1
|
Li J, Jia YC, Lu J, Zhang H, Wang Z, Xie X, Cao F, Li F. Inhibition of Zbp1-PANoptosome-mediated PANoptosis effectively attenuates acute pancreatitis. Cell Death Discov 2025; 11:180. [PMID: 40240343 PMCID: PMC12003674 DOI: 10.1038/s41420-025-02451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Early acute pancreatitis is an acute inflammatory disease that involves multiple modes of cell death, including apoptosis, necrotic apoptosis, and pyroptosis in its disease process. PANoptosis, a type of cell death that includes pyroptosis, apoptosis, and necroptosis, has had an important role in a variety of infectious and inflammatory diseases in recent years. To judge the relationship between PANoptosis and AP, we first analyzed the data from pancreatic transcriptome data by bioinformatics techniques, and we found the enrichment of PANoptosis pathway in AP. Next, we screened the genes and identified differentially expressed genes (DEGs) associated with AP and PANoptosis. Finally, we found that Zbp1 may have a major role in the process of PANoptosis. For this purpose, we constructed AP models in mice and in vitro cell line 266-6 and intervened by inhibiting Zbp1. The final results showed that the PANoptosis in mice was significantly suppressed after inhibition of Zbp1. In conclusion, inflammatory injury in AP can be significantly improved by inhibiting Zbp1- PANoptosome-mediated PANoptosis.
Collapse
Affiliation(s)
- Jie Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Yu-Chen Jia
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Jiongdi Lu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Haoyu Zhang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Zheng Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Xiaozhou Xie
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Sastre J, Pérez S, Sabater L, Rius-Pérez S. Redox signaling in the pancreas in health and disease. Physiol Rev 2025; 105:593-650. [PMID: 39324871 DOI: 10.1152/physrev.00044.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Abstract
This review addresses oxidative stress and redox signaling in the pancreas under healthy physiological conditions as well as in acute pancreatitis, chronic pancreatitis, pancreatic cancer, and diabetes. Physiological redox homeodynamics is maintained mainly by NRF2/KEAP1, NF-κB, protein tyrosine phosphatases, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α), and normal autophagy. Depletion of reduced glutathione (GSH) in the pancreas is a hallmark of acute pancreatitis and is initially accompanied by disulfide stress, which is characterized by protein cysteinylation without increased glutathione oxidation. A cross talk between oxidative stress, MAPKs, and NF-κB amplifies the inflammatory cascade, with PP2A and PGC1α as key redox regulatory nodes. In acute pancreatitis, nitration of cystathionine-β synthase causes blockade of the transsulfuration pathway leading to increased homocysteine levels, whereas p53 triggers necroptosis in the pancreas through downregulation of sulfiredoxin, PGC1α, and peroxiredoxin 3. Chronic pancreatitis exhibits oxidative distress mediated by NADPH oxidase 1 and/or CYP2E1, which promotes cell death, fibrosis, and inflammation. Oxidative stress cooperates with mutant KRAS to initiate and promote pancreatic adenocarcinoma. Mutant KRAS increases mitochondrial reactive oxygen species (ROS), which trigger acinar-to-ductal metaplasia and progression to pancreatic intraepithelial neoplasia (PanIN). ROS are maintained at a sufficient level to promote cell proliferation, while avoiding cell death or senescence through formation of NADPH and GSH and activation of NRF2, HIF-1/2α, and CREB. Redox signaling also plays a fundamental role in differentiation, proliferation, and insulin secretion of β-cells. However, ROS overproduction promotes β-cell dysfunction and apoptosis in type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Luis Sabater
- Liver, Biliary and Pancreatic Unit, Hospital Clínico, Department of Surgery, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
- Department of Cell Biology, Functional Biology and Physical Anthropology, Faculty of Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
3
|
Zhang H, Wang Z, Li J, Jia Y, Li F. Timing, initiation and function: An in-depth exploration of the interaction network among neutrophil extracellular traps related genes in acute pancreatitis. Int Immunopharmacol 2024; 141:112923. [PMID: 39137629 DOI: 10.1016/j.intimp.2024.112923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Exogenous inhibition of neutrophil extracellular traps (NETs) was believed to alleviate acute pancreatitis (AP). This study aimed to comprehensively explore the key biological behavior of NETs including timing and pathogenesis in AP by integrating of single cell RNA sequencing(scRNA-seq) and bulk RNA-seq. METHODS Differentially expressed NETs-related genes and the hub genes of NETs were screened by bulk RNA-seq. ScRNA-seq was used to identify the cell types in pancreas of AP mice and to depict the transcriptomic maps in neutrophils. The mouse AP models were build to verify the timing of initiation of NETs and underlying pathogenesis of damage on pancreas acinar cells. RESULTS Tlr4 and Ccl3 were screened for hub genes by bulk RNA-seq. The trajectory analysis of neutrophils showed that high expression of Ccl3, Cybb and Padi4 can be observed in the middle stage during AP. Macrophages might be essential in the biological behavior of neutrophils and NETs. Through animal models, we presented that extensive NETs structures were formed at mid-stage of inflammation, accompanied by more serious pancreas and lung damage. NETs might promote necroptosis and macrophage infiltration in AP, and the damage on pancreatic injury could be regulated by Tlr4 pathway. Ccl3 was considered to recruit neutrophils and promote NETs formation. CONCLUSION The findings explored the underlying timing and pathogenesis of NETs in AP for the first time, which provided gene targets for further studies.
Collapse
Affiliation(s)
- Haoyu Zhang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, PR China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, PR China
| | - Zheng Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, PR China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, PR China
| | - Jie Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, PR China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, PR China
| | - Yuchen Jia
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, PR China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, PR China
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, PR China; Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, PR China.
| |
Collapse
|
4
|
Peng Q, Li B, Song P, Wang R, Jiang J, Jin X, Shen J, Bao J, Ni J, Han X, Hu G. IDH2-NADPH pathway protects against acute pancreatitis via suppressing acinar cell ferroptosis. Br J Pharmacol 2024; 181:4067-4084. [PMID: 39072736 DOI: 10.1111/bph.16469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/04/2024] [Accepted: 04/26/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND AND PURPOSE Acute pancreatitis (AP) is associated with acinar cell death and inflammatory responses. Ferroptosis is characterized by an overwhelming lipid peroxidation downstream of metabolic dysfunction, in which NADPH-related redox systems have been recognized as the mainstay in ferroptosis control. Nevertheless, it remains unknown how ferroptosis is regulated in AP and whether we can target it to restrict AP development. EXPERIMENTAL APPROACH Metabolomics were applied to explore changes in metabolic pathways in pancreatic acinar cells (PACs) in AP. Using wild-type and Ptf1aCreERT2/+IDH2fl/fl mice, AP was induced by caerulein and sodium taurocholate (NaT). IDH2 overexpressing adenovirus was constructed for infection of PACs. Mice or PACs were pretreated with inhibitors of FSP1 or glutathione reductase. Pancreatitis severity, acinar cell injury, mitochondrial morphological changes and pancreatic lipid peroxidation were analysed. KEY RESULTS Unsaturated fatty acid biosynthesis and the tricarboxylic acid cycle pathways were significantly altered in PACs during AP. Inhibition of ferroptosis reduced mitochondrial damage, lipid peroxidation and the severity of AP. During AP, the NADPH abundance and IDH2 expression were decreased. Acinar cell-specific deletion of IDH2 exacerbated acinar cell ferroptosis and pancreatic injury. Pharmacological inhibition of NADPH-dependent GSH/GPX4 and FSP1/CoQ10 pathways abolished the protective effect of IDH2 overexpression on ferroptosis in acinar cells. CoQ10 supplementation attenuated experimental pancreatitis via inhibiting acinar cell ferroptosis. CONCLUSION AND IMPLICATIONS We identified the IDH2-NADPH pathway as a novel regulator in protecting against AP via restricting acinar cell ferroptosis. Targeting the pathway and its downstream may shed light on AP treatment.
Collapse
Affiliation(s)
- Qi Peng
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengli Song
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruiyan Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Jiang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuerui Jin
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingpiao Bao
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianbo Ni
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Han
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoyong Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Belfrage H, Kuuliala K, Kuuliala A, Mustonen H, Puolakkainen P, Kylänpää L, Louhimo J. Circulating Markers of Necroptosis in Acute Pancreatitis. Dig Dis Sci 2024; 69:3333-3343. [PMID: 38940973 PMCID: PMC11415434 DOI: 10.1007/s10620-024-08530-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVES Necroptosis, a programmed inflammatory cell death, is involved in the pathogenesis of acute pancreatitis (AP). We compared levels of interleukin (IL)-33 (released upon necroptosis), sST2 (soluble IL-33 receptor), MLKL, RIPK1 and RIPK3 (necroptosis executioner proteins), and proinflammatory cytokines IL-6, TNF and IL-1β at various severity categories and stages of AP. METHODS Plasma from 20 patients with early mild AP (MAP) (symptom onset < 72 h), 7 with severe AP (SAP) without and 4 with persistent organ failure (OF) at sampling, 8 patients with late SAP and 20 healthy controls (HC) were studied by ELISAs. RESULTS Early sST2 and IL-6 levels predicted the development of SAP and were higher in both MAP and early and late SAP than in HC. RIPK3 levels were higher than in HC in the patients who had or would later have SAP. MLKL levels were associated with the presence of OFs, particularly in the late phase, but were also higher in MAP than in HC. CONCLUSIONS sST2, RIPK3 and IL-6 levels may have prognostic value in AP. Elevated MLKL levels are associated with OF in AP. Better understanding of necroptosis in AP pathophysiology is needed to evaluate whether inhibiting and targeting necroptosis is a potential therapeutic option in AP.
Collapse
Affiliation(s)
- Hanna Belfrage
- Department of Surgery, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, 00290, Helsinki, Finland.
| | - Krista Kuuliala
- Department of Bacteriology and Immunology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Antti Kuuliala
- Department of Bacteriology and Immunology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Harri Mustonen
- Department of Surgery, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, 00290, Helsinki, Finland
| | - Pauli Puolakkainen
- Department of Surgery, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, 00290, Helsinki, Finland
| | - Leena Kylänpää
- Department of Surgery, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, 00290, Helsinki, Finland
| | - Johanna Louhimo
- Department of Surgery, Helsinki University Hospital and University of Helsinki, Haartmaninkatu 4, 00290, Helsinki, Finland
| |
Collapse
|
6
|
Li Y, Li J, Li S, Zhou S, Yang J, Xu K, Chen Y. Exploring the gut microbiota's crucial role in acute pancreatitis and the novel therapeutic potential of derived extracellular vesicles. Front Pharmacol 2024; 15:1437894. [PMID: 39130638 PMCID: PMC11310017 DOI: 10.3389/fphar.2024.1437894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
During acute pancreatitis, intestinal permeability increases due to intestinal motility dysfunction, microcirculatory disorders, and ischemia-reperfusion injury, and disturbances in the intestinal flora make bacterial translocation easier, which consequently leads to local or systemic complications such as pancreatic and peripancreatic necrotic infections, acute lung injury, systemic inflammatory response syndrome, and multiple organ dysfunction syndrome. Therefore, adjusting intestinal ecosystem balance may be a promising approach to control local and systemic complications of acute pancreatitis. In this paper, we reviewed the causes and manifestations of intestinal flora disorders during acute pancreatitis and their complications, focused on the reduction of acute pancreatitis and its complications by adjusting the intestinal microbial balance, and innovatively proposed the treatment of acute pancreatitis and its complications by gut microbiota-derived extracellular vesicles.
