghai, China
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China
| | - Yuxin Lu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yanqing Zhu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xin Liang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Fanhong Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
- Zhejiang Guangsha Vocational and Technical University of Construction, Jinhua, China
| | - Jianwen Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
- Zhejiang Guangsha Vocational and Technical University of Construction, Jinhua, China
| | - Wenming Zhou
- Department of Endoscope Center, Minhang Hospital, Fudan University, Shanghai, China.
| | - Chang Su
- Department of Gastrointestinal Surgery, Minhang Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China.
| | - Yiou Cao
- Department of Gastrointestinal Surgery, Minhang Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Whole-period Monitoring and Precise Intervention of Digestive Cancer (SMHC), Minhang Hospital & AHS, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Chen RX, Liu SC, Kan XC, Wang YR, Wang JF, Wang TL, Li C, Jiang WJ, Chen YAL, Zhou T, Fan SL, Chang J, Xu X, Shi KH, Zhang YD, Wu MY, Yu Y, Li CX, Li XC. CircUGP2 Suppresses Intrahepatic Cholangiocarcinoma Progression via p53 Signaling Through Interacting With PURB to Regulate ADGRB1 Transcription and Sponging miR-3191-5p. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402329. [PMID: 39120980 PMCID: PMC11481218 DOI: 10.1002/advs.202402329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/17/2024] [Indexed: 08/11/2024]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver cancer and its prognosis remains poor. Although growing numbers of studies have verified the involvement of circular RNAs (circRNAs) in various cancer types, their specific functions in ICC remain elusive. Herein, a circRNA, circUGP2 is identified by circRNA sequencing, which is downregulated in ICC tissues and correlated with patients' prognosis. Moreover, circUGP2 overexpression suppresses tumor progression in vitro and in vivo. Mechanistically, circUGP2 functions as a transcriptional co-activator of PURB over the expression of ADGRB1. It can also upregulate ADGRB1 expression by sponging miR-3191-5p. As a result, ADGRB1 prevents MDM2-mediated p53 polyubiquitination and thereby activates p53 signaling to inhibit ICC progression. Based on these findings, circUGP2 plasmid is encapsulated into a lipid nanoparticle (LNP) system, which has successfully targeted tumor site and shows superior anti-tumor effects. In summary, the present study has identified the role of circUGP2 as a tumor suppressor in ICC through regulating ADGRB1/p53 axis, and the application of LNP provides a promising translational strategy for ICC treatment.
Collapse
Affiliation(s)
- Rui Xiang Chen
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Shuo Chen Liu
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Xue Chun Kan
- School of MedicineSoutheast UniversityNanjingJiangsu210009China
| | - Yi Rui Wang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Ji Fei Wang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Tian Lin Wang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Chang Li
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Wang Jie Jiang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Yan An Lan Chen
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Tao Zhou
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Shi Long Fan
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Jiang Chang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Xiao Xu
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Kuang Heng Shi
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Yao Dong Zhang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Ming Yu Wu
- The Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Yue Yu
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Chang Xian Li
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Xiang Cheng Li
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
- The Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| |
Collapse
|
19
|
Yang B, Cao L, Ge K, Lv C, Zhao Z, Zheng T, Gao S, Zhang J, Wang T, Jiang J, Qin Y. FeSA‐Ir/Metallene Nanozymes Induce Sequential Ferroptosis‐Pyroptosis for Multi‐Immunogenic Responses Against Lung Metastasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401110. [PMID: 38874051 DOI: 10.1002/smll.202401110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/01/2024] [Indexed: 06/15/2024]
Abstract
For cancer metastasis inhibition, the combining of nanozymes with immune checkpoint blockade (ICB) therapy remains the major challenge in controllable reactive oxygen species (ROS) generation for creating effective immunogenicity. Herein, new nanozymes with light-controlled ROS production in terms of quantity and variety are developed by conjugating supramolecular-wrapped Fe single atom on iridium metallene with lattice-strained nanoislands (FeSA-Ir@PF NSs). The Fenton-like catalysis of FeSA-Ir@PF NSs effectively produced •OH radicals in dark, which induced ferroptosis and apoptosis of cancer cells. While under second near-infrared (NIR-II) light irradiation, FeSA-Ir@PF NSs showed ultrahigh photothermal conversion efficiency (𝜂, 75.29%), cooperative robust •OH generation, photocatalytic O2 and 1O2 generation, and caused significant pyroptosis of cancer cells. The controllable ROS generation, sequential cancer cells ferroptosis and pyroptosis, led 99.1% primary tumor inhibition and multi-immunogenic responses in vivo. Most importantly, the inhibition of cancer lung metastasis is completely achieved by FeSA-Ir@PF NSs with immune checkpoint inhibitors, as demonstrated in different mice lung metastasis models, including circulating tumor cells (CTCs) model. This work provided new inspiration for developing nanozymes for cancer treatments and metastasis inhibition.
Collapse
Affiliation(s)
- Baochan Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- School of Biomedical Engineering, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Lingzhi Cao
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, China
| | - Kun Ge
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, China
| | - Chaofan Lv
- School of Biomedical Engineering, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Zunling Zhao
- School of Biomedical Engineering, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Tianyu Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shutao Gao
- College of Science, Hebei Agricultural University, Baoding, 071001, China
| | - Jinchao Zhang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, Hebei, 071002, China
| | - Tianyu Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yan Qin
- School of Biomedical Engineering, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510260, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| |
Collapse
|
20
|
Song C, Xiong DD, He RQ, Yong XZ, Huang ZG, Dang YW, Chen G, Pang YY, Zhao CY, Qu N, Wei DM. Bibliometric study of the application of the chicken embryo chorioallantoic membrane model in cancer research: the top 100 most cited articles. J Comp Pathol 2024; 213:59-72. [PMID: 39116802 DOI: 10.1016/j.jcpa.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/26/2024] [Accepted: 07/07/2024] [Indexed: 08/10/2024]
Abstract
The chicken embryo chorioallantoic membrane (CAM) model has played a crucial role in various aspects of cancer research. The purpose of this study is to help researchers clarify the research direction and prospects of the CAM model. A bibliometric analysis was conducted on the top 100 most cited articles on use of the CAM model in tumour research, retrieved from the Web of Science Core Collection database. Tools such as Bibliometrix, VOSviewer, CiteSpace and Excel were utilized for the visualization network analysis. The 100 articles analysed were mainly from the USA, China and European countries such as Germany and France. Tumour research involving CAM model experiments demonstrated reliability and scientific rigor (average citation count = 156.2). The analysis of keywords, topics and subject areas revealed that the applications of this model ranged from the biological characteristics of tumours to molecular mechanisms and signaling pathways, to recent developments in nanotechnology and clinical applications. Additionally, nude mouse experiments have been more frequently performed in recent years. We conclude that the CAM model is efficient, simple and cost-effective, and has irreplaceable value in various aspects of cancer research. In the future, the CAM model can further contribute to nanotechnology research.
Collapse
Affiliation(s)
- Chang Song
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Dan-Dan Xiong
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Rong-Quan He
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Xiang-Zhi Yong
- Department of Periodontal and Oral Medicine, College of Stomatology, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Yu-Yan Pang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Chun-Yan Zhao
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Ning Qu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Dan-Ming Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China.
| |
Collapse
|
21
|
Huo H, Feng Y, Tang Q. Effect of ZIC2 on immune infiltration and ceRNA axis regulation in lung adenocarcinoma via bioinformatics and experimental studies. Mol Cell Probes 2024; 76:101971. [PMID: 38977039 DOI: 10.1016/j.mcp.2024.101971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/16/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
OBJECTIVE This study aimed to conclude the effect and mechanism of ZIC2 on immune infiltration in lung adenocarcinoma (LUAD). METHODS Expression of ZIC2 in several kinds of normal tissues of TCGA data was analyzed and its correlation with the baseline characteristic of LUAD patients were analyzed. The immune infiltration analysis of LUAD patients was performed by CIBERSORT algorithm. The correlation analysis between ZIC2 and immune cell composition was performed. Additionally, the potential upstream regulatory mechanisms of ZIC2 were predicted to identify the possible miRNAs and lncRNAs that regulated ZIC2 in LUAD. In vitro and in vivo experiments were also conducted to confirm the potential effect of ZIC2 on cell proliferation and invasion ability of LUAD cells. RESULTS ZIC2 expression was decreased in various normal tissues, but increased in multiple tumors, including LUAD, and correlated with the prognosis of LUAD patients. Enrichment by GO and KEGG suggested the possible association of ZIC2 with cell cycle and p53 signal pathway. ZIC2 expression was significantly correlated with T cells CD4 memory resting, Macrophages M1, and plasma cells, indicating that dysregulated ZIC2 expression in LUAD may directly influence immune infiltration. ZIC2 might be regulated by several different lncRNA-mediated ceRNA mechanisms. In vitro experiments validated the promotive effect of ZIC2 on cell viability and invasion ability of LUAD cells. In vivo experiments validated ZIC2 can accelerate tumor growth in nude mouse. CONCLUSION ZIC2 regulated by different lncRNA-mediated ceRNA mechanisms may play a critical regulatory role in LUAD through mediating the composition of immune cells in tumor microenvironment.