Collapse
Affiliation(s)
- Yijie Li
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Li
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sen Li
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shumin Zhou
- Wenzhou Institute of Shanghai University, Wenzhou, China
| | - Jiahua Yang
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Xu
- Wenzhou Institute of Shanghai University, Wenzhou, China
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Yafeng Chen
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Liu Q, Gu X, Liu X, Gu Y, Zhang H, Yang J, Huang Z. Long-chain fatty acids - The turning point between 'mild' and 'severe' acute pancreatitis. Heliyon 2024; 10:e31296. [PMID: 38828311 PMCID: PMC11140623 DOI: 10.1016/j.heliyon.2024.e31296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disease characterized by localized pancreatic injury and a systemic inflammatory response. Fatty acids (FAs), produced during the breakdown of triglycerides (TGs) in blood and peripancreatic fat, escalate local pancreatic inflammation to a systemic level by damaging pancreatic acinar cells (PACs) and triggering M1 macrophage polarization. This paper provides a comprehensive analysis of lipases' roles in the onset and progression of AP, as well as the effects of long-chain fatty acids (LCFAs) on the function of pancreatic acinar cells (PACs). Abnormalities in the function of PACs include Ca2+ overload, premature trypsinogen activation, protein kinase C (PKC) expression, endoplasmic reticulum (ER) stress, and mitochondrial and autophagic dysfunction. The study highlights the contribution of long-chain saturated fatty acids (LC-SFAs), especially palmitic acid (PA), to M1 macrophage polarization through the activation of the NLRP3 inflammasome and the NF-κB pathway. Furthermore, we investigated lipid lowering therapy for AP. This review establishes a theoretical foundation for pro-inflammatory mechanisms associated with FAs in AP and facilitating drug development.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310058, China
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Zhejiang 310006, China
| | - Xinyi Gu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
| | - Xiaodie Liu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
| | - Ye Gu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
| | - Hongchen Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310058, China
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Zhejiang 310006, China
| | - Zhicheng Huang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
| |
Collapse
|
8
|
Hu Y, Ding J, Chen Y, Wang Q, Yang X, Hua H, Ye X. Soluble Fibrinogen-Like Protein 2 Downregulation and Th17/Treg Imbalance in a Taurocholate-Induced Murine Experimental Model of Severe Acute Pancreatitis. J Clin Lab Anal 2024; 38:e25076. [PMID: 38853390 PMCID: PMC11211668 DOI: 10.1002/jcla.25076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Severe acute pancreatitis (SAP) is associated with tremendous systemic inflammation, T-helper 17 (Th17) cells, and regulatory T (Treg) cells play an essential role in the inflammatory responses. Meanwhile, soluble fibrinogen-like protein 2 (Sfgl2) is a critical immunosuppressive effector cytokine of Treg cells and modulates immune responses. However, the impact of SAP induction on Sfgl2 expression and the role of Sfgl2 in immunomodulation under SAP conditions are largely unknown. METHODS A taurocholate-induced mouse SAP model was established. The ratios of CD4+CD25+Foxp3+ Treg cells or CD4+IL-17+ Th17 cells in blood and pancreatic tissues as well as surface expression of CD80, CD86, and major histocompatibility complex class II (MHC-II) were determined by flow cytometry. Gene mRNA expression was determined by qPCR. Serum amylase and soluble factors were quantitated by commercial kits. Bone marrow-derived dendritic cells (DCs) were generated, and NF-κB/p65 translocation was measured by immunofluorescence staining. RESULTS SAP induction in mice decreased the Th17/Treg ratio in the pancreatic tissue and increased the Th17/Treg ratio in the peripheral blood. In addition, SAP was associated with a reduced level of Sfgl2 in the pancreatic tissue and blood: higher levels of serum IL-17, IL-2, IFN-α, and TNF-α, and lower levels of serum IL-4 and IL-10. Furthermore, the SAP-induced reduction in Sfgl2 expression was accompanied by dysregulated maturation of bone marrow-derived DCs. CONCLUSIONS SAP causes reduced Sfgl2 expression and Th17/Treg imbalance, thus providing critical insights for the development of Sfgl2- and Th17/Treg balance-targeted immunotherapies for patients with SAP.
Collapse
Affiliation(s)
- Yibing Hu
- Department of Gastroenterology, Affiliated Jinhua HospitalZhejiang University School of MedicineJinhuaZhejiangChina
| | - Jin Ding
- Department of Gastroenterology, Affiliated Jinhua HospitalZhejiang University School of MedicineJinhuaZhejiangChina
| | - Yanping Chen
- Department of Gastroenterology, Affiliated Jinhua HospitalZhejiang University School of MedicineJinhuaZhejiangChina
| | - Qunying Wang
- Department of Gastroenterology, Affiliated Jinhua HospitalZhejiang University School of MedicineJinhuaZhejiangChina
| | - Xiaoyun Yang
- Department of Gastroenterology, Affiliated Jinhua HospitalZhejiang University School of MedicineJinhuaZhejiangChina
| | - Hongjun Hua
- Department of Gastroenterology, Affiliated Jinhua HospitalZhejiang University School of MedicineJinhuaZhejiangChina
| | - Xiaohua Ye
- Department of Gastroenterology, Affiliated Jinhua HospitalZhejiang University School of MedicineJinhuaZhejiangChina
| |
Collapse
|
9
|
Tsomidis I, Voumvouraki A, Kouroumalis E. The Pathogenesis of Pancreatitis and the Role of Autophagy. GASTROENTEROLOGY INSIGHTS 2024; 15:303-341. [DOI: 10.3390/gastroent15020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The pathogenesis of acute and chronic pancreatitis has recently evolved as new findings demonstrate a complex mechanism operating through various pathways. In this review, the current evidence indicating that several mechanisms act in concert to induce and perpetuate pancreatitis were presented. As autophagy is now considered a fundamental mechanism in the pathophysiology of both acute and chronic pancreatitis, the fundamentals of the autophagy pathway were discussed to allow for a better understanding of the pathophysiological mechanisms of pancreatitis. The various aspects of pathogenesis, including trypsinogen activation, ER stress and mitochondrial dysfunction, the implications of inflammation, and macrophage involvement in innate immunity, as well as the significance of pancreatic stellate cells in the development of fibrosis, were also analyzed. Recent findings on exosomes and the miRNA regulatory role were also presented. Finally, the role of autophagy in the protection and aggravation of pancreatitis and possible therapeutic implications were reviewed.
Collapse
Affiliation(s)
- Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Greece
| | - Elias Kouroumalis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| |
Collapse
|
10
|
Zheng P, Li XY, Yang XY, Wang H, Ding L, He C, Wan JH, Ke HJ, Lu NH, Li NS, Zhu Y. Comparative transcriptomic analysis reveals the molecular changes of acute pancreatitis in experimental models. World J Gastroenterol 2024; 30:2038-2058. [PMID: 38681131 PMCID: PMC11045495 DOI: 10.3748/wjg.v30.i14.2038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/19/2024] [Accepted: 03/01/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Acute pancreatitis (AP) encompasses a spectrum of pancreatic inflammatory conditions, ranging from mild inflammation to severe pancreatic necrosis and multisystem organ failure. Given the challenges associated with obtaining human pancreatic samples, research on AP predominantly relies on animal models. In this study, we aimed to elucidate the fundamental molecular mechanisms underlying AP using various AP models. AIM To investigate the shared molecular changes underlying the development of AP across varying severity levels. METHODS AP was induced in animal models through treatment with caerulein alone or in combination with lipopolysaccharide (LPS). Additionally, using Ptf1α to drive the specific expression of the hM3 promoter in pancreatic acinar cells transgenic C57BL/6J- hM3/Ptf1α(cre) mice were administered Clozapine N-oxide to induce AP. Subsequently, we conducted RNA sequencing of pancreatic tissues and validated the expression of significantly different genes using the Gene Expression Omnibus (GEO) database. RESULTS Caerulein-induced AP showed severe inflammation and edema, which were exacerbated when combined with LPS and accompanied by partial pancreatic tissue necrosis. Compared with the control group, RNA sequencing analysis revealed 880 significantly differentially expressed genes in the caerulein model and 885 in the caerulein combined with the LPS model. Kyoto Encyclopedia of Genes and Genomes enrichment analysis and Gene Set Enrichment Analysis indicated substantial enrichment of the TLR and NOD-like receptor signaling pathway, TLR signaling pathway, and NF-κB signaling pathway, alongside elevated levels of apoptosis-related pathways, such as apoptosis, P53 pathway, and phagosome pathway. The significantly elevated genes in the TLR and NOD-like receptor signaling pathways, as well as in the apoptosis pathway, were validated through quantitative real-time PCR experiments in animal models. Validation from the GEO database revealed that only MYD88 concurred in both mouse pancreatic tissue and human AP peripheral blood, while TLR1, TLR7, RIPK3, and OAS2 genes exhibited marked elevation in human AP. The genes TUBA1A and GADD45A played significant roles in apoptosis within human AP. The transgenic mouse model hM3/Ptf1α(cre) successfully validated significant differential genes in the TLR and NOD-like receptor signaling pathways as well as the apoptosis pathway, indicating that these pathways represent shared pathological processes in AP across different models. CONCLUSION The TLR and NOD receptor signaling pathways play crucial roles in the inflammatory progression of AP, notably the MYD88 gene. Apoptosis holds a central position in the necrotic processes of AP, with TUBA1A and GADD45A genes exhibiting prominence in human AP.
Collapse
Affiliation(s)
- Pan Zheng
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xue-Yang Li
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Xiao-Yu Yang
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Huan Wang
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Ling Ding
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Cong He
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jian-Hua Wan
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Hua-Jing Ke
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Nong-Hua Lu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Nian-Shuang Li
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Yin Zhu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
11
|
Xie W, Luo T, Ma Z, Xue S, Jia X, Yang T, Song Z. Tumor Necrosis Factor Alpha Preconditioned Umbilical Cord Mesenchymal Stem Cell-Derived Extracellular Vesicles Enhance the Inhibition of Necroptosis of Acinar cells in Severe Acute Pancreatitis. Tissue Eng Part A 2023; 29:607-619. [PMID: 37565286 DOI: 10.1089/ten.tea.2023.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
Severe acute pancreatitis (SAP) is a common abdominal emergency with a high mortality rate and a lack of effective therapeutic options. Although mesenchymal stem cell (MSC) transplantation is a potential treatment for SAP, the mechanism remains unclear. It has been suggested that MSCs may act mainly through paracrine effects; therefore, we aimed to demonstrate the therapeutic efficacy of extracellular vesicles (EVs) derived from human umbilical cord mesenchymal stem cells (UCMSCs) for SAP. Na-taurocholate was used to induce a rat SAP model through retrograde injection into the common biliopancreatic duct. After 72 h of EVs transplantation, pancreatic pathological damage was alleviated, along with a decrease in serum amylase activity and pro-inflammatory cytokine levels. Interestingly, when UCMSCs were preconditioned with 10 ng/mL tumor necrosis factor alpha (TNF-α) for 48 h, the obtained EVs (named TNF-α-EVs) performed an enhanced efficacy. Furthermore, both animal and cellular experiments showed that TNF-α-EVs alleviated the necroptosis of acinar cells of SAP through RIPK3/MLKL axis. In conclusion, our study demonstrated that TNF-α-EVs were able to enhance the therapeutic effect on SAP by inhibiting necroptosis compared to normal EVs. This study heralds that TNF-α-EVs may be a promising therapeutic approach for SAP in the future.
Collapse
Affiliation(s)
- Wangcheng Xie
- Department of General Surgery and Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Hepatic-Biliary-Pancreatic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tingyi Luo
- Department of General Surgery and Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Hepatic-Biliary-Pancreatic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhilong Ma
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaobo Xue
- Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuyang Jia
- Department of Metabolic Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tingsong Yang
- Department of General Surgery and Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhenshun Song
- Department of Hepatic-Biliary-Pancreatic Surgery, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
12
|
Alassaf N, Attia H. Autophagy and necroptosis in cisplatin-induced acute kidney injury: Recent advances regarding their role and therapeutic potential. Front Pharmacol 2023; 14:1103062. [PMID: 36794281 PMCID: PMC9922871 DOI: 10.3389/fphar.2023.1103062] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Cisplatin (CP) is a broad-spectrum antineoplastic agent, used to treat many different types of malignancies due to its high efficacy and low cost. However, its use is largely limited by acute kidney injury (AKI), which, if left untreated, may progress to cause irreversible chronic renal dysfunction. Despite substantial research, the exact mechanisms of CP-induced AKI are still so far unclear and effective therapies are lacking and desperately needed. In recent years, necroptosis, a novel subtype of regulated necrosis, and autophagy, a form of homeostatic housekeeping mechanism have witnessed a burgeoning interest owing to their potential to regulate and alleviate CP-induced AKI. In this review, we elucidate in detail the molecular mechanisms and potential roles of both autophagy and necroptosis in CP-induced AKI. We also explore the potential of targeting these pathways to overcome CP-induced AKI according to recent advances.
Collapse
Affiliation(s)
- Noha Alassaf
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,*Correspondence: Noha Alassaf,
| | - Hala Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,Department of Biochemistry, College of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
13
|
Huangfu Y, Yu X, Wan C, Zhu Y, Wei Z, Li F, Wang Y, Zhang K, Li S, Dong Y, Li Y, Niu H, Xin G, Huang W. Xanthohumol alleviates oxidative stress and impaired autophagy in experimental severe acute pancreatitis through inhibition of AKT/mTOR. Front Pharmacol 2023; 14:1105726. [PMID: 36744265 PMCID: PMC9890064 DOI: 10.3389/fphar.2023.1105726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Severe acute pancreatitis (SAP) is a lethal gastrointestinal disorder, yet no specific and effective treatment is available. Its pathogenesis involves inflammatory cascade, oxidative stress, and autophagy dysfunction. Xanthohumol (Xn) displays various medicinal properties, including anti-inflammation, antioxidative, and enhancing autophagic flux. However, it is unclear whether Xn inhibits SAP. This study investigated the efficacy of Xn on sodium taurocholate (NaT)-induced SAP (NaT-SAP) in vitro and in vivo. First, Xn attenuated biochemical and histopathological responses in NaT-SAP mice. And Xn reduced NaT-induced necrosis, inflammation, oxidative stress, and autophagy impairment. The mTOR activator MHY1485 and the AKT activator SC79 partly reversed the treatment effect of Xn. Overall, this is an innovative study to identify that Xn improved pancreatic injury by enhancing autophagic flux via inhibition of AKT/mTOR. Xn is expected to become a novel SAP therapeutic agent.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Guang Xin
- *Correspondence: Wen Huang, ; Guang Xin,
| | - Wen Huang
- *Correspondence: Wen Huang, ; Guang Xin,
| |
Collapse
|
14
|
Inhibition of Necroptosis in Acute Pancreatitis: Screening for RIPK1 Inhibitors. Processes (Basel) 2022. [DOI: 10.3390/pr10112260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This work utilizes the anthraquinone (AQ) database to identify potential inhibitors of the RIPK1 protein for developing medicines targeting AP-associated necroptosis. Screening for necroptosis-related genes that play a crucial role in AP is based on the GEO and GSEA databases. An optimum AQ for receptor-interacting protein kinase 1 (RIPK1) inhibition was virtually screened using the Discovery Studio 2019 tool, with a previously described RIPK1 inhibitor (necrostatin-1) as a reference ligand. Using LibDock and CDOCKER molecular docking, an AQ that robustly binds to RIPK1 was identified. The DOCKTHOR web server was used to calculate the ligand–receptor binding energy. The pharmacological properties and toxicity of potential AQ were evaluated using the ADME module and ProTox-II web server. The stability of ligand–receptor complexes was examined using molecular dynamics (MD) simulation. All 12 AQs showed solid binding activity to RIPK1, 5 of which were superior to necrostatin-1. Rheochrysin and Aloe-Emodin-8-O-Beta-D-Glucopyranoside (A8G) were safe RIPK1 inhibitors based on pharmacological characterization and toxicity studies. Additionally, the potential energy of the candidate AQs with RIPK1 was greater than that of the reference ligand, necrostatin-1. MD simulations also showed that the candidate AQs could bind stably to RIPK1 in the natural environment. Rheochrysin and A8G are safe and effective anthraquinones that inhibit the RIPK1 protein. This research takes a first step toward developing RIPK1 inhibitors by screening AQs that have the potential to be more effective than the reference ligand necrostatin-1.
Collapse
|
15
|
Jia A, Yang ZW, Shi JY, Liu JM, Zhang K, Cui YF. MiR-325-3p Alleviates Acute Pancreatitis via Targeting RIPK3. Dig Dis Sci 2022; 67:4471-4483. [PMID: 35094251 DOI: 10.1007/s10620-021-07322-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/08/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIMS Acute pancreatitis (AP) is an acute inflammatory disease that can lead to death. Mir-325-3p is strongly and abnormally expressed in many diseases, necessitating exploration of its function and mechanism in AP. METHODS Blood samples from AP patients and mice were analyzed. The expression levels of miR-325-3p in AP patients and mouse were detected. Whether miR-325-3p targets RIPK3 gene was predicted by TargetScan online database and dual luciferase reporter assay. In vitro experiments verified the effect of miR-325-3p overexpression on caerulein-induced MPC83 pancreatic acinar cancer cell line. In vivo experiments verified the effect of overexpression of miR-325-3p on the disease degree of pancreatic tissues in AP mice. RESULTS Analysis of blood samples from AP patients and experiments in mice demonstrated that expression of miR-325-3p was significantly reduced during the process of AP in humans and mice. Predicted using the TargetScan online database and through dual luciferase reporter assay detection, miR-325-3p directly targets the RIPK3 gene. In vitro experiments revealed that overexpression of miR-325-3p reversed caerulein-induced apoptosis and necroptosis in MPC83 pancreatic acinar cancer cell line. We used Z-VAD-FMK to assess necroptosis and demonstrated that miR-325-3p targets necroptosis to reduce cell damage. In subsequent experiments in mice, we verified that overexpression of miR-325-3p reduces inflammation, edema, hemorrhage, and necrosis in acute pancreatitis. Characteristic western blot, immunohistochemistry, and transmission electron microscopy results revealed that overexpression of miR-325-3p reduces the severity of acute pancreatitis by inhibiting pancreatic necroptosis in AP mice. CONCLUSIONS The current research results indicate that miR-325-3p directly targets RIPK3 and exerts a protective role in mouse AP. Necroptosis is still the primary mechanism of RIPK3 regulation. MiR-325-3p inhibits acute pancreatitis by targeting RIPK3-dependent necroptosis, which may represent a novel treatment method for acute pancreatitis.
Collapse
Affiliation(s)
- Ao Jia
- Tianjin Medical University, Tianjin, 300070, China
| | | | - Ji-Yu Shi
- Tianjin Medical University, Tianjin, 300070, China
| | - Jia-Ming Liu
- Tianjin Medical University, Tianjin, 300070, China
| | - Kun Zhang
- Department of Surgery, Tianjin Nankai Hospital, Nankai Clinical School of Medicine, 122 Sanwei Road, Nankai District, Tianjin, 300110, China
| | - Yun-Feng Cui
- Tianjin Medical University, Tianjin, 300070, China. .,Department of Surgery, Tianjin Nankai Hospital, Nankai Clinical School of Medicine, 122 Sanwei Road, Nankai District, Tianjin, 300110, China.
| |
Collapse
|
16
|
Understanding Necroptosis in Pancreatic Diseases. Biomolecules 2022; 12:biom12060828. [PMID: 35740953 PMCID: PMC9221205 DOI: 10.3390/biom12060828] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 12/12/2022] Open
Abstract
Intermediate between apoptosis and necrosis, necroptosis is a regulated caspase-independent programmed cell death that induces an inflammatory response and mediates cancer development. As our understanding improves, its role in the physiopathology of numerous diseases, including pancreatic diseases, has been reconsidered, and especially in pancreatitis and pancreatic cancer. However, the exact pathogenesis remains elusive, even though some studies have been conducted on these diseases. Its unique mechanisms of action in diseases are expected to bring prospects for the treatment of pancreatic diseases. Therefore, it is imperative to further explore its molecular mechanism in pancreatic diseases in order to identify novel therapeutic options. This article introduces recent related research on necroptosis and pancreatic diseases, explores necroptosis-related molecular pathways, and provides a theoretical foundation for new therapeutic targets for pancreatic diseases.
Collapse
|
17
|
van den Berg FF, Issa Y, Vreijling JP, Lerch MM, Weiss FU, Besselink MG, Baas F, Boermeester MA, van Santvoort HC. Whole-exome Sequencing Identifies SLC52A1 and ZNF106 Variants as Novel Genetic Risk Factors for (Early) Multiple-organ Failure in Acute Pancreatitis. Ann Surg 2022; 275:e781-e788. [PMID: 33427755 DOI: 10.1097/sla.0000000000004312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The aim of this study was to identify genetic variants associated with early multiple organ failure (MOF) in acute pancreatitis. SUMMARY BACKGROUND DATA MOF is a life-threatening complication of acute pancreatitis, and risk factors are largely unknown, especially in early persistent MOF. Genetic risk factors are thought to enhance severity in complex diseases such as acute pancreatitis. METHODS A 2-phase study design was conducted. First, we exome sequenced 9 acute pancreatitis patients with early persistent MOF and 9 case-matched patients with mild edematous pancreatitis (phenotypic extremes) from our initial Dutch cohort of 387 patients. Secondly, 48 candidate variants that were overrepresented in MOF patients and 10 additional variants known from literature were genotyped in a replication cohort of 286 Dutch and German patients. RESULTS Exome sequencing resulted in 161,696 genetic variants, of which the 38,333 non-synonymous variants were selected for downstream analyses. Of these, 153 variants were overrepresented in patients with multiple-organ failure, as compared with patients with mild acute pancreatitis. In total, 58 candidate variants were genotyped in the joined Dutch and German replication cohort. We found the rs12440118 variant of ZNF106 to be overrepresented in patients with MOF (minor allele frequency 20.4% vs 11.6%, Padj=0.026). Additionally, SLC52A1 rs346821 was found to be overrepresented (minor allele frequency 48.0% vs 42.4%, Padj= 0.003) in early MOF. None of the variants known from literature were associated.Conclusions: This study indicates that SLC52A1, a riboflavin plasma membrane transporter, and ZNF106, a zinc finger protein, may be involved in disease progression toward (early) MOF in acute pancreatitis.
Collapse
Affiliation(s)
- Fons F van den Berg
- Department of Surgery, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Yama Issa
- Department of Surgery, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen P Vreijling
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Markus M Lerch
- Departments of Clinical Chemistry, Genetics and Pediatrics, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Frank Ulrich Weiss
- Departments of Clinical Chemistry, Genetics and Pediatrics, Amsterdam Gastroenterology & Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marc G Besselink
- Department of Surgery, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank Baas
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Marja A Boermeester
- Department of Surgery, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Hjalmar C van Santvoort
- Department of Surgery, University Medical Center, Utrecht, The Netherlands; Department of Surgery, St. Antonius Hospital, Nieuwegein, The Netherlands
| |
Collapse
|
18
|
Duan F, Wang X, Wang H, Wang Y, Zhang Y, Chen J, Zhu X, Chen B. GDF11 ameliorates severe acute pancreatitis through modulating macrophage M1 and M2 polarization by targeting the TGFβR1/SMAD-2 pathway. Int Immunopharmacol 2022; 108:108777. [PMID: 35461108 DOI: 10.1016/j.intimp.2022.108777] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023]
Abstract
Severe acute pancreatitis (SAP), as a typical acute inflammatory injury disease, is one of the acute gastrointestinal diseases with a remarkable mortality rate. Macrophages, typical inflammatory cells involved in SAP, play an important role in the pathogenesis of SAP, which are separated into proinflammation M1 and antiinflammation M2. Growth and differentiation factor 11 (GDF11), as a member of the TGF-β family also called BMP-11, has been discovered to suppress inflammation. However, the mechanism by which GDF11 inhibits inflammation and whether it can ameliorate SAP are still elusive. The present research aimed to investigate the roles of GDF11 in SAP and the potential immunomodulatory effect of macrophage polarization. The mouse and rat SAP model were constructed by caerulein and retrograde injection of sodium taurocholate respectively. The effects of GDF11 on SAP were observed by serology, histopathology and tissue inflammation, and the effects of GDF11 on the polarization of macrophages in vivo were observed. Raw264.7 and THP1 crells were used to study the effect of GDF11 on macrophage polarization in vitro. To further investigate the causal link underneath, our team first completed RNA and proteome sequencing, and utilized specific suppressor to determine the implicated signal paths. Herein, we discovered that GDF11 alleviated the damage of pancreatic tissues in cerulein induced SAP mice and SAP rats induced by retrograde injection of sodium taurocholate, and further found that GDF11 facilitated M2 macrophage polarization and diminished M1 macrophage polarization in vivo and in vitro. Subsequently, we further found that the regulation of GDF11 on macrophage polarization through TGFβR1/smad2 pathway. Our results revealed that GDF11 ameliorated SAP and diminished M1 macrophage polarization and facilitated M2 macrophage polarization. The Role of GDF11 in modulating macrophage polarization might be one of the mechanisms by which GDF11 played a protective role in pancreatic tissues during SAP.
Collapse
Affiliation(s)
- Feixiang Duan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Xiaowu Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Hongwei Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Yongqiang Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Yan Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Jiawei Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Xiandong Zhu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China.
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China.
| |
Collapse
|
19
|
Sun S, Han Y, Zhang C, Liu H, Wang B, Cao S, Yuan Q, Wei S, Chen Y. Adenosine Kinase Inhibition Prevents Severe Acute Pancreatitis via Suppressing Inflammation and Acinar Cell Necroptosis. Front Cell Dev Biol 2022; 10:827714. [PMID: 35281076 PMCID: PMC8904929 DOI: 10.3389/fcell.2022.827714] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Inflammatory disorder and acinar cell death contribute to the initiation and progression of severe acute pancreatitis (SAP). Adenosine kinase (ADK) has potential effects on both inflammation and cell death. However, the role of ADK in SAP remains to be explored. Methods: To establish an experimental SAP model, male C57BL/6 mice were intraperitoneally injected with cerulein (50 μg/kg, seven doses at hourly intervals) and LPS (10 mg/kg, at the last cerulein injection). For ADK inhibition, ABT702 (1.5 mg/kg) was intraperitoneally injected 1 h before cerulein treatment. The pancreas and serum were collected and analyzed to determine the severity of pancreatic injury and explore the potential pathophysiological mechanisms. Pancreatic acinar cells (AR42J) were used to explore the in vitro effects of ADK inhibition on cerulein–induced inflammation and necroptotic cell death. Results: ADK inhibition notably attenuated the severity of SAP, as indicated by the decreased serum amylase (7,416.76 ± 1,457.76 vs. 4,581.89 ± 1,175.04 U/L) and lipase (46.51 ± 11.50 vs. 32.94 ± 11.46 U/L) levels and fewer pancreatic histopathological alterations (histological scores: 6.433 ± 0.60 vs. 3.77 ± 0.70). MOMA-2 and CD11b staining confirmed that ADK inhibition prevented the infiltration of neutrophils and macrophages. The phosphorylation of nuclear factor-κB (NF-κB) was also reduced by ADK inhibition. ADK inhibition markedly limited the necrotic area of the pancreas and prevented the activation of the necroptotic signaling pathway. Endoplasmic reticulum (ER) stress was activated in the pancreas using the SAP model and cerulein–treated AR42J cells whereas ADK inhibition reversed the activation of ER stress both in vivo and in vitro. Moreover, the alleviating effects of ADK inhibition on ER stress, inflammation, and cell necroptosis were eliminated by the adenosine A2A receptor antagonist. Conclusion: ADK inhibition reduced inflammation and necroptotic acinar cell death in SAP via the adenosine A2A receptor/ER stress pathway, suggesting that ADK might be a potential therapeutic target for SAP.