Collapse
Affiliation(s)
- Hongjie Huo
- Department of Respiratory Medicine, Tianjin Union Medical Center, Tianjin, 300121, PR China
| | - Yu Feng
- Department of Respiratory Medicine, Tianjin Union Medical Center, Tianjin, 300121, PR China
| | - Qiong Tang
- Department of Respiratory Medicine, Tianjin Union Medical Center, Tianjin, 300121, PR China.
| |
Collapse
|
22
|
Cheng S, Zhu L, Lin N, He M, Yu Y, Lin M, Zhang H. Utility of Second-look Ultrasonography in Distinguishing BI-RADS 4 Calcifications Detected on Mammography: An observational study. Medicine (Baltimore) 2024; 103:e38841. [PMID: 38996136 PMCID: PMC11245213 DOI: 10.1097/md.0000000000038841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 06/14/2024] [Indexed: 07/14/2024] Open
Abstract
This study aimed to assess the utility of second-look ultrasonography (US) in differentiating breast imaging reporting and data system (BI-RADS) 4 calcifications initially detected on mammography (MG). BI-RADS 4 calcifications have a wide range of positive predictive values. We hypothesized that second-look US would help distinguish BI-RADS 4 calcifications without clinical manifestations and other abnormalities on MG. This study included 1622 pure BI-RADS 4 calcifications in 1510 women (112 patients with bilateral calcifications). The cases were randomly divided into training (85%) and testing (15%) datasets. Two nomograms were developed to differentiate BI-RADS 4 calcifications in the training dataset: the MG-US nomogram, based on multifactorial logistic regression and incorporated clinical information, MG, and second-look US characteristics, and the MG nomogram, based on clinical information and mammographic characteristics. Calibration of the MG-US nomogram was performed using calibration curves. The discriminative ability and clinical utility of both nomograms were compared using the area under the receiver operating characteristic curve (AUC) and the decision analysis curve (DCA) in the test dataset. The clinical information and imaging characteristics were comparable between the training and test datasets. The bias-corrected calibration curves of the MG-US nomogram closely approximate the ideal line for both datasets. In the test dataset, the MG-US nomogram exhibited a higher AUC than the MG nomogram (0.899 vs 0.852, P = .01). DCA demonstrated the superiority of the MG-US nomogram over the MG nomogram. Second-look US features, including ultrasonic calcifications, lesions, and moderate or marked color flow, were valuable for distinguishing BI-RADS 4 calcifications without clinical manifestations and other abnormalities on MG.
Collapse
Affiliation(s)
- Sheng Cheng
- Department of Ultrasonography, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian Province, China
| | - Lin Zhu
- Department of Ultrasonography, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian Province, China
| | - Ning Lin
- Department of Ultrasonography, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian Province, China
| | - Muzhen He
- Department of Radiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian Province, China
| | - Yingbin Yu
- Department of Radiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian Province, China
| | - Mengbo Lin
- Department of Surgical Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian Province, China
| | - Hui Zhang
- Department of Surgical Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian Province, China
| |
Collapse
|
23
|
Chen Y, Zhou Y, Chen J, Yang J, Yuan Y, Wu W. Exosomal lncRNA SNHG12 promotes angiogenesis and breast cancer progression. Breast Cancer 2024; 31:607-620. [PMID: 38833118 PMCID: PMC11194216 DOI: 10.1007/s12282-024-01574-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/22/2024] [Indexed: 06/06/2024]
Abstract
OBJECTIVE Breast cancer is one of the most prevalent malignancies in women. Exosomes are important mediators of intercellular communication; however, their regulatory mechanisms in human umbilical vein endothelial cells (HUVECs) angiogenesis in breast cancer remain unknown. METHODS We isolated and characterized breast cancer cell-derived exosomes and investigated their functions. Exosomal sequencing and the TCGA database were used to screen long non-coding RNA (lncRNA). In vitro and in vivo experiments were performed to investigate the role of exosomal lncRNA in HUVEC angiogenesis and tumor growth. Molecular methods were used to demonstrate the molecular mechanism of lncRNA. RESULTS We demonstrated that breast cancer cell-derived exosomes promoted HUVEC proliferation, tube formation, and migration. Combining exosomal sequencing results with The Cancer Genome Atlas Breast Cancer database, we screened lncRNA small nucleolar RNA host gene 12 (SNHG12), which was highly expressed in breast cancer cells. SNHG12 was also upregulated in HUVECs co-cultured with exosome-overexpressed SNHG12. Moreover, overexpression of SNHG12 in exosomes increased HUVEC proliferation and migration, whereas deletion of SNHG12 in exosomes showed the opposite effects. In vivo experiments showed that SNHG12 knockdown in exosomes inhibited breast cancer tumor growth. Transcriptome sequencing identified MMP10 as the target gene of SNHG12. Functional experiments revealed that MMP10 overexpression promoted HUVEC angiogenesis. Mechanistically, SNHG12 blocked the interaction between PBRM1 and MMP10 by directly binding to PBRM1. Moreover, exosomal SNHG12 promoted HUVEC angiogenesis via PBRM1 and MMP10. CONCLUSIONS In summary, our findings confirmed that exosomal SNHG12 promoted HUVEC angiogenesis via the PBRM1-MMP10 axis, leading to enhanced malignancy of breast cancer. Exosomal SNHG12 may be a novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Yan Chen
- Department of Thyroid and Breast Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315000, China
| | - Yuxin Zhou
- Department of Thyroid and Breast Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315000, China
| | - Jiafeng Chen
- Department of Thyroid and Breast Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315000, China
| | - Jiahui Yang
- Department of Thyroid and Breast Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315000, China
| | - Yijie Yuan
- Department of Thyroid and Breast Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315000, China
| | - Weizhu Wu
- Department of Thyroid and Breast Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315000, China.
- East Branch of Lihuili Hospital, Ningbo Medical Center, No. 1111 Jiangnan Road, Meixu Street, Yinzhou District, Ningbo, Zhejiang, China.
| |
Collapse
|
24
|
Wang D, Liu X, Hong W, Xiao T, Xu Y, Fang X, Tang H, Zheng Q, Meng X. Muscone abrogates breast cancer progression through tumor angiogenic suppression via VEGF/PI3K/Akt/MAPK signaling pathways. Cancer Cell Int 2024; 24:214. [PMID: 38898449 PMCID: PMC11188526 DOI: 10.1186/s12935-024-03401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Angiogenesis strongly reflects poor breast cancer outcome and an important contributor to breast cancer (BC) metastasis; therefore, anti-angiogenic intervention is a potential tool for cancer treatment. However, currently used antibodies against vascular endothelial growth factor A (VEGFA) or inhibitors that target the VEGFA receptor are not effective due to weak penetration and low efficiency. Herein, we assessed the anti-BC angiogenic role of muscone, a natural bioactive musk constituent, and explored possible anti-cancer mechanisms of this compound. METHODS CCK-8, EdU, scratch and Transwell assessments were employed to detect the muscone-mediated regulation of breast cancer (BC) and human umbilical vein endothelial cells (HUVECs) proliferation and migration. Tube formation, matrigel plug assay and zebrafish assay were employed for assessment of regulation of tumor angiogenesis by muscone. In vivo xenograft mouse model was constructed to compare microvessel density (MVD), vascular leakage, vascular maturation and function in muscone-treated or untreated mice. RNA sequencing was performed for gene screening, and Western blot verified the effect of the VEGFA-VEGFR2 pathway on BC angiogenic inhibition by muscone. RESULTS Based on our findings, muscone suppressed BC progression via tumor angiogenic inhibition in cellular and animal models. Functionally, muscone inhibited BC cell proliferation and migration as well as tumor cell-conditioned medium-based endothelial cell proliferation and migration. Muscone exhibited a strong suppressive influence on tumor vasculature in cellular and animal models. It abrogated tumor cell growth in a xenograft BC mouse model and minimized tumor microvessel density and hypoxia, and increased vascular wall cell coverage and perfusion. Regarding the mechanism of action, we found that muscone suppressed phosphorylation of members of the VEGF/PI3K/Akt/MAPK axis, and it worked synergistically with a VEGFR2 inhibitor, an Akt inhibitor, and a MAPK inhibitor to further inhibit tube formation. CONCLUSION Overall, our results demonstrate that muscone may proficiently suppress tumor angiogenesis via modulation of the VEGF/PI3K/Akt/MAPK axis, facilitating its candidacy as a natural small molecule drug for BC treatment.