Collapse
Affiliation(s)
- Shukun Sun
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Qilu Hospital, Cheeloo College of Medicine, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Shandong University, Jinan, China
| | - Yu Han
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Qilu Hospital, Cheeloo College of Medicine, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Shandong University, Jinan, China
| | - Chuanxin Zhang
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Qilu Hospital, Cheeloo College of Medicine, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Shandong University, Jinan, China
| | - Han Liu
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Qilu Hospital, Cheeloo College of Medicine, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Shandong University, Jinan, China
| | - Bailu Wang
- Clinical Trial Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shengchuan Cao
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Qilu Hospital, Cheeloo College of Medicine, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Shandong University, Jinan, China
| | - Qiuhuan Yuan
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Qilu Hospital, Cheeloo College of Medicine, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Shandong University, Jinan, China
| | - Shujian Wei
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Qilu Hospital, Cheeloo College of Medicine, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Shandong University, Jinan, China
- *Correspondence: Shujian Wei, ; Yuguo Chen,
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Qilu Hospital, Cheeloo College of Medicine, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Shandong University, Jinan, China
- *Correspondence: Shujian Wei, ; Yuguo Chen,
| |
Collapse
|
20
|
Inhibition of hypoxia-inducible factor-1α alleviates acinar cell necrosis in a mouse model of acute pancreatitis. Biochem Biophys Res Commun 2021; 572:72-79. [PMID: 34358966 DOI: 10.1016/j.bbrc.2021.07.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/20/2022]
Abstract
Hypoxia-inducible factor-1α (Hif1α) is activated in hypoxia and is closely related to oxidative stress, immunity and cell metabolism. Recently, it is reported that Hif1α is involved in atherosclerosis, ischemia-reperfusion (I/R) injury, alcoholic liver disease and pancreatic tumors. In this study, we found that Hif1 signal pathway is significantly changed in pancreas of acute pancreatitis (AP) mice. Meanwhile, we verified that the high expression of Hif1α injured pancreatic tissues of cerulean-induced AP mice, which prompting that Hif1α participated in the progress of histopathology on AP. We applied a Hif1α inhibitor PX478 and observed that it could alleviate histological injury of pancreas as well as the levels of serum amylase, lipase and proinflammatory cytokine in the murine model of AP induced by caerulein. In addition, PX478 could reduce the formation of necrosome (RIP3 and p-MLKL) and the generation of reactive oxygen species (ROS) in AP mice. Correspondingly, we further confirmed the effectiveness of PX478 in vitro and found that inhibiting Hif1α could mitigated the necrosis of pancreatic acinar cells via reducing the RIP3 and p-MLKL expression and the ROS production. In conclusion, inhibiting Hif1α could protect against acinar cells necrosis in AP, which may provide a new target for the prevention and treatment of AP clinically.
Collapse
|
21
|
Shen Y, Xue C, You G, Liu C. miR-9 alleviated the inflammatory response and apoptosis in caerulein-induced acute pancreatitis by regulating FGF10 and the NF-κB signaling pathway. Exp Ther Med 2021; 22:795. [PMID: 34093751 PMCID: PMC8170642 DOI: 10.3892/etm.2021.10227] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRs) have been implicated in the development of acute pancreatitis (AP). However, the role and potential mechanism of miR-9 in AP progression remains unclear. Caerulein-treated AR42J cells were used as a cellular model of AP. Results revealed caerulein triggered an inflammatory response by promoting the secretion of inflammatory cytokines [tumor necrosis factor-α, interleukin (IL) 1β and IL-6], as evidenced by ELISA. Furthermore, caerulein-induced apoptosis was reported by flow cytometry and western blot assays. Additionally, miR-9 expression was downregulated by caerulein treatment, as demonstrated by reverse transcription quantitative PCR. However, miR-9 overexpression reduced the inflammatory response and apoptosis in caerulein-treated AR42J cells. miR-9 knockdown resulted in opposite effects. Furthermore, fibroblast growth factor (FGF) 10 was validated to be targeted via miR-9 by luciferase, RNA immunoprecipitation and RNA pull-down assays. Results demonstrated increased FGF10 expression in caerulein-treated AR42J cells and that FGF10 overexpression exacerbated the caerulein-induced inflammatory response and apoptosis, while its knockdown had the opposite effect. Additionally, FGF10 reversed the effect of miR-9 on caerulein-induced injury in AR42J cells. Results demonstrated that miR-9 inhibited the expression of the nuclear factor κB (NF-κB) pathway-related proteins by downregulating FGF10. As a result, miR-9 decreased inflammatory response and apoptosis in caerulein-treated AR42J cells by targeting FGF10 and blocking NF-κB signaling, suggesting that miR-9 may serve as a novel target for AP treatment.
Collapse
Affiliation(s)
- Yang Shen
- Department of Gastroenterology, Jiangsu Hospital, Nantong University, Nantong, Jiangsu 224700, P.R. China
| | - Chengjun Xue
- Department of Gastroenterology, Jiangsu Hospital, Nantong University, Nantong, Jiangsu 224700, P.R. China
| | - Guoli You
- Department of Gastroenterology, Jiangsu Hospital, Nantong University, Nantong, Jiangsu 224700, P.R. China
| | - Cui Liu
- Department of Gastroenterology, Jiangsu Hospital, Nantong University, Nantong, Jiangsu 224700, P.R. China
| |
Collapse
|
22
|
Molnár T, Pallagi P, Tél B, Király R, Csoma E, Jenei V, Varga Z, Gogolák P, Odile Hueber A, Máté Z, Erdélyi F, Szabó G, Pettkó-Szandtner A, Bácsi A, Virág L, Maléth J, Koncz G. Caspase-9 acts as a regulator of necroptotic cell death. FEBS J 2021; 288:6476-6491. [PMID: 33899329 DOI: 10.1111/febs.15898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/04/2021] [Indexed: 01/25/2023]
Abstract
Necroptosis is a regulated necrotic-like cell death modality which has come into the focus of attention since it is known to contribute to the pathogenesis of many inflammatory and degenerative diseases as well as to tumor regulation. Based on current data, necroptosis serves as a backup mechanism when death receptor-induced apoptosis is inhibited or absent. However, the necroptotic role of the proteins involved in mitochondrial apoptosis has not been investigated. Here, we demonstrated that the stimulation of several death and pattern recognition receptors induced necroptosis under caspase-compromised conditions in wild-type, but not in caspase-9-negative human Jurkat and murine MEF cells. Cerulein-induced pancreatitis was significantly reduced in mice with acinar cell-restricted caspase-9 gene knockout. The absence of caspase-9 led to impaired association of receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3 and resulted in decreased phosphorylation of RIP kinases, but the overexpression of RIPK1 or RIPK3 rescued the effect of caspase-9 deficiency. Inhibition of either Aurora kinase A (AURKA) or its known substrate, glycogen synthase kinase 3β (GSK3ß) restored necroptosis sensitivity of caspase-9-deficient cells, indicating an interplay between caspase-9 and AURKA-mediated pathways to regulate necroptosis. Our findings suggest that caspase-9 acts as a newly identified regulator of necroptosis, and thus, caspase-9 provides a promising therapeutic target to manipulate the immunological outcome of cell death.
Collapse
Affiliation(s)
- Tamás Molnár
- Department of Immunology, Faculty of Medicine, University of Debrecen, Hungary.,Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, Hungary
| | - Petra Pallagi
- First Department of Medicine, University of Szeged, Szeged, Hungary.,HAS-USZ Momentum Epithelial Cell Signalling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Bálint Tél
- First Department of Medicine, University of Szeged, Szeged, Hungary.,HAS-USZ Momentum Epithelial Cell Signalling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Róbert Király
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Eszter Csoma
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Hungary
| | - Viktória Jenei
- Department of Immunology, Faculty of Medicine, University of Debrecen, Hungary
| | - Zsófia Varga
- Department of Immunology, Faculty of Medicine, University of Debrecen, Hungary.,Doctoral School of Molecular Cellular and Immune Biology, University of Debrecen, Hungary
| | - Péter Gogolák
- Department of Immunology, Faculty of Medicine, University of Debrecen, Hungary
| | | | - Zoltán Máté
- Medical Gene Technology Unit, Institute of Experimental Medicine, Budapest, Hungary
| | - Ferenc Erdélyi
- Medical Gene Technology Unit, Institute of Experimental Medicine, Budapest, Hungary
| | - Gábor Szabó
- Medical Gene Technology Unit, Institute of Experimental Medicine, Budapest, Hungary
| | | | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Hungary
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Hungary
| | - József Maléth
- First Department of Medicine, University of Szeged, Szeged, Hungary.,HAS-USZ Momentum Epithelial Cell Signalling and Secretion Research Group, University of Szeged, Szeged, Hungary
| | - Gábor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, Hungary
| |
Collapse
|
23
|
Zhang J, Huang W, He Q, Deng T, Wu B, Huang F, Bi J, Jin Y, Sun H, Zhang Q, Shi K. PINK1/PARK2 dependent mitophagy effectively suppresses NLRP3 inflammasome to alleviate acute pancreatitis. Free Radic Biol Med 2021; 166:147-164. [PMID: 33636335 DOI: 10.1016/j.freeradbiomed.2021.02.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Acute pancreatitis (AP) is a clinically common acute inflammatory disease in digestive system, leading to systemic inflammatory response syndrome (SIRS) and severe acute pancreatitis (SAP). It was reported that PINK1/PARK2 dependent mitophagy played an important role in various inflammatory diseases. However, its role in AP has not been elucidated. Herein, we explore the effect of mitophagy in the pathogenesis of AP. METHODS Firstly, we established cerulein-induced AP group and arginine-induced SAP group based on wild, PINK1-/- and PARK2-/- mice. Pancreatic samples were harvested for further investing the mitochondrial dynamics, mitophagy alterations, NLRP3 inflammatory pathway etc. Furthermore, peripheral blood mononuclear cells from SAP patients were collected to examine the expression of mitophagy-related indicators. Additionally, the interrelationship between mitophagy and NLRP3 inflammasome was also explored in AP. RESULTS It was confirmed that mitochondria were damaged in both AP and SAP models. The expressions of PINK1, PARK2 and mitochondrial autophagosomes were elevated in wild AP group, which were decreased in SAP group over time. Similarly, the expressions of PINK1 and PAKR2 in peripheral blood mononuclear cells were significantly lower in SAP patients. Besides, in PINK1-/- and PARK2-/- mice AP groups, more pronounced inflammatory infiltration, increased apoptotic and necrotic levels and upregulated NLRP3 inflammasome pathway were detected. After injection with MCC950, NLRP3 inflammasome production was notably reduced in PINK1-/-and PARK2-/-mice, which effectively alleviated the pancreatic damage and inflammatory cell infiltration. CONCLUSION Our study suggested that mitochondrial dysfunction activated PINK1/PARK2-mediated mitophagy in AP, while mitophagy was impaired in SAP. PINK1-/- and PARK2-/- mice were more sensitive to onset of SAP and the deficiency of mitophagy could lead to the formation of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China.
| | - Weiguo Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China.
| | - Qikuan He
- Department of General Surgery, Ningbo First Hospital, Ningbo, Zhejiang, 315000, PR China.
| | - Tuo Deng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China.
| | - Boda Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China.
| | - Feifei Huang
- The Ultrasonic Department of the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China.
| | - Jiayang Bi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China.
| | - Yuepeng Jin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China.
| | - Hongwei Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China.
| | - Qiyu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China.
| | - Keqing Shi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, PR China.
| |
Collapse
|
24
|
Zhao H, Jiang S. MiR-204-5p Performs a Protective Effect on Cerulein-Induced Rat Pancreatic Acinar Cell AR42J Cell Damage by Targeting Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein Gamma and Regulating PI3K/Hippo Pathways. Pancreas 2021; 50:243-250. [PMID: 33565802 DOI: 10.1097/mpa.0000000000001748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE This research plans to address the function of miR-204-5p/tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma (YWHAG) in cerulein-induced acute pancreatitis (AP). METHODS Rat pancreatic acinar cell AR42J was stimulated by 100 nmol/L of cerulein to mimic the situation in AP. Gene Expression Omnibus database was used to select differentially expressed genes. StarBase database and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were used to select the target genes of miR-204-5p, which were further affirmed by dual luciferase assay. The biological behaviors of AR42J cells were measured by cell proliferation and flow cytometry assays. Quantitative real-time polymerase chain reaction and western blot assays were executed to assess YWHAG expression. The secretion of C-C Motif Chemokine Ligand 2/Timp metallopeptidase inhibitor 1 in AR42J cells was evaluated by enzyme-linked immunosorbent assay. The protein expression of YAP1/p-YAP1/PI3K/p-PI3K was measured by western blot. RESULTS miR-204-5p expression was profoundly reduced in cerulein-induced AP model. YWHAG was upregulated in cerulein-induced AP model and related to C-C Motif Chemokine Ligand 2/Timp1. In addition to the negative association between miR-204-5p and YWHAG, the alleviation impact of miR-204-5p mimic on cerulein-induced AR42J cell damage was blocked by YWHAG overexpression and PI3K/Hippo signaling pathways activation. CONCLUSIONS These observations indicated that the alleviation impact of miR-204-5p on cerulein-induced AR42J cell damage was mediated via YWHAG and PI3K/Hippo signaling pathways.
Collapse
Affiliation(s)
- Hongbo Zhao
- From the Department of Gastroenterology, Central Hospital of Shanxian, Heze
| | - Shaolian Jiang
- Department of Gastroenterology, The Second People's Hospital of Jingmen, Jingmen, China
| |
Collapse
|
25
|
Zheng Z, Ding YX, Qu YX, Cao F, Li F. A narrative review of acute pancreatitis and its diagnosis, pathogenetic mechanism, and management. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:69. [PMID: 33553362 PMCID: PMC7859757 DOI: 10.21037/atm-20-4802] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acute pancreatitis (AP) is an inflammatory disease that can progress to severe acute pancreatitis (SAP), which increases the risk of death. AP is characterized by inappropriate activation of trypsinogen, infiltration of inflammatory cells, and destruction of secretory cells. Other contributing factors may include calcium (Ca2+) overload, mitochondrial dysfunction, impaired autophagy, and endoplasmic reticulum (ER) stress. In addition, exosomes are also associated with pathophysiological processes of many human diseases and may play a biological role in AP. However, the pathogenic mechanism has not been fully elucidated and needs to be further explored to inform treatment. Recently, the treatment guidelines have changed; minimally invasive therapy is advocated more as the core multidisciplinary participation and "step-up" approach. The surgical procedures have gradually changed from open surgery to minimally invasive surgery that primarily includes percutaneous catheter drainage (PCD), endoscopy, small incision surgery, and video-assisted surgery. The current guidelines for the management of AP have been updated and revised in many aspects. The type of fluid to be used, the timing, volume, and speed of administration for fluid resuscitation has been controversial. In addition, the timing and role of nutritional support and prophylactic antibiotic therapy, as well as the timing of the surgical or endoscopic intervention, and the management of complications still have many uncertainties that could negatively impact the prognosis and patients' quality of life. Consequently, to inform clinicians about optimal treatment, we aimed to review recent advances in the understanding of the pathogenesis of AP and its diagnosis and management.
Collapse
Affiliation(s)
- Zhi Zheng
- Department of General Surgery, Xuan Wu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Yi-Xuan Ding
- Department of General Surgery, Xuan Wu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Yuan-Xu Qu
- Department of General Surgery, Xuan Wu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Feng Cao
- Department of General Surgery, Xuan Wu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Fei Li
- Department of General Surgery, Xuan Wu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Yang X, Li R, Xu L, Qian F, Sun L. Serum amyloid A3 is required for caerulein-induced acute pancreatitis through induction of RIP3-dependent necroptosis. Immunol Cell Biol 2020; 99:34-48. [PMID: 32725692 DOI: 10.1111/imcb.12382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/28/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023]
Abstract
Serum amyloid A (SAA) is an early and sensitive biomarker of inflammatory diseases, but its role in acute pancreatitis (AP) is still unclear. Here, we used a caerulein-induced mouse model to investigate the role of SAA in AP and other related inflammatory responses. In our study, we found that the expression of a specific SAA isoform, SAA3, was significantly elevated in a caerulein-induced AP animal model. In addition, SAA3-knockout (Saa3-/- ) mice showed lower serum levels of amylase and lipase, tissue damage and proinflammatory cytokine production in the pancreas compared with those of wild-type mice in response to caerulein administration. AP-associated acute lung injury was also significantly attenuated in Saa3-/- mice. In our in vitro experiments, treatment with cholecystokinin and recombinant SAA3 significantly induced necroptosis and cytokine production. Moreover, we found that the regulatory effect of SAA3 on acinar cell necroptosis was through a receptor-interacting protein 3 (RIP3)-dependent manner. Collectively, our findings indicate that SAA3 is required for AP by inducing an RIP3-dependent necroptosis pathway in acinar cells and is a potential drug target for AP.
Collapse
Affiliation(s)
- Xinyi Yang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Runsheng Li
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Yanchang Road, Shanghai, 200072, PR China
| | - Lu Xu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Feng Qian
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China.,Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Anhui Province, Bengbu, 233003, PR China
| | - Lei Sun
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
27
|
Jung S, Seo DJ, Yeo D, Wang Z, Min A, Zhao Z, Song M, Choi IS, Myoung J, Choi C. Experimental infection of hepatitis E virus induces pancreatic necroptosis in miniature pigs. Sci Rep 2020; 10:12022. [PMID: 32694702 PMCID: PMC7374588 DOI: 10.1038/s41598-020-68959-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Infection by hepatitis E virus (HEV) via the oral route causes acute hepatitis. Extra-hepatic manifestations of HEV infection may stem from various causes; however, its distribution in organs such as the liver, as well as the mechanisms underlying HEV-induced cell injury, remain unclear. The objective of this study was to determine the chronological distribution of HEV in various tissues of HEV-challenged miniature pigs and to investigate the mechanisms underlying HEV-induced cell death in the pancreas and liver. Virological and serological analyses were performed on blood and faecal samples. Histopathology of the liver and extra-hepatic tissues was analysed. Cell death pathways and immune cell characterisation in inflammatory lesions were analysed using immunohistochemistry. The liver and pancreas displayed inflammation and cellular injury, and a large amount of HEV was observed in the lesions. The liver was infiltrated by T and natural killer cells. HEV was identified in all organs except the heart, and was associated with immune cells. Although the liver and the pancreas strongly expressed TNF-α and TRAIL, TUNEL assay results were negative. RIP3 and pMLKL were expressed in the pancreas. RIP3, but not pMLKL, was expressed in the liver. Pancreatitis induced in HEV-infected miniature pigs is associated with necroptosis.
Collapse
Affiliation(s)
- Soontag Jung
- Department of Food and Nutrition, School of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, 4726 Seodongdaero, Daedeok-myeon, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Dong Joo Seo
- Department of Food and Nutrition, Gwangju University, Gwangju, 61743, Republic of Korea
| | - Daseul Yeo
- Department of Food and Nutrition, School of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, 4726 Seodongdaero, Daedeok-myeon, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Zhaoqi Wang
- Department of Food and Nutrition, School of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, 4726 Seodongdaero, Daedeok-myeon, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Ae Min
- Department of Food and Nutrition, School of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, 4726 Seodongdaero, Daedeok-myeon, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Ziwei Zhao
- Department of Food and Nutrition, School of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, 4726 Seodongdaero, Daedeok-myeon, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - Mengxiao Song
- Department of Food and Nutrition, School of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, 4726 Seodongdaero, Daedeok-myeon, Anseong-si, Gyeonggi-do, 17546, Republic of Korea
| | - In-Soo Choi
- Department of Infectious Disease, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jinjong Myoung
- Korea Zoonosis Research Institute, Chonbuk National University, Jeonju, 54896, Republic of Korea
| | - Changsun Choi
- Department of Food and Nutrition, School of Food Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, 4726 Seodongdaero, Daedeok-myeon, Anseong-si, Gyeonggi-do, 17546, Republic of Korea.
- Bio and Environmental Technology Research Institute, Chung-Ang University, 4726 Seodongdaero, Daedeok-myeon, Anseong-si, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
28
|
Hirota M, Shimosegawa T, Kitamura K, Takeda K, Takeyama Y, Mayumi T, Ito T, Takenaka M, Iwasaki E, Sawano H, Ishida E, Miura S, Masamune A, Nakai Y, Mitoro A, Maguchi H, Kimura K, Sanuki T, Ito T, Haradome H, Kozaka K, Gabata T, Kataoka K, Hirota M, Isaji S, Nakamura R, Yamagiwa K, Kayaba C, Ikeda K. Continuous regional arterial infusion versus intravenous administration of the protease inhibitor nafamostat mesilate for predicted severe acute pancreatitis: a multicenter, randomized, open-label, phase 2 trial. J Gastroenterol 2020; 55:342-352. [PMID: 31758329 PMCID: PMC7026212 DOI: 10.1007/s00535-019-01644-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Continuous regional arterial infusion (CRAI) of protease inhibitor nafamostat mesilate (NM) is used in the context of predicted severe acute pancreatitis (SAP) to prevent the development of pancreatic necrosis. Although this therapy is well known in Japan, its efficacy and safety remain unclear. METHODS This investigator-initiated and -driven, multicenter, open-label, randomized, controlled trial (UMIN000020868) enrolled 39 patients with predicted SAP and low enhancement of the pancreatic parenchyma on computed tomography (CT). Twenty patients were assigned to the CRAI group, while 19 served as controls and were administered NM at the same dose intravenously (IV group). The primary endpoint was the development of pancreatic necrosis as determined by CT on Day 14, judged by blinded central review. RESULTS There was no difference between the CRAI and IV groups regarding the percentages of participants who developed pancreatic necrosis (more than 1/3 of the pancreas: 25.0%, range 8.7-49.1% vs. 15.8%, range 3.4-39.6%, respectively, P = 0.694; more than 2/3 of the pancreas: 20%, range 5.7-43.7% vs. 5.3%, range 0.1-26.0%, respectively, P = 0.341). The early analgesic effect was evaluated based on 24-h cumulative fentanyl consumption and additional administration by intravenous patient-controlled analgesia. The results showed that the CRAI group used significantly less analgesic. There were two adverse events related to CRAI, namely bleeding and splenic infarction. CONCLUSIONS CRAI with NM did not inhibit the development of pancreatic necrosis although early analgesic effect of CRAI was superior to that of IV. Less-invasive IV therapy can be considered a viable alternative to CRAI therapy.
Collapse
Affiliation(s)
- Morihisa Hirota
- Division of Gastroenterology and Hepatology, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino-ku, Sendai, Miyagi, 9838536, Japan.