Collapse
Affiliation(s)
- Danhong Wang
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China
| | - Xiaozhen Liu
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China
| | - Weimin Hong
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310053, Zhejiang, China
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China
| | - Tianzheng Xiao
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China
| | - Yadan Xu
- Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310053, Zhejiang, China
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China
| | - Xiang Fang
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China
- College of Clinical Medicine, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Hongchao Tang
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China
| | - Qinghui Zheng
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China.
| | - Xuli Meng
- Department of Breast Surgery, General Surgery, Cancer Center, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
- Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
25
|
Kang F, Wu J, Hong L, Zhang P, Song J. Iodine-125 seed inhibits proliferation and promotes apoptosis of cholangiocarcinoma cells by inducing the ROS/p53 axis. Funct Integr Genomics 2024; 24:114. [PMID: 38862667 PMCID: PMC11166828 DOI: 10.1007/s10142-024-01392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
With advances in radioactive particle implantation in clinical practice, Iodine-125 (125I) seed brachytherapy has emerged as a promising treatment for cholangiocarcinoma (CCA), showing good prognosis; however, the underlying molecular mechanism of the therapeutic effect of 125I seed is unclear. To study the effects of 125I seed on the proliferation and apoptosis of CCA cells. CCA cell lines, RBE and HCCC-9810, were treated with reactive oxygen species (ROS) scavenger acetylcysteine (NAC) or the p53 functional inhibitor, pifithrin-α hydrobromide (PFTα). Cell counting kit-8 (CCK-8) assay, 5-bromo-2-deoxy-uridine (BrdU) staining, and terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay and flow cytometry assay were performed to test the radiation-sensitivity of 125I seed toward CCA cells at different radiation doses (0.4 mCi and 0.8 mCi). 2,7-dichlorofluorescein diacetate (DCF-DA) assay, real-time quantitative polymerase chain reaction (RT-qPCR), and western blot analysis were performed to assess the effect of 125I seed on the ROS/p53 axis. A dose-dependent inhibitory effect of 125I seeds on the proliferation of CCA cells was observed. The 125I seed promoted apoptosis of CCA cells and induced the activation of the ROS/p53 pathway in a dose-dependent manner. NAC or PFTα treatment effectively reversed the stimulatory effect of 125I seed on the proliferation of CCA cells. NAC or PFTα suppressed apoptosis and p53 protein expression induced by the 125I seed. 125I seed can inhibit cell growth mainly through the apoptotic pathway. The mechanism may involve the activation of p53 and its downstream apoptotic pathway by up-regulating the level of ROS in cells.
Collapse
Affiliation(s)
- Fuping Kang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan City, Ningxia Hui Autonomous Region, 750004, China
| | - Jing Wu
- Medical Experiment Center, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan City, Ningxia Hui Autonomous Region, 750004, China
| | - Li Hong
- Department of Pediatrics, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan City, Ningxia Hui Autonomous Region, China
| | - Peng Zhang
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan City, Ningxia Hui Autonomous Region, 750004, China
| | - Jianjun Song
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, 804 Shengli South Street, Yinchuan City, Ningxia Hui Autonomous Region, 750004, China.
| |
Collapse
|
26
|
Shi Z, Hu C, Zheng X, Sun C, Li Q. Feedback loop between hypoxia and energy metabolic reprogramming aggravates the radioresistance of cancer cells. Exp Hematol Oncol 2024; 13:55. [PMID: 38778409 PMCID: PMC11110349 DOI: 10.1186/s40164-024-00519-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Radiotherapy is one of the mainstream approaches for cancer treatment, although the clinical outcomes are limited due to the radioresistance of tumor cells. Hypoxia and metabolic reprogramming are the hallmarks of tumor initiation and progression and are closely linked to radioresistance. Inside a tumor, the rate of angiogenesis lags behind cell proliferation, and the underdevelopment and abnormal functions of blood vessels in some loci result in oxygen deficiency in cancer cells, i.e., hypoxia. This prevents radiation from effectively eliminating the hypoxic cancer cells. Cancer cells switch to glycolysis as the main source of energy, a phenomenon known as the Warburg effect, to sustain their rapid proliferation rates. Therefore, pathways involved in metabolic reprogramming and hypoxia-induced radioresistance are promising intervention targets for cancer treatment. In this review, we discussed the mechanisms and pathways underlying radioresistance due to hypoxia and metabolic reprogramming in detail, including DNA repair, role of cancer stem cells, oxidative stress relief, autophagy regulation, angiogenesis and immune escape. In addition, we proposed the existence of a feedback loop between energy metabolic reprogramming and hypoxia, which is associated with the development and exacerbation of radioresistance in tumors. Simultaneous blockade of this feedback loop and other tumor-specific targets can be an effective approach to overcome radioresistance of cancer cells. This comprehensive overview provides new insights into the mechanisms underlying tumor radiosensitivity and progression.
Collapse
Affiliation(s)
- Zheng Shi
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cuilan Hu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaogang Zheng
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
27
|
Li A, Wu J. High STAT4 expression correlates with poor prognosis in acute myeloid leukemia and facilitates disease progression by upregulating VEGFA expression. Open Med (Wars) 2024; 19:20230840. [PMID: 38737443 PMCID: PMC11087736 DOI: 10.1515/med-2023-0840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 05/14/2024] Open
Abstract
The aim of our study is to explore the mechanism of transcription-4 (STAT4) in acute myeloid leukemia (AML). STAT4 level in AML bone marrow samples/cells was analyzed using bioinformatics and quantitative real-time PCR. The correlation between high STAT4 expression and the prognosis of AML patients was analyzed. The viability, apoptosis, and angiogenesis of AML cells were detected. The levels of STAT4, vascular endothelial growth factor A (VEGFA), and apoptosis-related proteins (Bcl-2 and Bax) in transfected AML cells were examined. STAT4 level was upregulated in AML. STAT4 silencing decreased the viability and angiogenesis, yet increased the apoptosis of AML cells, while overexpressed STAT4 did conversely. VEGFA silencing counteracted the impacts of overexpressed STAT4 upon promoting viability and angiogenesis as well as repressing the apoptosis of AML cells. High STAT4 expression was correlated with poor prognosis of AML patients and facilitated disease progression via upregulating VEGFA expression.
Collapse
Affiliation(s)
- Aohang Li
- Clinical Laboratory Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jingxuan Wu
- Research Ward, Beijing Friendship Hospital, Capital Medical University, Xicheng District, Beijing, China
| |
Collapse
|
28
|
Li Y, Ye X, Huang H, Cao R, Huang F, Chen L. Construction of a prognostic model based on memory CD4+ T cell-associated genes for lung adenocarcinoma and its applications in immunotherapy. CPT Pharmacometrics Syst Pharmacol 2024; 13:837-852. [PMID: 38594917 PMCID: PMC11098152 DOI: 10.1002/psp4.13122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 04/11/2024] Open
Abstract
The association between memory CD4+ T cells and cancer prognosis is increasingly recognized, but their impact on lung adenocarcinoma (LUAD) prognosis remains unclear. In this study, using the cell-type identification by estimating relative subsets of RNA transcripts algorithm, we analyzed immune cell composition and patient survival in LUAD. Weighted gene coexpression network analysis helped identify memory CD4+ T cell-associated gene modules. Combined with module genes, a five-gene LUAD prognostic risk model (HOXB7, MELTF, ABCC2, GNPNAT1, and LDHA) was constructed by regression analysis. The model was validated using the GSE31210 data set. The validation results demonstrated excellent predictive performance of the risk scoring model. Correlation analysis was conducted between the clinical information and risk scores of LUAD samples, revealing that LUAD patients with disease progression exhibited higher risk scores. Furthermore, univariate and multivariate regression analyses demonstrated the model independent prognostic capability. The constructed nomogram results demonstrated that the predictive performance of the nomogram was superior to the prognostic model and outperformed individual clinical factors. Immune landscape assessment was performed to compare different risk score groups. The results revealed a better prognosis in the low-risk group with higher immune infiltration. The low-risk group also showed potential benefits from immunotherapy. Our study proposes a memory CD4+ T cell-associated gene risk model as a reliable prognostic biomarker for personalized treatment in LUAD patients.
Collapse
Affiliation(s)
- Yong Li
- Pulmonary and Critical Care MedicineFujian Medical University Union HospitalFuzhouChina
| | - Xiangli Ye
- Pulmonary and Critical Care MedicineFujian Medical University Union HospitalFuzhouChina
| | - Huiqin Huang
- Fujian Provincial Key Laboratory of Medical TestingFujian Academy of Medical SciencesFuzhouChina
| | - Rongxiang Cao
- Pulmonary and Critical Care MedicineFujian Medical University Union HospitalFuzhouChina
| | - Feijian Huang
- Pulmonary and Critical Care MedicineFujian Medical University Union HospitalFuzhouChina
| | - Limin Chen
- Pulmonary and Critical Care MedicineFujian Medical University Union HospitalFuzhouChina
| |
Collapse
|
29
|
Li M, Zhang CL, Zhou DS, Chan SH, Liu XQ, Chen SN, Yang ZY, Ju FE, Sang XY, Liu ZX, Zhang QX, Pan YM, Deng SS, Wang XM, Zhong L, Zhang XD, Du X. Identification of COQ2 as a regulator of proliferation and lipid peroxidation through genome-scale CRISPR-Cas9 screening in myeloma cells. Br J Haematol 2024; 204:1307-1324. [PMID: 38462771 DOI: 10.1111/bjh.19375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
Multiple myeloma (MM) is the second most common malignant haematological disease with a poor prognosis. The limit therapeutic progress has been made in MM patients with cancer relapse, necessitating deeper research into the molecular mechanisms underlying its occurrence and development. A genome-wide CRISPR-Cas9 loss-of-function screening was utilized to identify potential therapeutic targets in our research. We revealed that COQ2 plays a crucial role in regulating MM cell proliferation and lipid peroxidation (LPO). Knockout of COQ2 inhibited cell proliferation, induced cell cycle arrest and reduced tumour growth in vivo. Mechanistically, COQ2 promoted the activation of the MEK/ERK cascade, which in turn stabilized and activated MYC protein. Moreover, we found that COQ2-deficient MM cells increased sensitivity to the LPO activator, RSL3. Using an inhibitor targeting COQ2 by 4-CBA enhanced the sensitivity to RSL3 in primary CD138+ myeloma cells and in a xenograft mouse model. Nevertheless, co-treatment of 4-CBA and RSL3 induced cell death in bortezomib-resistant MM cells. Together, our findings suggest that COQ2 promotes cell proliferation and tumour growth through the activation of the MEK/ERK/MYC axis and targeting COQ2 could enhance the sensitivity to ferroptosis in MM cells, which may be a promising therapeutic strategy for the treatment of MM patients.