| | - Tooru Shimosegawa
- Department of Gastroenterology, South Miyagi Medical Center, 28-1 Nishi, Ohgawara, Miyagi, 9891253, Japan
| | - Katsuya Kitamura
- Division of Gastroenterology, Department of Medicine, Showa University School of Medicine, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo, 1428666, Japan
- Department of Gastroenterology and Hepatology, Tokyo Medical University Hachioji Medical Center, 1163, Tatemachi, Hachioji-Shi, Tokyo, 1930998, Japan
| | - Kazunori Takeda
- Miyagi Branch, Health Insurance Claims Review & Reimbursement Services, 5-1-27, Tsutsujigaoka, Miyagino-ku, Sendai, Miyagi, 9838504, Japan
| | - Yoshifumi Takeyama
- Department of Surgery, Kindai University, Faculty of Medicine, 377-2, Ohno-Higashi, Osaka-Sayama, Osaka, 5898511, Japan
| | - Toshihiko Mayumi
- Department of Emergency Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 8078555, Japan
| | - Tetsuhide Ito
- Department of Gastroenterology and Hepatology, International University of Health and Welfare Graduate School of Medicine, Neuroendocrine Tumor Center, Fukuoka Sanno Hospital, 3-6-45, Momochihama, Sawara-ku, Fukuoka, 8140001, Japan
| | - Mamoru Takenaka
- Department of Gastroenterology and Hepatology, Kindai University, Faculty of Medicine, 377-2, Ohno-Higashi, Osaka-Sayama, Osaka, 5898511, Japan
| | - Eisuke Iwasaki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35, Shinanomachi, Shinjuku-ku, Tokyo, 1608582, Japan
| | - Hirotaka Sawano
- Senri Critical Care Medical Center, Osaka Saiseikai Senri Hospital, 1-1-6, Tsukumodai, Suita, Osaka, 5650862, Japan
| | - Etsuji Ishida
- Department of Gastroenterology, Kurashiki Central Hospital, 1-1-1, Miwa, Kurashiki, Okayama, 7108602, Japan
| | - Shin Miura
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1, Seiryo, Aoba-ku, Sendai, Miyagi, 9808574, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1, Seiryo, Aoba-ku, Sendai, Miyagi, 9808574, Japan
| | - Yousuke Nakai
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Endoscopy and Endoscopic Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 1138655, Japan
| | - Akira Mitoro
- Third Department of Internal Medicine, Nara Medical University, 840, Shijo-cho, Kashihara, Nara, 6348522, Japan
| | - Hiroyuki Maguchi
- Center for Gastroenterology, Teine-keijinkai Hospital, 1-12-1-40, Maeda, Teine-ku, Sapporo, 0068555, Japan
| | - Kenji Kimura
- Department of Gastroenterology, National Hospital Organization Sendai Medical Center, 2-11-12, Miyagino, Miyagino-ku, Sendai, Miyagi, 9838520, Japan
| | - Tsuyoshi Sanuki
- Department of Gastroenterology, Kita-Harima Medical Center, 926-250, Ichiba-cho, Ono, Hyogo, 6751392, Japan
| | - Tetsuya Ito
- Department of Internal Medicine, Gastroenterology, Shinshu University Hospital, 3-1-1, Akashi, Matsumoto, Nagano, 3908621, Japan
- Division of Gastroenterology, Nagano Red Cross Hospital, 5-22-1, Wakasato, Nagano, 3808582, Japan
| | - Hiroki Haradome
- Department of Radiological Advanced Medicine, Kitasato University School of Medicine, 1-15-1, Kitasato, Minami-ku, Sagamihara, Kanagawa, 2520375, Japan
| | - Kazuto Kozaka
- Department of Radiology, Kanazawa University, Graduate School of Medical Sciences, 13-1, Takaramachi, Kanazawa, Ishikawa, 9208641, Japan
| | - Toshifumi Gabata
- Department of Radiology, Kanazawa University, Graduate School of Medical Sciences, 13-1, Takaramachi, Kanazawa, Ishikawa, 9208641, Japan
| | - Keisho Kataoka
- Department of Gastroenterology, Otsu Municipal Hospital, 2-9-9, Motomiya, Otsu, Shiga, 5200804, Japan
| | - Masahiko Hirota
- Department of Surgery, Kumamoto Regional Medical Center, 5-16-10, Honjou, Chuou-ku, Kumamoto, 8600811, Japan
| | - Shuji Isaji
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University Graduate School of Medicine, 2-174, Edobashi, Tsu, Mie, 5148507, Japan
| | - Ryoji Nakamura
- Inter Scientific Research Co., Ltd, 3-14-1, Higashinakano, Nakano-ku, Tokyo, 1640003, Japan
| | - Koki Yamagiwa
- Department of Development Promotion, Clinical Research, Innovation, Education Center, Tohoku University Hospital, 1-1, Seiryo, Aoba-ku, Sendai, Miyagi, 9808574, Japan
| | - Chie Kayaba
- Department of Development Promotion, Clinical Research, Innovation, Education Center, Tohoku University Hospital, 1-1, Seiryo, Aoba-ku, Sendai, Miyagi, 9808574, Japan
| | - Koji Ikeda
- Department of Development Promotion, Clinical Research, Innovation, Education Center, Tohoku University Hospital, 1-1, Seiryo, Aoba-ku, Sendai, Miyagi, 9808574, Japan
| |
Collapse
|
29
|
Brito H, Marques V, Afonso MB, Brown DG, Börjesson U, Selmi N, Smith DM, Roberts IO, Fitzek M, Aniceto N, Guedes RC, Moreira R, Rodrigues CMP. Phenotypic high-throughput screening platform identifies novel chemotypes for necroptosis inhibition. Cell Death Discov 2020; 6:6. [PMID: 32123582 PMCID: PMC7026080 DOI: 10.1038/s41420-020-0240-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023] Open
Abstract
Regulated necrosis or necroptosis, mediated by receptor-interacting kinase 1 (RIPK1), RIPK3 and pseudokinase mixed lineage kinase domain-like protein (MLKL), contributes to the pathogenesis of inflammatory, infectious and degenerative diseases. Recently identified necroptosis inhibitors display moderate specificity, suboptimal pharmacokinetics, off-target effects and toxicity, preventing these molecules from reaching the clinic. Here, we developed a cell-based high-throughput screening (HTS) cascade for the identification of small-molecule inhibitors of necroptosis. From the initial library of over 250,000 compounds, the primary screening phase identified 356 compounds that strongly inhibited TNF-α-induced necroptosis, but not apoptosis, in human and murine cell systems, with EC50 < 6.7 μM. From these, 251 compounds were tested for RIPK1 and/or RIPK3 kinase inhibitory activity; some were active and several have novel mechanisms of action. Based on specific chemical descriptors, 110 compounds proceeded into the secondary screening cascade, which then identified seven compounds with maximum ability to reduce MLKL activation, IC50 >100 μM, EC50 2.5-11.5 μM under long-term necroptosis execution in murine fibroblast L929 cells, and full protection from ATP depletion and membrane leakage in human and murine cells. As a proof of concept, compound SN-6109, with binding mode to RIPK1 similar to that of necrostatin-1, confirmed RIPK1 inhibitory activity and appropriate pharmacokinetic properties. SN-6109 was further tested in mice, showing efficacy against TNF-α-induced systemic inflammatory response syndrome. In conclusion, a phenotypic-driven HTS cascade promptly identified robust necroptosis inhibitors with in vivo activity, currently undergoing further medicinal chemistry optimization. Notably, the novel hits highlight the opportunity to identify new molecular mechanisms of action in necroptosis.
Collapse
Affiliation(s)
- Hugo Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Marta B. Afonso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Dean G. Brown
- Hit Discovery, Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Boston, MA 02451 USA
| | - Ulf Börjesson
- Hit Discovery, Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, 431 83 Sweden
| | - Nidhal Selmi
- Hit Discovery, Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, 431 83 Sweden
| | - David M. Smith
- Emerging Innovations Unit, Discovery Sciences, R&D, AstraZeneca, Cambridge, CB4 0WG UK
| | - Ieuan O. Roberts
- Hit Discovery, Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Cambridge, CB4 0WG UK
| | - Martina Fitzek
- Hit Discovery, Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Alderley Park, Macclesfield, SK10 4TG UK
| | - Natália Aniceto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Rita C. Guedes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Rui Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
30
|
Wall J, Naganathar S, Praditsuktavorn B, Bugg OF, McArthur S, Thiemermann C, Tremoleda JL, Brohi K. Modeling Cardiac Dysfunction Following Traumatic Hemorrhage Injury: Impact on Myocardial Integrity. Front Immunol 2019; 10:2774. [PMID: 31866998 PMCID: PMC6908477 DOI: 10.3389/fimmu.2019.02774] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/12/2019] [Indexed: 01/14/2023] Open
Abstract
Cardiac dysfunction (CD) importantly contributes to mortality in trauma patients, who survive their initial injuries following successful hemostatic resuscitation. This poor outcome has been correlated with elevated biomarkers of myocardial injury, but the pathophysiology triggering this CD remains unknown. We investigated the pathophysiology of acute CD after trauma using a mouse model of trauma hemorrhage shock (THS)-induced CD with echocardiographic guidance of fluid resuscitation, to assess the THS impact on myocardial integrity and function. Mice were subjected to trauma (soft tissue and bone fracture) and different degrees of hemorrhage severity (pressure controlled ~MABP < 35 mmHg or <65 mmHg) for 1 h, to characterize the acute impact on cardiac function. In a second study, mice were subjected to trauma and hemorrhage (MABP < 35 mmHg) for 1 h, then underwent two echocardiographic-guided resuscitations to baseline stroke volume at 60 and 120 min, and were monitored up to 180 min to study the longer impact of THS following resuscitation. Naïve and sham animals were used as controls. At 60 min post-THS injury, animals showed a lower cardiac output (CO) and stroke volume (SV) and an early rise of heart fatty acid-binding protein (H-FABP = 167 ± 38 ng/ml; 90% increase from shams, 3.54 ± 3.06 ng/ml), when subjected to severe hemorrhage and injury. Despite resuscitation, these animals maintained lower CO (6 ml/min vs. 23 ml/min), lower SV (10 μl vs. 46 μl; both ~75% decreased), and higher H-FABP (levels (340 ± 115 ng/ml vs. 10.3 ± 0.2 ng/ml; all THS vs. shams, P < 0.001) at 180 min post-THS injury. Histopathological and flow-cytometry analysis of the heart confirmed an influx of circulatory leukocytes, compared to non-injured hearts. Myocardial injury was supported by an increase of troponin I and h-FABP and the widespread ultrastructural disorganization of the morphology of sarcomeres and mitochondria. DNA fragmentation and chromatin condensation driven by leakage of apoptosis-inducing factor (AIF) may suggest a mitochondria-driven progressive cell death. THS modeling in the mouse results in cardiomyocyte damage and reduced myocardial function, which mimics the cardiac dysfunction seen in trauma patients. This CD model may, therefore, provide further understanding to the mechanisms underlying CD and act as a tool for developing cardioprotective therapeutics to improve survival after injury.
Collapse
Affiliation(s)
- Johanna Wall
- Centre for Trauma Sciences, Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Sriveena Naganathar
- Centre for Trauma Sciences, Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Banjerd Praditsuktavorn
- Centre for Trauma Sciences, Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Oscar F. Bugg
- Centre for Trauma Sciences, Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Simon McArthur
- Centre for Oral Immunobiology & Regenerative Medicine, Institute of Dentistry, Queen Mary University of London, London, United Kingdom
| | - Christoph Thiemermann
- Centre for Trauma Sciences, Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University of London, London, United Kingdom
- Department of Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Jordi L. Tremoleda
- Centre for Trauma Sciences, Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Karim Brohi
- Centre for Trauma Sciences, Neuroscience, Surgery and Trauma, Blizard Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
31
|
Xie X, Yuan C, Yin L, Zhu Q, Ma N, Chen W, Ding Y, Xiao W, Gong W, Lu G, Xu Z, Li W. NQDI-1 protects against acinar cell necrosis in three experimental mouse models of acute pancreatitis. Biochem Biophys Res Commun 2019; 520:211-217. [PMID: 31587872 DOI: 10.1016/j.bbrc.2019.09.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/27/2019] [Indexed: 01/22/2023]
Abstract
NQDI-1, an inhibitor of ASK1, has been reported to have protective effects in several experimental human disease models. However, the role of NQDI-1 in acute pancreatitis (AP) has not been reported. In this study, we found that NQDI-1 could attenuate histological damage of pancreatic tissue as well as the levels of serum amylase and lipase in a mouse model of AP induced by caerulein. Moreover, the production of reactive oxygen species (ROS) and the expression of necrosis-related proteins (RIP3 and p-MLKL) were also reduced after NQDI-1 administration. Correspondingly, we elucidated the effect of NQDI-1 in vitro and found that NQDI-1 protected against pancreatic acinar cells necrosis via decreasing the ROS production and RIP3 and p-MLKL expression. In addition, we identified the protective effect of NQDI-1 on AP through two other mouse models induced by l-arginine and pancreatic duct ligation. Taken together, these findings showed that NQDI-1 could reduce the acinar cells necrosis and alleviate the severity of AP, which may afford a new therapeutic target on pancreatic necrosis in AP clinically.
Collapse
Affiliation(s)
- Xiaochun Xie
- Department of Critical Care Medicine, PLA Key Laboratory of Emergency and Critical Care Research, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chenchen Yuan
- Department of Critical Care Medicine, PLA Key Laboratory of Emergency and Critical Care Research, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Ling Yin
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qingtian Zhu
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Nan Ma
- Department of Critical Care Medicine, PLA Key Laboratory of Emergency and Critical Care Research, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Weiwei Chen
- Department of Gastroenterology, Clinical Medical College, Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yanbing Ding
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Weiming Xiao
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Weijuan Gong
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Guotao Lu
- Department of Critical Care Medicine, PLA Key Laboratory of Emergency and Critical Care Research, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China; Department of Critical Care Medicine, PLA Key Laboratory of Emergency and Critical Care Research, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Zhenglei Xu
- Department of Gastroenterology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518000, Guangdong, China.
| | - Weiqin Li
- Department of Critical Care Medicine, PLA Key Laboratory of Emergency and Critical Care Research, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Critical Care Medicine, PLA Key Laboratory of Emergency and Critical Care Research, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China.
| |
Collapse
|
32
|
Bao Z, Fan L, Zhao L, Xu X, Liu Y, Chao H, Liu N, You Y, Liu Y, Wang X, Ji J. Silencing of A20 Aggravates Neuronal Death and Inflammation After Traumatic Brain Injury: A Potential Trigger of Necroptosis. Front Mol Neurosci 2019; 12:222. [PMID: 31607859 PMCID: PMC6761256 DOI: 10.3389/fnmol.2019.00222] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023] Open
Abstract
Programmed cell death is an important biological process that plays an indispensable role in traumatic brain injury (TBI). Inhibition of necroptosis, a type of programmed cell death, is pivotal in neuroprotection and in preventing associated inflammatory responses. Our results showed that necroptosis occurred in human brain tissues after TBI. Necroptosis was also induced by controlled cortical impact (CCI) injury in a rat model of TBI and was accompanied by high translocation of high-mobility group box-1 (HMGB1) to the cytoplasm. HMGB1 was then passed through the impaired cell membrane to upregulate the receptor for advanced glycation end-products (RAGE), nuclear factor (NF)-κB, and inflammatory factors such as interleukin-6 (IL-6), interleukin-1 (IL-1β), as well as NACHT, LRR and PYD domains-containing protein 3 (NLRP3). Necroptosis was alleviated by necrostatin-1 and melatonin but not Z-VAD (a caspase inhibitor), which is consistent with the characteristic of caspase-independent signaling. This study also demonstrated that tumor necrosis factor, alpha-induced protein 3 (TNFAIP3, also known as A20) was indispensable for regulating and controlling necroptosis and inflammation after CCI. We found that a lack of A20 in a CCI model led to aggressive necroptosis and attenuated the anti-necroptotic effects of necrostatin-1 and melatonin.
Collapse
Affiliation(s)
- Zhongyuan Bao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Fan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, The Third Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lin Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiupeng Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yinlong Liu
- Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Honglu Chao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Liu
- Institute for Stem Cell and Neural Regeneration, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Xiaoming Wang
- Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
33
|
Cen ME, Wang F, Su Y, Zhang WJ, Sun B, Wang G. Gastrointestinal microecology: a crucial and potential target in acute pancreatitis. Apoptosis 2019; 23:377-387. [PMID: 29926313 DOI: 10.1007/s10495-018-1464-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the early stage of acute pancreatitis (AP), abundant cytokines induced by local pancreatic inflammation enter the bloodstream, further cause systemic inflammatory response syndrome (SIRS) by "trigger effect", which eventually leads to multiple organ dysfunction syndrome (MODS). During SIRS and MODS, the intestinal barrier function was seriously damaged accompanied by the occurrence of gut-derived infection which forms a "second hit summit" by inflammatory overabundance. Gastrointestinal microecology, namely the biologic barrier, could be transformed into a pathogenic state, which is called microflora dysbiosis when interfered by the inflammatory stress during AP. More and more evidences indicate that gastrointestinal microflora dysbiosis plays a key role in "the second hit" induced by AP gut-derived infection. Therefore, the maintenance of gastrointestinal microecology balance is likely to provide an effective method in modulating systemic infection of AP. This article reviewed the progress of gastrointestinal microecology in AP to provide a reference for deeply understanding the pathogenic mechanisms of AP and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Meng-Er Cen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China.,Kidney Disease Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Key Laboratory of Nephropathy, Hangzhou, Zhejiang, China
| | - Feng Wang
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ying Su
- Department of Ophthalmology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wang-Jun Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
34
|
Duan PY, Ma Y, Li XN, Qu FZ, Ji L, Guo XY, Zhang WJ, Xiao F, Li L, Hu JS, Sun B, Wang G. Inhibition of RIPK1-dependent regulated acinar cell necrosis provides protection against acute pancreatitis via the RIPK1/NF-κB/AQP8 pathway. Exp Mol Med 2019; 51:1-17. [PMID: 31375658 PMCID: PMC6802613 DOI: 10.1038/s12276-019-0278-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 01/22/2019] [Accepted: 03/06/2019] [Indexed: 12/20/2022] Open
Abstract
Currently, preliminary results have confirmed the existence of receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL)-dependent necroptosis of pancreatic acinar cells during early acute pancreatitis (AP), which might be a potential target for the effective regulation of necroinflammatory injury. However, the exact effect of receptor-interacting protein kinase 1 (RIPK1)-dependent regulated acinar cell necrosis on AP is still uncertain. In our study, we first explored the changes in the degree of local and systemic inflammation in AP rats when the activation of acinar cell RIPK1 was inhibited. The RIPK1 inhibitor Nec-1 was used to treat rats, and the levels of related inflammatory markers, necrosis indicators and apoptotic indicators were measured. Changes in pancreatic nuclear factor κB (NF-κB) and aquaporin 8 (AQP8) expression were noted. Next, the expression of AQP8 in AR42J cells was inhibited, and the degree of cell necrosis and inflammatory damage was found to be significantly reduced. Most importantly, we demonstrated that the RIPK1/NF-ĸB/AQP8 axis might be a potential regulatory pathway mediating RIPK1-dependent regulated acinar cell necrosis in early AP. Finally, we used the NF-κB inhibitor PDTC and Nec-1 to treat rats in different groups and measured the degree of pathological pancreatic injury, the activation of RIPK1, and the expression of NF-κB and AQP8. In summary, we hypothesized that there might be a RIPK1/NF-ĸB/AQP8 pathway controlling RIPK1-dependent regulated necrosis of acinar cells in AP, which might be a promising therapeutic target against AP-related injury.
Collapse
Affiliation(s)
- Peng-Yu Duan
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuan Ma
- Department of Medical Administration, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xi-Na Li
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Feng-Zhi Qu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Liang Ji
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiao-Yu Guo
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Wang-Jun Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fan Xiao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ji-Sheng Hu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
35
|
Abstract
The incidence of acute pancreatitis continues to increase worldwide, and it is one of the most common gastrointestinal causes for hospital admission in the USA. In the past decade, substantial advancements have been made in our understanding of the pathophysiological mechanisms of acute pancreatitis. Studies have elucidated mechanisms of calcium-mediated acinar cell injury and death and the importance of store-operated calcium entry channels and mitochondrial permeability transition pores. The cytoprotective role of the unfolded protein response and autophagy in preventing sustained endoplasmic reticulum stress, apoptosis and necrosis has also been characterized, as has the central role of unsaturated fatty acids in causing pancreatic organ failure. Characterization of these pathways has led to the identification of potential molecular targets for future therapeutic trials. At the patient level, two classification systems have been developed to classify the severity of acute pancreatitis into prognostically meaningful groups, and several landmark clinical trials have informed management strategies in areas of nutritional support and interventions for infected pancreatic necrosis that have resulted in important changes to acute pancreatitis management paradigms. In this Review, we provide a summary of recent advances in acute pancreatitis with a special emphasis on pathophysiological mechanisms and clinical management of the disorder.
Collapse
|
36
|
Guo XY, Xiao F, Li J, Zhou YN, Zhang WJ, Sun B, Wang G. Exosomes and pancreatic diseases: status, challenges, and hopes. Int J Biol Sci 2019; 15:1846-1860. [PMID: 31523187 PMCID: PMC6743302 DOI: 10.7150/ijbs.35823] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022] Open
Abstract
Pancreatic disease, including pathologies such as acute pancreatitis (AP), chronic pancreatitis (CP), and pancreatic cancer (PC), is a complicated and dangerous clinical condition involving the disruption of exocrine or endocrine function. PC has one of the highest mortality rates among cancers due to insufficient diagnosis in early stages. Furthermore, efficient treatment options for the disease etiologies of AP and CP are lacking. Thus, the identification of new therapeutic targets and reliable biomarkers is required. As essential couriers in intercellular communication, exosomes have recently been confirmed to play an important role in pancreatic disease, but the specific underlying mechanisms are unknown. Herein, we summarize the current knowledge of exosomes in pancreatic disease with respect to diagnosis, molecular mechanisms, and treatment, proposing new ideas for the study of pancreatic disease.
Collapse
Affiliation(s)
- Xiao-Yu Guo
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fan Xiao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jie Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yi-Nan Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Wang-Jun Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
37
|
Hu SH, Guang Y, Wang WX. Protective Effects of Calcitonin Gene-Related Peptide-Mediated p38 Mitogen-Activated Protein Kinase Pathway on Severe Acute Pancreatitis in Rats. Dig Dis Sci 2019; 64:447-455. [PMID: 30370491 DOI: 10.1007/s10620-018-5345-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/17/2018] [Indexed: 01/15/2023]
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) has antioxidant and anti-inflammatory activities on the pathological damage of acute pancreatitis. However, its molecular mechanism on severe acute pancreatitis (SAP) remains unknown. AIMS To evaluate the influence of CGRP-mediated p38MAPK signaling pathway in rats with SAP. METHODS SD rats were randomly divided into Sham group, SAP group, CGRP group (SAP rats injected with CGRP), SB203580 group (rats injected with p38MAPK pathway inhibitor SB203580), and CGRP8-37 group (SAP rats injected with CGRP8-37). Serum amylase and lipase activities were determined. Histopathological observations were evaluated, and the expression of inflammatory cytokines and oxidative stress-related indexes were measured. RESULTS Compared with Sham group, SAP rats were increased in the activities of serum amylase and lipase, the pathologic assessment of pancreatic tissue, the levels of TNF-α, IL-1β, IL-6, and IL-8, the content of MDA and MPO, and the expressions of CGRP, and p-p38MAPK protein, but they were decreased in SOD activity and GSH content. The above alterations were aggravated in the CGRP8-37 group when compared with SAP group. Besides, in comparison with SAP group, rats in the CGRP and SB203580 groups presented a reduction in the activities of serum amylase and lipase, the levels of inflammatory cytokines, the content of MDA and MPO, and the expressions of p-p38MAPK protein, while showed an elevation in SOD activity and GSH content. CONCLUSION Pretreatment with CGRP alleviated oxidative stress and inflammatory response of SAP rats possibly by suppressing the activity of p38MAPK pathway, and thereby postponing the disease progression.
Collapse
Affiliation(s)
- Shao-Hui Hu
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, No. 99, Zhang Zhidong Road (Formerly Ziyang Road), Wuchang District, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Yi Guang
- Department of Gynecology, Xiaogan Central Hospital, Xiaogan, 432000, Hubei Province, People's Republic of China
| | - Wei-Xing Wang
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, No. 99, Zhang Zhidong Road (Formerly Ziyang Road), Wuchang District, Wuhan, 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
38
|
Zhang X, Jin T, Shi N, Yao L, Yang X, Han C, Wen L, Du D, Szatmary P, Mukherjee R, Liu T, Xia Q, Criddle DN, Huang W, Chvanov M, Sutton R. Mechanisms of Pancreatic Injury Induced by Basic Amino Acids Differ Between L-Arginine, L-Ornithine, and L-Histidine. Front Physiol 2019; 9:1922. [PMID: 30697165 PMCID: PMC6341295 DOI: 10.3389/fphys.2018.01922] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/20/2018] [Indexed: 02/05/2023] Open
Abstract
Pancreatic acinar cells require high rates of amino acid uptake for digestive enzyme synthesis, but excessive concentrations can trigger acute pancreatitis (AP) by mechanisms that are not well understood. We have used three basic natural amino acids L-arginine, L-ornithine, and L-histidine to determine mechanisms of amino acid-induced pancreatic injury and whether these are common to all three amino acids. Caffeine markedly inhibited necrotic cell death pathway activation in isolated pancreatic acinar cells induced by L-arginine, but not L-ornithine, whereas caffeine accelerated L-histidine-induced cell death. Both necroptosis inhibitors of RIPK1 and RIPK3 and a necroptosis activator/apoptosis inhibitor z-VAD increased cell death caused by L-histidine, but not L-arginine or L-ornithine. Cyclophilin D knock-out (Ppif-/-) significantly attenuated cell death induced by L-histidine, but not L-arginine, or L-ornithine. Allosteric modulators of calcium-sensing receptor (CaSR) and G-protein coupled receptor class C group 6 member A (GPRC6A) had inhibitory effects on cell death induced by L-arginine but not L-ornithine or L-histidine. We developed a novel amino acid-induced AP murine model with high doses of L-histidine and confirmed AP severity was significantly reduced in Ppif-/- vs. wild type mice. In L-arginine-induced AP neither Ppif-/-, caffeine, or allosteric modulators of CaSR or GPRC6A reduced pancreatic damage, even though CaSR inhibition with NPS-2143 significantly reduced pancreatic and systemic injury in caerulein-induced AP. These findings demonstrate marked differences in the mechanisms of pancreatic injury induced by different basic amino acids and suggest the lack of effect of treatments on L-arginine-induced AP may be due to conversion to L-ornithine in the urea cycle.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
- Liverpool Pancreatitis Study Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Tao Jin
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
- Liverpool Pancreatitis Study Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Na Shi
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Linbo Yao
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Xinmin Yang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Chenxia Han
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Li Wen
- Liverpool Pancreatitis Study Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Dan Du
- West China-Washington Mitochondria and Metabolism Centre, West China Hospital of Sichuan University, Chengdu, China
| | - Peter Szatmary
- Liverpool Pancreatitis Study Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Rajarshi Mukherjee
- Liverpool Pancreatitis Study Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Tingting Liu
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Xia
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - David N. Criddle
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, China
| | - Michael Chvanov
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom
| | - Robert Sutton
- Liverpool Pancreatitis Study Group, Royal Liverpool University Hospital, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
39
|
Pan P, Cai Z, Zhuang C, Chen X, Chai Y. Methodology of drug screening and target identification for new necroptosis inhibitors. J Pharm Anal 2018; 9:71-76. [PMID: 31011462 PMCID: PMC6460297 DOI: 10.1016/j.jpha.2018.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/02/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023] Open
Abstract
Apoptosis has been considered as the only form of regulated cell death for a long time. However, a novel form of programmed cell death called necroptosis was recently reported. The process of necroptosis is regulated and plays a critical role in the occurrence and development of multiple human diseases. Thus, the study on the molecular mechanism of necroptosis and its effective inhibitors has been an attractive field for researchers. Herein, we introduce the molecular mechanism of necroptosis and focus on the literature about necroptosis drug screening in recent years. In addition, the identification of the critical drug targets of the necroptosis is also discussed.