Collapse
Affiliation(s)
- Miao Li
- Department of Dermatovenereology, Pelvic Floor Disorders Center, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Department of Gynecology, Pelvic Floor Disorders Center, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Key Laboratory for Efficacy and Safety Evaluation of Hematological Malignancy Targeted Medicine of Guangdong Provincial Drug Administration, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
- Department of Hematology and Shenzhen Bone Marrow Transplantation Public Service Platform, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Chang-Lin Zhang
- Department of Dermatovenereology, Pelvic Floor Disorders Center, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Department of Gynecology, Pelvic Floor Disorders Center, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Di-Sheng Zhou
- Key Laboratory for Efficacy and Safety Evaluation of Hematological Malignancy Targeted Medicine of Guangdong Provincial Drug Administration, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Sze-Hoi Chan
- Key Laboratory for Efficacy and Safety Evaluation of Hematological Malignancy Targeted Medicine of Guangdong Provincial Drug Administration, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xue-Qi Liu
- Key Laboratory for Efficacy and Safety Evaluation of Hematological Malignancy Targeted Medicine of Guangdong Provincial Drug Administration, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shu-Na Chen
- Key Laboratory for Efficacy and Safety Evaluation of Hematological Malignancy Targeted Medicine of Guangdong Provincial Drug Administration, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Zi-Yi Yang
- Key Laboratory for Efficacy and Safety Evaluation of Hematological Malignancy Targeted Medicine of Guangdong Provincial Drug Administration, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Fei-Er Ju
- Key Laboratory for Efficacy and Safety Evaluation of Hematological Malignancy Targeted Medicine of Guangdong Provincial Drug Administration, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xiao-Yan Sang
- Key Laboratory for Efficacy and Safety Evaluation of Hematological Malignancy Targeted Medicine of Guangdong Provincial Drug Administration, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Zi-Xuan Liu
- Key Laboratory for Efficacy and Safety Evaluation of Hematological Malignancy Targeted Medicine of Guangdong Provincial Drug Administration, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Qiao-Xia Zhang
- Department of Hematology and Shenzhen Bone Marrow Transplantation Public Service Platform, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Yu-Ming Pan
- Department of Hematology and Shenzhen Bone Marrow Transplantation Public Service Platform, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Si-Si Deng
- Department of Hematology and Shenzhen Bone Marrow Transplantation Public Service Platform, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Xiao-Mei Wang
- Department of Hematology and Shenzhen Bone Marrow Transplantation Public Service Platform, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Li Zhong
- Department of Dermatovenereology, Pelvic Floor Disorders Center, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Department of Gynecology, Pelvic Floor Disorders Center, Scientific Research Center, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xing-Ding Zhang
- Key Laboratory for Efficacy and Safety Evaluation of Hematological Malignancy Targeted Medicine of Guangdong Provincial Drug Administration, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Xin Du
- Department of Hematology and Shenzhen Bone Marrow Transplantation Public Service Platform, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
30
|
Chen F, Tang H, Cai X, Lin J, Xiang L, Kang R, Liu J, Tang D. Targeting paraptosis in cancer: opportunities and challenges. Cancer Gene Ther 2024; 31:349-363. [PMID: 38177306 DOI: 10.1038/s41417-023-00722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/06/2024]
Abstract
Cell death can be classified into two primary categories: accidental cell death and regulated cell death (RCD). Within RCD, there are distinct apoptotic and non-apoptotic cell death pathways. Among the various forms of non-apoptotic RCD, paraptosis stands out as a unique mechanism characterized by distinct morphological changes within cells. These alterations encompass cytoplasmic vacuolization, organelle swelling, notably in the endoplasmic reticulum and mitochondria, and the absence of typical apoptotic features, such as cell shrinkage and DNA fragmentation. Biochemically, paraptosis distinguishes itself by its independence from caspases, which are conventionally associated with apoptotic death. This intriguing cell death pathway can be initiated by various cellular stressors, including oxidative stress, protein misfolding, and specific chemical compounds. Dysregulated paraptosis plays a pivotal role in several critical cancer-related processes, such as autophagic degradation, drug resistance, and angiogenesis. This review provides a comprehensive overview of recent advancements in our understanding of the mechanisms and regulation of paraptosis. Additionally, it delves into the potential of paraptosis-related compounds for targeted cancer treatment, with the aim of enhancing treatment efficacy while minimizing harm to healthy cells.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Hu Tang
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Xiutao Cai
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Junhao Lin
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Limin Xiang
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510150, China.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
31
|
Hu C, Ji F, Lv R, Zhou H, Hou G, Xu T. Putrescine promotes MMP9-induced angiogenesis in skeletal muscle through hydrogen peroxide/METTL3 pathway. Free Radic Biol Med 2024; 212:433-447. [PMID: 38159892 DOI: 10.1016/j.freeradbiomed.2023.12.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Blood vessels play a crucial role in the development of skeletal muscle, ensuring the supply of nutrients and oxygen. Putrescine, an essential polyamine for eukaryotic cells, has an unclear impact on skeletal muscle angiogenesis. In this study, we observed lower vessel density and reduced putrescine level in the muscle of low-birth-weight piglet models, and identified a positive correlation between putrescine content and muscle vessel density. Furthermore, putrescine was found to promote angiogenesis in skeletal muscle both in vitro and in vivo by targeting matrix metalloproteinase 9 (MMP9). On a mechanistic level, putrescine augmented the expression of methyltransferase like 3 (METTL3) by attenuating hydrogen peroxide production, thereby increasing the level of N6-methyladenosine (m6A)-modified MMP9 mRNA. This m6A-modified MMP9 mRNA was subsequently recognized and bound by the YTH N6-methyladenosine RNA binding protein 1 (YTHDF1), enhancing the stability of MMP9 mRNA and its protein expression, consequently accelerating angiogenesis in skeletal muscle. In summary, our findings suggest that putrescine enhances MMP9-mediated angiogenesis in skeletal muscle via the hydrogen peroxide/METTL3 pathway.
Collapse
Affiliation(s)
- Chengjun Hu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China
| | - Fengjie Ji
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Renlong Lv
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Hanlin Zhou
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China
| | - Guanyu Hou
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Tieshan Xu
- Tropical Crop Genetic Resource Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
32
|
Hu J, Xu Z, Liao D, Jiang Y, Pu H, Wu Z, Xu X, Zhao Z, Liu J, Lu X, Liu X, Li B. An H 2 S-BMP6 Dual-Loading System with Regulating Yap/Taz and Jun Pathway for Synergistic Critical Limb Ischemia Salvaging Therapy. Adv Healthc Mater 2023; 12:e2301316. [PMID: 37531238 DOI: 10.1002/adhm.202301316] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/12/2023] [Indexed: 08/04/2023]
Abstract
Critical limb ischemia, the final course of peripheral artery disease, is characterized by an insufficient supply of blood flow and excessive oxidative stress. H2 S molecular therapy possesses huge potential for accelerating revascularization and scavenging intracellular reactive oxygen species (ROS). Moreover, it is found that BMP6 is the most significantly up-expressed secreted protein-related gene in HUVECs treated with GYY4137, a H2 S donor, based on the transcriptome analysis. Herein, a UIO-66-NH2 @GYY4137@BMP6 co-delivery nanoplatform to strengthen the therapeutic effects of limb ischemia is developed. The established UIO-66-NH2 @GYY4137@BMP6 nanoplatform exerts its proangiogenic and anti-oxidation functions by regulating key pathways. The underlying molecular mechanisms of UIO-66-NH2 @GYY4137@BMP6 dual-loading system lie in the upregulation of phosphorylated YAP/TAZ and Jun to promote HUVECs proliferation and downregulation of phosphorylated p53/p21 to scavenge excessive ROS. Meanwhile, laser-doppler perfusion imaging (LDPI), injury severity evaluation, and histological analysis confirm the excellent therapeutic effects of UIO-66-NH2 @GYY4137@BMP6 in vivo. This work may shed light on the treatment of critical limb ischemia by regulating YAP, Jun, and p53 signaling pathways based on gas-protein synergistic therapy.
Collapse
Affiliation(s)
- Jiateng Hu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Zhijue Xu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Donghui Liao
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, 523700, China
| | - Yihong Jiang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Hongji Pu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Zhaoyu Wu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Xintong Xu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Zhen Zhao
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, 523700, China
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Xiaobing Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Bo Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| |
Collapse
|
33
|
Huang Y, Huang Y, Wang Z, Yu S, Johnson HM, Yang Y, Li M, Li J, Deng Y, Liang K. Engineered Bio-Heterojunction with Infection-Primed H 2 S Liberation for Boosted Angiogenesis and Infectious Cutaneous Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304324. [PMID: 37434331 DOI: 10.1002/smll.202304324] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/29/2023] [Indexed: 07/13/2023]
Abstract
Photodynamic therapy (PDT) acts as a powerful weapon against infectious diseases for its enormous antimicrobial activity that quickly elicits storms of reactive oxygen species (ROS). Nevertheless, redundant ROS during treatment inevitably bring detriments in revascularization. To address this dilemma, an innovative P-N bio-heterojunction (bio-HJ) material consisting of p-type copper sulfide (p-CuS), n-type bismuth sulfide (n-Bi2 S3 ), and lactate oxidase (LOx) for effective treatment of recalcitrant infectious wounds by promoting angiogenesis is devised. LOx exhausts lactic acid accumulated in infection environment and converts it to hydrogen peroxide (H2 O2 ), which subsequently yields bactericidal hydroxyl radicals (·OH) via Fenton-like reactions. Ultimately, the P-N bio-HJs exert synergistic photothermal, photodynamic, and chemodynamic effects for rapid bacterial annihilation. Moreover, in vitro and RNA-seq analyses reveal that the crafted bio-HJs dramatically expedite the proliferation of L929 cells and promote angiogenesis by up-regulating angiogenic gene expression in hypoxia-inducible factor-1 (HIF-1) signaling pathway, which may ascribe to the evolution of H2 S in response to the infection microenvironment. Critically, results of in vivo experiments have authenticated that the bio-HJs significantly boost healing rates of full-thickness wounds by slaughtering bacteria, elevating angiogenesis, and promoting cytothesis. As envisioned, this work furnishes a novel tactic for the effective treatment of bacteria-invaded wound using H2 S-liberating P-N bio-HJs.
Collapse
Affiliation(s)
- Yiling Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yixuan Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ziyou Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Sheng Yu
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Hannah M Johnson
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Yingming Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Meng Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Deng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| | - Kunneng Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
34
|
Liu W, Wang B, Zhou M, Liu D, Chen F, Zhao X, Lu Y. Redox Dysregulation in the Tumor Microenvironment Contributes to Cancer Metastasis. Antioxid Redox Signal 2023; 39:472-490. [PMID: 37002890 DOI: 10.1089/ars.2023.0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Significance: Redox dysregulation under pathological conditions results in excessive reactive oxygen species (ROS) accumulation, leading to oxidative stress and cellular oxidative damage. ROS function as a double-edged sword to modulate various types of cancer development and survival. Recent Advances: Emerging evidence has underlined that ROS impact the behavior of both cancer cells and tumor-associated stromal cells in the tumor microenvironment (TME), and these cells have developed complex systems to adapt to high ROS environments during cancer progression. Critical Issues: In this review, we integrated current progress regarding the impact of ROS on cancer cells and tumor-associated stromal cells in the TME and summarized how ROS production influences cancer cell behaviors. Then, we summarized the distinct effects of ROS during different stages of tumor metastasis. Finally, we discussed potential therapeutic strategies for modulating ROS for the treatment of cancer metastasis. Future Directions: Targeting the ROS regulation during cancer metastasis will provide important insights into the design of effective single or combinatorial cancer therapeutic strategies. Well-designed preclinical studies and clinical trials are urgently needed to understand the complex regulatory systems of ROS in the TME. Antioxid. Redox Signal. 39, 472-490.
Collapse
Affiliation(s)
- Wanning Liu
- College of Life Sciences, Northwest University, Xi'an, China
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Boda Wang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Mingzhen Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Dan Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Fulin Chen
- College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaodi Zhao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
35
|
Cheng G, Karoui H, Hardy M, Kalyanaraman B. Redox-crippled MitoQ potently inhibits breast cancer and glioma cell proliferation: A negative control for verifying the antioxidant mechanism of MitoQ in cancer and other oxidative pathologies. Free Radic Biol Med 2023; 205:175-187. [PMID: 37321281 PMCID: PMC11129726 DOI: 10.1016/j.freeradbiomed.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023]
Abstract
Mitochondria-targeted coenzyme Q10 (Mito-ubiquinone, Mito-quinone mesylate, or MitoQ) was shown to be an effective antimetastatic drug in patients with triple-negative breast cancer. MitoQ, sold as a nutritional supplement, prevents breast cancer recurrence. It potently inhibited tumor growth and tumor cell proliferation in preclinical xenograft models and in vitro breast cancer cells. The proposed mechanism of action involves the inhibition of reactive oxygen species by MitoQ via a redox-cycling mechanism between the oxidized form, MitoQ, and the fully reduced form, MitoQH2 (also called Mito-ubiquinol). To fully corroborate this antioxidant mechanism, we substituted the hydroquinone group (-OH) with the methoxy group (-OCH3). Unlike MitoQ, the modified form, dimethoxy MitoQ (DM-MitoQ), lacks redox-cycling between the quinone and hydroquinone forms. DM-MitoQ was not converted to MitoQ in MDA-MB-231 cells. We tested the antiproliferative effects of both MitoQ and DM-MitoQ in human breast cancer (MDA-MB-231), brain-homing cancer (MDA-MB-231BR), and glioma (U87MG) cells. Surprisingly, DM-MitoQ was slightly more potent than MitoQ (IC50 = 0.26 μM versus 0.38 μM) at inhibiting proliferation of these cells. Both MitoQ and DM-MitoQ potently inhibited mitochondrial complex I-dependent oxygen consumption (IC50 = 0.52 μM and 0.17 μM, respectively). This study also suggests that DM-MitoQ, which is a more hydrophobic analog of MitoQ (logP: 10.1 and 8.7) devoid of antioxidant function and reactive oxygen species scavenging ability, can inhibit cancer cell proliferation. We conclude that inhibition of mitochondrial oxidative phosphorylation by MitoQ is responsible for inhibition of breast cancer and glioma proliferation and metastasis. Blunting the antioxidant effect using the redox-crippled DM-MitoQ can serve as a useful negative control in corroborating the involvement of free radical-mediated processes (e.g., ferroptosis, protein oxidation/nitration) using MitoQ in other oxidative pathologies.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Biophysics, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States
| | - Hakim Karoui
- Aix Marseille Univ, CNRS, ICR, UMR, 7273, Marseille, 13013, France
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, UMR, 7273, Marseille, 13013, France
| | - Balaraman Kalyanaraman
- Department of Biophysics, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| |
Collapse
|
36
|
Chen W, Zhang Q, Dai X, Chen X, Zhang C, Bai R, Chen Y, Zhang K, Duan X, Qiao Y, Zhao J, Tian F, Liu K, Dong Z, Lu J. PGC-1α promotes colorectal carcinoma metastasis through regulating ABCA1 transcription. Oncogene 2023; 42:2456-2470. [PMID: 37400530 DOI: 10.1038/s41388-023-02762-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Colorectal cancer (CRC) is a highly aggressive cancer in which metastasis plays a key role. However, the mechanisms underlying metastasis have not been fully elucidated. Peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), a regulator of mitochondrial function, has been reported as a complicated factor in cancer. In this study, we found that PGC-1α was highly expressed in CRC tissues and was positively correlated with lymph node and liver metastasis. Subsequently, PGC-1α knockdown was shown to inhibit CRC growth and metastasis in both in vitro and in vivo studies. Transcriptomic analysis revealed that PGC-1α regulated ATP-binding cassette transporter 1 (ABCA1) mediated cholesterol efflux. Mechanistically, PGC-1α interacted with YY1 to promote ABCA1 transcription, resulting in cholesterol efflux, which subsequently promoted CRC metastasis through epithelial-to-mesenchymal transition (EMT). In addition, the study identified the natural compound isoliquiritigenin (ISL) as an inhibitor that targeted ABCA1 and significantly reduced CRC metastasis induced by PGC-1α. Overall, this study sheds light on how PGC-1α promotes CRC metastasis by regulating ABCA1-mediated cholesterol efflux, providing a basis for further research to inhibit CRC metastasis.
Collapse
Affiliation(s)
- Wei Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Qiushuang Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Xiaoshuo Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Xinhuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China
| | - Chengjuan Zhang
- Department of Pathology, Henan Cancer Hospital, Zhengzhou University, Zhengzhou, Henan Province, 450003, P. R. China
| | - Ruihua Bai
- Department of Pathology, Henan Cancer Hospital, Zhengzhou University, Zhengzhou, Henan Province, 450003, P. R. China
| | - Yihuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Kai Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Xiaoxuan Duan
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Yan Qiao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China
| | - Fang Tian
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China
| | - Ziming Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China.