Collapse
Affiliation(s)
- Pengchao Pan
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Zhenyu Cai
- National Center for Liver Cancer, Second Military Medical University, 366 Qianju Road, Shanghai 201805, China
| | - Chunlin Zhuang
- Research Center for Marine Drugs, and Department of Pharmacology, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xiaofei Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Yifeng Chai
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
40
|
Najenson AC, Courreges AP, Perazzo JC, Rubio MF, Vatta MS, Bianciotti LG. Atrial natriuretic peptide reduces inflammation and enhances apoptosis in rat acute pancreatitis. Acta Physiol (Oxf) 2018; 222. [PMID: 29117461 DOI: 10.1111/apha.12992] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/20/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022]
Abstract
AIM We previously reported that atrial natriuretic peptide (ANP) reduces serum amylase and intrapancreatic trypsinogen activation in the onset of acute pancreatitis whereas secretin increases them. In the present work, we sought to establish the effect of ANP and secretin on the inflammatory response and cell death in experimental acute pancreatitis. METHODS The expression and activity of key inflammatory mediators and apoptosis were evaluated in the presence or absence of the atrial peptide, secretin or both in cerulein-induced acute pancreatitis in rats. Also, ultrastructural changes in pancreatic acinar cells were assessed by transmission electron microscopy. RESULTS ANP significantly reduced NF-κB activation and TNF-α intrapancreatic levels. Furthermore, it decreased inducible nitric oxide synthase and cyclooxygenase 2 expression and activity while it diminished myeloperoxidase activity. ANP also stimulated apoptosis as shown by caspase-3 expression and activation as well as TUNEL assay. These findings correlated well with the ultrastructural changes observed in the exocrine pancreas. Although secretin reduced various inflammatory markers, it also diminished caspase-3 activation and the overall response was the aggravation of the disease as reflected by the ultrastructural alterations of pancreatic acinar cells. In the presence of ANP, various effects evoked by secretin were antagonized. CONCLUSION Present findings show that ANP significantly attenuated the severity of acute pancreatitis in the rat by inducing apoptosis and reducing the inflammatory response and further suggest that ANP may have eventual therapeutic implications in the disease and/or in medical interventions at risk of its developing like endoscopic retrograde cholangiopancreatography.
Collapse
Affiliation(s)
- A C Najenson
- Instituto de Inmunología, Genética y Metabolismo (INIGEM-CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - A P Courreges
- Instituto de Inmunología, Genética y Metabolismo (INIGEM-CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - J C Perazzo
- Instituto de Patología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M F Rubio
- Instituto de Investigaciones Médicas (IDIM-CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M S Vatta
- Cátedra de Fisiología-Instituto de Química y Metabolismo del Fármaco (IQUIMEFA-CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - L G Bianciotti
- Instituto de Inmunología, Genética y Metabolismo (INIGEM-CONICET-UBA), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Ciencias Biológicas, Cátedra de Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
41
|
Martin-Sanchez D, Fontecha-Barriuso M, Sanchez-Niño MD, Ramos AM, Cabello R, Gonzalez-Enguita C, Linkermann A, Sanz AB, Ortiz A. Cell death-based approaches in treatment of the urinary tract-associated diseases: a fight for survival in the killing fields. Cell Death Dis 2018; 9:118. [PMID: 29371637 PMCID: PMC5833412 DOI: 10.1038/s41419-017-0043-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/26/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Urinary tract-associated diseases comprise a complex set of disorders with a variety of etiologic agents and therapeutic approaches and a huge global burden of disease, estimated at around 1 million deaths per year. These diseases include cancer (mainly prostate, renal, and bladder), urinary tract infections, and urolithiasis. Cell death plays a key role in the pathogenesis and therapy of these conditions. During urinary tract infections, invading bacteria may either promote or prevent host cell death by interfering with cell death pathways. This has been studied in detail for uropathogenic E. coli (UPEC). Inhibition of host cell death may allow intracellular persistence of live bacteria, while promoting host cell death causes tissue damage and releases the microbes. Both crystals and urinary tract obstruction lead to tubular cell death and kidney injury. Among the pathomechanisms, apoptosis, necroptosis, and autophagy represent key processes. With respect to malignant disorders, traditional therapeutic efforts have focused on directly promoting cancer cell death. This may exploit tumor-specific characteristics, such as targeting Vascular Endothelial Growth Factor (VEGF) signaling and mammalian Target of Rapamycin (mTOR) activity in renal cancer and inducing survival factor deprivation by targeting androgen signaling in prostate cancer. An area of intense research is the use of immune checkpoint inhibitors, aiming at unleashing the full potential of immune cells to kill cancer cells. In the future, this may be combined with additional approaches exploiting intrinsic sensitivities to specific modes of cell death such as necroptosis and ferroptosis. Here, we review the contribution of diverse cell death mechanisms to the pathogenesis of urinary tract-associated diseases as well as the potential for novel therapeutic approaches based on an improved molecular understanding of these mechanisms.
Collapse
Affiliation(s)
- Diego Martin-Sanchez
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- IRSIN, Madrid, Spain
- REDINREN, Madrid, Spain
| | - Miguel Fontecha-Barriuso
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- IRSIN, Madrid, Spain
- REDINREN, Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- IRSIN, Madrid, Spain
- REDINREN, Madrid, Spain
| | - Adrian M Ramos
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- IRSIN, Madrid, Spain
- REDINREN, Madrid, Spain
| | - Ramiro Cabello
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
| | | | - Andreas Linkermann
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Ana Belén Sanz
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.
- IRSIN, Madrid, Spain.
- REDINREN, Madrid, Spain.
| | - Alberto Ortiz
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.
- IRSIN, Madrid, Spain.
- REDINREN, Madrid, Spain.
| |
Collapse
|
42
|
Ye X, Ding J, Chen Y, Dong J. Adenovirus-mediated artificial miRNA targetting fibrinogen-like protein 2 attenuates the severity of acute pancreatitis in mice. Biosci Rep 2017; 37:BSR20170964. [PMID: 29054965 PMCID: PMC5700271 DOI: 10.1042/bsr20170964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 12/10/2017] [Accepted: 10/17/2017] [Indexed: 12/19/2022] Open
Abstract
Severe acute pancreatitis (SAP) remains to be challenging for its unpredictable inflammatory progression from acute pancreatitis to SAP. Apoptosis is an important pathology of SAP. Fibrinogen-like protein 2 (FGL2) has been reported to be involved in apoptosis. The present study aimed to explore the therapeutic effect of an adenovirus-mediated artificial miRNA targetting FGL2 (Ad-FGL2-miRNA) in taurocholate-induced murine pancreatitis models. Sodium taurocholate was retrogradely injected into the biliopancreatic ducts of the C57/BL mice to induce SAP. FGL2 expression was measured with reverse transcription-PCR, Western blotting, and immunohistochemical staining. ELISA was used to detect the activity of amylase and the concentrations of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). In addition, the mRNA levels of TNF-α and IL-1β were also detected. Finally, apoptosis was assessed by terminal deoxynucleotidyl transferase mediated dUTP-biotin nick-end labeling (TUNEL) method and Western blotting. Ad-FGL2-miRNA significantly suppressed FGL2 expression and alleviated pancreatic injury. Also, Ad-FGL2-miRNA markedly inhibited a post-SAP increase in the activation of TNF-α and IL-1β. Finally, pretreatment with Ad-FGL2-miRNA ameliorated apoptosis at the early stage of SAP by modulating cleaved caspase-3 and therefore played a protective role. These results indicated that FGL2 might be a promising target for attenuating the severity of SAP and adenovirus-mediated artificial miRNAs targetting FGL2 represented a potential therapeutic approach for the treatment of SAP.
Collapse
Affiliation(s)
- Xiaohua Ye
- Department of Gastroenterology, Jinhua Hospital of Zhejiang University, Jinhua 321000, China
| | - Jin Ding
- Department of Gastroenterology, Jinhua Hospital of Zhejiang University, Jinhua 321000, China
| | - Yanping Chen
- Department of Gastroenterology, Jinhua Hospital of Zhejiang University, Jinhua 321000, China
| | - Jiayue Dong
- Department of Gastroenterology, Jinhua Hospital of Zhejiang University, Jinhua 321000, China
| |
Collapse
|
43
|
Chandirasegaran G, Elanchezhiyan C, Ghosh K, Sethupathy S. Berberine chloride ameliorates oxidative stress, inflammation and apoptosis in the pancreas of Streptozotocin induced diabetic rats. Biomed Pharmacother 2017; 95:175-185. [DOI: 10.1016/j.biopha.2017.08.040] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 01/12/2023] Open
|
44
|
Li J, Ke X, Yan F, Lei L, Li H. Necroptosis in the periodontal homeostasis: Signals emanating from dying cells. Oral Dis 2017; 24:900-907. [PMID: 28763140 DOI: 10.1111/odi.12722] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/15/2017] [Accepted: 07/25/2017] [Indexed: 12/12/2022]
Abstract
Periodontal tissues are constantly exposed to microbial stimuli. The equilibrium between microbes and host defense system helps maintain the homeostasis in the periodontal microenvironment. Growth of pathogenic bacteria in dental biofilms may induce proinflammatory cytokine production to recruit sentinel cells, mainly neutrophils and monocytes into the gingival sulcus or the periodontal pocket. Moreover, dysbiosis with overgrowth of anaerobic pathogens, such as Porphyromonas gingivalis and Tannerella forsythia, may induce death of both immune cells and host resident cells. Necroptosis is one newly characterized programmed cell death mediated by receptor-interacting protein kinase (RIPK)-1, RIPK3, and mixed lineage kinase like (MLKL). With its release of death-associated molecular patterns (DAMPs) into extracellular environment, necroptosis may help transmit the danger signal and amplify the inflammatory responses. In this review, we present recent advances on how necroptosis influences bacterial infection progression and what a role necroptosis plays in maintaining the homeostasis in the periodontal niche. Until we fully decipher the signals emanated from dying cells, we cannot completely understand the mechanism of disease progression.
Collapse
Affiliation(s)
- J Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - X Ke
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - F Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - L Lei
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - H Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
45
|
Song B, Zhou T, Yang WL, Liu J, Shao LQ. Programmed cell death in periodontitis: recent advances and future perspectives. Oral Dis 2016; 23:609-619. [PMID: 27576069 DOI: 10.1111/odi.12574] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/31/2016] [Accepted: 08/19/2016] [Indexed: 12/18/2022]
Abstract
Periodontitis is a highly prevalent infectious disease, characterized by destruction of the periodontium, and is the main cause of tooth loss. Periodontitis is initiated by periodontal pathogens, while other risk factors including smoking, stress, and systemic diseases aggravate its progression. Periodontitis affects many people worldwide, but the molecular mechanisms by which pathogens and risk factors destroy the periodontium are unclear. Programmed cell death (PCD), different from necrosis, is an active cell death mediated by a cascade of gene expression events and can be mainly classified into apoptosis, autophagy, necroptosis, and pyroptosis. Although PCD is involved in many inflammatory diseases, its correlation with periodontitis is unclear. After reviewing the relevant published articles, we found that apoptosis has indeed been reported to play a role in periodontitis. However, the role of autophagy in periodontitis needs further verification. Additionally, implication of necroptosis or pyroptosis in periodontitis remains unknown. Therefore, we recommend future studies, which will unravel the pivotal role of PCD in periodontitis, allowing us to prevent, diagnose, and treat the disease, as well as predict its outcomes.
Collapse
Affiliation(s)
- B Song
- Guizhou Provincial People's Hospital, Guiyang, China.,Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - T Zhou
- Guizhou Provincial People's Hospital, Guiyang, China
| | - W L Yang
- Guizhou Provincial People's Hospital, Guiyang, China
| | - J Liu
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - L Q Shao
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
46
|
Ji L, Li L, Qu F, Zhang G, Wang Y, Bai X, Pan S, Xue D, Wang G, Sun B. Hydrogen sulphide exacerbates acute pancreatitis by over-activating autophagy via AMPK/mTOR pathway. J Cell Mol Med 2016; 20:2349-2361. [PMID: 27419805 PMCID: PMC5134374 DOI: 10.1111/jcmm.12928] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 06/12/2016] [Indexed: 01/14/2023] Open
Abstract
Previously, we have shown that hydrogen sulphide (H2 S) might be pro-inflammatory during acute pancreatitis (AP) through inhibiting apoptosis and subsequently favouring a predominance of necrosis over apoptosis. In this study, we sought to investigate the detrimental effects of H2 S during AP specifically with regard to its regulation on the impaired autophagy. The incubated levels of H2 S were artificially intervened by an administration of sodium hydrosulphide (NaHS) or DL-propargylglycine (PAG) after AP induction. Accumulation of autophagic vacuoles and pre-mature activation of trypsinogen within acini, which indicate the impairment of autophagy during AP, were both exacerbated by treatment with NaHS but attenuated by treatment with PAG. The regulation that H2 S exerted on the impaired autophagy during AP was further attributed to over-activation of autophagy rather than hampered autophagosome-lysosome fusion. To elucidate the molecular mechanism that underlies H2 S-mediated over-activation of autophagy during AP, we evaluated phosphorylations of AMP-activated protein kinase (AMPK), AKT and mammalian target of rapamycin (mTOR). Furthermore, Compound C (CC) was introduced to determine the involvement of mTOR signalling by evaluating phosphorylations of downstream effecters including p70 S6 kinase (P70S6k) and UNC-51-Like kinase 1 (ULK1). Our findings suggested that H2 S exacerbated taurocholate-induced AP by over-activating autophagy via activation of AMPK and subsequently, inhibition of mTOR. Thus, an active suppression of H2 S to restore over-activated autophagy might be a promising therapeutic approach against AP-related injuries.
Collapse
Affiliation(s)
- Liang Ji
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Le Li
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fengzhi Qu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangquan Zhang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongwei Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuewei Bai
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shangha Pan
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dongbo Xue
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gang Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bei Sun
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|