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450052, P. R. China.
| |
Collapse
|
37
|
Gao F, Feng Y, Hu X, Zhang X, Li T, Wang Y, Ge S, Wang C, Chi J, Tan X, Wang N. Neutrophils regulate tumor angiogenesis in oral squamous cell carcinoma and the role of Chemerin. Int Immunopharmacol 2023; 121:110540. [PMID: 37354780 DOI: 10.1016/j.intimp.2023.110540] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant tumor of the oral cavity. Tumor angiogenesis plays a crucial role in tumor progression. Studies have established the correlation between neutrophils and tumor angiogenesis in the tumor microenvironment. A previous study found that overexpression of Chemerin- in OSCC increased the infiltration of neutrophils in tumor tissues. This study aims to investigate the mechanisms underlying the regulation of the development and progression of OSCC, which have great significance in enhancing the postoperative survival of patients with OSCC. This study evaluated the accuracy of neutrophil count combined with MVD in predicting patients' survival time and its relationship with clinicopathological parameters and prognosis. Additionally, the study explored the effects of the Chemerin-neutrophil interaction on the angiogenic function of HUVECs. In OSCC, the overexpression of Chemerin promoted the angiogenesis of HUVECs through neutrophils. Moreover, Chemerin upregulated pro-angiogenic factors (e.g., VEGF-A, MMP-9, MMP-2, and S100A9) in neutrophils by activating MEK/ERK signaling pathway. In vivo experiments demonstrated that Chemerin may promote tumor growth by regulating tumor angiogenesis. In conclusion, the results suggest that neutrophil count and MVD serve as poor prognostic factors for patients with OSCC, and their combination is a more effective factor in predicting the survival time of OSCC patients. Neutrophils potentially contribute to angiogenesis through MEK/ERK signaling pathway via Chemerin and participate in the progression and metastasis of OSCC.
Collapse
Affiliation(s)
- Fei Gao
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao city, Shandong Province, China
| | - Yuanyong Feng
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao city, Shandong Province, China
| | - Xiaoyuan Hu
- Biological Therapy Center, The Third Affiliated Hospital of Kunming Medical University, Kunzhou Road No. 519, Kunming, Yunnan Province, China
| | - Xuan Zhang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao city, Shandong Province, China
| | - Tongtong Li
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao city, Shandong Province, China
| | - Yueqi Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao city, Shandong Province, China
| | - Shengyou Ge
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao city, Shandong Province, China
| | - Chengqin Wang
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao city, Shandong Province, China
| | - Jinghua Chi
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao city, Shandong Province, China
| | - Xiaohua Tan
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao city, Shandong Province, China
| | - Ning Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao city, Shandong Province, China.
| |
Collapse
|
38
|
Wang T, Zhang F, Zhang P. Role of the TPX2/NCOA5 axis in regulating proliferation, migration, invasion and angiogenesis of breast cancer cells. Exp Ther Med 2023; 25:304. [PMID: 37229326 PMCID: PMC10203914 DOI: 10.3892/etm.2023.12003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/17/2023] [Indexed: 05/27/2023] Open
Abstract
Breast cancer is a common malignant tumor in women. Increasing evidence has demonstrated that nuclear receptor coactivator 5 (NCOA5) and targeting protein for xenopus kinesin-like protein 2 (TPX2) serve vital roles in the progression of breast cancer. However, to the best of our knowledge, the molecular mechanisms underlying the involvement of TPX2/NCOA5 in the development of breast cancer are not fully understood at present. In the present study, the expression levels of NCOA5 and TPX2 were compared between paired non-tumor and tumor tissues of patients with breast cancer using the TNMplot tool. Expression differences of NCOA5 and TPX2 in human breast epithelial cell lines (MCF10A and MCF12A) and human breast cancer cell lines (MCF7 and T47D) were assessed via reverse transcription-quantitative PCR and western blotting. Additionally, proliferation, migration and invasion of breast cancer cells were determined via Cell Counting Kit-8, would healing and transwell assays. In vitro angiogenesis was determined using a tube formation assay. Furthermore, TPX2 was identified as a high-confidence NCOA5 interactor based on BioPlex network data sets. A co-immunoprecipitation assay was adopted to confirm the interaction between TPX2 and NCOA5. The present study revealed that TPX2 and NCOA5 were highly expressed in breast cancer cells. TPX2 interacted with NCOA5 and there was a positive association between TPX2 and NCOA5 expression. NOCA5 knockdown repressed the proliferation, migration, invasion and in vitro angiogenesis of breast cancer cells. In addition, TPX2 knockdown suppressed the proliferation, migration and invasion of breast cancer cells, and inhibited in vitro angiogenesis, and all of these effects were reversed following NCOA5 overexpression. In conclusion, NCOA5 was a downstream target of TPX2 in enhancing proliferation, migration, invasion and angiogenesis of breast cancer cells.
Collapse
Affiliation(s)
- Tian Wang
- Department of Oncology Hematology, Yan'an People's Hospital, Yan'an, Shaanxi 716000, P.R. China
| | - Fulin Zhang
- Department of Oncology Hematology, Yan'an People's Hospital, Yan'an, Shaanxi 716000, P.R. China
| | - Peirong Zhang
- Department of Pathology, Yantian District People's Hospital, Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
39
|
Shen J, Wang Q, Mao Y, Gao W, Duan S. Targeting the p53 signaling pathway in cancers: Molecular mechanisms and clinical studies. MedComm (Beijing) 2023; 4:e288. [PMID: 37256211 PMCID: PMC10225743 DOI: 10.1002/mco2.288] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Tumor suppressor p53 can transcriptionally activate downstream genes in response to stress, and then regulate the cell cycle, DNA repair, metabolism, angiogenesis, apoptosis, and other biological responses. p53 has seven functional domains and 12 splice isoforms, and different domains and subtypes play different roles. The activation and inactivation of p53 are finely regulated and are associated with phosphorylation/acetylation modification and ubiquitination modification, respectively. Abnormal activation of p53 is closely related to the occurrence and development of cancer. While targeted therapy of the p53 signaling pathway is still in its early stages and only a few drugs or treatments have entered clinical trials, the development of new drugs and ongoing clinical trials are expected to lead to the widespread use of p53 signaling-targeted therapy in cancer treatment in the future. TRIAP1 is a novel p53 downstream inhibitor of apoptosis. TRIAP1 is the homolog of yeast mitochondrial intermembrane protein MDM35, which can play a tumor-promoting role by blocking the mitochondria-dependent apoptosis pathway. This work provides a systematic overview of recent basic research and clinical progress in the p53 signaling pathway and proposes that TRIAP1 is an important therapeutic target downstream of p53 signaling.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Yunan Mao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Wei Gao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| |
Collapse
|
40
|
Yang J, Teng Y. Harnessing cancer stem cell-derived exosomes to improve cancer therapy. J Exp Clin Cancer Res 2023; 42:131. [PMID: 37217932 DOI: 10.1186/s13046-023-02717-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Cancer stem cells (CSCs) are the key "seeds" for tumor initiation and development, metastasis, and recurrence. Because of the function of CSCs in tumor development and progression, research in this field has intensified and CSCs are viewed as a new therapeutic target. Exosomes carrying a wide range of DNA, RNA, lipids, metabolites, and cytosolic and cell-surface proteins are released outside of the originating cells through the fusion of multivesicular endosomes or multivesicular bodies with the plasma membrane. It has become evident that CSC-derived exosomes play a significant role in almost all "hallmarks" of cancer. For example, exosomes from CSCs can maintain a steady state of self-renewal in the tumor microenvironment and regulate microenvironmental cells or distant cells to help cancer cells escape immune surveillance and induce immune tolerance. However, the function and therapeutic value of CSC-derived exosomes and the underlying molecular mechanisms are still largely undefined. To provide an overview of the possible role of CSC-derived exosomes and targeting strategies, we summarize relevant research progress, highlight the potential impact of detecting or targeting CSC-derived exosomes on cancer treatment, and discuss opportunities and challenges based on our experience and insights in this research area. A more thorough understanding of the characteristics and function of CSC-derived exosomes may open new avenues to the development of new clinical diagnostic/prognostic tools and therapies to prevent tumor resistance and relapse.
Collapse
Affiliation(s)
- Jianqiang Yang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
41
|
Oh SJ, Hwang Y, Hur KY, Lee MS. Lysosomal Ca 2+ as a mediator of palmitate-induced lipotoxicity. Cell Death Discov 2023; 9:100. [PMID: 36944629 PMCID: PMC10030853 DOI: 10.1038/s41420-023-01379-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
While the mechanism of lipotoxicity by palmitic acid (PA), an effector of metabolic stress in vitro and in vivo, has been extensively investigated, molecular details of lipotoxicity are still not fully characterized. Since recent studies reported that PA can exert lysosomal stress in addition to well-known ER and mitochondrial stress, we studied the role of lysosomal events in lipotoxicity by PA, focusing on lysosomal Ca2+. We found that PA induced accumulation of mitochondrial ROS and that mitochondrial ROS induced release of lysosomal Ca2+ due to lysosomal Ca2+ exit channel activation. Lysosomal Ca2+ release led to increased cytosolic Ca2+ which induced mitochondrial permeability transition (mPT). Chelation of cytoplasmic Ca2+ or blockade of mPT with olesoxime or decylubiquinone (DUB) suppressed lipotoxicity. Lysosomal Ca2+ release led to reduced lysosomal Ca2+ content which was replenished by ER Ca2+, the largest intracellular Ca2+ reservoir (ER → lysosome Ca2+ refilling), which in turn activated store-operated Ca2+ entry (SOCE). Inhibition of ER → lysosome Ca2+ refilling by blockade of ER Ca2+ exit channel using dantrolene or inhibition of SOCE using BTP2 inhibited lipotoxicity in vitro. Dantrolene or DUB also inhibited lipotoxic death of hepatocytes in vivo induced by administration of ethyl palmitate together with LPS. These results suggest a novel pathway of lipotoxicity characterized by mPT due to lysosomal Ca2+ release which was supplemented by ER → lysosome Ca2+ refilling and subsequent SOCE, and also suggest the potential role of modulation of ER → lysosome Ca2+ refilling by dantrolene or other blockers of ER Ca2+ exit channels in disease conditions characterized by lipotoxicity such as metabolic syndrome, diabetes, cardiomyopathy or nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Soo-Jin Oh
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Korea
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang Medical Center, Soonchunhyang University College of Medicine, Cheonan, Korea
| | - Yeseong Hwang
- Severance Biomedical Science Institute, Graduate school of Medical Science, BK21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Kyu Yeon Hur
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Myung-Shik Lee
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang Medical Center, Soonchunhyang University College of Medicine, Cheonan, Korea.
- Severance Biomedical Science Institute, Graduate school of Medical Science, BK21 Project, Yonsei University College of Medicine, Seoul, 03722, Korea.
| |
Collapse
|
42
|
Yang L, Dong Z, Li S, Chen T. ESM1 promotes angiogenesis in colorectal cancer by activating PI3K/Akt/mTOR pathway, thus accelerating tumor progression. Aging (Albany NY) 2023; 15:2920-2936. [PMID: 37100467 DOI: 10.18632/aging.204559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 01/23/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND This study aimed to explore the influence of endothelial cell-specific molecule 1 (ESM1) expression on colorectal cancer (CRC) cells and preliminarily analyze its possible mechanism, so as to lay a foundation for research about potential biological targets of CRC. METHODS First, CRC cells were transfected with ESM1-negative control (NC), ESM1-mimic and ESM1-inhibitor and randomly assigned to ESM1-NC group, ESM1-mimic group and ESM1-inhibitor group, respectively. Then the cells were harvested at 48 h after transfection for subsequent experiments. RESULTS The results manifested that after up-regulation of ESM1, the distance of CRC SW480 and SW620 cell lines migrating to the scratch center rose notably, and the number of migrating cells, basement membrane-penetrating cells, colonies formed and angiogenesis was increased overtly, indicating that ESM1 overexpression can promote tumor angiogenesis in CRC and accelerate tumor progression. Combined with results of bioinformatics analysis, the molecular mechanism by which ESM1 promoted tumor angiogenesis in CRC and accelerated tumor progression was explored through suppressing the protein expression of phosphatidylinositol 3-kinase (PI3K). Western blotting revealed that after intervention with PI3K inhibitor, the protein expressions of phosphorylated PI3K (p-PI3K), phosphorylated protein kinase B (p-Akt) and phosphorylated mammalian target of rapamycin (p-mTOR) were decreased evidently, and the protein expressions of matrix metalloproteinase-2 (MMP-2), MMP-3, MMP-9, Cyclin D1, Cyclin A2, VEGF, COX-2 and HIF-1α subsequently declined. CONCLUSION ESM1 may promote angiogenesis in CRC by activating the PI3K/Akt/mTOR pathway, thus accelerating tumor progression.
Collapse
Affiliation(s)
- Liqun Yang
- General Surgery, Tangshan Fengnan District Hospital, Fengnan, Tangshan 063300, China
| | - Zhigang Dong
- General Surgery, Tangshan Fengnan District Hospital, Fengnan, Tangshan 063300, China
| | - Shuyu Li
- Two Divisions of The Cardiovascular Duct, Affiliated Hospital of North China University of Science and Technology, Lubei, Tangshan 063300, China
| | - Tieliang Chen
- General Surgery, Tangshan Union Hospital, Lunan, Tangshan 063300, China
| |
Collapse
|
43
|
Flores-Morales V, Villasana-Ruíz AP, Garza-Veloz I, González-Delgado S, Martinez-Fierro ML. Therapeutic Effects of Coumarins with Different Substitution Patterns. Molecules 2023; 28:2413. [PMID: 36903660 PMCID: PMC10005689 DOI: 10.3390/molecules28052413] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
The use of derivatives of natural and synthetic origin has gained attention because of their therapeutic effects against human diseases. Coumarins are one of the most common organic molecules and are used in medicine for their pharmacological and biological effects, such as anti-inflammatory, anticoagulant, antihypertensive, anticonvulsant, antioxidant, antimicrobial, and neuroprotective, among others. In addition, coumarin derivates can modulate signaling pathways that impact several cell processes. The objective of this review is to provide a narrative overview of the use of coumarin-derived compounds as potential therapeutic agents, as it has been shown that substituents on the basic core of coumarin have therapeutic effects against several human diseases and types of cancer, including breast, lung, colorectal, liver, and kidney cancer. In published studies, molecular docking has represented a powerful tool to evaluate and explain how these compounds selectively bind to proteins involved in various cellular processes, leading to specific interactions with a beneficial impact on human health. We also included studies that evaluated molecular interactions to identify potential biological targets with beneficial effects against human diseases.
Collapse
Affiliation(s)
- Virginia Flores-Morales
- Asymmetric Synthesis and Bio-chemoinformatics Laboratory (LSAyB), Ingeniería Química (UACQ), Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico
| | - Ana P. Villasana-Ruíz
- Asymmetric Synthesis and Bio-chemoinformatics Laboratory (LSAyB), Ingeniería Química (UACQ), Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido La Escondida, Zacatecas 98160, Mexico
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido La Escondida, Zacatecas 98160, Mexico
| | - Samantha González-Delgado
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido La Escondida, Zacatecas 98160, Mexico
| | - Margarita L. Martinez-Fierro
- Molecular Medicine Laboratory, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Carretera Zacatecas-Guadalajara Km.6. Ejido La Escondida, Zacatecas 98160, Mexico
| |
Collapse
|
44
|
Xu Y, Yang X, Xiong Q, Han J, Zhu Q. The dual role of p63 in cancer. Front Oncol 2023; 13:1116061. [PMID: 37182132 PMCID: PMC10174455 DOI: 10.3389/fonc.2023.1116061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
The p53 family is made up of three transcription factors: p53, p63, and p73. These proteins are well-known regulators of cell function and play a crucial role in controlling various processes related to cancer progression, including cell division, proliferation, genomic stability, cell cycle arrest, senescence, and apoptosis. In response to extra- or intracellular stress or oncogenic stimulation, all members of the p53 family are mutated in structure or altered in expression levels to affect the signaling network, coordinating many other pivotal cellular processes. P63 exists as two main isoforms (TAp63 and ΔNp63) that have been contrastingly discovered; the TA and ΔN isoforms exhibit distinguished properties by promoting or inhibiting cancer progression. As such, p63 isoforms comprise a fully mysterious and challenging regulatory pathway. Recent studies have revealed the intricate role of p63 in regulating the DNA damage response (DDR) and its impact on diverse cellular processes. In this review, we will highlight the significance of how p63 isoforms respond to DNA damage and cancer stem cells, as well as the dual role of TAp63 and ΔNp63 in cancer.
Collapse
Affiliation(s)
- Yongfeng Xu
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaojuan Yang
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qunli Xiong
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Qing Zhu, ; Junhong Han,
| | - Qing Zhu
- Abdominal Oncology Ward, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Qing Zhu, ; Junhong Han,
| |
Collapse
|
45
|
Protective role of Decylubiquinone against secondary melanoma at lung in B16F10 induced mice by reducing E-cadherin expression and ameliorating ROCKII-Limk1/2-Cofiliin mediated metastasis. Cell Signal 2023; 101:110486. [PMID: 36208704 DOI: 10.1016/j.cellsig.2022.110486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Melanoma is one of the most consequential skin cancer with a rising death incidences. Silent but belligerent nature of metastatic sprouting is the leading cause of melanoma related mortality. Invasion of metastatic cells and re-expression of E-Cadherin play the crucial role in the establishment of secondary tumor at distal sites. Thus, manipulation of tumor cell invasion in parallel to regulation of E-Cadherin expression can be considered as potential anti-metastatic strategy. Evidences suggested key role of reactive oxygen species associated ROCK activities in the modulation of metastatic invasion via F-actin stabilization. Here, we first-time report Decylubiquinone, a dietary Coenzyme Q10 analog, as an effective attenuator of pulmonary metastatic melanoma in C57BL/6 mice. Current study depicted detailed molecular interplay associated with Decylubiquinone mediated phosphorylation of ROCKII at Tyr722 along with reduced phosphorylation of ROCKII Ser1366 leading to suppression of Limk1/2-Cofilin-F-actin stabilization axis that finally restricted B16F10 melanoma cell invasion at metastatic site. Analysis further deciphered the role of HNF4α as its nuclear translocation modulated E-Cadherin expression, the effect of reactive oxygen species dependent ROCKII activity in secondarily colonized B16F10 melanoma cells at lungs. Thus unbosoming of related signal orchestra represented Decylubiquinone as a potential remedial agent against secondary lung melanoma.
Collapse
|
46
|
Delivery of coenzyme Q10 loaded micelle targets mitochondrial ROS and enhances efficiency of mesenchymal stem cell therapy in intervertebral disc degeneration. Bioact Mater 2022; 23:247-260. [PMID: 36439087 PMCID: PMC9676151 DOI: 10.1016/j.bioactmat.2022.10.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/18/2022] Open
Abstract
Stem cell transplantation has been proved a promising therapeutic instrument in intervertebral disc degeneration (IVDD). However, the elevation of oxidative stress in the degenerated region impairs the efficiency of mesenchymal stem cells (BMSCs) transplantation treatment via exaggeration of mitochondrial ROS and promotion of BMSCs apoptosis. Herein, we applied an emulsion-confined assembly method to encapsulate Coenzyme Q10 (Co-Q10), a promising hydrophobic antioxidant which targets mitochondria ROS, into the lecithin micelles, which renders the insoluble Co-Q10 dispersible in water as stable colloids. These micelles are injectable, which displayed efficient ability to facilitate Co-Q10 to get into BMSCs in vitro, and exhibited prolonged release of Co-Q10 in intervertebral disc tissue of animal models. Compared to mere use of Co-Q10, the Co-Q10 loaded micelle possessed better bioactivities, which elevated the viability, restored mitochondrial structure as well as function, and enhanced production of ECM components in rat BMSCs. Moreover, it is demonstrated that the injection of this micelle with BMSCs retained disc height and alleviated IVDD in a rat needle puncture model. Therefore, these Co-Q10 loaded micelles play a protective role in cell survival and differentiation through antagonizing mitochondrial ROS, and might be a potential therapeutic agent for IVDD.
Collapse
|
47
|
Integrated Analysis of the Role of Enolase 2 in Clear Cell Renal Cell Carcinoma. DISEASE MARKERS 2022; 2022:6539203. [DOI: 10.1155/2022/6539203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/13/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022]
Abstract
Enolase 2 (ENO2) has increasingly been documented in multiple cancers in recent years. However, the role of ENO2 in clear cell renal carcinoma (ccRCC) has not been fully explored. In the present study, open-access data were downloaded from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and the Human Protein Atlas (HPA) databases. All statistical analyses were performed in R and GraphPad Prism 8 softwares. Results showed that ENO2 was overexpressed in ccRCC tissues and cell lines and correlated with worse clinical features and prognosis. In vitro experiments indicated that the inhibition of ENO2 could hamper the malignant behaviors of ccRCC cells. Gene Set Enrichment Analysis showed that epithelial-mesenchymal transition, KRAS signaling, inflammatory response, angiogenesis, hypoxia, and WNT/β-catenin pathways were upregulated in the ENO2 high-expression group; whereas adipogenesis, DNA repair, and androgen response pathways were downregulated. Immune infiltration analysis indicated that patients with high ENO2 levels might have higher M2 macrophages and lower γβ T cells in the tumor microenvironment, which may account to some extent for the worse prognosis of ENO2. Moreover, it was found that patients with low and high ENO2 expression might be more sensitive to PD-1 therapy and CTLA-4 therapy, respectively. In addition, patients with high ENO2 expression showed lower sensitivity to common chemotherapy drugs for ccRCC, including axitinib, cisplatin, gemcitabine, pazopanib, sunitinib, and temsirolimus. Overall, these results suggest that ENO2 is a potential prognosis biomarker of ccRCC and could affect the malignant biological behavior of cancer cells, highlighting its value as a potential therapeutic target.
Collapse
|
48
|
Cao M, Wang Y, Lu G, Qi H, Li P, Dai X, Lu J. Classical Angiogenic Signaling Pathways and Novel Anti-Angiogenic Strategies for Colorectal Cancer. Curr Issues Mol Biol 2022; 44:4447-4471. [PMID: 36286020 PMCID: PMC9601273 DOI: 10.3390/cimb44100305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Although productive progress has been made in colorectal cancer (CRC) researchs, CRC is the second most frequent type of malignancy and the major cause of cancer-related death among gastrointestinal cancers. As angiogenesis constitutes an important point in the control of CRC progression and metastasis, understanding the key signaling pathways that regulate CRC angiogenesis is critical in elucidating ways to inhibit CRC. Herein, we comprehensively summarized the angiogenesis-related pathways of CRC, including vascular endothelial growth factor (VEGF), nuclear factor-kappa B (NF-κB), Janus kinase (JAK)/signal transducer and activator of transcription (STAT), Wingless and int-1 (Wnt), and Notch signaling pathways. We divided the factors influencing the specific pathway into promoters and inhibitors. Among these, some drugs or natural compounds that have antiangiogenic effects were emphasized. Furthermore, the interactions of these pathways in angiogenesis were discussed. The current review provides a comprehensive overview of the key signaling pathways that are involved in the angiogenesis of CRC and contributes to the new anti-angiogenic strategies for CRC.
Collapse
Affiliation(s)
- Mengyuan Cao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yunmeng Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Guige Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Haoran Qi
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Peiyu Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoshuo Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450052, China
- Correspondence:
| |
Collapse
|
49
|
Hu S, Liu Y, Guan S, Qiu Z, Liu D. Natural products exert anti-tumor effects by regulating exosomal ncRNA. Front Oncol 2022; 12:1006114. [PMID: 36203417 PMCID: PMC9530706 DOI: 10.3389/fonc.2022.1006114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Currently, more than 60% of the approved anti-cancer drugs come from or are related to natural products. Natural products and exosomal non-coding RNAs (ncRNAs) exert anti-cancer effects through various regulatory mechanisms, which are of great research significance. Exosomes are a form of intercellular communication and contain ncRNAs that can act as intercellular signaling molecules involved in the metabolism of tumor cells. This review exemplifies some examples of natural products whose active ingredients can play a role in cancer prevention and treatment by regulating exosomal ncRNAs, with the aim of illustrating the mechanism of action of exosomal ncRNAs in cancer prevention and treatment. Meanwhile, the application of exosomes as natural drug delivery systems and predictive disease biomarkers in cancer prevention and treatment is introduced, providing research ideas for the development of novel anti-tumor drugs.
Collapse
Affiliation(s)
| | | | | | | | - Da Liu
- *Correspondence: Zhidong Qiu, ; Da Liu,
| |
Collapse
|
50
|
Xiong Y, Xu S, Fu B, Tang W, Zaky MY, Tian R, Yao R, Zhang S, Zhao Q, Nian W, Lin X, Wu H. Vitamin C-induced competitive binding of HIF-1α and p53 to ubiquitin E3 ligase CBL contributes to anti-breast cancer progression through p53 deacetylation. Food Chem Toxicol 2022; 168:113321. [PMID: 35931247 DOI: 10.1016/j.fct.2022.113321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/01/2022] [Accepted: 07/18/2022] [Indexed: 10/16/2022]
Abstract
Vitamin C (VC), in regard to its effectiveness against tumors, has had a controversial history in cancer treatment. However, the anticancer mechanisms of VC are not fully understood. Here, we reported that VC exerted an anticancer effect on cancer cell and xenograft models via inhibiting HIF-1α-dependent cell proliferation and promoting p53-dependent cell apoptosis. To be specific, VC modulated the competitive binding of HIF-1α and p53 to their common E3 ubiquitin ligase CBL, thereby inhibiting tumorigenesis. Moreover, VC treatment activated SIRT1, resulting in p53 deacetylation and CBL-p53 complex dissociation, which in turn facilitated CBL recruitment of HIF-1α for ubiquitination in a proteasome-dependent manner. Altogether, our results provided a mechanistic rationale for exploring the therapeutic use of VC in cancer therapy.
Collapse
Affiliation(s)
- Yan Xiong
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Shiyao Xu
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Beibei Fu
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Wanyan Tang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Rong Tian
- Department of Pathology, Chongqing Hygeia Hospital, Chongqing, 401331, China
| | - Rui Yao
- Department of Pathology, Chongqing Hygeia Hospital, Chongqing, 401331, China
| | - Shanfu Zhang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Qingting Zhao
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Weiqi Nian
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xiaoyuan Lin
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|